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Abstract

This project is about the description of ontologies for anomaly detection in
computer systems. The special case of the anomaly detection system in Cfengine
is used as a case study. Cfengine was designed at Oslo University College,
based on a considerable body of research, and thus we have detailed insight
into its operation. The Cfengine environment daemon collects many events
in collaboration with cfagent that are presented to a system administrator for
further analysis and countermeasures. In this work we want to make use of
ontologies to structure the knowledge in a way that makes the process of rea-
soning about anomalies clearer. Ultimately, one could imagine that ontology
capabilities would enable computers to perform automatic filtering process
through inferencing and reasoning about their problem space.
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Chapter 1

Introduction

Anomaly detection is a subject that has been worked on for many years by
many individuals. Possibly many tens (perhaps hundreds) of models have
been proposed to define what is meant by an anomaly in a computer system.
Some models are based on fault and reliability theory, others are based on
the idea of intrusion or misuse detection. Many authors confuse the terms
anomaly detection with Intrusion Detection. This makes it hard to understand
what exactly is being discussed.

In spite of the numerous models, there is no standard approach to defining
or detecting anomalies in computer systems, nor is there a particular system
for anomaly detection that produces convincing results.

The aim of this project is to look at approaches toward mapping out this
area of study, defining basic terminology and concepts and how they relate to
each other. By looking at the concepts and their relationships we should be
able to create a knowledge map for the field. We could then classify differ-
ent works within these different concepts and terms and map one view of the
problem into another.

This problem is too large however. In the time available for this project,
only a small part of this can be accomplished. We therefore aim to create a
framework that can be extended later, by looking at a single case study of a
system well known at our college: Cfengine. The Cfengine anomaly detection
system is based on a body of research [1, 2, 3, 4] so it gives us a clear opportu-
nity for modeling anomalies completely.

1.1 The concepts behind the problem

Most researches and surveys done on anomaly detection are in the Intrusion
Detection perceptive, meaning as one method for Intrusion Detection, the other
common method being misuse or signature-based Intrusion Detection. Tradi-
tionally, anomaly detection is considered to be for detection of intrusions or
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1.1. THE CONCEPTS BEHIND THE PROBLEM

attacks. Most of existing researches and papers on anomaly detection look
for anomalies in network behavior. However, recently the trend has moved
towards host-based anomaly detection, and Cfengine is one of the systems us-
ing this approach.

The rationale behind the host-based approach is that, anomalous behaviour
is of utmost concern regardless of its source (whether network traffic or locally
at the host). From the security point of view, a host-based anomaly detec-
tion approach has the potential of detecting abnormal behaviour in a host that
might indicate inside attacks as opposed to network-based anomaly detection
which will not be able to detect such attacks because they do not generate
network traffic. Additionally, what is considered normal in one host’s en-
vironment could be different in another, hence a distinct model of “normal”
behaviour need to be learned individually by each host.

Cfengine takes a broader perspective in anomaly detection by looking for
abnormal behavior of a host which might include intrusions/attacks as well
as non-malicious behavior. The information obtained from Cfengine anomaly
detection system is intended for self-regulation of the system by initiating
counter-response. For example, if the Cfengine anomaly detection system de-
tects a sudden increase of the number of SMTP connections to be say three or
more standard deviations above normal for a given time of week, this might
indicate a possible spam attack and as a counter response, the decision of shut-
ting down the mail server temporarily to avert the possible attack might be
taken. Similarly, if an overuse of a certain service is detected, a decision of
revoking that service temporarily - until the cause is known or the problem is
solved - can be taken. However, the actions taken are as specified by policies.

The Cfengine anomaly detection is still in its infancy, and like other re-
search and production anomaly detection systems, has some drawbacks. These
include:

• too many events are produced by statistical analysis of collected data

• difficulty in identifying anomalous events

From the misuse (or signature based) Intrusion Detection perspective, the terms
“false positive” and “false negative” can be defined as:

Definition 1 (False positive) A false positive is when the system classifies an action
as anomalous (a possible intrusion) when it is a legitimate action.

Definition 2 (False negative) A false negative is when an actual intrusive action
has occurred but the system allows it to pass as non-intrusive behavior.

However, we feel that, these terms can not be used in the same sense with
anomaly detection because of the following reasons:

2



1.2. MOTIVATION

• Since anomaly detection is about detecting “abnormal (anomalous) be-
haviour”, there is no clear and standard boundary or distinction between
“normal” and “abnormal” behaviour. This leads to another problem,

• Difficulty in asserting whether a certain behaviour is anomalous or not,
and being certain that is the case.

From this point on, we would be refering to “interesting” and “non-interesting”
events rather than “false positive” or “false negative” as this is more appropri-
ate for our case.

1.2 Motivation

What is an anomaly? We return to this question in more depth in chapter 3.
In traditional anomaly detection systems where the focus is mainly in terms
of security, a multitude of events are usually reported. In such systems, sys-
tem administrators are overwhelmed by the multitude of events to be able to
understand what the events are trying to tell. In such cases, the events are
usually just stored for future reference, no analysis and correlation is done to
understand what is really happening, hence intrusion attempts might go un-
noticed and an attack might be successful. However, for the case of Cfengine
anomaly detection, the events and alerts reported depends on the specified
policies. There are too many events whose statistical values measured exceed
the thresholds set by arbitrary policies. The challenge is to filter the “interest-
ing” from the “non-interesting” events for further analysis.

The boundary between acceptable and anomalous behavior is much more
difficult to define. This is because there is no distinct separation between nor-
mal and anomalous behavior. The most common way to draw this boundary
is with statistical distributions having a mean and standard deviation. Once
the distribution has been established, a boundary can be drawn using some
number of standard deviations. If an observation lies at a point outside of the
(parameterized) number of standard deviations, it is reported showing how
much it deviate from the normal value in units of standard deviation. Cfengine
employs this approach to detect anomalous behaviour but the technique is not
optimal. There is still a need for further mining of information given by re-
ported events to have a better understanding of the host’s state.

1.3 Problem definition

The cfenvd is an environmental daemon in Cfengine which is used to collect
statistical data about the recent history of each host (approximately the past
two months), and classify them in such a way that they can be utilized by the

3
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(cfagent). The data collected by the cfenvd are such as number of users; num-
ber of root processes; number of non-root processes; percentage disk full for
root disk; number of incoming and outgoing sockets for netbiosns, netbios-
dgm, netbiosssn, irc, Cfengine, nfsd, smt, www, ftp, ssh, and telnet.

Events have internal attributes having semantic interpretation, whose in-
formation once extracted, or inferred can be used to identify the meaning of
an anomaly. The importance of classifying anomaly detection events has been
emphasized by other researchers too. Kruger et al [12] wrote about Bayesian
Event Classification for Intrusion Detection. Begnum et al [4] suggested that,
one way of avoiding the multitude of “false positives” in anomaly detection is
to use information content of events to classify events as interesting or not.

The problem we want to address with the present work is that of classify-
ing the events collected from the ongoing project at Oslo University College,
through the use of Ontology. We hope that, using the power of ontology by
making use of computer-processable meaning (semantics), we can harness the
power of Ontology in filtering interesting events from others. This will solve
the problem of too many events reported. We also think that the Ontology
might be able to provide more information about the host”s status.

More specifically, the present work will address the following problems:

• classify all events related to anomaly detection in Cfengine

• based on classification, define relationships between event variables and
concepts

• use the relationships developed to filter, relate and infer information
from events.

1.4 Thesis outline

The plan for the thesis is as follows.

• We begin by discussing the meaning of knowledge and knowledge rep-
resentation as a basis for ontology, as well as few other knowledge rep-
resentation methods.

• Next in chapter 3, we define the terminology of events and measure-
ments, and define what we mean by an anomaly. Specifically, we explain
about Cfengine Anomaly detection system, as a basis of our case study.

• In chapter 4, we describe the procedure of creating a conceptual model
and present a small ontology using the OWL language via Protégé 2000
tool.

4
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• In chapter 5 we presents and discuss results from ontology evaluation.

• Finally we discuss what is learned in this project and the main conclu-
sions.

5



Chapter 2

Background

In this chapter we introduce and define the main concepts surrounding a sub-
ject of study - ontology.

Ontologies play an important role in information processing. As specifica-
tions of conceptualizations, they enable sharing terms across different applica-
tions and thereby provide a way for application cooperation. Ontologies are a
basis for data sharing, data processing, and data integration. Ontological anal-
ysis clarifies the structure of knowledge. For a given a domain, its ontology
forms the heart of any system of knowledge representation for that domain.

[20] introduce and advocate the use of ontologies for Information Security.
In stating the case for using ontologies, they claim that an ontology organizes
and systematizes all of the phenomena (intrusive behavior) at any level of de-
tail, consequently reducing a large diversity of items to a smaller list of prop-
erties.

In [21]Undercoffer et al state the benefits of using ontologies instead of tax-
onomy, giving case scenarios within a distributed Intrusion Detection system.
They also compare and contrast the IETF IDMEF (Intrusion Detection Mes-
sage Exchange Format), an emerging standard that uses XML to define its data
model, with a data model they constructed. Additionally, [22] in IDMEF argue
that additional efforts are needed to provide a common ontology that lets all
IDS sensors in a distributed environment to agree on what they observe.

The definitions included in the next section are based on the view of infor-
mation and knowledge described in [5] and discussed in our research group1.
Next, we briefly mention some of technologies compared or related to ontol-
ogy.

1This section was developed from a discussion with Mark Burgess, Demissie Aredo, Thor
Hasle and Karim Sani Ntieche

6



2.1. SOME BASIC CONCEPTS

2.1 Some basic concepts

It is helpful to define some basic concepts. In particular we begin by defining
information, knowledge, understanding and model. There are two reasons to
make definitions like this (perhaps a little more formally than is necessary).
One is to make a clean a separation of concepts and the other is to empha-
size the important distinctions between concepts that seem similar but which
actually have quite different meanings.

Definition 3 (Information) Information is defined by Shannon as a stream of sym-
bols composed of some known alphabet. It can be quantified according to the basic
results of information theory.

Information is a very primitive or elemental concept. Although we sometimes
use it in a high level sense, its precise meaning is at this low level. Information
is essentially a form of coding.

Definition 4 (Knowledge) Knowledge is the awareness and understanding of facts,
concepts or information obtained by observing and reasoning about the world. It in-
cludes interpretations of facts that have been learned and reasoned about by an indi-
vidual or entity.

Knowledge is a very high level concept that includes human cognitive func-
tions. Knowledge is associated with an individual or group of communicating
individuals, because understanding and interpretation are subjective. The sub-
jectivity of knowledge is one of the causes of uncertainty in communication.

All knowledge can be coded as information, so we can define knowledge
simply as information which is coded. However, this avoids the important
issue of interpretation and understanding.

Definition 5 (Understanding) We define understanding to be the construction of
a model that incorporates the elements of knowledge within a subjectively consistent
framework.

Since knowledge is, by this definition, assumed to be from that which has been
understood, it must contain a model.

Definition 6 (Model) A model is a collection of concepts, things (entities) and de-
scriptions of their behaviours. It is any suitably idealized approximation to some phe-
nomenon or system. A model is built on assumptions and leads to consequences or
predictions.

Since knowledge is subjective, different individuals can have different under-
standings or interpretations of the same set of facts, i.e. they have different
models or world views.

7



2.2. KNOWLEDGE REPRESENTATION

2.2 Knowledge Representation

What are we trying to do with knowledge representation? This is an impor-
tant subject in computer science, for programming (representing data in pro-
grams) and in management (analysing, reasoning and drawing conclusions
about data). By introducing models we create a framework in which we can
form hypotheses and either find support or disprove them. But we must be
careful: computer science often muddles the concept of a model with that of an
architecture. An architecture is a functional design. A model is an approximate
representation of a system that makes a prediction about behaviour.

So for a modeling language we have the following requirements:

• The ability to organize information;

• The ability to reason about information;

• The ability to make predictions about behaviour

Below are some thoughts about three modeling frameworks. All can be
used to describe architectures, but can they be used for understanding be-
haviour? Some basic questions:

• How do we represent knowledge?

• What is knowledge?

• Programming describes algorithms, not knowledge per se.

• Data-modeling describes stacked bundles of data, but not reasoning.

• Can we model behaviour? Is behaviour more than an algorithm?

In the field of Artificial Intelligence (AI), where ontology in computer sci-
ence stems, Knowledge Representation (KR), aims at acquisition, modeling
and storing of knowledge so that programs can process it. Most often, Knowl-
edge Representation focuses either on the representational formalism or on the
information to be encoded in it, also referred to as knowledge engineering. On-
tology can be viewed as one method of Knowledge Representation.

An appropriate choice of a Knowledge Representation formalism, can sim-
plify problem solving. This means, the choice of a particular type of KR for-
malisms depends on the type of domain knowledge.

Knowledge Representation techniques includes:

• Lists (e.g, linked lists that are used to represent hierarchical knowledge.)

• Trees (graphical method of representing hierarchical knowledge.)

• Rule-based representations (used in specific problem-solving contexts.)

• Logic-based representations (may use deductive or inductive reasoning.)

8



2.3. ONTOLOGY

2.3 Ontology

Ontology is a term borrowed from Philosophy, which means the description
of “how things are” (Greek “ontos” (oντoζ “being or existence” and “logos”
λαγoζ “speech” or “meaning”). It is thus about describing the basic categories
and relationships of being or existence for entities in a domain.

In other fields such as Knowledge Engineering, Software Engineering, and
Artificial Intelligence, ontology has been defined differently by different com-
munities and people. The most common quoted definition from the AI com-
munity is the one by Gruber,[13]:
”An ontology is an explicit specification of a conceptualization.” This meaning
of ontology is used mostly in the context of knowledge sharing. Conceptual-
ization is a key term in ontology and is defined as ”a set of objects which an ob-
server thinks exist in the domain of interest and relations between them” [14].
To specify a conceptualization, concepts and relations are defined in terms of
slots and axioms. Axioms are stated in order to constrain the possible inter-
pretations of the defined terms to avoid ambiguities.

Since a body of formally represented knowledge is based on a conceptual-
ization, one need to specify how the abstract conceptualization is represented
as a concrete data structure, in order to manipulate this knowledge.

In the knowledge engineering perspective, ontology has been defined as ”a
formal mechanism for specification of conceptualization into a shared domain”[18]
This work will commit to the newer definition given by J. Strassner[17]:

An ontology is a formal, explicit specification of a shared, machine-readable
vocabulary and meanings, in the form of various entities and relationships between
them, to describe knowledge about the contents of one or more related subject domains
throughout the life cycle of its existence. These entities and relationships are used to represent knowledge in the set of related subject domains. Formal refers to the fact that the ontology should be representable in a formal grammar. Explicit means that the entities and relationships used, and the constraints on their use, are precisely and unambiguously defined in a declarative language suitable for knowledge representation. Shared means that all users of an ontology will represent a concept using the same or equivalent set of entities and relationships. Subject domain refers to the content of the universe of discourse being represented by the ontology.

We must be careful to distinguish between an ontology and a representa-
tion of an ontology. To explain this, we must elaborate on what a representa-
tion is.

Definition 7 (Representation) A representation is an association or mapping be-
tween the actual elements of a model and some kind of descriptive medium that pre-
serves (to some degree of approximation) the properties and relationships of the ele-
ments.

Representation theory is a branch of mathematics that is concerned with find-
ing and classifying all mappings or associations that satisfy the constraints of
a given model (typically in group theory).

As mention previously, ontology can be viewed as knowledge representa-
tion formalism. Moreover, ontology employs some mechanisms to represent

9



2.3. ONTOLOGY

it, such as Ontology representation languages like OWL, OIL(Ontology Inter-
change Language)2 etc. See section 2.3.6 for more about ontology languages.

We can thus summarize by defining ontology as:

Definition 8 (Ontology) Ontology is a declarative description of knowledge exist-
ing in a domain of interest, that is made sharable due to mutual understanding,
through explication of implicit knowledge.

2.3.1 Features and roles of ontology

One of the roles of an ontology is to provide vocabulary for metadata descrip-
tion with computer-understandable semantics. However, there are two large
differences between the roles of an ontology for knowledge bases and those
for metadata: One is philosophical and the other is practical. The philosophi-
cal one is that while an ontology for knowledge bases is a specification of the
conceptualization of the target world, that for metadata is a set of computer-
understandable vocabulary. The practical one is that an ontology for metadata
does not have to consider the instance problem which is one of the most seri-
ous issues of an ontology for knowledge bases[15].

An Ontology can be used for different purposes, but when used for the
purpose of enabling knowledge sharing and reuse, it is a specification used for
making ontological commitments. Ontological commitments are agreements
to use the shared vocabulary in a coherent and consistent manner[13]. Ontolo-
gies are designed such that agents commit to ontology to enable knowledge
sharing among themselves. An agent is said to be committed to an ontology if
its observable actions are consistent with the definitions in the ontology. How-
ever, an agent that commits to an ontology need not share a knowledge base
and hence does not have to be able to answer all queries that can be formulated
in the shared vocabulary, since each agent may know things others do not. In
other words, a commitment to a common ontology is a guarantee of consis-
tency, but not completeness, with respect to queries and assertions using the
vocabulary defined in the ontology.

Ontology as a knowledge representation provides all necessary constructs
that add semantics to information being represented. Ontologies are con-
structed using knowledge representation languages and logics, which enables
agents to automatically make informed domain-dependent reasoning sing the
knowledge captured by ontologies. Additionally, ontologies contain rules and
axioms that help to define completely the values that a concept can have,
which can be useful in describing certain behaviors.

Generally, an ontology consists of:

2OIL is a Web-based representation and inference layer for ontologies,
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• Concepts: represent a conceptualization; the class of all the examples of
that event or entity

• Relations: represent a relationship between concepts

• Axioms: express a necessary facts holding between concepts and rela-
tionships

• Instances: represent a specific Individual

Ontologies have many uses, including:

• allowing for more complete and accurate modeling of domain knowl-
edge than data models, where assumptions can be explicitly defined;

• allowing readily reuse through equivalences and mappings;

• providing the means to describe knowledge in a form understandable to
both humans and intelligent agents;

• can be used by rule-driven applications to make inferences from concep-
tual models;

2.3.2 Categories of ontology

Some researchers have categorized Ontologies as follows:

• Task Ontology - an ontology that formally specifies the terminology as-
sociated with the type of task, e.g. scheduling, planning etc.

• Method Ontology - ontology that formally specify the definitions of the
relevant concepts and relations used for specifying the reasoning process
(problem solving) to accomplish a task.

• Domain ontology - ontology defined for conceptualizing the particular
domain, e.g. job-shop scheduling, nurse assignment, air-gate assignment
etc.

• Application ontology - it contains the essential knowledge in order to
model a particular application under consideration.

11
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2.3.3 Reasoning in Ontology

Description logics (DLs) [28] are a family of knowledge representation lan-
guages that can be used to represent the knowledge of a domain of interest in
a structured, formal and understandable way.

Description Logics based languages are commonly used to implement on-
tologies. Ontology as a knowledge representation formalism employing DL,
represent knowledge of a particular domain by defining the relevant concepts
of the domain (its terminology), and then use these concepts to specify proper-
ties of objects and individuals occurring in the domain (the world description).

Description Logics are known for their expressiveness and has clearly de-
fined semantics. Description Logics capture the meaning of the data by con-
centrating on classes and properties and their relationships. An important
characteristics of Description Logics worth mentioning is that of checking for
inconsistencies and organization of the concepts on a taxonomy built automat-
ically by a system, from the concept definitions.

Description Logics are first-order logic predicate calculus with ideas from
semantic networks that allow hierarchical representation of classes and instan-
tiations of terms and their relationships, called terminological box (TBox), and
assertions over them, called assertional box (ABox)[19].

Description Logics reasoning mechanisms are based on subsumption, which
determines whether a term is more general than another, and instance recogni-
tion, which determines all concepts and relations that an individual satisfies.
Additionally, completion mechanisms which perform logical operations such as
contradiction detection, incoherent term detection and inheritance, both for
descriptions and assertions about individuals, completes the basic set of rea-
soning mechanisms provided by Description Logics systems.

The reasoning in this work is provided by the combination of the ontology
language used, OWL DL which is a sub-language of OWL that is based in part
on the description logic, and the reasoner RacerPro.

Reasoning is important in ontology because it is also used to ensure the
quality of ontology. Through the use of a reasoner, it is possible to test whether
concepts are non-contradictory and to derive implied relations, during ontol-
ogy design.

2.3.4 Semantic Web

Semantic Web is an extension of the current World Wide Web whose web
content contains documents with computer-processable meaning (semantics),
such that software agents can understand, interpret, share and intergrate infor-
mation more easily. In other words, the data in the Semantic Web is formally
defined and linked to enable effective information discovery, integration, and
reuse across various applications. Semantic Web uses descriptive technolo-
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gies such as Resource Description Framework (RDF), RDF Schema (RDFS),
Extensible Markup Language (XML) and Web Ontology Language (OWL), to
classify data from multiple domains based on their properties and relations
between them. This classification adds meaning to the web contents thus fa-
cilitating automated information gathering and searching by software agents.
We can say that one goal of the semantic web is to facilitate the communica-
tion between machines, with the ultimate goal of making the web more useful
for humans. The success of Semantic Web requires capture of ”real world se-
mantics”, which is afforded by ontologies. The current choice for ontology
representation is primarily Description Logics.

XML provides syntax to represent and describe information, creating struc-
tured documents. XML allows users to add structure to their documents using
their own tags to annotate Web pages. However, XML lacks a semantic model
since the meaning of the structure is not known. XML schema is a language
for restricting the structure of XML documents. RDF is XML-based framework
for representing information in the Web. RDF provides a means for adding se-
mantics to a document. Information is in principle stored in RDF statements
which are machine-understandable. RDF statements are also referred to as
triples, and consists of: subject (corresponding to a resource); predicate (a
property) and object (a property value). RDF Schema is an extensible knowl-
edge representation language, for describing properties and classes of RDF
resources (objects) with semantics. OWL is an enhanced RDF having more vo-
cabulary for describing classes, properties, and relations between classes such
as disjointness, equality, cardinality, symmetry, etc. OWL defines the types of
relationships that can be expressed with RDF using XML vocabulary to indi-
cate the hierarchies and relationships between different resources.

One goal of the semantic web is to facilitate the communication between
machines and based on this, achieve another goal of making the web more
useful for humans.

2.3.5 Ontology Representation Languages

In order for ontologies to be used within an application, they must be specified,
in some formal representation so a allow shared understanding. The syntax for
ontology language needs to be intuitive for human users and be compatible to
existing standards (such as XML, RDF, and RDFS). In addition, the ontology
language needs to have an expressive power that is just sufficient for defin-
ing the relevant concepts in enough detail, so that the reasoning ability is not
affected.

A variety of languages exists that are used to represent conceptual models,
each with varying expressiveness, ease of use and computational complexity.
An example of these languages are SHOE, XOL, RDF, OIL and OWL.
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Generally, these languages fall into three kinds namely,

• vocabularies defined using natural language;

• object-based knowledge representation languages such as frames and
UML; and

• languages based on predicates expressed in logic such as Description
Logics.

As mentioned previously, of these types of ontology languages, this work em-
ploys the last category. Specifically, we used Web Ontology Language (OWL),
which is integrated with the ontology development tool used, Protégé 2000.
Since the ontology representation language plays a vital part in design, use
and capabilities of an ontology, we see it proper at this time to describe shortly,
the Web Ontology language (OWL).

OWL has three sub-languages which differ according to the level of expres-
siveness, namely:

• OWL Lite - This is least expressive, used mainly for simple class hierar-
chy and constraints definition.

• OWL DL - This is more expressive than Lite. It is based on Description
Logics hence can perform automated reasoning and compute the classi-
fication of hierarchies automatically as well as check for inconsistencies.

• OWL FULL - Used for situations requiring most expressiveness, even at
the expense of guaranteed decidability (all computations will finish in
finite time) and computational completeness (all conclusions are guaran-
teed to be computed), hence it is not possible to have complete reasoning
for every feature of OWL Full.

We use OWL DL for this work, especially because we want to use its reasoning
capabilities.

2.3.6 Ontology modeling

Some Definitions

An OWL ontology has the following components:

• Individuals - represents objects in the domain of interest. They are also
referred to as instances of classes

• Properties - are binary relations between two individuals, linking them
together.
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• Classes - are sets containing individuals, described to precisely give the
requirements for class membership.

OWL Properties are used to describe relations between two Individuals.
There are three main type of the Properties:

• An object property linking an individual to another individual.

• A datatype property linking an individual to a data literal (e.g 32), having
a type xml:integer.

• An annotation property, linking a class to a data literal (string).

OWL properties may have sub properties, so that it is possible to form hierar-
chies of properties (a subsumption hierarchy). Sub properties specialize their
super properties in the same way that subclasses specialize their superclasses.

Note: It is also possible to create sub-properties of datatype properties. However, it
is not possible to mix and match object properties and datatype properties with regards
to sub properties. For example, it is not possible to create an object property that is the
sub-property of a datatype property and vice-versa.

Class Description and Definition

The process of formulating class definitions that will constitute the ontology is
one of the most central activities during ontology design. This is a nontrivial
task since class definitions are specified using an expressive ontology language
such as OWL, in a declarative fashion. Care must be taken during class defini-
tion because the ontology designed can easily be inconsistent where by there is
no model that matches class definitions contained in the ontology ( e.g a class
that can not have any instances). For a example, an inconsistent ontology may
result from an addition of a new class definition that does not interact with the
existing ones as intended.

A class may contain a set of Individuals also referred to as instances of the
class. An Individual can be a member of multiple classes because in OWL
classes are assumed to overlap. In a particular case where two classes do not
overlap, that is, there are no members belonging to both classes, it is important
to specify this fact explicitly using the disjoint feature. Individuals are related
to other objects and to data through Properties. A property is a way of describ-
ing a relationship that exists between Individuals and between Individual and
data. We say, relationships are formed along properties. A model containing
classes that has been made disjoint and structured in a hierarchy (subsump-
tion) is still not semantically rich, but needs to be enriched through specifica-
tion of relationships that exists between Individuals of different classes.
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Class membership can be explicitly specified using two conditions, namely
necessary and necessary & sufficient. Necessary conditions are conditions that
must be fulfilled by Individuals to belong to that class. A set of necessary
conditions is also referred to as a Description. Necessary & Sufficient condi-
tions represent conditions that are not only necessary for class membership
but also sufficient to determine that, any Individual (who is a member of any
non-disjoint Class) that satisfies these Necessary & Sufficient conditions can be
inferred to be a member of the class in question. Each set of necessary & suffi-
cient conditions is an Equivalent Class, and all classes whose individuals sat-
isfies these conditions are subclasses of the (inferred) Equivalent class. A sets
of Necessary and Sufficient conditions is also referred to as Definitions.

Note: A class can have multiple sets of Necessary and Sufficient conditions(i.e
multiple definitions).

Classes with Necessary & sufficient conditions are called Defined classes
while those with only Necessary conditions are called Primitive classes. A de-
fined class gives a complete definition of a particular class while the primitive class
gives a partial description of a class.

Property Characteristics

In the process of describing relations existing between Individuals and be-
tween Individual and data using properties, we can use a number of prop-
erty characteristics to add more semantics to properties. Protégé OWL allows
specification of the following characteristics for properties:

Definition 9 (Functional Properties) If a property is functional, for a given indi-
vidual, there can be at most one individual that is related to another individual via the
given property.

If a functional property P relates Individual A to Individual B, then all rela-
tions along P relate Individual A to Individual B . Individual B could also be a
datatype value. Functional properties are also known as single valued properties
or features.

Definition 10 (Inverse Properties) If a property P has its inverse, and P links Indi-
vidual A to Individual B, then its inverse property will link Individual B to Individual
A.

Each object property may have a corresponding inverse property, and the in-
verse property will link the individual linked by the original property, in re-
verse direction.
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Definition 11 (Inverse Functional Properties) If a property is inverse functional
then it means that the inverse property is functional also.

Definition 12 (Transitive Properties) If a property P is transitive, and the prop-
erty relates Individual A to Individual B, and also Individual B to Individual C, then
it can be inferred that Individual A is related to Individual C through the property P.

Definition 13 (Symmetric Properties) If a property P is symmetric, and the prop-
erty relates Individual A to Individual B then Individual B is also related to Individual
A through the same property P.

We can see that, symmetric property is its own inverse property.

Property Restrictions

Properties are used to describe Individuals using Restrictions. Properties can be
restricted in how they are used:
Globally - by describing or stating things about the property itself (e.g using Domain
and Range);
Locally - by restricting their use for a particular class (i.e Class restrictions)

Property restrictions describes an anonymous class, which is a class of all individ-
uals that satisfy the restriction. In OWL, there are two types of property restrictions,
namely value constraints and cardinality constraints. For a particular class description,
a value constraint restricts the range of property while, a cardinality constraints re-
stricts the number of values a property can have. Property restrictions can be applied
to both object property and datatype property. The use of Property restrictions is the
primary way in which rules are written in Protégé . Protégé OWL has built-in OWL
constructors as shown in Figure 4.6, of which ∀, ∃ and 3 are used to specify value con-
straints, and they are local constraints. ≥,≤ and = are used to specify both local and
global cardinality constraints.

Note: Global property constraints apply to all instances of the property, whereas local
property constraints apply only to the class being described.

Property Domain and Range

Whenever applicable, we specify Domain and Range for Properties not as constraints
to be checked but rather as axioms for the Reasoner to use to make inferences. Errors
in domain and range specification do not necessarily make ontology inconsistent or
contain errors.

If a relation is:
subject-Individual Ô hasProperty Ô object-Individual
then, the Domain is the class of the subject-Individual and the Range is the class of the
object-Individual (or a datatype if hasProperty is a Datatype Property).
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Definition 14 (Domain) The domain of a Property implies certain superclass-subclass rela-
tionships for classes that have that property. Any Individual (or class) that uses a property
with a domain set can be inferred to be a member (or a subclass) of the domain class.

Definition 15 (Range) A range of a Property, implies certain superclass-subclass relation-
ships for classes that share that particular property. Any Individual (or class) that uses a
property with a range set can be inferred to be a member (or a subclass) of the range class.

It is worthwhile to note that the understanding of domain and range in OWL
and other Description Logic based Languages is somewhat different from that of pro-
gramming languages or frame-based reasoning systems. In the later, the Domain and
Range are used to verify the correctness of relationships by ensuring that a relation is
only used in contexts that make sense. In the former, domain and range are used by
the reasoner to infer additional information about classes and instances.

Tools

The tools used for developing and querying our ontology were Protégé 2000 version
3.2, a reasoner (RacerPro), and OWL Plugin. Protégé incorporates a number of plug-
ins (e.g OWLviz, accessed through their respective tabs in the Protégé OWL editor,
such as Ontoviz, Queries, OWLViz, TGviz etc. These tools provide different views
and abilities to develop and manipulate an ontology being designed. Only a few of
these tools were used with the present work due to time limitations.

Protégé

The Protégé is a free, Open Source ontology development and knowledge acquisi-
tion environment that provides users with tools to construct domain models and
knowledge-based applications with ontologies. According to the authors [24], the
Protégé platform supports two main ways of modeling ontologies namely, the Protégé
-Frames and Protégé -OWL editors. Protégé ontologies can be exported into a variety
of formats including RDF(S), OWL, and XML Schema. Additionally, Protégé is based
on Java, is extensible, and provides a plug-and-play environment that makes it a flex-
ible base for rapid prototyping and application development[24]. The architecture of
Protégé consists of two main parts, a “model” part and a “view” part. The Protégé
model is the internal representation mechanism for ontologies and knowledge bases,
and the view components provide a user interface to display and manipulate the un-
derlying model. The system was designed to be extensible through the use of plug-ins
that allows enhancements to Protégé basic capabilities. This work utilized the Protégé
-OWL editor. The Protégé -OWL editor is an extension of Protégé that supports the
Web Ontology Language (OWL), which is the ontology language recommended by
the World Wide Web Consortium (W3C) to promote the development of the Semantic
Web.

Among other things, the Protégé -OWL editor allows one to:

• Load and save OWL and RDF ontologies.
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• Edit and visualize classes and properties.

• Execute reasoners such as description logic Reasoners.

Additionaly, Protégé -OWL supports the use of reasoners implementing the DIG in-
terface and can only connect to reasoners over an http: connection.

OWL Plugin

The OWL plugin is an extension of the Protégé which is used to edit OWL ontologies,
to access description logic (DL) reasoners, and to acquire instances for knowledge base
creation.

RacerPro

RacerPro stands for Renamed ABox and Concept Expression Reasoner Professional.
This is one of description logic reasoners that was used with this work, others are
such as Pellet3, FACT++4 and KAON25. RacerPro is a commercial tool with different
types of licences one of which is a free semester license (180 days) for educational and
research purposes. The author of the present work obtained such a licence for this
work. RacerPro is available as an executable server for Linux, Windows, and MacOS
X whereas the Windows version was used for the this work. It is worthwhile to note
that, the standard RacerPro has almost no user interface, it just prints some welcome
messages and basic status reports into the console or terminal window. Usually, all
interactions with RacerPro can be done through network protocols like HTTP (DIG) or
Racer native commands (over TCP/IP). RacerPro has a graphical user interface called
RacerPorter for connecting and managing RacerPro servers. We used RacerPorter to
access and use the reasoner. Detailed description of RacerPro is outside the scope
of this work, however, we would like to mention some of the features of RacerPro
version 1.9 that were utilized in relation with our work, which includes:

• Checking the consistency of an OWL ontology and a set of data descriptions.

• Finding implicit subclass relationships induced by the declaration in the ontol-
ogy.

• Computing inferred hierarchy of the ontology.

Specifically, we used RacerPro to statically check our ontology for inconsistencies and
for computing inferred hierarchy to check for the suggested changes. With RacerPro,
one could also submit queries in order to verify their validity. The queries need to
be expressed in the new Racer Query Language (nRQL), which is a description logic
query language for retrieving individuals from an A-box (a set of assertions about In-
dividuals) according to specific conditions. The communication between Protégé and

3See http://pellet.owldl.com/
4See http://owl.man.ac.uk/factplusplus/
5See http://kaon2.semanticweb.org/
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Racer is done through the RQL Tab plug-in, which allows the OWL plug-in to send
queries to Racer and receive the answers (results). A description of nRQL’s syntax is
beyond the scope of this work, but the interested reader is referred to [?]. Due to the
rather steep learning curve of nRQL syntax and the time constraints, we were not able
to test the ontology developed through queries.

OWLViz

OWLViz is designed to be used with the Protégé OWL plugin to enable the class hi-
erarchies in an OWL Ontology to be viewed and incrementally navigated, allowing
comparison of the asserted class hierarchy and the inferred class hierarchy. OWLViz
requires Graph visualization (Graphviz), which is an open source graph visualization
software, used to represent structural information as diagrams of abstract graphs and
networks.

2.4 Other Knowledge Representation formalisms
The use of ontologies in Computer science and Software engineering fields is rela-
tively new, so there has been some speculations as to the need for ontologies. It is
not possible to list all technologies that are compared/contrasted to ontology, but this
section will describe some of the common ones.

Some of existing Knowledge Representation (KR) formalisms such as Information
models( e.g, Topic Maps) and Conceptual modeling languages (e.g UML) are often
compared to ontology. The reason for this might be because they have some com-
mon features. For example, a Relational Database Schema defines a set of terms using
classes (corresponding to tables, where terms are represented as the rows in a table),
properties (attributes) (specified as columns in the table), and a limited set of relations
between classes (corresponding to foreign keys).

An object-oriented software model defines a set of concepts and terms through a hi-
erarchy of classes and attributes and a broad set of binary relations among those classes.
Some constraints and other behavioral characteristics may be specified through meth-
ods on the classes or objects. A knowledge-representation system such as Ontology
has the ability to express in addition, n-ary relations, rules, restrictions on classes and
logical operations such as negation and disjunction. Another form of knowledge rep-
resentation we looked into briefly was Promise Theory.

2.4.1 Topic Maps
Topic maps are an ISO standard for the representation and interchange of knowledge.
Topic maps describes knowledge structures and associate them with information re-
sources to make the information in them findable. Topic maps represents information
using:

• topics: These are objects of interest;

• associations: These are relationships between them;
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• occurences: Relationships between topics and relevant information resources.

Topic maps are similar to concept maps, mind maps and semantic networks in the
sense that they all represent knowledge in their different forms.

An excellent summarized description of Topic Maps as a model of Knowledge
Representation is given by Kazienko et al [29] and is quoted here. A Topic Map is
based on : issues:

• extraction of topics (subjects) which are concepts typical for modeling a domain
of knowledge,

• defining associations (relations) among topics,

• linking topics with a data layer (resources).

Each topic can have a name (none, one or more) and should have one or more topic
types. A relation between topics and topic types is a simple class-instance association.
Links between topics and their related information (e.g. web resources) are defined
by objects called occurrences. The linked resource can be located in or outside the map.
Occurrences like topics can be of a certain type. Types of occurrences are also defined
as topics. There is a possibility to define relations between topics which are called asso-
ciations. Each association can have an association type which is also a topic. There is no
constraint about how many topics can be related by one association. Topics can play
specific roles in association, described by association role types which are also topics.
Scopes are assigned to topics, occurrences or associations, when one needs to define
constraints to explain when they are valid. Topic maps provide also a mechanism
which allows identifying seemingly disparate topics. Each topic can have a unique
subject identity which describe topic in an unambiguous way. Subject identity is used
for topic map merging when there is a need to recognize which topics describe the
same subject.

2.4.2 UML
The Unified Modeling Language (UML) was created to be a specification language
for programming,i.e a way of representing requirements and tests in an abstract form.
UML provides a collection of modeling constructs and an associated graphical no-
tation that can be used for modeling software, as well as for modeling the problem
domain that of a system. However, since UML was developed based mainly from im-
plementation perspective, it lacks the theoretical foundations for modeling real world
domain. UML is criticized to have limitations such as ambiguity, inconsistency, in-
adequacy, and complexity in relation to conceptual modeling. These limitations are
thought by some people to be due to the implementation-oriented design of UML
whose constructs makes it inadequate for conceptual modeling of real-world domains.
The most common criticism is that UML modeling does not

UML models are often used to specify software products and typically each prod-
uct has its own model. UML models use graphical notation (diagrams) and UML 2.0
has 13 types of such diagrams. Some of the most useful, standard UML diagrams
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are includes: use case diagram, class diagram, sequence diagram, statechart diagram,
activity diagram, component diagram, and deployment diagram.

UML is a standard from the Object Management Group (OMG) and has a very
large and rapidly expanding user community in the field of software engineering.
In recent years there has been increasing efforts to bring together the Semantic Web
technologies (such as RDF and OWL) and Software Engineering methodologies and
languages[30]. An example of this kind of effort is shown by the OMG’s Ontology Def-
inition Metamodel (ODM). In spite of criticism against UML there has been a growing
interest among some researchers about using UML as a Knowledge Representation
language, specifically to represent ontology.

2.4.3 Promise Theory
Promise theory is a high level description of ”agent” behaviour. Agents in promise
theory are truly autonomous entities: they are entities who decide their own be-
haviour, cannot be forced into behaviour externally but can voluntarily cooperate with

one another[?]. A promise is a directed edge a1
b→ a2 that consists of a promiser a1

(sender), a promisee a2 (recipient) and a promise body b, which describes the nature
of the promise. Promises made by agents fall into two basic categories, promises to

provide something or offer a behaviour b (written a1
+b→ a2), and promises to accept

something or make use of another’s promise of behaviour b (written a2
−b→ a1). A suc-

cessful transfer of the promised exchange involves both of these promises, as an agent
can freely decline to be informed of the other’s behaviour or receive the service.

Promises can be made about any subject that relates to the behaviour of the promis-
ing agent, but agents cannot make promises about each others’ behaviours. The sub-
ject of a promise is represented by the promise body b.

The essential assumption of promise theory is that all nodes are independent agents,
with only private knowledge (e.g. of time). No node can be forced to promise any-
thing or behave in any way by an outside agent. Moreover, there are no common
standards of knowledge (such as knowing the time of day) without explicit promises
being made to yield this information from a source. What makes promise theory inter-
esting for ontology is that promises themselves have to be organized into an ontology
of types, but here the types are motivated very pragmatically by what one promises
will happen in the system. Unlike languages designed for ontology development,
many details about attributes are omitted in promise theory, assumed to be ”inside”
the agents (out of sight). Instead the focus is on what are the necessary and sufficient
promises to predict certain behaviour. Since anomaly detection is also about verifying
behaviour it is not unnatural to expect promise theory to have a useful viewpoint on
the problem.

Looking at aspects of ontology and Promise Theory we found that the two has
some interesting similarities and differences, namely:

• Where as Ontology focus on all knowledge inherent in concepts according to
the scope of the domain of interest, Promises focus mainly on the agreements
made between agents. Any other private knowledge inherent in an agent that
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is not part of the agreement is ignored. This can be seen as partial knowledge,
more suitable for modeling Task ontologies6 or SOA7 applications.

• Ontology like Promises has directional relations. It must be noted however that,
some relations in ontology has inverses whereby each direction of a relation is a
separate relation. (e.g hasPart and isPartOf are t wo separate relations). In addi-
tion, some relations are symmetrical, which might be confused as bidirectional
but each direction is depicted by the domain and range of that relation.

• Another noted similarity between Promises and ontology is that they both fo-
cus on instances while describing relations. It should be noted that, sometimes
it is said that relations in ontology are described between classes. This is valid
because actually, classes are a set of Individuals and by saying classes are re-
lated to other classes it means Individuals(instances) of one class are related to
Individuals of another class (through a relation).

An example of a Promise graph with relations is shown in Figure 2.1. From the

Figure 2.1: Promise graph for an Observer

Promise graph we can see that, by following the chains of dependencies, one can see
the functional processes that relates agents. This can be a form of reasoning knowl-
edge which can be used in ontology. We believe that further research on ontology and
Promise Theory might reveal complimentary features suitable for knowledge repre-
sentation in Anomaly Detection as well as in other domains.

6Task Ontology is an ontology that formally specifies the terminology associated with the
type of task, e.g. scheduling, providing services, planning etc.

7Service Oriented Architecture
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Chapter 3

What is anomaly detection?

What is an anomaly? In this chapter we consider how to define this concept as this
obvious step is often taken for granted. On one hand it is easy to find unexpected
behaviour in a system, if the threshold for surprised is low. On the other hand, If our
threshold for surprise is higher, we expect fewer cases. It is therefore clear that there
must be some subjective choice involved in defining an anomaly.

We begin by defining some terminology.

Definition 16 (Event) An event is an occurrence of a data value from some measuring in-
strument at a time that is not determined by the observer. It is an unprogrammed data point.

More specifically in relation to this work, we refer to the term event as a logged occur-
rence from a sensor, such as cfenvd.

Definition 17 (Measurement) A measurement is a purposeful act to acquire the value from
some measuring instrument. Data are collected at a time determined by the observer.

Anomaly means “without name” (unknown), i.e. it is literally something that we
cannot classify. Its meaning in Computer Science is less literal, since one of the things
we want to achieve is a classification of different types of anomalies.

A more realistic definition is:

Definition 18 (Anomaly) An observation that does not fall within specified constraints (i.e.
policy).

3.1 Network Monitoring and Observation
In computer networks, monitoring (host or network) is done for a variety of reasons,
such as performance checking, determination of resource usage status in grid envi-
ronments, etc.

Network monitoring refers to systems that simply observe and report on a net-
work, without taking any corrective action of their own accord. Network Monitoring
when used in conjunction with Anomaly Detection tools, has the potential of giving
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alerts about security breaches and intrusions by detecting sudden changes in usage
pattern and traffic behavior. In recent times, network monitoring and Intrusion De-
tection have become an integral part of a network security. For example, Host based
Intrusion Detection Systems typically monitors system, event, and security logs on
Windows environment and syslog in Unix environment. Network based Intrusion
Detection System monitors all traffic in real time as it travels across the network, and
analysis of the data can be done online or offline.

There exists a number of Industry monitoring platforms and softwares, both pro-
prietary and open source such as Nagios, Zenoss etc. Zenoss is a network and systems
monitoring platform that is Python-based and is a free, open source download for
Linux. Nagios is an open source host, network, and service-monitoring system, that
monitors network services (SMTP, POP3, HTTP, NNTP, PING, etc.); host resources
(processor load, disk and memory usage, running processes, log files, etc.) and can
even monitor environmental factors such as temperature.

Making resource profiles involves monitoring of system wide usage of resources
such as applications, accounts, communications ports, protocols, storage media,etc.
This is a necessary step in developing historic usage profile that can be used to detect
variations from the normal profile. Detection of anomalous system and programs
behaviour involves defining of the variables to be monitored and defining the criteria
for anomalous behavior, for each variable. The criteria may take different forms such
as ranges of values considered to be out of “normal” values. Anomaly detection with
Cfengine uses a statistical model that detects and classifies the measured number of
events in units of standard deviation.

Typical variables used for detecting anomalous system behavior are those associ-
ated with performance monitoring. Cfengine uses variables as shown in [?], but alter-
natively variables such as time spent in certain program functions, patterns of mem-
ory usage, quantity and destinations of network communications, and time spent in
code representing specific operating system services can be used.

3.2 Anomaly Detection System

3.2.1 Introduction
Intrusion Detection Systems employ network and system monitoring softwares and
hardwares to analyse streams of monitored data. Generally, IDS can be defined as a
security system consisting of tools, methods and resources that monitors system and
network traffic in order to identify, analyse and report possible attacks from both in-
side and outside an organization. Intrusion Detection Systems can also be categorized
as network-based, which deals with network traffic; and host-based, where operating
system events are monitored. The term “Intrusion Detection” is often used to encom-
pass both anomaly detection (deviation from normal behaviour) and misuse detection
(detection of known types of misuse), but in most cases “Intrusion Detection” suggests
only the detection of intrusions. The common detection modes/ techniques are:

• misuse detection

25



3.2. ANOMALY DETECTION SYSTEM

• anomaly detection

• specification-based detection

misuse detection (also referred to as signature-based detection) uses the stored sig-
nature of known attacks to compare with the observed behaviour of current data,
giving an alert if a match is found.

anomaly detection technique uses a pre-defined notion/standard of normal behaviour
(profile) for comparison with monitored data, significant deviations from this baseline
or threshold of normal behaviour is considered anomalous. Usually the stored profiles
are constantly being updated in order to reflect changes in user or system behavior.

specification-based detection uses manually developed specifications to characterize
legitimate program behaviours and deviations from legitimate behaviours are flagged
as anomalous.

As agreed by many researchers in this field, the main advantage of misuse de-
tection is that it can accurately detect known attacks, but has the disadvantage of
failing to detect new attacks. Anomaly detection overcomes the limitation of mis-
use detection by focusing on “normal” system behaviours, which means it can detect
new attacks. Its main drawback is the high rate of false alerts it produces, since pre-
vious unseen and yet legitimate system behaviours are also flagged as anomalous.
Specification-based detection has the potential of detecting novel attacks, but unlike
anomaly detection, its false positive rate can be comparable to that of misuse detection
since it does not generate false alerts when unusual but legitimate program behaviour
is encountered.

In most Anomaly Detection Systems, the behaviour of a system element (e.g. a
user, a program, or a network element, etc.) is observed through the available audit
data logs. The basic assumption in Anomaly Detection is that there is an intrinsic
pattern or regularity in audit data that is consistent with the normal behavior which
is different from the abnormal behaviour. It is important also that the system is able
to adapt to changes in system and user behaviour over time.

Anomaly Detection may use one of these analysis procedures:

• quantitative analysis

• statistical measurement

• rule-based systems

• neural networks

3.2.2 State of the art
Most of the existing Anomaly Detection Systems are focused mostly on the security
aspect, protecting a host and /or network from exploits and misuse. In most research
and papers written, Anomaly Detection is categorized as one of the two most common
approaches to Intrusion Detection, the other being misuse (Signature-based)detection.
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Currently, Anomaly Detection is often incorporated to some extent in available Intru-
sion Detection Systems or products.

The main problem with anomaly detection systems is that it can detect an anoma-
lous event but can not describe what it is. Most often, especially with Statistical
Anomaly Detection techniques, a multitude of events requires the attention of the
system administrator for analysis, a task which is nontrivial.

Since it is difficult to manually identify discrete events indicating anomalous be-
haviour in systems, several approaches to anomaly detection have been considered,
such as

• Machine learning techniques

• Data mining

• Clustering

• Ontology-based analysis

3.3 Cfengine anomaly detection
Cfengine’s scope of anomaly detection is not restricted to Intrusion Detection sense
only. Cfengine is more concerned with detection of resource anomalies such as CPU,
disk usage, memory, number of users, etc. The advantages of this approach in addi-
tion to detecting anomalous events - which might be intrusive or attacks, is the ability
to tune and configure the system better, and be able to establish a baseline of “normal”
behaviour. This section will try to describe our context of anomaly detection, specif-
ically related to Cfengine. The two techniques (also referred to as Tests ) used with
Cfengine anomaly detection, (Two-dimensional time-series and Leap Detection Test)
will be described.

With Cfengine, anomaly detection involves monitoring the host resources and ser-
vices in order to detect any variation from the norm. The idea here is not only to look
for anomalous behavior that can be indicative of intrusion or a compromised system,
but also for behaviors that can give important information about problems existing
within the system such as bottlenecks in resources, scheduling of certain activities like
backups, etc. System behavior in this context includes things such as: uses of system
resources like CPU load, disk space, etc.; usage patterns of services and protocols, user
behavior or a combination of system variables.

In version 2.x and up of Cfengine, an environment daemon, cfenvd can be run
in each host to measure system resource usage, independently of the other parts and
records it in a database. This data then becomes the profile (‘normal’ behaviour) of
the host. A training period of about two months is required to build up enough data
for stable characterization of a host’s behaviour.

The daemon collects the following long-term data: number of users, number of
root processes, number of non-root processes, percentage disk full for root disk, num-
ber of incoming and outgoing sockets for netbiosns, netbiosdgm, netbiosssn, irc, Cfengine,
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nfsd, smtp, www, ftp, ssh and telnet. These data can come from netstat, tcpdump, ps
etc running on a host.

The collection of data by cfenvd is done approximately every 2.5 minutes, and the
output is imported into cfagent. Using the specified rules in the policy file, cfagent
creates corresponding classes to give events every 30 minutes and may give alerts or
perform a predefined action. However, the cfagent only reports events whose classes
are specified in the policy file without showing the frequency of occurrence of events.

3.3.1 Host monitoring
Cfengine consists of several components which together performs system administra-
tion tasks, namely:

• cfagent - An autonomous configuration agent,

• cfservd - A file server and remote activation service,

• cfexecd - A scheduling and report service,

• cfenvd - An anomaly detection service,

• cfenvgraph - Ancillary tool for cfenvd,

• cfkey - Key generation tool.

When cfenvd is run, it performs basic resource monitoring and acts as an anomaly
detection engine. Cfenvd updates its measurements every two and a half minutes
and has the ability to:

• learn behaviour trends in each host over a period of time(e.g four weeks)

• evaluate the current state of resources as compared to learned averages

• classify the current state of resources as compared to learned averages into
classes to be used by cfagent

Figure 3.1 shows cfenvd base classes and suffixes where “base class” in the draw-
ing represents each of the following variables: users; rootprocs; otherprocs; diskfree;
incoming and outgoing: netbiosns, netbiosdgm, netbiosssn, irc, Cfengine, nfsd, smt,
www, ftp, ssh, wwws, icmp, udp, dns, tcpsyn, tcpack, tcpfin, and tcpmisc.

The cfenvd stores the data in /var/Cfengine/state and cfagent reads the current state
of resources from a env data, in the same directory. For each variable mentioned pre-
viously, the cfenvd stores the following sets of data:

• variable.q - the latest raw value q measured, with format: x y

• variabe.E-sigma - the computed average value with standard deviation, with
format:x y dy

• variable.distr - the distribution about the mean, a frequency histogram with
format: x y
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Figure 3.1: Cfenvd base classes.

The alerts about anomalies depends on policy decisions as specified in the cfagent
configuration file. The measured data is stored in database but can be viewed in gnu-
plot after running the command cfenvgraph -s, which generates a directory of files
that show a weekly snapshot of the system.

As an example of system resources monitoring, a File System behaviour can be
obtained through the use of the cfagent which performs file system scan occasionally as
per policy, and the results can similarly be viewed using cfenvgraph and gnuplot.
Note: File system scan is resource intensive hence should not be done on a continuous basis.

Simply collecting data and viewing it using cfenvgraph is not enough to under-
stand the current state of the system. We need to know how our system works in order
to understand the patterns shown by cgenvgraph, such as how the resources are being
used by processes and users. However, full interpretation of data collected is still a
problem, and this work is about trying to interpret the collected data in the form of
events through the use of ontology.

3.3.2 Data Collection and Analysis
The present work is an extension to the project in Anomaly Detection with Cfengine
done Oslo University College, specifically working on events collected. This section
presents to the reader the data collection approach and variable selection mechanisms.

Cfengine employs statistical analysis in the detection of anomalies, thus in defin-
ing the current state of a host, a set of variables that were thought to be more straight-
forward, having a theoretical model with few unknowns were chosen. Specifically,
variables chosen for characterization of system state were those having long-term pe-
riodicity that closely follow human patterns of behavior as well as those whose trend
is affected by environmental parameters.

Collection of data was done in a similar way as the measurements done during
system performance tuning, only that it was for the purpose of monitoring and char-
acterizing a host state. Bearing in mind that, the process of data collection itself may
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Table 3.1: Unix Tools

Tool Information
ps Process numbers, user numbers
vmstat Memory and disk info, paging rates, etc.
iostat Disk I/O specifics
netstat Socket numbers
df Disk space free on various partitions

have significant effect on system performance, a small daemon in C was written and
used to collect data in the background in order to minimize the overhead. In most
cases, the interesting data lies in the System kernel, and since there is neither standard
for kernel variables, nor tools that access their values with standardized output, the
experiments were restricted to a single OS (UNIX based). Table 3.1 shows the tools
used to collect data.

A host state can be characterized at different level or resolution depending on the
purpose for which characterization is meant for. Measured data can be represented
in either discrete or continuous format depending on how the data is subsequently
analyzed. Cfengine utilizes the continuous representation of data in the form of con-
tinuous curves that take into account uncertainties in measurements depicted by error
bars, the measured values quoted in units of standard deviation, for long-term char-
acterization of system state.

3.3.3 Tests
The following are two approaches used in relation with Anomaly detection project
at Oslo University College using Cfengine. The present work is related to these two
approaches as will be described in the following sections.

Two-dimensional Time-series Technique

This approach is used to detect anomalous behaviour on a single host through an it-
erative algorithm which has been encoded into Cfengine”s environmental daemon,
cfenvd. Since time series can be expensive in terms of CPU time and disk space for
data storage, the iterative algorithm and the use of random access database has been
shown to achieve approximately tenfold compression of data as well as several orders
of magnitude of CPU computation time can be spared [3]. The cfenvd continually
updates the database of system average and variances, thus characterizing the “nor-
mal” behaviour. This database has the size of 2MB. The collected data is classified by
cfenvd into classes, and is used to compare the incoming stream of data with the corre-
sponding stored data to determine the current state of the host in relation to its recent
history. The classes describe whether a parameter is above or below its average value,
and how far from the average the current value is, in units of the standard-deviation
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[11]. Cfagent then receives the classified data as a ‘class event’ which depending on
specified policies can be used to determine countermeasures or follow-up responses
for the state concerned. Specifically, cfenvd classifies the current state into the follow-
ing levels: high or low

• dev1 means that the current level is at least one standard deviation above aver-
age.

• dev2 means that the current level is at least two standard deviations above av-
erage.

• anomaly means that the current level is more than 3 standard deviations above
average.

• microanomaly is used to describe values that are 2 standard deviations above
normal, when the delta of the change is less than an arbitrary value of 5.

Note: “normal” means that the current level is less than one standard deviation above
average.

For example, cfenvd sets classes such as:

RootProcs_high_dev2
www_in_high_dev2
netbiosssn_in_high_dev2
smtp_in_high_dev2
nfsd_in_high_dev2

every 2.5 minutes, which are imported to the cfagent. The cfagent runs approximately
every 30 minutes and sets corresponding classes of events, one per each imported
class. The order of arrival of events is not considered. It is worth noting that only
events that are specified in the policies are collected by the cfagent. Additionally, cfa-
gent doesn’t show the frequency of occurrence of an event. This information could
be very useful in providing more understanding of the anomalous behaviour encoun-
tered, and in the decision of the proper action to be taken. Through the use of two-
dimensional time-series analysis, Cfengine provides long-term anomaly detection, for
the maintenance of host state and its adaptability to changing demands.

Realizing the importance of providing extensive information about anomaly char-
acteristics, and in addition to specifying the statistical number of anomalies, Cfengine
provides a second level of events filtering by employing entropy. In particular, Cfengine
provides a measure of the entropy of the source IP addresses for the measured data.
According to [11], a low entropy value means that the events came from only a few (or
one) IP addresses. A high entropy value implies that the events are spread over many
IP sources. These conditions are described by classes in the form:

entropy_smtp_in_low
entropy_www_in_high
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This added information is quite helpful in describing events characteristics and pro-
vides an added level of understanding of events. For example, the

entropy_smtp_in_low

class will be set if smtp traffic is coming from one or two IP addresses, which will
more likely be a spam or some kind of an attack. The

entropy_www_in_high

class will be set if www incoming traffic at the peak event of last data sample was
spread evenly over all the incoming IP addresses. This event indicates that the re-
source usage was not from a single source, for example an attacker in a single location,
but being evenly spread may be just a coincidental occurrence. What we see here is
that, the added information that can be used to identify what is meant by an anomaly,
so as to have a proper course of action taken. However, it is not possible to ascertain
with certainty, whether the event is anomalous or not. This is what we referred to
when pointing out the issue of “false positive” terminology being inappropriate in
this case.

Figure 3.2 shows how cfenvd and cfagent work together to detect anomalies:

Figure 3.2: Cfengine anomaly detection

Leap Detection Test (LDT)

Whereas in Two-dimensional time-series test, the profile is generated in weekly ba-
sis, and deviation at any particular time is compared to a corresponding time from
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previous weeks, the Leap Detection test methodology assumes neither periodic nor
long-term behaviour.

The LDT test uses Chi-squared test to compare the random distributed data col-
lected by the cfenvd. The hypothesis addressed is that: the latest value is a significant
leap of the observed population so far. The leap-detection test for time series data uses the
following formula:

χ2 =
(x1 + x2 + . . . + xi − i ∗ xi+1)2

i ∗ (i + 1) ∗ x̄

where x1, x2, ..., xi are previously observed values in the time series and xi+1 is the
most recent observation. The value of i therefore denotes the size of the memory. The
mean as denoted by x includes all i + 1 values.

Depending on the wanted confidence, a trigger value is set which is compared to
the chi-squared value obtained. Any value for chi-square test above this would cause
the hypothesis to be true. This means for anomaly detection, every new observed
value is tested against the hypothesis, and if the obtained chi-squared value is greater
than the trigger value, an anomaly is detected.

The LDT test is incorporated into cfenvd and uses a sliding window with duration
of 25 minutes, and only the data within this time frame is used in the computation.
From the formula we see that the order and position of observed data has no effect
on the computation and determination of an anomaly. This means that this test is
more suitable for stochastic variables and has limitations where the order of events is
critical.

3.3.4 Observed variables and their accuracy
The Cfengine anomaly detection system is still in its early experimental stages, so only
a few key variables are used to monitor the current state of a host and thus detect any
anomalies in the system’s behaviour. These variables are used with the two dimen-
sional time-series and the Leap detection test to detect and classify anomalies. The
current Cfengine variables can be categorized as shown in Figure 3.3

For each anomaly detected, variables consists of:

• value

• average

• standard deviation

having values that were true at the time of the anomaly’s occurrance.

3.3.5 Towards variables classification
The present work will develop an ontology for current Cfengine variables as catego-
rized in Figure 3.3. In the following section we try to describe the important aspects
of each group of variables that we are interested in.
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Figure 3.3: Cfengine variables

Time

For both tests, Two dimensional time-series and Leap Detection Test, the parameter
“time” is important, and is considered differently. With the 2DTS test, the initial train-
ing period takes between 6 and 8 weeks. During this period, a normal profile of a host
is developed, after which a current variable is compared to an average of equivalent
earlier times. The mathematical engine in cfenvd [6,8] is used for detecting anomalies
in periodic data hence it seems appropriate to use a time-period in which the data
shows a type of periodicity. The periodic behavior of collected data is argued to be
attributed by the environment in which a variable is observed. A single period of one
week is chosen, and Cfenvd defines classes for cfagent depending on the amount of
difference of the current data point from the learned average behavior for the given
time slot in the period. For example, if the current data is measured at 10:00 am on
Monday, it will be compared to an average of past data measured on Mondays 10:00
am time slot.

The periodic analysis of data has significance in this particular approach and suf-
ficient work has been done to justify it[6]. We think that the time at which an event is
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detected should be considered in more detail because a host’s behaviour may change
depending on the time of the day or week. The behaviour of hosts have been shown
to follow some periodic patterns, indicating more activities for certain services during
working hours than non-working hours, as well as during weekdays versus week-
ends as shown in Figure ??. We see clearly

Figure 3.4: Weekly Samba file sharing service for windows and unix systems.
Note how the peak for number of connections to a Samba server coincide with
working hours, during weekdays.

The local time slices that has significant meaning should be considered too. For
example, if a known resource intensive task (e.g backup, upgrade, etc) is scheduled for
a particular timeslot, anomalies that might be detected at this particular timeslot, that
we know are related to this activity should be considered as uninteresting. Questions
like, when did an event occur? Was it during weekdays or weekends? Was it during
working hours (when you expect more activities) or non-working hours? are relevant
in filtering of events.

With LTD, the computation and detection mechanism uses only a fixed size sliding
window of data and has no “memory”of past data. The issue of time is not as critical
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in LDT in the same way as in 2DTS. For one thing, this approach does not asssume
long-time periodic behaviour but only a sliding window of 25 minutes is considered
in the determination of an anomaly. However, we think that the time parameter is
similarly important for filtering interesting events.

We think that, the time at which a particular event occurred should be considered
in the determination of the nature of anomaly or in explaining the detected anomalous
behaviour. We think time should be incorporated in the description of the proposed
Ontology to assist in the correlation of events detected within and between hosts in
a distributed environment. The later case may be more applicable for distributed
anomaly detection within a network, but this case will not be considered in the current
work due to time constraints.

An important question here that is related to these two tests is: Can Ontology
of collected events be used to identify more interesting events from the rest? How
effective can Ontology be in filtering, correlating and reason on these events such that
more knowledge or insights about what is really happening is obtained. These are
what we plan to test in the present work. The idea is to develop an Ontology of all
possible events as collected by Cfengine and tested by the two tests, and compare the
effectiveness of Ontology in filtering of events in comparison to the 2DTS and LTD
tests.

System

The process of detecting anomalies in system behavior requires first defining the vari-
ables to be monitored. For each variable or group of related variables, one must also
define the criteria for suspicious behavior such as setting thresholds that are com-
pared to current values obtained from statistical analysis. In the present work, this
takes the form of ranges of values considered to represent abnormality, for example
the measured values are classified in units of standard deviation.

Many variables are possible, but we believe that to start with, the few variables
used by Cfengine anomaly detection system can be useful for detecting anomalous
system behavior as shown so far. As indicated in Figure 3.3, the variables in this
category that we are concerned with are: number of root processes; number of other
processes; the amount of free disk and CPU load average.

As a preliminary step in the development of the said ontology, we intend to look
at (but not limited to) the following aspects of system monitoring as related to the
mentioned variables:

• typical general behavior/ characteristics of each variable

• how is the variation of each variable?

• how is the use of these variables related to others?

• which combination of the occurrence of variables might be significant

We believe that a detailed description of these aspects of system variables will help
in the process of ontology development.
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Services

As indicated in Figure 3.3, Cfengine considers only a number of common network ser-
vices. The incoming and outgoing socket counts to and from these network services
are monitored for anomalies. We feel it is important to analyze in detail the expected
normal characteristics and behaviour of users and hosts (server or client) with respect
to these services in order to be able to define and describe them in the ontology. For
example, we need to identify interesting relations between client and server for each
service, which together with hosts and users profiles can shed more light in under-
standing the events that are detected. Specifically we intend to look at:

• probable causes for service behavior changes

• how service variables relates to other variables like rootprocs, loadavg, etc

• typical behaviour of each service to identify deviations

Role of a Host

In our setup, a host can be workstation or a server. Our experimental network consists
of two workstations and two servers. Each host in the network has specific roles, for
example servers provides certain services to its clients. We think a role of a host in the
network plays an important part in deciding whether an event is interesting or not.
Experience shows that every host has a precise behaviour in terms of services running
on it, which in general does not change significantly over time, at least in the short
time-frame. This means, it is important to identify:

• which services are running in a host

• how a host’s behaviour affects these services and vice versa

• factors affecting service availability in a host

• which variables shows the availability of a service?

Additionally, we need to identify necessary versus supporting variables in relation to
service or system variables in a host.

To summarize, the present work is concerned mainly with ontology-based ap-
proach, to recognize non-trivial and interesting events, thus essentially filtering and
reducing the amount of events that requires further analysis. We envisage to harvest
the power and utility of the ontology in expressing the relationships between collected
data and make use of its reasoning capability and that of inference engine to filter the
interesting events from the rest.

3.4 Other Anomaly Detection Systems
IDES and NIDES were the first functional anomaly detection systems using statistical
procedures to create statistical profiles that describe the normal behavior of the users
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and system components. Usually the stored profiles are constantly being updated in
order to reflect changes in user or system behavior. If there is a severe deviation from
the normal profile, the system reports a security violation[8]. The Intrusion Detection
Expert System (IDES) developed at SRI performed Intrusion Detection by creating
statistical profiles for users and noting unusual departures from normal profiles [9].
IDES keeps statistics for each user according to specific Intrusion Detection measures,
such as the number of files created and deleted each day. These statistics form the
statistical profile of each user. The profiles are periodically updated to include the
most recent changes to the user’s profile. Therefore, this technique is adaptive with
changing user profiles. However, it is also susceptible to a user slowly changing his
or her profile to include possibly intrusive activities[10].

EMERALD (Event Monitoring Enabling Responses to Anomalous Live Distur-
bances) [16] environment is a distributed scalable tool suite for anomaly and misuse
detection and subsequent analysis of the behavior of systems and networks. The de-
velopment of EMERALD drew on experiences the authors had with IDES and NIDES.

Change and Anomaly Detection (ChAD), is a work by Stottler Henke Associates,
Inc. (SHAI) for anomaly detection and fault prediction. ChAD models the normal
behaviour of a system and detects sudden changes like those caused by a denial of
service attack in a computer network, as well as changes occuring over time such as
wear and tear of hardware components. Additionaly, ChAD system may be used to
create models of a variety of ”normal” operating conditions, for example peak traffic
periods, such that it can segment these periods in order to detect correctly, anomalous
behaviors.
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Chapter 4

Ontology development

This chapter describes the methodology used to structure an ontology for host based
anomaly detection. In order to give concepts and their relationships meaning, we
must relate an underlying model of our anomaly detection to the ontological repre-
sentation.

Ontology development is nontrivial, one reason for this difficulty is that ontologies
are formal models of human domain knowledge [25]. Human knowledge is often tacit
and hard to describe in formal models, and there is also no single correct mapping of
knowledge into discrete structures. Although some rules of thumb1 exist that facilitate
selected ontology design tasks, for example as mentioned in [25, 26], there are hardly
any comprehensive ontology development methodologies that has been agreed upon
and in use today. Several suggestions has emerged from the experiences of ontology
developers such as TOVE (based on experiences in the development of Toronto Vir-
tual Enterprise ontology), Methontology [27], and Enterprise Model Approach (based
on experiences in the development of the Enterprise ontology [23]). Most often, ter-
minology used in the domain of interest is gathered and organized into a taxonomy,
from which key concepts are identified and related to create an ontology. We have
divided the work of ontology development in two main phases namely, Knowledge
capture which is described in section 4.1, and Implementation is covered in section
4.2.

4.1 Approach to behaviour discovery in events
This phase is referred to as the knowledge capture phase whereby we look for the
information embedded in events, and collect terminologies which can be used to for-
mulate concepts, properties and relations between them, with the ultimate goal of com-
bining these into an ontology for the purpose of interesting events identification. We
believe that we can relate hosts behaviour if we know relationships between them,
which can tell us more about the events captured in the network.

1There is no one correct way to model a domain, there are always viable alternatives. The
best solution almost always depends on the application one has in mind and the anticipated
extensions
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4.1.1 Terminology identification
Since with Anomaly detection we want to identify anomalous behaviour, we think
that we should explore factors affecting a host’s behaviour, which can be external (e.g
Users, remote network and application services) or internal (e.g processes running in a
host, CPU load, role of a host etc). We think such information is crucial in modeling the
“normal” state of a host, from which anomalous behaviour can be recognized. Based
on the purpose and domain of the ontology, the terminology collected where from
events and other related concepts that were thought to be part of anomaly detection
process with Cfengine. Figure 4.1 shows the main concepts we came up with at this
stage.

Figure 4.1: Main concepts related to events

The concepts shown by Figure 4.1 were chosen to be the main building blocks of
the proposed ontology and they saved as a starting point in the thinking process of
how to formulate, organize and relate concepts inherent in anomaly detection.

4.1.2 Formulating concepts relations
The process of identifying key concepts and relations between as an input to the ontol-
ogy model was done iteratively, starting from a broader perspective to a more specific
domain. In trying to formulate the relations between concepts, we thought the best
way to represent effectively the knowledge inherent in events is to look at generic
terms and concepts used in Anomaly Detection. This resulted to a number of terms
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such as Observation; Measurement; History; Statistics; Uncertainty; Variable and Time
as shown in Figure 4.2.

Figure 4.2: Taxonomy of observations with some example relations.

The taxonomy of observations in Figure 4.2 covers a wide scope of generic net-
work/host monitoring, measurements and statistics. We saw the need to narrow the
scope and try to break the domain of interest into smaller sub-taxonomies such as that
covering variables and related concepts, shown in Figure 4.3.

Zooming into an area of interest makes it easy to formulate relations between im-
mediate concepts, which can be expanded further iteratively until the whole domain
of interest has been covered.

From the insights obtained from looking at Variables scope, the list of all possible
events from Cfengine anomaly detection system was once again analyzed, and events
were grouped into taxonomic hierarchy, e.g network services, processes, whether ini-
tiated by a user or another program, and if it is a user, is it a privileged user or not, as
shown in Figure 4.4.

We refer to Figure 4.2, Figure 4.3 and Figure 4.4 as taxonomies rather than ontolo-
gies because they do not represent all possible relations and their constraints, about
concepts, neither graphically nor logically as ontology does.

4.2 Implementation: Building the Ontology
It has been mentioned previously that, there is no ’correct’ way of building ontologies.
Since no comprehensive methodology for ontology development has been standard-
ized at this point in time, this section presents heuristic methodological approaches
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Figure 4.3: Sub-Ontology for variables

for ontology development adopted in the present work. This approach consists of
four main phases, namely:

1. Defining the purpose, scope and requirements for the ontology.

2. Creating a conceptual model underlying the ontology using ontological model-
ing primitives (e.g, concepts, properties and relations).

3. Conveying the conceptual model in a representation formalism that allows on-
tology to be read by machines.

4. Evaluating the built ontology.

These steps will be used to describe the ontology development process done in this
work in the subsequent sections.

4.2.1 Determining purpose, scope and requirements
The purpose for the ontology was set forth during Project design phase. As mentioned
previously, the proposed ontology is designed to support reasoning for event filtering
through the use of Description Logic based languages like OWL.

In terms of scope, the proposed ontology will be confined to the ‘events’ collected
by Cfengine (cfenvd, LDT and cfagent) instead of an Anomaly Detection domain as a
whole.

Requirements of an ontology are a means to achieve the purpose of the ontology.
Since the conceptual model is meant to be an explanation of the domain of interest,
and a tool through which the requirements of the ontology are met, it is important
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Figure 4.4: Taxonomy of events

that the terminology as well as the knowledge structures be represented correctly. We
identified the key requirement of our ontology to be that, convey as much as possible
the ’normal’ state of the system, in the ontology by describing the events, such that
they reflect the normal system behaviour, in the hope that the reasoner will be able to
infer an odd (abnormal) event or unusual combination of events.

4.2.2 Conceptual model
The first step in creating an ontology conceptual model, is often to create a taxonomy.
It is important at this point to define what we mean by a taxonomy which is used
interchangeably with the term hierarchy in this text. Generally, taxonomy refers to the
practice of hierarchically classifying things or concepts according to some taxonomic
scheme (how they are related). Taxonomy is often represented in a tree-like structure
(hence the common use of the term hierarchy). We have observed the tendency of
some people to use the terms taxonomy and ontology interchangeably, so we feel
there is a need to differentiate these terms, especially as related to this work.

Whereas a taxonomy refers to a hierarchy created by grouping entities according
to their inherent data (’a kind of’ relation) in the hierarchy, the ontology in addition
to that, describes further these entities, stating more properties and relationships be-
tween them. Ontology specifies richer semantic relations between entities apart from
is-a relation. We can conclude that a taxonomy can be part of an ontology but not vice
versa. The following statements shows further relationships between these terms.
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Vocabulary + Structure = Taxonomy
Taxonomy + Relations, Restrictions and Rules = Ontology
Ontology + Instances = Knowledge Base

Several iterations of manually redefining concepts and arranging them into a hier-
archical taxonomy (superclass/subclass relationships), resulted to a taxonomy shown
by Figure 4.5, which became the underlying model of the built ontology.

Note that we refer to Figure 4.5 as ”taxonomy”. This is because at this point, the
class and instance properties and constraints are not set yet to make it an ontology.

4.2.3 Semantic relationships
In anomaly detection we are often concerned with the impact of events on the system.
To characterize this, the main relationship of interest is causality of one event with re-
spect to another. This is made more complicated because Cfengine classifies events
levels into “buckets” of statistical deviation sizes. So, although it might be true that an
increase in user logins causes an increase in the number of processes on a system in
a detailed view, it is not necessarily true that a move from one measurement class of
user logins to another will imply a corresponding move to the next measurement class
for processes. This depends on how full each “bucket” is to begin with. This is the ba-
sic difficulty with all statistical analysis. Figure4.8 shows possible causal relationships
for some of cfenvd source variables. We want to identify all possible relationships
between variables making up an event, and in that way represent the knowledge we
have about “normal” system state as represented by the behaviour and characteristics
of such variables. We propose to adopt the open-world assumption2 reasoning sup-
ported by Protege and OWL, to account for the limitation in representing all possible
relations between events components. This helps to validate the ontology and allow
for future extension. More discussion about this is given in the following section.

We would like to understand relationships between these events for two main
reasons:

• If two events always occur together, then we could collapse them into a single
event to avoid redundant reporting.

• If certain clusters of events have special significance then we could again col-
lapse these into new meta-level events by aggregation and provide a more mean-
ingful diagnosis. (This is essentially what rule-based detection systems do at a
lower level).

As we have noticed from the ongoing discussion, relationships that are specified
through the use of properties and their constraints are very important part of class
definitions and description which is the way ontology represents knowledge existing
in the domain of interest. In addition, the relationships need to be specified in such a
way that they are understandable to both humans and machines.

2Open-world assumption means that, just because something is not stated to be true we
can not assume it to be false.
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Figure 4.5: Taxonomy of events
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ns(samba)

nfsd_in users

otherprocsrootprocs

cfengine_out

ssh_in

ftp_in

www_in

*_out

loadavg

smtp_in

Figure 4.6: Cfenvd base class source variables with possible causal relation-
ships. These are not necessarily reflected faithfully in the approximation buck-
ets, nor are they necessarily always true.

In Protégé -OWL, this is done using constructs shown in Figure 4.6. However, we
think semantically richer relationships can be described using additional constructors
such as those shown in Figure 4.1.

4.2.4 Relationships Identification
The understanding of the design and behaviour of the Unix system are important
for the semantic modeling of our ontology. We need to understand the behaviours
associated with the variables that are measured. In Cfengine measurements by cfenvd
lead to periodically evaluated events within the context of cfagent.

Today it is common to speak of network services and application services, where
network services are the low levels of the OSI model, e.g. TCP/IP (what Unix refers to
as “protocols”), and application level services are higher levels such as www, FTP, etc
(what Unix refers to as “services” or reserved ports). From this point on, we will adopt
the Unix naming scheme of network services and application services as protocols and
services respectively, when we refer to event components in the ontology.

A service in Unix is something that is listed in the /etc/services file. It consists es-
sentially of a portnumber and transport layer protocol type (listed in /etc/protocols).
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Forward Inverse
Is equivalent to (≡) Is not equivalent to ( 6≡)
Is approximately equal to (') Is not approx. equal to ( 6')
Is a superset of ⊃ Is a subset of ⊂
Implies (⇒) Is implied by (⇐)
Leads to (→) Follows from←

Table 4.1: Additional constructors and their inverses that can be used to specify
relations. Note that these are not part of Protégé built-in constructors.

Services are associated with an addressable device at some point, e.g. a network in-
terface with IP address, but this is abstracted away.

Services are normally provided by server-processes, often called “daemons”. A
few services (e.g. some implementations of NFS) are written as kernel modules but
these are invisible to Cfengine so we shall ignore them. All measurable activity on
a Unix system must be associated with a process, and every process has a user as an
attribute (i.e. processes “belong to” users). We can forget about kernel activity for the
most part and think of every measurable event as being associated with a process in
the process table.

We distinguish between two types of application-service: those that imply a user
login to an account on the machine (e.g. ssh, ftp), and those which are anonymous
services (e.g. www, ftp).

A user login spawns a shell process from the init process. This registers as a new
shell for the user, thus a login implies an increase in processes and possibly an increase
in the number of users (a single user can be logged in many times, but the measure-
ment only counts this once).

Most services are serviced by “daemons” that run under a certain user’s creden-
tials. This includes user-logins by terminal which are handled by shells spawned by
the init process. Most services are simply run either as the root user or under a special
username for the service, e.g. the web service runs as the “wwwrun” user on most
GNU/Linux systems today. The ftp service is unusual as it allows both named and
anonymous (guest) users. Anonymous users are assigned a special local username
also however, which is usually called “nobody” and falls into the category of “oth-
erprocs”. There is no clear relationship between the number of logins, users and the
number of connections however, since a single user can log in multiple times.

Event class Relationship Event Class
ssh connection implies login
ftp connection might imply login

imap connection implies login
login implies process

Of all the services that Cfengine monitors by default, only smtp has a relay func-
tion, i.e. this is the only service in which there could be a connection between incoming
and outgoing connections.
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Let us define the symbols:

Meaning Symbol
Always causes ⇒

Usually causes (likely)
√
−→

Might cause (unlikely) ?−→
Rarely causes (possible) ??−→

Never causes 6→

Variable Forward Variable C

∗procs Increase
√
−→ loadavg Increase 0

ssh in
web in
f tp in

smtp in

 Increase
√
−→ processes Increase 1

rootprocs Increase ??−→ otherprocs Increase 2
users Increase ⇒ ∗procs Increase 3

users Increase ?−→ ∗ out Increase 4

users Decrease ?−→ ∗procs Decrease 5

users Decrease ?−→ ∗ out Decrease 6
ssh in
web in
f tp in

smtp in

 Increase ⇒ tcp syn in Increase 7

ssh in
web in
f tp in

smtp in

 Decrease
√
−→ tcp f in Increase 8

(smtp in ∧ smtp out) ?−→ Mail relaying 9

(smtp in ∧ smtp out) Increase
√
−→ ∗proc Increase 10

(smtp in ∧ smtp out) Increase ??−→ ∗proc Spam attack 10

Zero ∗ in
√
−→ Service * not functional 11

users = system lower limit ⇒ no users logged on 12

Table 4.2: Example relationships that describe the underlying system and pro-
vide semantics for the ontology.

It is worthwhile to note that, it is not straightforward to translate the changes
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shown above into Cfengine statistical classifications, since an increase from one broad
class to another implies much greater uncertainty.

LDT Classifier Forward LDT Classifier C

∗procs Change
√
−→ loadavg Change 0

ssh in
web in
f tp in

smtp in

 Change
√
−→ processes Change 1

rootprocs Change ??−→ otherprocs Change 2
users Change ⇒ ∗procs Change 3

users Change ?−→ ∗ out Change 4

users Change ?−→ ∗procs Change 5

users Change ?−→ ∗ out Change 6
ssh in
web in
f tp in

smtp in

 Change ⇒ tcp syn in Change 7

ssh in
web in
f tp in

smtp in

 Change
√
−→ tcp f in Change 8

(smtp in ∧ smtp out) Change
√
−→ ∗proc Change 10

Table 4.3: LDT relationships more closely represent the underlying variables in
Cfengine, but they represent sudden changes of gradient, not absolute values.

For Cfengine classes, an increase means a move from one class to another, e.g.
from dev1 to dev2.

Working together, the LDT and 2DTS Cfengine classes cover the essential features
of the underlying behavioural variable. However, by absorbing the statistical fluc-
tuations in values so as to avoid false-positives, the causality of the relationships is
obscured. This means that it is hard to use a logical approach to classify them further.
The least we can do is to represent the possible behaviours we can specify. The process
of identifying class properties and relations between them was similarly iterative. We
started by generally thinking and elaborating the properties, normal behaviour and
how variables are related. We then tried to express the relations we came up with pro-
gressively, as shown by Table 4.2, Table 4.3, and Table 4.4. However we found that it
was not possible to convey and relate the changes shown by events correctly and com-
pletely using Protégé and the OWL Plugin the ontology editing tool that was used in
this work. Instead we formulated relations that only describes the events without
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incorporating the changes. Table 4.5 shows a list of some Object properties used to
describe concept while developing the ontology.

4.2.5 Implementing the ontology on Protégé
The reader is referred to relevant sections in chapter 2 for a detailed description of
ontology components.

In developing the ontology in the present work, we incorporated the relationships
from the previous discussion as well as descriptions about variables and concepts in
the event domain. Figure 4.5 shows the asserted ontological hierarchy resulting from
ontology modeling process described in section 4.2.

4.2.6 Some design decisions made
As mentioned previously, there is no one way of developing an ontology. The ontol-
ogy development process presented different options for concepts classification, with
no obvious criteria for selection of one option over another. The following are an
example of some design decisions we had to make.

• Host to be in the same level as Event in the class hierarchy rather than as a
subclass of Event. This is because all concepts that are subclasses of Event are
”kind of” (Is-A /superclass-subclass relation) events, which means they have
individuals belonging to both classes. From our list of events, Host and its sub-
classes (Client and Server) are do not form part of any event but rather events
are collected from Hosts.

• Out ontology consists of 3 main superclasses, namely Host, Event and Date-
Time. We have decided to make Host and Event classes not disjoint, by ex-
plicitly making Event disjoint with Datetime and DateTime disjoint with both
Event and Host. This is to allow relationships that may exists between Users
which is a subclass of Event and subclasses of Host, since disjoint properties are
inherited down the subsumption hierarchy.

• Due to the nature of anomalies, (unexpected, abnormal behaviour), it is not pos-
sible to represent uncertainties associated with them using current ontology de-
velopment tools, such as Protégé 2000. We have decided to represent the known
knowledge about events that we have, and experiment to see how ontology can
support the Reasoner to identify the interesting events from the rest.

The ontology developed consists of 6 superclasses namely, DateTime, Event, Host,
Level, Test and Variable. Each of these superclasses with the exception of Event class
had one or more subclasses. Since we wanted to represent how variables and entities
are structured through their relationships between them, we positioned the classes in
the hierarchy to reflect these relationships. We experimented with different arrange-
ments of classes in the taxonomy while examining for any conflicts between the rela-
tions thus specified and the actual reality. At the same time we had to compare with
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the inferred hierarchy produced by the reasoner to ensure there are no inconsistency.
The final taxonomy is shown in Figure 4.5.

The next step in implementation was to add the identified properties and relations
between classes and individuals. This is done through the use of the OWL Plugin
built-in constructors, whereby named classes are defined and described using necessary
and sufficient conditions and necessary conditions respectively. Table 4.6 shows OWL
built-in constructors in Protégé 2000.

As mentioned previously, an OWL ontology consists of Individuals, Properties,
Classes, and restrictions on properties. These basic components were used to create
our ontology as shown by Figure 4.8.

Individual
Individuals, represent objects in the domain of interest. Individuals are also known as
instances. In our ontology we had four Individuals namely, Cube, Nexus, Satyagraha
and Rex. It is worthwhile to note that, unlike Protégé OWL does not use Unique
Name Assumption, which means, two different names could actually refer to the same
individual.

Properties
Properties are relations between two individuals. For example, the property hasInflu-
ence links an individual from class cfengine out ( any instance of the number of this
connection) to an Individual in class roortprocs. In addition, a Property may have an
inverse which is another property, e.g isInfluencedBy is an inverse property of hasInflu-
ence. Other characteristicsof properties are as explained in 2.3.6.3

Classes
An OWL class is a set that contain Individuals. Class expressions are used to state the
requirements for membership of the class. The word concept is often used interchange-
ably with class. We say that Classes are a concrete representation of concepts. Classes
may be organized into a superclass-subclass hierarchy (subsumption relationships),
which is also known as a taxonomy. For example, cfengine out is a subclass of Service

Figure 4.7 shows a representation of classes with some properties linking some
individuals together.

Note the Class expressions made up for class cfengine out using properties (isOwnedBy,
hasInfluence), which in addition to restricting named classes (Server, Client, root-
procs), they specify un-named classes(logical). Note also the inherited unnamed sub-
lasses of cfengine out through inheritance shown on the lower part of the Assertion
Conditions window.

Similar process was done for other classes, filling up properties and relations be-
tween classes accordingly. The disjoint for siblings3 was set for all superclasses which

3classes in the same level
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Figure 4.7: Individual, Class and Property representation

is also inherited down the hierarchy. Note that it is important not to set disjoint be-
tween classes if it is known or anticipated that some individuals might belong to both
classes to avoid inconsistency.

Protégé includes the facility of converting the ontology project(.pprj) to RDF/XML
as shown in Figure 4.9.

It is worth mentioning that, Figure 4.5 was created by OWLViz, which is designed
to be used with the Protege OWL plugin. OWLViz enables viewing of the class hier-
archies in an OWL Ontology, allowing comparison of the asserted class hierarchy and
the inferred class hierarchy. However, as seen in Figure 4.5, no visual representation
of relations between classes is given. More detailed view of relations is given by the
Jambalaya, a plug-in created for Protégé which allows one to visualize regular Protégé
and OWL knowledge bases. An example of visualization with Jambalaya is shown by
Figure 5.8.
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Figure 4.8: Class definitions and descriptions.

Figure 4.9: Excerpt showing class description in RDF/XML.
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2DT Class Forward 2DT Class C

∗procs Increase
√
−→ loadavg Increase 0

ssh in
web in
f tp in

smtp in

 Increase ?−→ processes Increase 1

rootprocs Increase ??−→ otherprocs Increase 2

users Increase ?−→ ∗procs Increase 3

users Increase ?−→ ∗ out Increase 4

users Decrease ?−→ ∗procs Decrease 5

users Decrease ?−→ ∗ out Decrease 6
ssh in
web in
f tp in

smtp in

 Increase
√
−→ tcp syn in Increase 7

ssh in
web in
f tp in

smtp in

 Decrease ?−→ tcp f in Increase 8

(smtp in ∧ smtp out) ?−→ Mail relaying 9

(smtp in ∧ smtp out) Increase ?−→ ∗proc Increase 10

(smtp in ∧ smtp out) Increase ??−→ ∗proc Spam attack 10

Zero ∗ in ?−→ Service * not functional 11

users = system lower limit ?−→ no users logged on 12

Table 4.4: Cfengine statistical classes provide a coarse grained view of the ab-
solute values of observed variables.
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Object Properties
useProtocol
hasProcess
hasVariable
hasDirection
hasFlag
hasLevel
hasOwner←→ isOwnedBy
hasService←→ isServiceOf
hasPart←→ isPartOf
hasInfluence←→ isInfluencedBy

Table 4.5: A sample of properties used to describe and define events in the
ontology.

OWL constructor Symbol Example expression in Protégé
allValuesFrom, (only) ∀ ∀ hasLevel only (high or low)
someValuesFrom, (some) ∃ ∃ hasPart some Loadavg
hasValue, (has) 3 3 hasPart has Users
cardinality, (exactly n) = = hasPort has 25
minCardinality, (minimum n) ≥ ≥ hasClients min 1
maxCardinality, (maximum n) ≤ ≤ hasServers max 5
intersectionOf, (AND) u uMozzarellaTopping and TomatoTopping
unionOf, (OR) t t hasDirection only (in or out)
complimentOf, (NOT) ¬ ¬high
oneOf, (Enumeration) {} {RexSatyagraha}

Table 4.6: Some synonym operators and their meaning used for constructing
OWL relationships. Some class descriptions are made from the combination
of these. ‘n’ is the number of elements in a relation being described.
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Chapter 5

Results and discussion

5.1 Evaluation process
In normal cases where rather large ontologies are developed, the work is a joint ef-
fort of ontology designer and the domain expert. The later specifies the requirements
of the ontology to be developed while the former implements the requirements. The
built ontology is then tested by both parties, in order to ensure the satisfaction of
the user’s needs. However, to the authors knowledge, there are no existing stan-
dard methodologies for Ontology Evaluation. In [25], Noy et al suggests the use of
competency questions1, which are basically for testing the knowldge base2.This work
however employed heuristic evaluation using the reasoner, RacerPro. Theoretically,
we can formulate ontology testing to include the following steps:

• Consistency checking:
This is done to ensure that none of the definition of an ontology element con-
tradicts one another. The ontology designer must verify the consistency within
ontology, to avoid the risk of logical problems when the ontology is used in a
knowledge base to infer new facts.

• Ontology Validation:
During this step the domain expert tests the ontology and estimates whether
it satisfies the user’s needs, in which case the ontology expert can improve the
conceptualization of ontology, according to such estimations.

In addition, Protégé OWL Plugin provides a mechanism to execute a configurable
list of tests, on the OWL tab of the editor. These tests are small Java programs that
basically verify arbitrary conditions specified in ontology, and in case of failure, re-
turn an error message. For example, one of the predefined tests checks if a disjoint
property is set between sibling classes. If any property in the ontology violates any
of the predefined conditions, the system displays a warning. The editor also provides
a ”repair” button, which removes the source of the violation automatically. Figure

1Competency questions are the questions that the ontology should be able to answer
2an ontology populated with instances for a particular application
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5.1 shows the warning from the OWL Plugin (marked ’Test Results’) about missing
disjoints between OWLThing(Universal Superclass) and Variable class with their re-
spective siblings. This is not a critical error and the test can add the missing disjoints
through the use of ’repair’ button.

Figure 5.1: Test Results from OWL Plugin.

Use of queries is another method that can be used to evaluate ontologies. Some
reasoners like RacerPro has an integrated query engine. As mentioned previously,
RacerPro uses new Racer Query Language (nRQL), to submit queries about Individ-
uals in the ontology. Protégé 2000 incorporates a SPARQL query engine which can
be used to query the ontology. However meaningful querying requires a populated
ontology since the queries return results about Individuals. Extensive querying using
nRQL and SPARQL waere not done during the course of this work, due to time limi-
tations. However, the use of SPARQL querying facility with OWL Plugin is shown in
Figure5.2

For clarity, the query is written as:

SELECT ?subject ?object
WHERE {?subject rdfs:subClassOf ?object

The results is the list of all superclass/subclass relations in the ontology( even those
which are inconsistent as shown by the red colour
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Figure 5.2: An example of a simple SPARQL query to list subject/object sub-
sumption relation

5.2 Results
Ontology development has a continuous iterative life cycle, allowing the use of rea-
soners among other tools, during and after development stage. We mainly used Racer-
Pro reasoner to check the consistency of classes within our ontology (i.e., determining
whether a class can have any instances) and to compute the subsumption relations
(a hierarchy which arranges the classes according to the superclass/subclass relation-
ship).

The results of such tests are shown in the following snapshots.
Ontology classification action makes the reasoner perform consistency checks and

the results can be seen from both RacerPorter and on the OWL Plugin on ProtégéḞrom
Figure 5.3, the text on lines 13 and 14 (OKAY) shows that all classes are consistent that
is all classes can have instances. In addition we can see a portion of the ontology
taxonomy.

From the OWL tab on Protege editor, one can invoke the reasoner to perform con-
sistency check, taxonomy classification, computation of Inferred types (for Individ-
uals) and run ontology tests. This is shown in Figure5.4. Note the results obtained
from “Run ontology tests” displayed in the Test Results window, which shows miss-
ing disjoint for the Service subclasses. There is an option for correcting this type of
error using a button ’repair’ on the left side of the results window.

The ontology developed with this work this far is relatively small, so no sugges-
tions about class hierarchy was given by the reasoner as indicated in Figure 5.9. We
can see that, the asserted (manually created hierarchy) and the inferred hierarchy are
identical.

To further test the ontology, we created an inconsistent class “Users” by giving it
two parents Client and Server which are disjoint classes as shown by Figure 5.6. See
the description in the Necessary condition widget under Asserted conditions. Note
also the error description in the Test Results window.

Even though it is said that necessary conditions are not used by the reasoner to
infer subsumption relation between classes, we observed that describing two disjoint
classes using “necessary conditions” results to inconsistencies as shown in Figure 5.7.
Notice the disjoint classes Client and Server in the condition widget.

Jambalaya plug-in can be used to have a visual representation of relationships,
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Figure 5.3: .
Results of Classifying the ontology. Note the ‘classify’ button functionality

and the results of such action in the RacerPorter Log window indicating how
these two collaborate.

restrictions and general neighbourhood of a class. An example of a view from the
Jambalaya plugin is shown in Figure 5.8

The use of SPARQL querying facility is shown in Figure5.9

5.3 Alternative ontologies
We find it necessary to stress that there is no one correct way of developing ontologies,
even for the same domain. This fact has been experienced during the course of this
work. The process of representing the concepts comprising our domain of interest
was an iterative process which resulted to several alternative representations, one of
which is shown in Figure 5.13.

In Figure 5.13, we tried to represent a subset of possible types of events collected
by Cfengine, and tried to relate them graphically in a is-a relation. The intention for
this was to be able to identify concepts (classes) and formulate formal relations be-
tween them as a first step to represent them semantically with ontology. However,
the analysis of relationships between various concepts in our domain of interest was
a non-trivial task. We observed that, we needed to revisit the purpose of our ontology
to determine which kind of knowledge do we need to represent with ontology, and its
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Figure 5.4: Results of Run ontology tests

scope in order to decide how detailed our relations need to be. For example in trying
to relate rootprocs and otherprocs we thought of grouping these as subclasses of class
process. We then were faced with questions such as how can we describe processes?
Is it in terms of how they are started? or who owns them (system or user)? How can
we relate the process thus described with the number of processes (rootprocs or oth-
erprocs) which is basically what is collected by our anomaly detection? This line of
thinking necessitated several changes to our proposed class hierarchies.

5.3.1 A promise theory representation
For a completely different approach to modeling the system, based on functional ob-
jects rather than abstract concepts or types, one can look at a promise theoretic ap-
proach. This is the description used by Cfengine itself, and it is close in idea to the
Service Oriented Architecture.

Promise theory is a model of advertised behaviour, created by Burgess[6]. It deals
explicitly with the advertisement of decisions that have been made. The following
literature is based on a promise theory description of the Cfengine and discussions in
our research group at Oslo University College.

We consider a number of agents, each with private knowledge. The agents’ knowl-
edge is “flat”, it does not necessarily have a classification according to any particular
model, but we assume that there exists a taxonomy of promise types that agents are
assumed to agree on. Each agent has its own world view and only has access to infor-
mation that is promised.
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Figure 5.5: Results of taxonomy classification which produces an inferred tax-
onomy, as well as suggested changes to class hierarchy

A promise model is a set of promises that will lead to interactions between the
agents. The behaviour of all agents might or might not be predictable from the promises
made. An important question in promise theory is: can we predict how a collection of
agents will behave?

Unlike algorithmic approaches to modeling, such as the many that are subsumed
into UML, there are no sequential mechanisms in promise theory. It is, however, pos-
sible to promise ordered activities by introducing dependencies and conditionals. If
one promise is conditional on another being fulfilled, then the actions which fulfill the
promises must be ordered.

While not all facts(knowledge) can be explicitly represented in an ontology (due
to the nature of human knowledge), propositional facts can be promised since they
are simply a kind of knowledge or agreement. We cannot represent “book X has been
published” in the same way that one would in an ontology. We would have to intro-
duce an agent, such as the publisher, who promised this knowledge, or even introduce
the book as a “dumb agent” who could promise this. This could seem artificial, but
the great advantage is that there is no need to extend the theory to plural diagrams,
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5.3. ALTERNATIVE ONTOLOGIES

Figure 5.6: Results of consistency check

as one would in UML. In this sense facts can be both promised to others and used in
promise theory.

Promises focus on instances rather than generic classes. Thus there is never any
doubt about where information is located: it always lies in the instance promising
it. The typing of knowledge or information through promise types is sufficient to
classify data in the sense of UML classes or ontological categories. This is simply a
one-to-one mapping. One can, in principle, impose any desired structure on promise
types to reproduce programming data structures (see ref. [7] as an example for Object
Oriented programming).

5.3.2 Promise Theory approach to modeling Anomalies
The main problem in classifying statistical anomalies using a framework of logical
reasoning is the high level of uncertainty. Logic works best when uncertainty is negli-
gible.

The lack of clear relationships between statistically aggregated data classes means
that anomalies live up to their name as unclassifiable. So what is the point of looking
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5.3. ALTERNATIVE ONTOLOGIES

Figure 5.7: Inconsistencies caused by class description using necessary condition

for anomalies? A reliable signal of a significant change in a system can work as a first
alarm to allow a human investigator to look more closely.

The key relationships that we can infer from the system behaviour are all things
that can be written as unreliable promises, e.g.

• Promise that an increase/decrease in X leads to an increase/decrease in Y.

• Promise that X is dangerous/undesirable with probability P.

The main conclusion we can make is this in Table Figure5.1 The question is how

Variable Forward Variable
Large number of ∗ anomalies ⇒ Change in system behaviour

Table 5.1: Some general conclusions about the events.

can we best represent the knowledge obtained from the promise theory model of
anomalies? Can we use ontology? We think this warrants more research and should
be part of future work.
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5.3. ALTERNATIVE ONTOLOGIES

Figure 5.8: Jambalaya view of a class Service neighbourhood. Navigating by
mouse on colour-coded links shows the type of relations between classes in-
cluding inferred relations.

Figure 5.9: An example of a simple SPARQL query to list subject/object sub-
sumption relation
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5.3. ALTERNATIVE ONTOLOGIES

Figure 5.10: .
Consistency check of the ontology. Note the log from the Racer reasoner

showing check timing details.
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5.3. ALTERNATIVE ONTOLOGIES

Figure 5.11: Classify taxonomy results to inferred hierarchy. This is done by
the reasoner. Note the similarity of asserted and inferred hierarchies.
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5.3. ALTERNATIVE ONTOLOGIES

Figure 5.12: Classify taxonomy results to inferred hierarchy. This is done by
the reasoner. Note the similarity of asserted and inferred hierarchies.

Figure 5.13: Cfengine events class hierarchy.

67



5.3. ALTERNATIVE ONTOLOGIES

Figure 5.14: Promise graph for an observatory or observer (a behavioural in-
stance of the concept of “observation”). It consists only of functional elements
that promise something to one another. The notion of measurement is an emer-
gent consequence of the fact that an agent promises to make its value available
to an observer, and that the observer promises to use it. An event is repre-
sented as the promise to report on changes and the promise to listen to such
reports. In promise theory, one sees the direction of the causality.
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Chapter 6

Conclusions

In the course of this work we have examined anomaly detection using Cfengine, as
a case study. In parallel, we examined ontology as a means for supporting filtering
the multitude of events collected by the Anomaly Detection system of the case study.
In this short thesis we cannot cover every possible aspect of ontologies for anomaly
detection. Even though we mainly focused on Cfengine and its devloped ontology
for anomaly detection, the scope is still too rich for a complete analysis in the time
available.

A number of interesting questions came up during the ontology development
phase, such as:

• How to decide whether to describe (using necessary condition) or define (using
necessary and sufficient conditions) a class?. The available literature does not
clarify this issue, and the decision is left for the ontology designer’s intuition.

• Does the reasoner use the class definitions or descriptions or both to classify and
perform consistency checking? Some literature indicates that the Reasoner does
not use necessary conditions (Primitive classes) to classify the ontology. We
found conflicting results when testing this fact and no plausible explanation.

• What is the significance of the hierarchical class representation in ontology de-
velopment? Is there an alternative way of structuring ontologies without using
hierarchies?

We think that, the question of whether we should put concepts in a hierarchy and how,
was significant because from our experience we found that the logical classification of
classes using class expressions requires not only the explicit intentional decision of on-
tology designer but also taking into account the inference mechanism of the reasoner.
This is because, one can easily see and manipulate the hierarchical relations between
classes (e.g by manually assertion of class hierarchy) but the logical hierarchical rela-
tions inferred by the reasoner exists and needs to be considered in design decisions
too.

We observed that the use of asserting hierarchical relations with Protege OWL Plu-
gin simplifies extension of subclasses by only modifying the superclass, the changes
are inherited down the hierarchy. That is, asserting a certain property or restriction on
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a superclass is the same as asserting that property or restriction to all individuals in
the subclasses of the superclass. This observation agrees with the previous one about
the need for careful classification of classes to avoid inconsistencies.

We think that, effective representation of knowledge for the purpose of solving a
certain problem or doing a certain task, strongly depends on the nature of the problem
or task and the strategy for inferencing to be applied to the problem. Since OWL as
an ontology representation language was designed specifically for the development
of the Semantic Web and mostly for knowledge sharing, is it appropriate and effective
for representing knowledge for different purposes other than knowledge sharing?

We found that, ontology in its nature is somewhat analogous to Anomaly Detec-
tion paradigm in the sense that, ontology provides a framework for specifying and
describing concepts and their relations in a domain of interest. This corresponds to
describing the ”normal or expected state (behaviour)” of entities in a domain. This
is analogous to an Anomaly Detection system which through learning process estab-
lishes a ‘normal’ state of a host/network and use this baseline ‘knowledge’ to identify
or recognize significant changes. The similarity is seen when one considers that an
ontology describes the current/ existing knowledge about the domain and has provi-
sions for extension of this knowledge, just as an Anomaly Detection system knowing
normal state, can identify unexpected/unknown behaviour of a system. This is a kind
of an Open World Assumption.

since an ontology does not (and probably will not) provide a complete set of terms
in a domain, what would be important is to be systematic and to be able to ensure
openness and extendibility in the approach.

In addition to ontology, we looked at some other knowledge representation for-
malisms namely, UML, Topic Maps and Promise Theory. The usability of UML and
Topic Maps for ontology representation is being researched by a number of commu-
nities, and from literature, we found no striking similarity or insights on how they
can be used to develop a conceptual model for our ontology. However, we found
some similarities and differences between ontology and Promise Theory in terms of
knowledge representation. We think that Promise Theory warrants further research
in relation to ontology, specifically, Task ontology drawing existing experience from
ontologies developed for SOA applications.

We think that through the use of axioms and rules, ontology can define com-
pletely the values that a concept can have, thus describe certain behaviours. Since
with anomaly detection we are concerned with behaviours of a system and entities af-
fecting the state / behaviour of a system, we think that ontology has the potential for
supporting filtering of anomaly events through appropriate representation formalism
and inference strategy.

6.1 Future Work
Further research on the suitability of OWL for effective representation of knowledge
intended for different purposes other than knowledge sharing is recommended. This
might shed more light on how best can ontology be used to accomplish a task of
supporting event filtering. A comparison can then be made between the effectiveness

70



6.1. FUTURE WORK

of a domain ontology versus task ontology for filtering anomaly events. In addition,
the techniques such as Problem-solving can be integrated in the Task ontology and
tested.

Research on how Promise Theory can be used to represent knowledge about and
within events or entities in an Anomaly Detection system as an input to an ontology,
to explore how effective that can be in filtering, clustering or correlating events in the
efforts to identify interesting events.
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Appendix A

Sample event

The following is an example of what we have been referring to as anevent, which is ac-
tually an anomaly event captured by the Servers Nexus and Cube in our case study network.

cf:nexus: LOW ENTROPY Incoming www anomaly high anomaly dev!! on nexus/Wed Mar 28 18:19:01 2007 - current value 126 av 70.5 pm 84.4
cf:nexus: -----------------------------------------------------------------------------------
cf:nexus: In the last 40 minutes, the peak state was q = 129:
{
DNS key: 192.193.245.15 = 192.193.245.15 (1/129)
DNS key: 83.143.10.190 = 10-190.vgccl.net (1/129)
DNS key: 57.66.152.190 = 57.66.152.190 (108/129)
DNS key: 202.156.11.4 = 202-156-11-4.cache.maxonline.com.sg (8/129)
DNS key: 221.135.230.58 = 221-135-230-58.sify.net (3/129)
DNS key: 59.93.86.21 = 59.93.86.21 (2/129)
DNS key: 80.239.38.65 = flamme.gulesider.no (1/129)
DNS key: 74.6.71.45 = lj611562.inktomisearch.com (1/129)
DNS key: 83.255.186.222 = c83-255-186-222.bredband.comhem.se (2/129)
DNS key: 74.6.74.214 = lj612588.inktomisearch.com (1/129)
DNS key: 81.93.168.213 = trk-wiki01.osl.basefarm.net (1/129)
-
Frequency: 57.66.152.190 |************************************************++ (108/129)
Frequency: 202.156.11.4 |******** (8/129)
Frequency: 221.135.230.58 |*** (3/129)
Frequency: 83.255.186.222 |** (2/129)
Frequency: 59.93.86.21 |** (2/129)
Frequency: 81.93.168.213 |* (1/129)
Frequency: 74.6.74.214 |* (1/129)
Frequency: 74.6.71.45 |* (1/129)
Frequency: 80.239.38.65 |* (1/129)
Frequency: 83.143.10.190 |* (1/129)
Frequency: 192.193.245.15 |* (1/129)
}
-
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Scaled entropy of addresses = 0.8 %
(Entropy = 0 for single source, 100 for flatly distributed source)
-
cf:nexus: -----------------------------------------------------------------------------------
cf:nexus: State of incoming.www peaked at Wed Mar 28 18:13:59 2007

cf:cube: LOW ENTROPY Incoming www anomaly high anomaly dev!! on cube/Sat May 5 11:38:00 2007 - current value 45 av 32.4 pm 29.4
cf:cube: -----------------------------------------------------------------------------------
cf:cube: In the last 40 minutes, the peak state was q = 86:
{
DNS key: 220.168.124.84 = 220.168.124.84 (78/86)
DNS key: 81.191.146.160 = cA092BF51.dhcp.bluecom.no (1/86)
DNS key: 84.209.15.231 = cm-84.209.15.231.chello.no (2/86)
DNS key: 74.6.71.243 = lj611467.inktomisearch.com (1/86)
DNS key: 74.6.66.55 = lj612258.inktomisearch.com (1/86)
DNS key: 74.6.65.248 = lj612276.inktomisearch.com (1/86)
DNS key: 72.197.90.197 = ip72-197-90-197.sd.sd.cox.net (1/86)
DNS key: 65.54.188.57 = livebot-65-54-188-57.search.live.com (1/86)
-
Frequency: 220.168.124.84 |************************************************++ (78/86)
Frequency: 84.209.15.231 |** (2/86)
Frequency: 65.54.188.57 |* (1/86)
Frequency: 72.197.90.197 |* (1/86)
Frequency: 74.6.65.248 |* (1/86)
Frequency: 74.6.66.55 |* (1/86)
Frequency: 74.6.71.243 |* (1/86)
Frequency: 81.191.146.160 |* (1/86)
}
-
Scaled entropy of addresses = 10.9 %
(Entropy = 0 for single source, 100 for flatly distributed source)
-
cf:cube: -----------------------------------------------------------------------------------
cf:cube: State of incoming.www peaked at Sat May 5 11:30:28 2007

Both anomaly events shown are of typeentropy www in high. As mentioned previously, due
to the fact that too many events have their numerical values exceeding thresholds determined
by an arbitrary policy, there was a need to identify other criteria to pin down which anomalies
are interesting and which are not. Therefore, as a second level of policy filtering, Cfengine
provides a measure of the entropy of the source IP addresses of the measured data. A low
entropy value (as in this case) means that most of the events came from only a few (or one) IP
addresses. This extra information might help in deciding whether an event is interesting or
not. Note the Scaled entropy of addresses = 0.8% and 10.9% for Nexus and Cube respectively.
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Appendix B

Sample event log

2006-09-14-12-40 entropy_smtp_in_low
2006-09-14-12-40 entropy_tcpsyn_in_low
2006-09-14-12-40 entropy_dns_in_low
2006-09-14-12-40 otherprocs_high_ldt
2006-09-14-12-40 www_in_high_ldt
2006-09-14-12-40 loadavg_high_ldt
2006-09-14-12-40 users_high_ldt
2006-09-14-13-10 entropy_smtp_in_low
2006-09-14-13-10 entropy_tcpsyn_in_low
2006-09-14-13-10 entropy_dns_in_low
2006-09-14-13-10 ssh_in_high_ldt
2006-09-14-13-10 users_high_ldt
2006-09-14-13-40 www_in_high_dev2
2006-09-14-13-40 entropy_smtp_in_low
2006-09-14-13-40 entropy_tcpsyn_in_low
2006-09-14-13-40 entropy_dns_in_low
2006-09-14-13-40 ssh_in_high_ldt
2006-09-14-13-40 rootprocs_high_ldt
2006-09-14-13-40 otherprocs_high_ldt
2006-09-14-13-40 www_in_high_ldt
2006-09-14-13-40 smtp_out_high_ldt
2006-09-14-13-40 loadavg_high_ldt
2006-09-14-14-10 entropy_smtp_in_low
2006-09-14-14-10 entropy_tcpsyn_in_low
2006-09-14-14-10 entropy_dns_in_low
2006-09-14-14-40 entropy_smtp_in_low
2006-09-14-14-40 entropy_tcpsyn_in_low
2006-09-14-14-40 entropy_dns_in_low
2006-09-14-14-40 otherprocs_high_ldt
2006-09-14-15-10 entropy_www_in_high
2006-09-14-15-10 entropy_smtp_in_low
2006-09-14-15-10 entropy_tcpsyn_in_low
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2006-09-14-15-10 entropy_dns_in_low
2006-09-14-15-10 loadavg_high_ldt

The given excerpt is part of event log created and updated by cfagent every 30 minutes. Events
collected since last time cfagent run are shown by the same timestamp. A long list of events
like this is what a system administrator has to analyse and identify interesting events. We
have developed an ontology to support filtering of such events.
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Appendix C

List of Cfengine events

As mentioned previously, when cfengine detects an anomaly, it classified the current statistical
state of the system into a number of classes. Below is the list of all possible anomaly events that
currently can be detected by Cfengine anomaly detection system.

users_high_microanomaly
users_low_microanomaly
users_high_dev1
users_low_dev1
users_high_dev2
users_low_dev2
users_high_anomaly
users_low_anomaly
users_high_ldt
users_low_ldt
rootprocs_high_microanomaly
rootprocs_low_microanomaly
rootprocs_high_dev1
rootprocs_low_dev1
rootprocs_high_dev2
rootprocs_low_dev2
rootprocs_high_anomaly
rootprocs_low_anomaly
rootprocs_high_ldt
rootprocs_low_ldt
otherprocs_high_microanomaly
otherprocs_low_microanomaly
otherprocs_high_dev1
otherprocs_low_dev1
otherprocs_high_dev2
otherprocs_low_dev2
otherprocs_high_anomaly
otherprocs_low_anomaly
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otherprocs_high_ldt
otherprocs_low_ldt
diskfree_high_microanomaly
diskfree_low_microanomaly
diskfree_high_dev1
diskfree_low_dev1
diskfree_high_dev2
diskfree_low_dev2
diskfree_high_anomaly
diskfree_low_anomaly
diskfree_high_ldt
diskfree_low_ldt
loadavg_high_microanomaly
loadavg_low_microanomaly
loadavg_high_dev1
loadavg_low_dev1
loadavg_high_dev2
loadavg_low_dev2
loadavg_high_anomaly
loadavg_low_anomaly
loadavg_high_ldt
loadavg_low_ldt
netbiosns_in_high_microanomaly
netbiosns_in_low_microanomaly
netbiosns_in_high_dev1
netbiosns_in_low_dev1
netbiosns_in_high_dev2
netbiosns_in_low_dev2
netbiosns_in_high_anomaly
netbiosns_in_low_anomaly
netbiosns_in_high_ldt
netbiosns_in_low_ldt
netbiosns_out_high_microanomaly
netbiosns_out_low_microanomaly
netbiosns_out_high_dev1
netbiosns_out_low_dev1
netbiosns_out_high_dev2
netbiosns_out_low_dev2
netbiosns_out_high_anomaly
netbiosns_out_low_anomaly
netbiosns_out_high_ldt
netbiosns_out_low_ldt
netbiosdgm_in_high_microanomaly
netbiosdgm_in_low_microanomaly
netbiosdgm_in_high_dev1
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netbiosdgm_in_low_dev1
netbiosdgm_in_high_dev2
netbiosdgm_in_low_dev2
netbiosdgm_in_high_anomaly
netbiosdgm_in_low_anomaly
netbiosdgm_in_high_ldt
netbiosdgm_in_low_ldt
netbiosdgm_out_high_microanomaly
netbiosdgm_out_low_microanomaly
netbiosdgm_out_high_dev1
netbiosdgm_out_low_dev1
netbiosdgm_out_high_dev2
netbiosdgm_out_low_dev2
netbiosdgm_out_high_anomaly
netbiosdgm_out_low_anomaly
netbiosdgm_out_high_ldt
netbiosdgm_out_low_ldt
netbiosssn_in_high_microanomaly
netbiosssn_in_low_microanomaly
netbiosssn_in_high_dev1
netbiosssn_in_low_dev1
netbiosssn_in_high_dev2
netbiosssn_in_low_dev2
netbiosssn_in_high_anomaly
netbiosssn_in_low_anomaly
netbiosssn_in_high_ldt
netbiosssn_in_low_ldt
netbiosssn_out_high_microanomaly
netbiosssn_out_low_microanomaly
netbiosssn_out_high_dev1
netbiosssn_out_low_dev1
netbiosssn_out_high_dev2
netbiosssn_out_low_dev2
netbiosssn_out_high_anomaly
netbiosssn_out_low_anomaly
netbiosssn_out_high_ldt
netbiosssn_out_low_ldt
irc_in_high_microanomaly
irc_in_low_microanomaly
irc_in_high_dev1
irc_in_low_dev1
irc_in_high_dev2
irc_in_low_dev2
irc_in_high_anomaly
irc_in_low_anomaly
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irc_in_high_ldt
irc_in_low_ldt
irc_out_high_microanomaly
irc_out_low_microanomaly
irc_out_high_dev1
irc_out_low_dev1
irc_out_high_dev2
irc_out_low_dev2
irc_out_high_anomaly
irc_out_low_anomaly
irc_out_high_ldt
irc_out_low_ldt
cfengine_in_high_microanomaly
cfengine_in_low_microanomaly
cfengine_in_high_dev1
cfengine_in_low_dev1
cfengine_in_high_dev2
cfengine_in_low_dev2
cfengine_in_high_anomaly
cfengine_in_low_anomaly
cfengine_in_high_ldt
cfengine_in_low_ldt
cfengine_out_high_microanomaly
cfengine_out_low_microanomaly
cfengine_out_high_dev1
cfengine_out_low_dev1
cfengine_out_high_dev2
cfengine_out_low_dev2
cfengine_out_high_anomaly
cfengine_out_low_anomaly
cfengine_out_high_ldt
cfengine_out_low_ldt
nfsd_in_high_microanomaly
nfsd_in_low_microanomaly
nfsd_in_high_dev1
nfsd_in_low_dev1
nfsd_in_high_dev2
nfsd_in_low_dev2
nfsd_in_high_anomaly
nfsd_in_low_anomaly
nfsd_in_high_ldt
nfsd_in_low_ldt
nfsd_out_high_microanomaly
nfsd_out_low_microanomaly
nfsd_out_high_dev1
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nfsd_out_low_dev1
nfsd_out_high_dev2
nfsd_out_low_dev2
nfsd_out_high_anomaly
nfsd_out_low_anomaly
nfsd_out_high_ldt
nfsd_out_low_ldt
smtp_in_high_microanomaly
smtp_in_low_microanomaly
smtp_in_high_dev1
smtp_in_low_dev1
smtp_in_high_dev2
smtp_in_low_dev2
smtp_in_high_anomaly
smtp_in_low_anomaly
smtp_in_high_ldt
smtp_in_low_ldt
smtp_out_high_microanomaly
smtp_out_low_microanomaly
smtp_out_high_dev1
smtp_out_low_dev1
smtp_out_high_dev2
smtp_out_low_dev2
smtp_out_high_anomaly
smtp_out_low_anomaly
smtp_out_high_ldt
smtp_out_low_ldt
www_in_high_microanomaly
www_in_low_microanomaly
www_in_high_dev1
www_in_low_dev1
www_in_high_dev2
www_in_low_dev2
www_in_high_anomaly
www_in_low_anomaly
www_in_high_ldt
www_in_low_ldt
www_out_high_microanomaly
www_out_low_microanomaly
www_out_high_dev1
www_out_low_dev1
www_out_high_dev2
www_out_low_dev2
www_out_high_anomaly
www_out_low_anomaly
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www_out_high_ldt
www_out_low_ldt
ftp_in_high_microanomaly
ftp_in_low_microanomaly
ftp_in_high_dev1
ftp_in_low_dev1
ftp_in_high_dev2
ftp_in_low_dev2
ftp_in_high_anomaly
ftp_in_low_anomaly
ftp_in_high_ldt
ftp_in_low_ldt
ftp_out_high_microanomaly
ftp_out_low_microanomaly
ftp_out_high_dev1
ftp_out_low_dev1
ftp_out_high_dev2
ftp_out_low_dev2
ftp_out_high_anomaly
ftp_out_low_anomaly
ftp_out_high_ldt
ftp_out_low_ldt
ssh_in_high_microanomaly
ssh_in_low_microanomaly
ssh_in_high_dev1
ssh_in_low_dev1
ssh_in_high_dev2
ssh_in_low_dev2
ssh_in_high_anomaly
ssh_in_low_anomaly
ssh_in_high_ldt
ssh_in_low_ldt
ssh_out_high_microanomaly
ssh_out_low_microanomaly
ssh_out_high_dev1
ssh_out_low_dev1
ssh_out_high_dev2
ssh_out_low_dev2
ssh_out_high_anomaly
ssh_out_low_anomaly
ssh_out_high_ldt
ssh_out_low_ldt
wwws_in_high_microanomaly
wwws_in_low_microanomaly
wwws_in_high_dev1
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wwws_in_low_dev1
wwws_in_high_dev2
wwws_in_low_dev2
wwws_in_high_anomaly
wwws_in_low_anomaly
wwws_in_high_ldt
wwws_in_low_ldt
wwws_out_high_microanomaly
wwws_out_low_microanomaly
wwws_out_high_dev1
wwws_out_low_dev1
wwws_out_high_dev2
wwws_out_low_dev2
wwws_out_high_anomaly
wwws_out_low_anomaly
wwws_out_high_ldt
wwws_out_low_ldt
icmp_in_high_microanomaly
icmp_in_low_microanomaly
icmp_in_high_dev1
icmp_in_low_dev1
icmp_in_high_dev2
icmp_in_low_dev2
icmp_in_high_anomaly
icmp_in_low_anomaly
icmp_in_high_ldt
icmp_in_low_ldt
icmp_out_high_microanomaly
icmp_out_low_microanomaly
icmp_out_high_dev1
icmp_out_low_dev1
icmp_out_high_dev2
icmp_out_low_dev2
icmp_out_high_anomaly
icmp_out_low_anomaly
icmp_out_high_ldt
icmp_out_low_ldt
udp_in_high_microanomaly
udp_in_low_microanomaly
udp_in_high_dev1
udp_in_low_dev1
udp_in_high_dev2
udp_in_low_dev2
udp_in_high_anomaly
udp_in_low_anomaly
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udp_in_high_ldt
udp_in_low_ldt
udp_out_high_microanomaly
udp_out_low_microanomaly
udp_out_high_dev1
udp_out_low_dev1
udp_out_high_dev2
udp_out_low_dev2
udp_out_high_anomaly
udp_out_low_anomaly
udp_out_high_ldt
udp_out_low_ldt
dns_in_high_microanomaly
dns_in_low_microanomaly
dns_in_high_dev1
dns_in_low_dev1
dns_in_high_dev2
dns_in_low_dev2
dns_in_high_anomaly
dns_in_low_anomaly
dns_in_high_ldt
dns_in_low_ldt
dns_out_high_microanomaly
dns_out_low_microanomaly
dns_out_high_dev1
dns_out_low_dev1
dns_out_high_dev2
dns_out_low_dev2
dns_out_high_anomaly
dns_out_low_anomaly
dns_out_high_ldt
dns_out_low_ldt
tcpsyn_in_high_microanomaly
tcpsyn_in_low_microanomaly
tcpsyn_in_high_dev1
tcpsyn_in_low_dev1
tcpsyn_in_high_dev2
tcpsyn_in_low_dev2
tcpsyn_in_high_anomaly
tcpsyn_in_low_anomaly
tcpsyn_in_high_ldt
tcpsyn_in_low_ldt
tcpsyn_out_high_microanomaly
tcpsyn_out_low_microanomaly
tcpsyn_out_high_dev1
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tcpsyn_out_low_dev1
tcpsyn_out_high_dev2
tcpsyn_out_low_dev2
tcpsyn_out_high_anomaly
tcpsyn_out_low_anomaly
tcpsyn_out_high_ldt
tcpsyn_out_low_ldt
tcpack_in_high_microanomaly
tcpack_in_low_microanomaly
tcpack_in_high_dev1
tcpack_in_low_dev1
tcpack_in_high_dev2
tcpack_in_low_dev2
tcpack_in_high_anomaly
tcpack_in_low_anomaly
tcpack_in_high_ldt
tcpack_in_low_ldt
tcpack_out_high_microanomaly
tcpack_out_low_microanomaly
tcpack_out_high_dev1
tcpack_out_low_dev1
tcpack_out_high_dev2
tcpack_out_low_dev2
tcpack_out_high_anomaly
tcpack_out_low_anomaly
tcpack_out_high_ldt
tcpack_out_low_ldt
tcpfin_in_high_microanomaly
tcpfin_in_low_microanomaly
tcpfin_in_high_dev1
tcpfin_in_low_dev1
tcpfin_in_high_dev2
tcpfin_in_low_dev2
tcpfin_in_high_anomaly
tcpfin_in_low_anomaly
tcpfin_in_high_ldt
tcpfin_in_low_ldt
tcpfin_out_high_microanomaly
tcpfin_out_low_microanomaly
tcpfin_out_high_dev1
tcpfin_out_low_dev1
tcpfin_out_high_dev2
tcpfin_out_low_dev2
tcpfin_out_high_anomaly
tcpfin_out_low_anomaly
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tcpfin_out_high_ldt
tcpfin_out_low_ldt
tcpmisc_in_high_microanomaly
tcpmisc_in_low_microanomaly
tcpmisc_in_high_dev1
tcpmisc_in_low_dev1
tcpmisc_in_high_dev2
tcpmisc_in_low_dev2
tcpmisc_in_high_anomaly
tcpmisc_in_low_anomaly
tcpmisc_in_high_ldt
tcpmisc_in_low_ldt
tcpmisc_out_high_microanomaly
tcpmisc_out_low_microanomaly
tcpmisc_out_high_dev1
tcpmisc_out_low_dev1
tcpmisc_out_high_dev2
tcpmisc_out_low_dev2
tcpmisc_out_high_anomaly
tcpmisc_out_low_anomaly
tcpmisc_out_high_ldt
tcpmisc_out_low_ldt
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Appendix D

Graphical view of Results from
Protege

Figure D.1: Consistency check shows whether there is any inconsistent class.
This is done by the reasoner.
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Figure D.2: Classify taxonomy results to inferred hierarchy. This is done by
the reasoner. Note the similarity of asserted and inferred hierarchies.
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Appendix E

RDF/XML

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY p1 "http://www.owl-ontologies.com/assert.owl#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1178099806.owl#"
xml:base="http://www.owl-ontologies.com/Ontology1178099806.owl"
xmlns:p1="http://www.owl-ontologies.com/assert.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#">
<owl:Ontology rdf:about=""/>
<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection"/>
</owl:AllDifferent>
<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection"/>
</owl:AllDifferent>
<owl:Class rdf:ID="anomaly">

<rdfs:subClassOf rdf:resource="#TwoDTS"/>
<owl:disjointWith rdf:resource="#dev2"/>
<owl:disjointWith rdf:resource="#dev1"/>
<owl:disjointWith rdf:resource="#microanomaly"/>

</owl:Class>
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<owl:Class rdf:ID="cfengine_in">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isOwnedBy"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Process"/>
<owl:Class rdf:about="#Users"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#www_out"/>

</owl:Class>
<owl:Class rdf:ID="cfengine_out">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasInfluence"/>
<owl:someValuesFrom rdf:resource="#rootprocs"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#www_in"/>
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<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>

</owl:Class>
<owl:Class rdf:ID="Client">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasOutConn"/>
<owl:someValuesFrom rdf:resource="#Service"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPart"/>
<owl:someValuesFrom rdf:resource="#Diskfree"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPart"/>
<owl:someValuesFrom rdf:resource="#Loadavg"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasProcess"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#otherprocs"/>
<owl:Class rdf:about="#rootprocs"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Host"/>
<owl:disjointWith rdf:resource="#Server"/>

</owl:Class>
<Server rdf:ID="Cube"/>
<owl:Class rdf:ID="DateTime">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>
<rdfs:subClassOf>
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<owl:Restriction>
<owl:onProperty rdf:resource="#isPartOf"/>
<owl:someValuesFrom rdf:resource="#Event"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Event"/>
<owl:disjointWith rdf:resource="#Host"/>
<owl:disjointWith rdf:resource="#Test"/>
<owl:disjointWith rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Level"/>

</owl:Class>
<owl:Class rdf:ID="DayOfWeek">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Week"/>
<owl:disjointWith rdf:resource="#Year"/>
<owl:disjointWith rdf:resource="#Month"/>
<owl:disjointWith rdf:resource="#Minute"/>
<owl:disjointWith rdf:resource="#Hour"/>
<owl:disjointWith rdf:resource="#Second"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="dependsOn"/>
<owl:Class rdf:ID="dev1">

<rdfs:subClassOf rdf:resource="#TwoDTS"/>
<owl:disjointWith rdf:resource="#dev2"/>
<owl:disjointWith rdf:resource="#anomaly"/>
<owl:disjointWith rdf:resource="#microanomaly"/>

</owl:Class>
<owl:Class rdf:ID="dev2">

<rdfs:subClassOf rdf:resource="#TwoDTS"/>
<owl:disjointWith rdf:resource="#dev1"/>
<owl:disjointWith rdf:resource="#anomaly"/>
<owl:disjointWith rdf:resource="#microanomaly"/>

</owl:Class>
<owl:Class rdf:ID="Diskfree">

<rdfs:subClassOf rdf:resource="#Variable"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isInfluencedBy"/>
<owl:someValuesFrom rdf:resource="#smtp_in"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Users"/>
<owl:disjointWith rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#Protocol"/>
<owl:disjointWith rdf:resource="#Process"/>
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<owl:disjointWith rdf:resource="#Loadavg"/>
</owl:Class>
<owl:Class rdf:ID="dns_in">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasProtocol"/>
<owl:someValuesFrom rdf:resource="#udp"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>

</owl:Class>
<owl:Class rdf:ID="dns_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasProtocol"/>
<owl:someValuesFrom rdf:resource="#udp"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
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<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>

</owl:Class>
<owl:Class rdf:ID="Event">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPart"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Host"/>
<owl:Class rdf:about="#Level"/>
<owl:Class rdf:about="#Test"/>
<owl:Class rdf:about="#Variable"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPart"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Host"/>
<owl:Class rdf:about="#Level"/>
<owl:Class rdf:about="#Test"/>
<owl:Class rdf:about="#Variable"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
<owl:disjointWith rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Test"/>
<owl:disjointWith rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Level"/>

</owl:Class>
<owl:Class rdf:ID="Friday">

<rdfs:subClassOf rdf:resource="#Weekdays"/>
<owl:disjointWith rdf:resource="#Thursday"/>
<owl:disjointWith rdf:resource="#Wednesday"/>
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<owl:disjointWith rdf:resource="#Tuesday"/>
<owl:disjointWith rdf:resource="#Monday"/>

</owl:Class>
<owl:Class rdf:ID="ftp_in">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>

</owl:Class>
<owl:Class rdf:ID="ftp_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="hasAnomalyLevel"/>
<owl:ObjectProperty rdf:ID="hasDirection"/>
<owl:ObjectProperty rdf:ID="hasFlag"/>
<owl:ObjectProperty rdf:ID="hasInConn">

<owl:inverseOf rdf:resource="#hasOutConn"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasInfluence">

<owl:inverseOf rdf:resource="#isInfluencedBy"/>
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</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasLevel">

<owl:inverseOf rdf:resource="#isLevelOf"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasOutConn">

<owl:inverseOf rdf:resource="#hasInConn"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasOwner">

<owl:inverseOf rdf:resource="#isOwnedBy"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasPart">

<owl:inverseOf rdf:resource="#isPartOf"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasPort">

<owl:inverseOf rdf:resource="#isPortOf"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasPortNumber">

<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="hasProcess"/>
<owl:ObjectProperty rdf:ID="hasProtocol"/>
<owl:ObjectProperty rdf:ID="hasService">

<owl:inverseOf rdf:resource="#isServiceOf"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasTest"/>
<owl:ObjectProperty rdf:ID="hasVariable">

<owl:inverseOf rdf:resource="#isVariableOf"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="high">

<rdfs:subClassOf rdf:resource="#Level"/>
<owl:disjointWith rdf:resource="#low"/>

</owl:Class>
<owl:Class rdf:ID="Host">

<owl:disjointWith rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Level"/>
<owl:disjointWith rdf:resource="#Test"/>

</owl:Class>
<owl:Class rdf:ID="Hour">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Week"/>
<owl:disjointWith rdf:resource="#Year"/>
<owl:disjointWith rdf:resource="#Month"/>
<owl:disjointWith rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Minute"/>
<owl:disjointWith rdf:resource="#Second"/>
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</owl:Class>
<owl:Class rdf:ID="icmp">

<rdfs:subClassOf rdf:resource="#Protocol"/>
<owl:disjointWith rdf:resource="#udp"/>
<owl:disjointWith rdf:resource="#tcp"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="isInfluencedBy">

<owl:inverseOf rdf:resource="#hasInfluence"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isLevelOf">

<owl:inverseOf rdf:resource="#hasLevel"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isOwnedBy">

<owl:inverseOf rdf:resource="#hasOwner"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isPartOf">

<owl:inverseOf rdf:resource="#hasPart"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isPortOf">

<owl:inverseOf rdf:resource="#hasPort"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isServiceOf">

<owl:inverseOf rdf:resource="#hasService"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="isVariableOf">

<owl:inverseOf rdf:resource="#hasVariable"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="LDT">

<rdfs:subClassOf rdf:resource="#Test"/>
<owl:disjointWith rdf:resource="#TwoDTS"/>

</owl:Class>
<owl:Class rdf:ID="Level">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isPartOf"/>
<owl:someValuesFrom rdf:resource="#Event"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Event"/>
<owl:disjointWith rdf:resource="#Test"/>
<owl:disjointWith rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Host"/>

</owl:Class>
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<owl:Class rdf:ID="Loadavg">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="#isInfluencedBy"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#nfsd_in"/>
<owl:Class rdf:about="#otherprocs"/>
<owl:Class rdf:about="#rootprocs"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Users"/>
<owl:disjointWith rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#Protocol"/>
<owl:disjointWith rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#Diskfree"/>

</owl:Class>
<owl:Class rdf:ID="low">

<rdfs:subClassOf rdf:resource="#Level"/>
<owl:disjointWith rdf:resource="#high"/>

</owl:Class>
<owl:Class rdf:ID="microanomaly">

<rdfs:subClassOf rdf:resource="#TwoDTS"/>
<owl:disjointWith rdf:resource="#dev2"/>
<owl:disjointWith rdf:resource="#dev1"/>
<owl:disjointWith rdf:resource="#anomaly"/>

</owl:Class>
<owl:Class rdf:ID="Minute">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Week"/>
<owl:disjointWith rdf:resource="#Year"/>
<owl:disjointWith rdf:resource="#Month"/>
<owl:disjointWith rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Hour"/>
<owl:disjointWith rdf:resource="#Second"/>

</owl:Class>
<owl:Class rdf:ID="Monday">

<rdfs:subClassOf rdf:resource="#Weekdays"/>
<owl:disjointWith rdf:resource="#Friday"/>
<owl:disjointWith rdf:resource="#Thursday"/>
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<owl:disjointWith rdf:resource="#Wednesday"/>
<owl:disjointWith rdf:resource="#Tuesday"/>

</owl:Class>
<owl:Class rdf:ID="Month">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Week"/>
<owl:disjointWith rdf:resource="#Year"/>
<owl:disjointWith rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Minute"/>
<owl:disjointWith rdf:resource="#Hour"/>
<owl:disjointWith rdf:resource="#Second"/>

</owl:Class>
<Server rdf:ID="Nexus"/>
<owl:Class rdf:ID="nfsd_in">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasInfluence"/>
<owl:someValuesFrom rdf:resource="#Loadavg"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>

</owl:Class>
<owl:Class rdf:ID="nfsd_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
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<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>

</owl:Class>
<owl:Class rdf:ID="nsfd_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#ftp_in"/>

</owl:Class>
<owl:Class rdf:ID="otherprocs">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasInfluence"/>
<owl:someValuesFrom rdf:resource="#Loadavg"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#isInfluencedBy"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#ftp_out"/>
<owl:Class rdf:about="#nsfd_out"/>
<owl:Class rdf:about="#smtp_out"/>
<owl:Class rdf:about="#ssh_out"/>
<owl:Class rdf:about="#www_out"/>

</owl:unionOf>
</owl:Class>
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</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#isInfluencedBy"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#ftp_in"/>
<owl:Class rdf:about="#smtp_in"/>
<owl:Class rdf:about="#ssh_in"/>
<owl:Class rdf:about="#Users"/>
<owl:Class rdf:about="#www_in"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#rootprocs"/>

</owl:Class>
<owl:Class rdf:ID="Process">

<rdfs:subClassOf rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Users"/>
<owl:disjointWith rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#Protocol"/>
<owl:disjointWith rdf:resource="#Loadavg"/>
<owl:disjointWith rdf:resource="#Diskfree"/>

</owl:Class>
<owl:Class rdf:ID="Protocol">

<owl:equivalentClass>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPart"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#icmp"/>
<owl:Class rdf:about="#tcp"/>
<owl:Class rdf:about="#udp"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

</owl:equivalentClass>
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<rdfs:subClassOf rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Users"/>
<owl:disjointWith rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#Loadavg"/>
<owl:disjointWith rdf:resource="#Diskfree"/>

</owl:Class>
<Client rdf:ID="Rex"/>
<owl:Class rdf:ID="rootprocs">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasInfluence"/>
<owl:someValuesFrom rdf:resource="#Loadavg"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#isInfluencedBy"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#cfengine_out"/>
<owl:Class rdf:about="#smtp_in"/>
<owl:Class rdf:about="#ssh_in"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#otherprocs"/>

</owl:Class>
<owl:Class rdf:ID="Saturday">

<rdfs:subClassOf rdf:resource="#Weekends"/>
<owl:disjointWith rdf:resource="#Sunday"/>

</owl:Class>
<Client rdf:ID="Satyagraha"/>
<owl:Class rdf:ID="Second">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Week"/>
<owl:disjointWith rdf:resource="#Year"/>
<owl:disjointWith rdf:resource="#Month"/>
<owl:disjointWith rdf:resource="#DayOfWeek"/>
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<owl:disjointWith rdf:resource="#Minute"/>
<owl:disjointWith rdf:resource="#Hour"/>

</owl:Class>
<owl:Class rdf:ID="Server">

<rdfs:subClassOf rdf:resource="#Host"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasPart"/>
<owl:someValuesFrom rdf:resource="#Loadavg"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasPart"/>
<owl:someValuesFrom rdf:resource="#Diskfree"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasProcess"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#otherprocs"/>
<owl:Class rdf:about="#rootprocs"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasInConn"/>
<owl:someValuesFrom rdf:resource="#Service"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Client"/>

</owl:Class>
<owl:Class rdf:ID="Service">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasAnomalyLevel"/>
<owl:someValuesFrom>
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<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#anomaly"/>
<owl:Class rdf:about="#dev1"/>
<owl:Class rdf:about="#dev2"/>
<owl:Class rdf:about="#microanomaly"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasFlag"/>
<owl:someValuesFrom rdf:resource="#tcpFlags"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasProcess"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#otherprocs"/>
<owl:Class rdf:about="#rootprocs"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#isServiceOf"/>
<owl:someValuesFrom rdf:resource="#Users"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Loadavg"/>
<owl:disjointWith rdf:resource="#Users"/>
<owl:disjointWith rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#Diskfree"/>
<owl:disjointWith rdf:resource="#Protocol"/>

</owl:Class>
<owl:Class rdf:ID="smtp_in">

<rdfs:subClassOf rdf:resource="#Service"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasInfluence"/>
<owl:someValuesFrom rdf:resource="#rootprocs"/>
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</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#www_in"/>

</owl:Class>
<owl:Class rdf:ID="smtp_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>

</owl:Class>
<owl:Class rdf:ID="ssh_in">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
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<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>

</owl:Class>
<owl:Class rdf:ID="ssh_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#www_in"/>

</owl:Class>
<owl:Class rdf:ID="Sunday">

<rdfs:subClassOf rdf:resource="#Weekends"/>
<owl:disjointWith rdf:resource="#Saturday"/>

</owl:Class>
<owl:Class rdf:ID="tcp">

<owl:equivalentClass>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasFlag"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#tcpack"/>
<owl:Class rdf:about="#tcpfin"/>
<owl:Class rdf:about="#tcpmisc"/>
<owl:Class rdf:about="#tcpsyn"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Protocol"/>
<owl:disjointWith rdf:resource="#icmp"/>
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<owl:disjointWith rdf:resource="#udp"/>
</owl:Class>
<owl:Class rdf:ID="tcpack">

<rdfs:subClassOf rdf:resource="#tcpFlags"/>
<owl:disjointWith rdf:resource="#tcpsyn"/>
<owl:disjointWith rdf:resource="#tcpfin"/>
<owl:disjointWith rdf:resource="#tcpmisc"/>

</owl:Class>
<owl:Class rdf:ID="tcpfin">

<rdfs:subClassOf rdf:resource="#tcpFlags"/>
<owl:disjointWith rdf:resource="#tcpsyn"/>
<owl:disjointWith rdf:resource="#tcpack"/>
<owl:disjointWith rdf:resource="#tcpmisc"/>

</owl:Class>
<owl:Class rdf:ID="tcpFlags">

<rdfs:subClassOf rdf:resource="#tcp"/>
</owl:Class>
<owl:Class rdf:ID="tcpmisc">

<rdfs:subClassOf rdf:resource="#tcpFlags"/>
<owl:disjointWith rdf:resource="#tcpsyn"/>
<owl:disjointWith rdf:resource="#tcpfin"/>
<owl:disjointWith rdf:resource="#tcpack"/>

</owl:Class>
<owl:Class rdf:ID="tcpsyn">

<rdfs:subClassOf rdf:resource="#tcpFlags"/>
<owl:disjointWith rdf:resource="#tcpfin"/>
<owl:disjointWith rdf:resource="#tcpack"/>
<owl:disjointWith rdf:resource="#tcpmisc"/>

</owl:Class>
<owl:Class rdf:ID="Test">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isPartOf"/>
<owl:someValuesFrom rdf:resource="#Event"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Event"/>
<owl:disjointWith rdf:resource="#Level"/>
<owl:disjointWith rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Host"/>

</owl:Class>
<owl:Class rdf:ID="Thursday">

<rdfs:subClassOf rdf:resource="#Weekdays"/>
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<owl:disjointWith rdf:resource="#Friday"/>
<owl:disjointWith rdf:resource="#Wednesday"/>
<owl:disjointWith rdf:resource="#Tuesday"/>
<owl:disjointWith rdf:resource="#Monday"/>

</owl:Class>
<owl:Class rdf:ID="Tuesday">

<rdfs:subClassOf rdf:resource="#Weekdays"/>
<owl:disjointWith rdf:resource="#Friday"/>
<owl:disjointWith rdf:resource="#Thursday"/>
<owl:disjointWith rdf:resource="#Wednesday"/>
<owl:disjointWith rdf:resource="#Monday"/>

</owl:Class>
<owl:Class rdf:ID="TwoDTS">

<rdfs:subClassOf rdf:resource="#Test"/>
<owl:disjointWith rdf:resource="#LDT"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="TwoDTSType"/>
<owl:Class rdf:ID="udp">

<rdfs:subClassOf rdf:resource="#Protocol"/>
<owl:disjointWith rdf:resource="#icmp"/>
<owl:disjointWith rdf:resource="#tcp"/>

</owl:Class>
<owl:Class rdf:ID="Users">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasInfluence"/>
<owl:someValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#cfengine_out"/>
<owl:Class rdf:about="#dns_out"/>
<owl:Class rdf:about="#ftp_out"/>
<owl:Class rdf:about="#nfsd_out"/>
<owl:Class rdf:about="#otherprocs"/>
<owl:Class rdf:about="#smtp_out"/>
<owl:Class rdf:about="#ssh_out"/>
<owl:Class rdf:about="#www_out"/>

</owl:unionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#isOwnedBy"/>
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<owl:allValuesFrom rdf:resource="#Client"/>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#isOwnedBy"/>
<owl:allValuesFrom rdf:resource="#Server"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="#Variable"/>
<owl:disjointWith rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#Diskfree"/>
<owl:disjointWith rdf:resource="#Loadavg"/>
<owl:disjointWith rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#Protocol"/>

</owl:Class>
<owl:Class rdf:ID="Variable">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource="#hasLevel"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#high"/>
<owl:Class rdf:about="#low"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#TwoDTSType"/>
<owl:allValuesFrom>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#anomaly"/>
<owl:Class rdf:about="#dev1"/>
<owl:Class rdf:about="#dev2"/>
<owl:Class rdf:about="#microanomaly"/>

</owl:unionOf>
</owl:Class>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
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</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="&owl;Thing"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isPartOf"/>
<owl:someValuesFrom rdf:resource="#Event"/>

</owl:Restriction>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Level"/>
<owl:disjointWith rdf:resource="#Test"/>
<owl:disjointWith rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Event"/>

</owl:Class>
<owl:Class rdf:ID="Wednesday">

<rdfs:subClassOf rdf:resource="#Weekdays"/>
<owl:disjointWith rdf:resource="#Friday"/>
<owl:disjointWith rdf:resource="#Thursday"/>
<owl:disjointWith rdf:resource="#Tuesday"/>
<owl:disjointWith rdf:resource="#Monday"/>

</owl:Class>
<owl:Class rdf:ID="Week">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Year"/>
<owl:disjointWith rdf:resource="#Month"/>
<owl:disjointWith rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Minute"/>
<owl:disjointWith rdf:resource="#Hour"/>
<owl:disjointWith rdf:resource="#Second"/>

</owl:Class>
<owl:Class rdf:ID="Weekdays">

<rdfs:subClassOf rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Weekends"/>

</owl:Class>
<owl:Class rdf:ID="Weekends">

<rdfs:subClassOf rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Weekdays"/>

</owl:Class>
<owl:Class rdf:ID="www_in">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
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<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#www_out"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>

</owl:Class>
<owl:Class rdf:ID="www_out">

<rdfs:subClassOf rdf:resource="#Service"/>
<owl:disjointWith rdf:resource="#smtp_in"/>
<owl:disjointWith rdf:resource="#ssh_in"/>
<owl:disjointWith rdf:resource="#dns_in"/>
<owl:disjointWith rdf:resource="#ssh_out"/>
<owl:disjointWith rdf:resource="#cfengine_out"/>
<owl:disjointWith rdf:resource="#cfengine_in"/>
<owl:disjointWith rdf:resource="#nfsd_in"/>
<owl:disjointWith rdf:resource="#ftp_out"/>
<owl:disjointWith rdf:resource="#ftp_in"/>
<owl:disjointWith rdf:resource="#smtp_out"/>
<owl:disjointWith rdf:resource="#dns_out"/>
<owl:disjointWith rdf:resource="#www_in"/>
<owl:disjointWith rdf:resource="#nsfd_out"/>
<owl:disjointWith rdf:resource="#nfsd_out"/>

</owl:Class>
<owl:Class rdf:ID="Year">

<rdfs:subClassOf rdf:resource="#DateTime"/>
<owl:disjointWith rdf:resource="#Week"/>
<owl:disjointWith rdf:resource="#Month"/>
<owl:disjointWith rdf:resource="#DayOfWeek"/>
<owl:disjointWith rdf:resource="#Minute"/>
<owl:disjointWith rdf:resource="#Hour"/>
<owl:disjointWith rdf:resource="#Second"/>

</owl:Class>
</rdf:RDF>

E.0.1
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