UNIVERSITY OF OSLO
Department of Informatics

Evaluation of
Different SAN
Technologies for
Virtual Machine
Hosting

Oslo University College

Master thesis

Christian Lunden

May 18, 2009

https://core.ac.uk/display/35072989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluation of different SAN technologies
for Virtual machine hosting

Christian Lunden

2009-18-05

Abstract

This thesis covers a problem which companies faces every day: Finding a Storage Area
Network(SAN) solution that tackles the rising demands from users and their software and when
working with virtualization environments. In this paper it will be showed a way to investigate
and identify, from a selection of SAN technologies, which is the most efficient and optimal based
on scenarios that fits real life experiences. The approach taken was to create an experimental
setup in a controlled environment that fits real life experience. The benchmark tool bonnie++
was used to simulate activity and interpreted by an analysis script tool developed by the author.
Distributed Replicated Block Device(DRBD), Network File System(NFS), Parallel Virtual File
System(PVEFS), Internet SCSI(ISCSI) and ATA over Ethernet(AoE) are the SAN technologies
which will be evaluated and discussed. The optimal SAN technologies will be chosen based on
a certain criterias such as raw performance and stability.

Acknowledgements

I would first of all like to thank my supervisor Kyrre M. Begnum without whom I would never
made it this far. Thanks for all the support and motivational talks we have had from the start
to the finish line. My thanks also to the system administrator at ABC Startsiden Ingard Mevag
and his crew for providing me with equipment and a good working environment. My family
has been very important to me during this process. Especially my mom with her love and care
during these past few months and dad with his words of wisdom and for always managing to get
me back on my feet when I hit the wall as in a figure of speech. I would also like to extend my
gratitude to Professor Mark for providing us with this Master course, giving me the opportunity
to work with technology I love and challenges that I will face in a working environment, so that
I will be prepared. Finally, I want to thank my classmates for two years of companionship that
has given me many good memories that will last a lifetime.

Contents

1 Introduction

1.1
1.2
1.3

1.4

Motivation Lo L
Problem Statement Lo oo
Approach
1.3.1 Surveyo
1.3.2 Comparative study L
Thesis Outline

2 Background

2.1

2.2

2.3
2.4

2.5

2.6

2.7

3.1

3.2

3.3
3.4

Storage Area Network technologies
2.1.1 Network-attached storage
2.1.2 Network File System
2.1.3 NAS vs SAN e
ISCST . e
2.2.1 Architecture

2.4.1 Architecture
ATA over Ethernet
2.5.1 Architecture
Virtualization e
2.6.1 Virtualization and networked storage L.
2.6.2 Xen ... e e
2.6.3 Factors that could affect performance
bonnie++ e

Methodology

Analysis Tool e
3.1.1 Input
3.1.2 Usage o e e e
Experimental Setupo
3.21 Basetests
3.2.2 mnon-Basetests
Output e
Analysis L

11
11
12
12
12
12
13

15
15
15
16
16
16
16
17
18
19
19
19
20
20
21
22
22

4 Results
4.1 Explanation of output in tables oo oo
4.2 Keeper basetest e
4.3 Nexus basetest e
4.4 Nexus withone VM
4.5 Iscsi basetest
4.6 Iscsi3of3 test e
4.7 NFS basetest e
4.8 NFS 3of3 test
4.9 DRBD basetest
4.10 DRBD 3of3 test
411 SUMMATY . . o v v o e e e e e e e e e e e e e e

5 Discussion
5.0.1 The Process e
5.0.2 The Results

6 Conclusion
Appendices

A Selected bonnie++ output files

31
31
31
35
39
42
46
50
54
58
61
64

71
71
72

75

79

81

List of Figures

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

Figure of the labsetup Lo o 27
experimental setup Lo 28
keeper put block 34
keeper get block L 34
keeper seeks Lo 35
Nexus novm putblock 37
Nexus novm getblock oo 37
Nexus novm seeks e 37
Nexus onevm put block 41
nexus onevim get block L oo oo 41
iscsi putblock L 44
iscsi getblocko 44
iscsi seeks .. o. oL oL 45
iscsi 3of3 putbl 48
iscsi 3of3 getblock L Lo 48
iscsi 3of3 seeks . .. L L 49
NFS base putblock 52
NFS base getblock L 52
NES base seeks 53
NFS 30f3 putblock 56
NFS 30f3 getblock 56
NFS 3of3 seeks o L 57
DRBD basetest putblock 59
DRBD basetest getblock L oo 60
DRBD basetest seeks 60
DRBD 30f3 putblock 63
DRBD 30f3 getblock 63
DRBD 30f3 seekso 63
Performance Summary Mean o 65
Performance Summary Range 66
Performance Summary Mean 3VMs L oL 67
Performance Summary Range 3VMso oL 68

List of Tables

4.1 Table of keeper basetest Lo o 32
4.2 Table of nexus basetest 35
4.3 Table from Nexusonevim e 39
4.4 Table of iscsi basetest 42
4.5 Table ofiscsi 3of3 test 46
4.6 Table of NFS basetest e 50
4.7 Table of NFS 3of3 test 54
4.8 Table of DRBD basetest 58
4.9 Table of DRBD 30f3 test 61
4.10 Table of Summary Results Mean Basetest 64
4.11 Table of Summary Results Range Basetest 65
4.12 Table of Summary Results Mean 3 VMs test 67
4.13 Table of Summary Results Range 3 VMs test 68

10

Chapter 1

Introduction

1.1 Motivation

Companies today need storage possibilities like Storage Area Network(SAN). There is a rising
demands from stakeholders in major corporations to smaller businesses that have both system
administrators and a large network of employees/clients. This technology adds some degree of
certainty of their work not being lost when computers crash due to hardware or software failure,
and for system administrators to gain a better way of handling backup situations.

Finding one SAN solution that is the best in correspondence to the setup of the company is
not easy. Obstacles like what type of operating system they are using, how much money they
would like to invest and how the technology they are interested in, fits in with the other type
of software they are using.

There is a large variety of SAN technologies to choose from in the market today. This is a
many-to-many problem which will require testing to figure out what type of SAN that is needed.
Setup of the companies computer system would respond differently for each of the technologies
we can choose from.

A common way of testing out whether the SAN technology is a good pick for the system
of a company is to combine SAN with Virtualization. This way we can perform some stress
testing and find out its strengths and weaknesses. Several scenarios should be made since the
technology itself might respond differently depending on the setup of the system.

Companies needs their workplace to operate efficiently and have a secure way of backing up
so that there is a way to restore when important data is lost. Therefore, the descision on what
SAN that is suited for their systems, should be determined based on a number of dimensions.

In stress testing the SAN technology there are different terms that are important. Two fac-
tors that distinguishes themselves from the others are performance and stability. These factors
are fundamental for checking how well the SAN technology works.

The combination with SAN technology and Virtualization is a good way to use these kind
of pressures tests. Since we can scale up several clients which will take use of the SAN technol-
ogy. Moreover, adding this to valid scenarios could help in finding the best SAN solution for a
company.

11

1.2 Problem Statement

The following problem statement was chosen for this project after going through motivational
pointers and formulate it in such a way that it could be possible to find a solution.

How to investigate and identify a combination with SAN technologies and Virtualization that
is efficient and optimal?

Investigate and identify means here experimenting in an controlled environment and perform
analysis based on these results. SAN technologies Storage Area Network, a different set of
technologies used for storing and backing up files on a system. Virtualization - Enterprise level
software that is commonly known and used for setting up larger networking systems. Efficient
and optimal draws it meaning from a benchmarking point of view. From data gathered from
experiments that are analysed there should be possible to find whether the solution is better or
worse.[2]

1.3 Approach

There are several ways to approach the problem for this project. In this section we will look
at some of the most used ways to handle these kind of problems, and why this approach was
chosen for this problem.

1.3.1 Survey

Studying previous work done with SAN technology and benchmark testing could provide with
enough data to calculate some predicaments and conclude whether one of the SAN solutions is
better than the other. On the other hand this could give a wrong picture of actual performance
for the SAN since not all combinations would be analysed by each other.

1.3.2 Comparative study

This approach that requires cooperation with several companies to gain access to their pro-
duction environment. Furthermore, we need to be allowed to use their equipment in order to
perform measurements, so that there is possible to compare results. A problem might occur
with this approach since it can not be done in an controlled environment. Companies have
different set ups and hardware solutions. In terms of newer technology it would also be hard to
run and test them on the current system of the company. Since we will not be able to alter their
current configurations on the system and have no other option than to use what they already
have. Realistic speaking, time would be a problem for this type of approach, since it would
be problems visiting enough companies to conduct the project.Especially considering that they
should be within the boundaries of a controlled experiment.

The chosen approach is interesting for system administrators in view of newer technology,
reading about the results could also encourage them to test this technology at their own com-
pany. They could also be interested in the different scenarios that will be used in this approach
as well as the analysis in terms of saleability Since it will require a large number of clients to
give enough pressure on the technology itself to determine its performance.

12

1.4 Thesis Outline

This chapter contains the motivational pointers for this project and how the problem statement
got formulated. Chapter 2.1 explains in detail the different technologies used during this project,
the SAN technologies that are to be tested and the tools used for measuring and fully test them
out. The methodology of this project, what kind of experimental setup and lab equipment used
during this project is mentioned in chapter 3. Results will be displayed in chapter 4 with a brief
overview and fully explained descriptive statistics for the data that was measured. Chapter 5
will discuss these results and based on these discussions find out which technology that performs
better or worse which we will conclude in the last chapter.

13

14

Chapter 2

Background

The previous chapter contained the motivation and formulated the problem statement. Fur-
thermore, some different approaches were mentioned for giving solutions or answers to this
statement. In this chapter we will review the background literature for the different technolo-
gies used in this project and briefly describe different factors that could affect the results in the
end.

2.1 Storage Area Network technologies

Demands for storage solutions has increased in recent years. Companies used to have data on
servers that were connected to the Local Area Network(LAN) or Wide Area Network depend-
ing on the set-up of their system. On this server canalization of traffic such as data transfers
and backing up the data would take place. Today SANs have taken over as a solution.[9]SANs
create a pool of storage devices, where they are linked together, so that users can connect and
access the data directly over the network. In addition to reducing bandwidth load, it has better
storage management and more fault tolerance. Moreover, SANs have the ability to transmit
data at high speeds over great distance when used in combination with fibre channel technology.

However, there are complications integrating the fibre channel technology with hardware
technologies, which is often upgraded. Hence, there have been vendors working on ways to link
SAN technologies over Ethernet and other networking technologies. The solution vendors have
found has evolved SAN and made it possible for this technology to work together with other
protocols, and has become multi protocol capable. Furthermore, towards the simplification of
the SAN infrastructure, technologies that were competing with SAN for floor space can now
work together in a single machine.

2.1.1 Network-attached storage

Network-attached storage(NAS) is also a commonly used storage technology. The way this
technology works is that it is a computer connected to the network, with installed NAS soft-
ware on it. This unit can provide with file-based storage services for clients connected to the
network. A NAS storage contains an engine that implements file services which is possible when
using access protocols such as NFS or CIFS. When more hard disk storage space is needed on
a network that already utilize servers, NAS is allowed to add this without having to shut the
servers down for maintenance and upgrades.

15

NAS is not an integral part of the server, but a device that delivers data to the user while
the server handles all processing of data. This device does not need to be located within the
server but can be placed anywhere in the LAN. It is also possible to make them up of multiple
networked NAS devices. These units uses Ethernet and file-based protocols to communicate,
which differs from SANs use of Fibre Channel and block-based protocols for communicating.
This type of storage gives acceptable performance and security, and provides with less expenses
when being implemented to the servers because of the usage of Ethernet adapters instead of
Fibre Channel adapters. [7]

2.1.2 Network File System

The Network File System(NFS) is a technology that operates on a client to server level. It
is designed to let users(clients) view and optionally store and update files on a remote com-
puter. However, for allowing this the user needs to have an NF'S client and the remote computer
needs the NFS server. These applications allows for the NFS to work over the TCP /IP protocol.

Moreover, NFS server provides the possibility of organizing important files on a centralized
location, allowing authorized users continuous access. NFS has currently two versions that are
used. NFS version 2(NFSv2), which is supported by many operating systems and has been
around for several years. NFS version 3(NFSv3) is the second version. It has more features
than NFSv2 like including a variable file handle size and better error reporting.

2.1.3 NAS vs SAN

We have looked through two popular choices when it comes to storage technology. Both have
different strengths and weaknesses which makes none of them the ”"best” choice. Compared to
SAN, NAS provides with a storage and file system SAN, on the other hand, only provides with
storage technology and let the matter of the file system go to the clients side. Both work with
virtualization like Xen, because Xen can access the virtual machines disk either like a file or a
block device. Example below is a line from a Xen configuration file, where you can specify the
location of the image you want to use.

disk = [’file://home/christian/disk.img,hdal,w’]

2.2 iSCSI

Internet SCSI, or iSCSI has emerged as a protocol and looked upon as a solution for the
increased demands in the industry. Compared to Fibre Channel usage within SANs, iSCSI has
a few advantages that gives them a growth in the market.

2.2.1 Architecture

The iSCSI protocol has the ability to map over TCP/IP and enable access to TCP /IP networks
over Ethernet.[11] In the mapping process SCSI block oriented storage data will be transfered
which will enable the storage devices to work over Ethernet. There are many reasons for its
popularity, reduced cost and the possibility to achieve a uniformed network infrastructure when
deploying iSCSI protocol over a Gigabit Ethernet. This allows for the storage to be reached
over a larger area, since there is usually a physically restriction to a limited environment in a

16

traditional storage system like Fibre Channel for instance.

Another positive point is the availability of inexpensive software implementations of the
iSCSI protocol, which could allow use of compelling platforms in a iSCSI deployment. On the
other hand, the iSCSI-based storage is not without challenges. One of the main challenges that
faces iISCSI is the issues in the network traffic between an initiator and a target that are far apart
from each other[12]. An initiator serves the same purpose as a SCSI bus adapter would, except
instead of being physically attached it uses SCSI commands over the network. The target, on
the other hand, represents the location for the iSCSI server, where storage resources are made
available for the users. If compared to other existing technologies such as Fibre Channel, there
are improvements to be made in terms of efficiency and performance. Moreover, networking
technology between initiator and target can be diverse and heterogeneous. This could cause
changes so that packets suffers from long delay, loss and retransmission.

2.3 DRBD

DRBD which stands for Distributed Replicated Block Device is an implementation in form of
a Linux kernel module providing a two-node high availability(HA) cluster. It was developed by
Philipp Reisner and Lars Ellenberg and their team at LINBIT. The purpose of this technology
is to keep a high data availability up for a company which also includes when a system breaks
completely down. [6].

Architecture

As already mentioned DRBD works as an Linux kernel module. This technology provides a
block device driver for the kernel. For each of these cluster nodes, this driver will be in control
of a ”real” block device that holds a replication of the systems data. Operations concerning
read will be run locally while writing will be transmitted to the other nodes in the HA cluster.

The transport layer chosen for this technology is TCP, mostly because of it is available for
kernel modules. Furthermore, the choice of this layer was based on its solution to two basic
problems, the packet recording and the flow control. This has simplified the development, how-
ever, it has also brought limitations for the DRBD-based clusters to two-nodes.

Moreover, the design of the technology at its current state, allows for only one node to
modify the replicated storage. However, it is possible to change roles of the nodes but not data
at a concurrent rate on both of the nodes. There are two roles which is possible for each of the
nodes in this DRBD architecture, primary or secondary state.

Write access is only granted to applications in the primary state of a given device. This
only applies for one device in a connected device pair, if you try to apply it for both they will
break up the connection and form their independent degraded clusters. Assigning these roles
are usually managed by a cluster management software, Heartbeat and Failsafe.

#/etc/drbd.conf
global {
usage-count yes;

17

}
common {
protocol C;
}
resource r0 {
on atlantis {
device /dev/drbdi;
disk /dev/sdaT;
address 10.1.1.31:7789;
meta-disk internal;
+
on nexus {
device /dev/drbdil;
disk /dev/sda7;
address 10.1.1.32:7789;
meta-disk internal;

Explanation of the config file

DRBD uses the file drbd.conf to be configured and set up to work on your system. In the
first line we see a global section, this section contains a few option that are only allowed once.
However, it is only usage-count that is relevant for this project and most of the users of this
technology. This option, if enabled, allows for DRBD to contact a http-server of the DRBD
project which keeps various statistics of all the versions and will then also inform you of up-
dates. Furthermore, we have the common section, every configuration made in this section will
be inherited by all of the resources you set up. Although, it is not required but keeps the file
more systematic avoid repeating yourself. In the example above we see a line with protocol C,
which will be count for every resource including r0. This is also possible to change explicitly
for one resource if you wish it.

The resource section contains every DRBD resource you will use for your setup. It is possible
to name these resources what you want, however, it can not contain any characters other than
the ones we find in US-ASCII or whitespaces. Each of this resources will have a host sub-section,
where it will be needed to have two as seen on the example above, one for each cluster node.
Moreover, if you want to have a more detailed explanation of the configuration you can look in
[10] and find much more information.

2.4 Pvfs

Parallel Virtual File System(PVFS) is a parallel file system for Linux clusters. This technology
is intended to work as a high-performance parallel file system which everyone can download and
use. Especially in research concerning parallel Input/Output(I/O) and parallel file systems for
Linux clusters.

18

2.4.1 Architecture

Primary goal of the PVFS is to provide high-speed access to file data for parallel applications.
Furthermore, PVFS provides with features like user controlled striping of data across disks
on different I/O nodes, allowing existing data to operate on PVFS without recompiling and
consistent name space.

The PVFS design is a client-server system with multiple servers, which are called I/O dae-
mons. I/O daemons are on separate nodes in the cluster. These I/O nodes have disks attached
to them, which the PVFS files will be striped across over. Moreover, PVFS also has a man-
ager daemon which handles metadata operations like permissions in creating, open, close and
remove of files. The manager itself does not involve in read/write operations, the client and
I/O daemons handles all file operations. The different kind of operators such as the clients, I/O
daemons and manager do not have to be on separate machines. Although, it might prove to be
better in terms of performance to keep them apart.[8]

PVEFES has no kernel modifications or modules are needed to install or operate this system,
which makes it primarily a user-level implementation. Furthermore, PVFS uses TCP for the
communication that goes on internally, which makes it not dependent on any specific message-
passing library.

2.5 ATA over Ethernet

The ATA over Ethernet(AoE) is an open standard based protocol which allows for clients to
access disk drives directly over the network that are attached to a client host. This could either
be a web, mail or cluster server. This protocol has simple implementation that can make the
cost of AoE server to be very low.

2.5.1 Architecture

In this protocol there are two classes of messaging, ATA and Config/Query, which we will dis-
cuss a bit more in detail as well as the shared common header they have. The common header
works in such a way that it is possible to send messages between client hosts and AoFE servers.
It consists of four functions which we will mention now in order. First, it grants the possibility
to correlate responses with requests. Providing a way to to discover the Ethernet address of an
AoE server when it is placed in rack storage blades, is the second function. Third, is that the
common header can identify requests from responses. The last function of the common header
is that it contains error information.

The Advanced Technology Attachment(ATA) is a standard that evolved since the early
1980°s from both the ST506 interface and the Western Digital 1010 disk controller chip. These
chips had a set of registers which held the information of cylinder, track and sector. Fur-
thermore, there was a also a command register that used to initiate data transfers by writing
operational codes to it. A status and error register reported if it was a successful or unsuccessful
completion of the command. Todays ATA standard covers both the physical connections to the
drive and the logical interface. Its messages contain requests and responses which will perform
ATA transactions. In these transactions, there are three possibilities: no transfer of data, data
is being written to disk, or data is read from disk. This mechanism with ATA messages simply
exports ATA interface on AoE servers to the client hosts. For more detailed information on the
header of these messages you can read more in [4].

19

The Config/Query messages is the second class of AoE messages. There are two ways to set
the config data. One way is to set the config memory to a value only if the current config data
is zero length, which can be done by a set request. However, if the config memory already has
non-zero length data, the set request fails. Another option is to force the AoE server to set the
config memory. Config values intended for the data can be zero length, allowing the config data
to be reset. The contents in Query messages can be used to optionally match against the stored
config information. There are three different ways of querying for the data. First approach is
that the config data can be unconditionally read. Another way is that the config data can be
returned. Although, this is only possible if the query data matches the prefix of the config on
the AoE server. What is meant by this is that the query has a number of bytes, that is less than
or equal to the length of the data in the server. Furthermore, the number of bytes in the query
must match the bytes in server, so that the AoE server can respond with the complete config
information. Lastly, there is a query that requires an exact match of the stored information.
Both the data in the request and server must match in content and length. In broadcast queries
this is useful when one is looking for a specific AoE server.

2.6 Virtualization

Ever since the Virutalization was introduced in the 1960s on IBMs platforms the uses for this
technology has grown. The possibility to create an exact image of the contents of a operating
systems file system and then reproduce it up to as many times as you like, depending on the
hardware resources your machine have, showed great promise. Although, it was not before
powerful hardware and improvements to the Virtualization in terms of effectiveness was made
that the technology really made an impression. Larger companies started to look upon this
technology and its ability to save both cost and space. Furthermore, the copy and duplication
of VMs highlights another dimension, namely time. With this option the installation time could
be reduced considerable. The community have been encouraged by this and experimented forth
solutions which are open source.

Nowadays bigger and more challenging tasks is given for VMs and its abilities. An example is
the use of VMs at Hggskolen in Oslo, where system administration courses uses this technology
so that the students can have the chance to investigate solutions themselves on larger networks.
When studying about how networking and connecting larger Local Area Networks(LAN) to-
gether, it would be impossible for a school to provide with enough hardware for all the students
to fully experience this. Instead, one or two machines can run several VMs which could work as
a LAN and give enough challenges that could be found in a real life scenario. Another example
of the uses this technology have is the ability to move old legacy servers into virtual machines
and then put all of these servers on one machine. It saves time by avoiding the change of newer
hardware and installing from scratch. Process of this action is called P2V (physical to virtual)
which is performed by certain virtualiazation companies which has the tools for this kind of task.

2.6.1 Virtualization and networked storage

In addition to the growing usage of virtualization comes the need of other technologies. Espe-
cially, the possibility to store and backup sensitive data which can be done by SAN technologies.
Although, providing all the VMs with high performance and stability storage has been a chal-
lenge, the improvements have made VMs a more popular choice for companies. By studying
and performing more benchmark testing on this combination, VMs would be an obvious choice

20

in different scenarios as a service provider. Most important is the need to have a SAN or NAS
in for live migration of virtual machines to work. It is therefore that deploying a SAN or NAS
is very common as soon as the size of the total setup grows beyond a few servers.

2.6.2 Xen

Xen is an open source x86 virtual machine monitor(VMM) which grants the possibility for cre-
ating instances of operating systems(OS) running simultaneously on a single physical machine.

Architecture

In the beginning of Xen, the Linux Xen-aware kernel was called XenoLinux. It is not a name
that is used nowadays, instead we use the term as Xen-kernel or a xenified Linux kernel. Xen
platform supports several OS, especially GNU/Linux distributions that have packages for the
Xen hypervisor and built-in support in the kernel making it xenified. Other popular OS such
as NetBSD,FreeBSD and Windows XP have also been made supportive for Xen.

The Xen hypervisor handles the IO, memory and VM creation[3]. It is the underlying layer
that allows for resource virtualization and abstraction. A well known term within virtualization
is called Paravirtualization. Paravirtualization drives the VMM to expose a virtual machine
abstraction which is slightly different from the underlying hardware. The terminology that Xen
uses is domains. On top of the hypervisor where the main OS that is running also has the priv-
ileges to manage all of the other domain. This OS is referred to as domain0 or dom0 for short
while the other domains are referred to as domU or user domains. Furthermore, a hypercall
mechanism is exposed from Xen which VMs are forced to use for performing privileged opera-
tions. An event notification mechanism is also used so that it can deliver virtual interrupts and
other kinds of notifications to VMs. Lastly, there is an shared memory based device channel
that transfers I/O messages between the VMs.

The privileged domain (dom0) has additional software for basic virtual machine manipu-
lation. Providing an Application programming interface(API) to software tools like xm is the
xend daemon. Only administrators have access to dom0 for creating, modifying and destroying
domUs. These domUs can be configured as you see fit by writing a configuration file. This file
can describe location of the file system, amount of memory, how many network cards and what
type of network parameters. An example is shown below.

atlantis:/var/www# cat small_xen.cfg

—*- mode: python; —*-

kernel = "/boot/vmlinuz-2.6.18-6-xen-686"

ramdisk = "/boot/initrd.img-2.6.18-6-xen-686"
memory = 64

disk = [’file://home/christian/disk.img,hdal,w’]
root = ’/dev/hdal’

extra = 2’

name = ’first’

vif = [’bridge=ethl’]

21

In runtime there is possible to do alterations to the configuration of the VMs. Actions such
as increasing and decreasing memory, adding disks as well as pin down the virtual machine to
a specific CPU, are possible when it is running. When it comes to networking, Xen VMs can
connect to each other by using bridge devices on the physical server, this will either provide
isolated networks on the server or bridge the physical network.

2.6.3 Factors that could affect performance

Setting up and installing virtual machines is not without problems, there are several factors
that are to be considered. It is not only the virtual software itself that could provide with some
difficulties but the software as well as the hardware it builds upon. Furthermore, we will look
more into network bounding, the Linux kernel and memory, as some of the factors this project
that could affect performance and influence the outcome of the results.

Network bonding

Connectivity when it comes to virtual machines is predefined in configurations files. Unfortu-
nately, there is complications with configurations if there is network bonding present. Companies
and their system administrators use this technique to boost the performance and availability
of the servers by combining two or more Ethernet interfaces to work as one. Thus, causing
conflicts when configuring the right name for the interface since Xen does not discover network
bonding.

Linux kernel

The importance of choosing a kernel is crucial if you want to avoid a lot of patching which will
also involve a lot of configuring and re installations of the file system As we mentioned earlier,
Xen requires a xenified kernel to work as intended. However, this is more complicated than it
sounds. Although, over recent years of development most kernels have in-built Xen packages
with needed software to ”xenify” a kernel.

Memory

Memory effects the file system performance both physically and on a virtual based platform like
Xen. Especially, the virtual machines can decrease the performance ,if the memory is allocated
in such a way that they go out memory and start compensating by drawing memory from other
sources like other VMs. It is therefore important to allocate memory usage on each VM and
calculate how much it will need in order to get optimal performance when doing operations
with the file system. Moreover, the amount of physical memory as well as the specifications of
it has great effect upon performance.

2.7 bonnie+-+

In this study, there are different tools that could be used. Especially, when it comes to collecting
data, there is one tool in particular that is interesting. The benchmarking tool bonnie++
has the ability to perform Input/Output(I/O) tests, which concludes transfers and other time
consuming events, and collect these results. Data collected can determine how well the file
system performs on different tasks. Although, there has been a growing usage of benchmarking
tools over the years, storage system researchers and other practitioners find these tools to
contain too little scientific methodology or statistical strictness. In an attempt to respond to

22

these issues, a workshop was held [1] where problems where discussed and solutions proposed.
At this workshop there were also a brief overview of different tools that is used for benchmarking
file systems FileBench, 10zone and SPECsfs were highly recommended in addition to bonnie++
as a tool for measuring I/O data on file systems.

Bonnie++ has several flags for adjusting how many times the it should run the test, number
of files as well the size of the file itself. Moreover, there are options for stating where these files
should be stored and written from, and how the output should be delivered. Default output is
given directly to the console which can be difficult to interpret if you have little experience with
this tool.[5]

Atlantis:/home/christian# bonnie++ -d /xen/client/data/ -u root
Using uid:0, gid:0.

Writing with putc()...done

Writing intelligently...done
Rewriting...done

Reading with getc()...done

Reading intelligently...done

start ’em...done...done...done...

Create files in sequential order...done.
Stat files in sequential order...dome.
Delete files in sequential order...done.
Create files in random order...done.
Stat files in random order...done.
Delete files in random order...done.

Version 1.03 ~ -----—- Sequential Output------ -- Sequential Input- --Random-
-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec /CP
Atlantis 7G 39785 69 46401 10 17419 3 42279 66 41921 3151.4 O
—————— Sequential Create------ --------Random Create--------
-Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

files /sec %CP /sec %CP /sec %CP /sec CP /sec %CP /sec %CP
16 +++++ +++ Attt bt bbb At bbb bR bbbt b bR b
Atlantis,7G,39785,69,46401,10,17419,3,42279,66,41921,3,151.4,0,16,+++++,+++ +tttt +tt,
T e o = S S S A e

The output of bonnie++ is also possible to run in an quiet mode which will cut out the status
messages on the different processes and only return the output. Interpreting the output data
you will also see plus symbols(+++) instead of data. In every test two numbers are reported,
one is the amount of work done (higher numbers are better) and the other is percentage of CPU
time taken to perform the work (lower numbers are better). If one of the tests completes in
less than 500ms the output will be displayed as ”++4++". Reason for this is because such a
test result can’t be calculated accurately due to rounding errors and the author of the program
would rather display no result than a wrong result.

There is a second type of output named CSV(Comma Separated Values). It has the ability
to be imported into any spread-sheet or database program. Furthermore, possibilities to con-
vert the CSV data to Hyper Text Markup Language(HTML) and plain-ascii exists, by using
the included programs bon_csv2html and bon_csv2txt that follows this package.

Bonnie++ has been used in several scientific studies when it comes to I/O data. In [11] they
did an analysis of the iSCSI protocol, where iSCSI were compared against the fibre channel in an
commercial environment. Different set-ups of the iSCSI protocol, both software and hardware
implementations, were investigated by its performance and evaluated based on these results. In
on of these set ups bonnie4++ was used to measure the performance of an ext3 file system on a
raid array that was remotely using iSCSI.

23

Explanation of Bonnie++ outputs

Per Charac- | The method putc() is used to write
ter(Per Chr) the file. The CPU overhead is
needed here in order to do the stdio
code as well as the Operating Sys-
tem(OS) space allocation.

Sequential Output

Block For doing these calculations, the
method write(2) is being used to
write the file. However, the CPU
overhead should in this section only
be the OS file space allocation.

Rewrite In this operation every BUFSIZ
of the file will be read by using
read(2), then tampered with for so
to rewrite it with write(2). Further-
more, no space allocation will take
place, and the I/O is well localized
which should test the effectiveness
of the filesystem cache and speed in
the data transfer.

Per Charac- | Read the file using getc(). This op-

Sequential Input | ter(Per Chr) eration should only use stdio and se-
quential input.

Block Using write(2) for creating the file

and should act as a pure test of se-
quential input performance.

Seeks This operation search for the files
that is being written. It runs
SeekProcCount processes (default
3) in parallel for achieving a reliable
number for the benchmark tool.

Sequential Create | These file creations tests uses filnames that contains 7
digit number (0 - 12). In the sequential create phase
files are being created in numeric order. Then they
will be stored in the readdir you provide with -d flag
and be removed in the same order they were stored.

Random Create Creates files that will fool the filesystem and appear
random. Furthermore, the files will be stored and re-
moved in a random order. By specifying some other
value than the default for maximum size, Bonnie++
will during the creation of files provide with random
amount of data to each file.

24

Chapter 3

Methodology

In the start of this project there were a few matters to consider. For measuring and collecting
data we decided to use the benchmarking tool bonnie++. Furthermore, we needed to analyse
the data we received from these benchmarking tests. Since there was no tool available to per-
form the necessary operations, one had to be made. The analys tool what was developed is a
Perl script which will calculate average, median and variance on the data. That can be used on
a later point to compare the different technologies.

3.1 Analysis Tool

In research where benchmark testing is being conducted, there is a necessity for analysis tools
that can compress the outcome and make it representative for further studies. There are already
a sourceforge project called bonnie-to-chart that performs different actions with the output data
from bonnie++. Although there is a lot of interest for bonnie++ when it comes to analysis
of the data and a tool like bonnie-to-chart is available, creating new framework tool seemed
like the best option. This way I could decide what type of data that is important and how the
output would look like.

3.1.1 Input

The analysis tool is based upon a Perl script which handles a single output file at a time from a
bonnie++ session. It collects the data by using the file handler option in Perl and splits up all
the columns by using the split() feature. By reading the output files from bonnie++ sessions
you will see a lot of data where "++4" occurs. Every test will report two numbers, amount
of work done and the percentage of CPU time taken when performing the test. The Author of
this program implemented the ”+++" function to prevent wrong results[5]. Basically he thinks
that tests that completes in less than 500ms can not be calculated in an accurately way due to
rounding errors. Hence, displaying no result is better than displaying a wrong result. Therefore,
when the scripts comes across a field that contains similar data it uses a regular expression to
exchange the ”++4+" to 0. Since the data, as mentioned above, is considered to be unreliable
when the ”+44" symbols occur.

When done with the splitting up and sorting of the columns of data it goes into arrays for
easing the operation for doing descriptive statistics on the data. This make it possible for the
use of Perl modules. Math:NumberCruncher is the module that is being used for performing the
statistics on the data and simplify the operations for performing the calculations like Median,
Mean, Average, Min/Max and Variation which will be described later on.

25

3.1.2 Usage

Describing the usage of this tool is simple. The users needs some basic understanding of
computers and know how operations are done in the Linux operating system. First of all a
bonnie++ session needs to be run in order to get data for the analysis tool to work with.
Following line is an example of a session.

bonnie++ -d /tmp/ -x 100 -q -u root > /home/user/100x_nfs_10f3

The flag ”-d” indicates where the tests will be performed on the VM. Important thing to
remember when deciding upon where the tests should be run is to check if you have enough free
space. Default value for the files will be 1 Gigabyte which was sufficient for these experiments.
Although, if you would like to change the size you can use the ”-s” flag to change this. The
number of times the test is conducted is decided by the ”-x”. Without any value it will run as
default only one time. For the analysis tool it would not matter whether it is 1 or 100, but for
the sake of having reliable data it would be best with 100 or more. The ”-q” is for quiet mode
which means that it will drop unnecessary output lines that is being produced while performing
these tests. The user performing these tests should be presented by the ”-u” flag. Files that will
be created and contain the data should be named in a fashion that it is easy to identify so that
there will be no misunderstanding. Especially since there will be lot of tests if you scale up the
number of VMs and bonnie++ is only able to write out which machine it is and not the type
of test that is taken. Furthermore, the name should contain the technology you are testing and
will be useful when several technologies are being tested at once. After a successful bonnie++
session where you write the output to a file as shown above, it is then possible to use this file
as input for the analysis tool. Following line is an example of how to use the analysis tool.

bonperl.pl 100x_nfs_10f3 > /home/user/bonniedata/100x_nfs_lof3.tex

The file which is ”100x_nfs_1of3” here will be analysed by the tool. Output from this
operation will be printed out in a table format as well as a graph for each of the operations in
latex code. Reasons for this is to both save time and present the data in a manner so that it
is easy to read. Although, first, it will be necessary to save the output to another file of your
choosing. This file will then need to be compiled to a pdf file for making the data readable.
Enter the folder where you put it and write the following command. It will depend on whether
you have the latex packages installed for your operating system for a successful compilation.

pdflatex 100x_nfs_lof3.tex

26

3.2 Experimental Setup

Atlantis Nexus

Virtualization
Servers Switch

Storage Servers

Keeper Stargate

Figure 3.1: Figure of the lab setup

The lab setup of this project is seen on 3.1. These machines are members of an IBM Blad-
server. Atlantis and Nexus will be acting as the virtualization servers, where we expand with
more vms if the tests requires more clients. All of the machines have bounded network cards,
both with a 1GB capacity, making it a total of 2GB for each of the machine. The storage servers
will be Keeper and Stargate through the testing of the technologies and are meant to variate
the SAN software. Keeper will be the main machine for this, since most of the technologies only
need one machine as server. Hence, Stargate will be a backup when two machines are required
for setting up the specific SAN technology.

27

Experimental Setup

Virtual Machine

Bonnie++

=
SAN Server

VM filesystems
LVM/Files

Dom0

Bonnie++

Service

Focus of
I Experiment

=== === ===

Constant

Figure 3.2: experimental setup

Keeper has a variation of SAN software during these experimental tests as you can see on
3.2. Dom0, that will be on the two machines atlantis and nexus which are connected to the
SAN server, serves as an hypervisor for VMs. These machines also have SAN client software.
Furthermore, in order for the VMs to act as clients for the SAN technology, a variation on
the SAN client software is also required. Since the VMs themselves can not interpret that
they are connected to a SAN with current design. Moreover, the Dom0 has a constant Debian
distribution as a operating system that is used under every test of SAN technologies. The VM
image I use for these VMs only contains necessary file system with bonnie++ and does not
contain any network configuration. Each of these VMs has kernel(2.6.18-6-xen-686), running
ext 3, and same operating system when they are booted up for testing.

3.2.1 Base tests

Comparative studies requires data that we can compare with, this is why these base tests are
taken. They give an indication on what is the optimal result you can get by running a test
directly on the base of the system itself. By doing so we can then compare the results we
get from these tests with the data from the actual experimental data, and then determine its
strengths or weaknesses.

Base tests that are to be run during this project:
e Keeper which is the SAN server

e Virtualization server with no VMs up

28

Virtualization server with one VM up

Virtualization server with ISCSI installation

Virtualization server with NF'S installation

Virtualization server with DRBD installation

Virtualization server with AoE installation

Virtualization server with Pvfs installation

3.2.2 non-Base tests

These tests are the actual experimental data. Where the variation of the SAN technology is
in focus and the scaling of clients is the main process for identifying the best one based on the
comparison of the data.

3.3 Output

Under these experimental benchmark tests there is an expectation that a random SAN technol-
ogy test should have the same performance as a base test on keeper or worse. Hence, we can
then expect that a virtual machine placed on top with a random SAN technology should per-
form just as well or worse as the base test. As mentioned earlier an output file should be named
accordingly to the test that is taken. In doing so scaling of the VMs will be more systematic
and thorough. FEach technology will require a considerable increase of clients in each scenario
which will generate a lot of files. Keeping a system is then crucial when compiling these files
to an appropriate format, especially when using pdflatex on the generated latex tables that are
generated from the analyse tool.

3.4 Analysis

In this section the different measurements will be listed and explained in detail. It will also
explain what kind of meaning they have for the investigation and how it helps in identifying
the best SAN technology.

e Median
Median will be one of the two ways to find the average. It does it by arranging the values
in order and selecting the one number in the middle. However, if the values from a series
of tests or a sample is even, the median will be the mean of the two middle numbers.

e Mean
Mean is the second way to find the average and will be the sum of these measurements
that is taken during the test of each technology divided by the amount of measurements
taken.

e Min
Finding the minimum value that is recorded during a test could determine how low the
performance of the technology went during an experiment. Hence, be an important factor
when deciding what the best technology is, and how it adds up with variation number.

29

e Max
Maximum value determines the highest performance score of the technology which will
alongside the minimum value help us gain the whole picture of how the technology works.
Furthermore, the maximum and minimum of the measured results will give a performance
point of view were for the given technology.

e Variation
Variation is of great importance for finding the most stable SAN technology. Seeing as
the greater the number, the greater the performance of the technology variates which
makes it difficult to rely on. System administrators wants a reliable technology that has
the same performance most of the time and not take chances on one that might perform
much better in a certain amount of time. Although, it would be better for me if I had a
mathematical distribution as well in order to fully understand the variation results.

30

Chapter 4

Results

The results from these base tests is what can be called the optimal performance from the oper-
ations of the benchmark tool bonnie++. These results will be an important factor in deciding
the best SAN technology when comparing scores.

4.1 Explanation of output in tables

In the first block session we can see the name of the machine and what file size this bonnie++
session used to perform the different operations with. File size can be changed but the de-
fault value is used for all of the bonnie++ sessions. Next block contains putc which produces
output and writes in two modes, by character and by block. The output results from putc
and putc_block are measured in kilobytes per second(KB/s) while putc_cpu and put_block_cpu
contains the percentage of the cpu used during these operations.

After the writing process, bonnie++ will do a rewrite operation of the current files which
will also be measured in KB/s. Then we reach the reading section which is organized by the
getc and getc_block operations. Both of these operations are also measured in KB/s while the
getc_cpu and get_block_cpu are the percentage of cpu used during these operations. Measuring
seeks is the next section where seeks are files found per second and seeks_cpu is the percentage
used during the search for files. The amount of files is mentioned in num_files, if you want you
can specify yourself how many files that should be in this test and also how the size should be
divided between them with the bonnie++ flags. Although, 16 files is the default value and was
used when testing all of the SAN technologies.

When it comes to the sequential operations, only seq._create and seq_create_cpu will be
interesting in terms of data. The other operations will finish up to quickly to be a reliable result
and not worth mentioning. However, for the random operations, only ran_stat and ran_stat_cpu
will be unreliable data. ran_create will show how many files that are created in a random order
per second while the ran_create_cpu will show the percentage of cpu usage during this time.
ran_del show how many files that are deleted in a random order per second.

4.2 Keeper basetest

Results from the base test of keeper with no SAN technologies installed. It runs a basic Debian
installation with a few alterations from the ABC startsidens security systems. Although, this

31

should not affect the outcome in any way, when it comes to disk activity during these bench-
marking tests.

Name Mean Median | (Mean - Variance Min Max | Range
Median)
name 0 0 0 nan keeper | keeper 0
file_size 7 7 0 nan 7G 7G 0
putc 45871.808 | 45853 | 18.808 59109.751 45403 | 46607 1204
putc_cpu 95.515 95 0.515 0.290 95 97 2
put_block 70315.303 | 70885 | 569.697 2073288.373 | 65950 | 72880 6930
put_block_cpu 24.333 24 0.333 0.424 23 25 2
rewrite 29713.081 | 30009 | 295.919 318502.943 | 28480 | 30459 1979
rewrite_cpu 7 7 0 nan 7 7 0
getc 49877.535 | 50453 | 575.465 1830404.491 | 45300 | 51507 6207
getc_cpu 91.141 92 0.859 5.637 83 94 11
get_block 72161.899 | 72627 | 465.101 1819859.364 | 65732 | 73967 8235
get_block_cpu 5.020 5 0.020 0.020 5 6 1
seeks 537.737 | 546.300 | 8.563 2953.941 344.6 | 617.0 272.4
seeks_cpu 0.354 0 0.354 0.229 0 1 1
num_files 16 16 0 nan 16 16 0
seq_create 3658.535 3658 | 0.535 1816.835 3464 3721 257
seq_create_cpu 97.929 98 0.071 1.217 93 99 6
seq-stat 0 0 0 nan 0 0 0
seq__cpu 0 0 0 nan 0 0 0
seq-del 0 0 0 nan 0 0 0
seq-del_cpu 0 0 0 nan 0 0 0
ran_create 3746.556 3747 | 0.444 1354.186 3592 3795 203
ran_create_cpu 98.152 98 0.152 0.977 94 99)
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 11893.172 | 12085 | 191.828 115392.162 | 11091 | 12277 1186

Table 4.1: Table of keeper basetest

Overall results

The operation putc shows less to no difference between its mean and median value by only 18
KB/s. Seeing as this is the base test which should be the best optimal result that we are going
to compare with, 45 MB/s is not such a bad performance. By a quick overview we can also see
that putc_block performs better than putc and uses less cpu load to accomplish that. Although,
a bit higher difference we can see but not really alarming.

The rewrite operation is lowered to 30 MB/s which is still good performance if you think
about the buffering refreshing itself all the time it is running. Furthermore, reading operations
score slightly higher than writing. The getc with 50 MB/s and get_block with 72 MB/s are
good results. Seeks has also quite similar numbers in mean and median, 537 to 546 files per
second.

32

Moreover, the seq_create creates 3658 files in an average per second, and the cpu load is
high which also is normal. The other functions does not show which is normal, since they finish
up to fast for it to be any reliable data according to the author of the program. ran_create gets
a bit higher performance on mean and median compared to the seq_create. It also uses a lot
of cpu during this operation. Last operation, the ran_del, shows good performance by deleting
12000 files per second.

Descriptive statistics

putc has a a range of 1,2 MB/s between the max and min value which indicates a stable work
rate. Furthermore, this could also make it easier to predict the time span of how long it would
take to finish writing over files for instance when it comes to backup. putc_block gets higher
speed and has much higher max than min. Seeing as mean and median is around 70 MB/s, the
min value seems to be very poor performance for this operation and it gives a greater range
with 6,9 MB/s which indicates much more unstable results. Moreover, the percentage of cpu
used between putc and putc_cpu is significant, reasons for this could be that the cache is more
present in the putc operation.

Rewrite operations goes around 30 MB/s which is around 15 MB/s slower than putc per-
formed, this could be that is has to take into account the order of the files when it rewrites,
making it drop some performance on the way. The reading operations performs slightly higher
than the writing. Both getc and get_block have a larger range between max and min than the
in the writing operations. Furthermore, if we look at get_block we can see that average perfor-
mance measured by mean and median are close to the max value, which makes it interesting to
see if it was a slight irregularity or if it actually will be noticeable in the other experiments.

seq_create performs a bit lower than the ran_create, where seq_create has a total of 3658
files per second while ran_create has 3746 files per second. Both seems to be working at a stable
rate as well according to the range of the min and max values. Same with the cpu usage during
these two operations with a 98 percent usage. The deletion of the files goes at a much higher
performance, ran_del has an average of 12000 files deleted per second. Although, it has a larger
range between the max and min values which tells us that it is not as stable as during the
creation of the files.

33

Graphs of interest

Figure 4.1: keeper put block

As we can see from figure 4.1 the mean values of put_block seems to match the average
measurements for this operation. With most hits in the area between 69 MB/s to 71 MB/s
which corresponds well with the value of 70 MB/s in the mean. From figure 4.2 we can clearly

.

Figure 4.2: keeper get block

ALY

R
66 67

see that the mean value of 72 MB/s is accurate according to where the most hits were recorded.
Seeing as there is close to 60 hits at 72 MB/s for the get_block operation. By looking at the
seeks operations for keeper in 4.3 we can see that the mean value of 537 is valid according to
the hits recorded. The graph shows that most of the hits were around 550 files per second.

34

Figure 4.3: keeper seeks

Summary

Looking through the results of the benchmark test, some results were more interesting than the
others. Reading performs higher than writing, while rewriting goes even lower. In both of these
operations we can also see how the difference between the by char and block transfer is high.
When performing the put_block and get_block the cpu resources used are low and they use most
of the time to wait for the hard drive during their operations. In the reading operations the
maximum values are closer to the median and mean values than the minimum value that could
be explain by some slight irregularities during the benchmark test.

4.3 Nexus basetest

This section will display the results measured from the benchmark test run on nexus, which is
one of the virtualization servers, with no VMs up and running.

Name Mean Median | (Mean - | Variance Min | Max | Range
Median)
putc 42277.101 | 42338 | 60.899 124824.454 | 41292 | 42961 1669
putc_cpu 94.990 95 0.010 0.677 93 96 3
put_block 66632.576 | 66897 | 264.424 2759297.557 | 62611 | 69596 | 6985
put_block_cpu | 32.263 32 0.263 0.658 30 34 4
rewrite 28845.606 | 29132 | 286.394 428861.794 | 27614 | 29599 1985
rewrite_cpu 3 3 0 nan 3 3 0
getc 47166.556 | 47548 | 381.444 2035148.449 | 41837 | 49144 | 7307
getc_cpu 84.909 86 1.091 7.941 75 88 13
get_block 70311.222 | 70641 | 329.778 939812.112 | 66732 | 71550 | 4818
get_block_cpu 0 0 0 nan 0 0 0
seeks 486.417 | 497.200 | 10.783 3614.723 321.6 | 595.2 | 273.6
seeks_cpu 0 0 0 nan 0 0 0

Table 4.2: Table of nexus basetest

35

Overall Results

In the writing section we see a good performance on the putc operation with 42 MB/s in mean
and median. It also has a min value of 41 MB/s and close to 43 MB/s in max. put_block
performance is acceptable, with 66 MB/s in mean and median, and a min value of 62 MB/s
and max value of 69 MB/s. rewrite does more than half of the putc operation with a 28 MB/s
in mean and 29 MB/s in median. The min and max values have a bit more gap between than
putc with 27 MB/s and 29 MB/s.

The reading operations performs better than writing. getc has a mean and median value of
47 MB/s and get_block has a mean and median value of 70 MB/s. Looking at their min and
max values, we can see that getc has 41 MB/s min and 49 MB/s max while get_block has 66
MB/s min and 71 MB/s max.

The seek operation has a good performance with 486 files per second in mean and 497 files
per second in median. It also has a min value of 321 files per second and a max value of 595
files per second. The rest of the operations during this benchmark were to fast to measure any
credible data.

Descriptive statistics

During this benchmark test reading operations have performed better than writing. Although,
getc performed better if we look at the mean and compare it with putc, we can see that getc has
a much wider range between its min and max values. This suggest that this operations work
rate is unstable. However, for the put_block and get_block the situation has changed. Seeing
how get_block both performs better if we look at mean and median, and has a lower range with
4,8 MB/s versus put_block with 6,9 MB/s.

The rewrite operation only has half of the performance putc has in mean and median, but
seems to be waiting a lot for the disk to complete because of a very low cpu usage of 3 percent.
Irregularities of some kind could be causing this like for instance caching. seeks performances
well but has a wide range with 273 files per second, which would strongly suggest an unstable
work rhythm.

Graphs of interest
These are the graphs of operations that are most interesting when it comes to these benchmark

tests.

Figure 4.4 show that most of the measured results are resided in the area between 64 MB/s
to 69 MB/s which seems to in balance with the calculated mean value in table 4.3. Same goes
for the data we see in figure 4.5 with most of the measured results in between 69 to 71 MB/s
and a value of 70 MB/s in mean in table 4.3.

36

In figure 4.6 we can see that most of the data are measured in the area between 45 to 55
files per second. It makes the number of 486 files per second in mean valid from table 4.3.

Summary

In this base test we have seen how reading operations perform better overall. However, both
writing and reading have some instability if we look at their ranges. This also applies for seeks
that has close to half of the max value in range with 273 files per second. Furthermore, the
creation and deletion tests from this benchmark operated at such a fast rate that there could
not be measured any valid data.

38

4.4 Nexus with one VM

This data set contains the measurements collected from the test performed locally on the vir-
tualization server Nexus with one VM running.

Name Mean Median | (Mean Variance Min Max Range
Median)
putc 48393.960 | 48634 | 240.040 363248.402 46306 | 48872 2566
putc_cpu 96.869 97 0.131 0.114 96 97 1
put_block 278673.899 | 281531 | 2857.101 213690989.465 | 233369 | 307593 | 74224
put_block_cpu 76.283 7 0.717 5.031 71 81 10
rewrite 77605.869 | 77633 | 27.131 25588185.508 | 67363 | 91479 24116
rewrite_cpu 12.444 12 0.444 1.116 10 15 5
getc 51685.818 | 51909 | 223.182 482574.694 49109 | 52450 3341
getc_cpu 93.758 94 0.242 0.992 91 95 4
get_block 447152.869 | 450941 | 3788.131 559635801.952 | 355290 | 471783 | 116493
get_block_cpu 7.616 7 0.616 10.014 2 19 17
seeks 0 0 0 nan 0 0 0
seeks_cpu 0 0 0 nan 0 0 0
seq_create 4136.919 4147 | 10.081 1011.973 4002 4160 158
seq-create_cpu 99.313 99 0.313 0.215 99 100 1
seq_stat 0 0 0 nan 0 0 0
seq-stat_cpu 0 0 0 nan 0 0 0
seq_del 0 0 0 nan 0 0 0
seq-del_cpu 0 0 0 nan 0 0 0
ran_create 4276.253 4289 12.747 1487.441 4107 4307 200
ran_create_cpu 99.091 99 0.091 0.083 99 100 1
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 16213.616 16237 | 23.384 58919.166 15187 | 17719 2532

Table 4.3: Table from Nexus onevm

Overall Results

In the writing operations we can see that the putc has a good performance of 48 MB/s by
looking at the mean and median values. These numbers seems to be close up to the max value
of this operation. put_block has a very good performance with a mean of 278 MB /s and median
of 281 MB/s, and a max performance of 307 MB/s. Cpu usage of the two operations are quite
high, 96 percent with putc and 76 percent with put_block. The rewrite operation has 77 MB/s
in mean and median, and a min value of 67 MB/s and a max value of 91 MB/s. Its cpu usage
is lower compared to the writing operations putc and put_block with only 12 percent usage.

getc and get_block in the reading section also performs well on this benchmark test. getc
has a measured and calculated value of 51 MB/s in mean and median while get_block gets 447
MB/s in mean and 450MB/s in median. This operation scores very high at these tests which
we can see even more clearly from the min and max values, seeing as its min value is 355 MB/s
which is even higher than the max value of put_block. Furthermore, the max value for get_block

39

is 471 MB/s which is over two times as much as the min value of put_block.

In the last two sections we can see similar results for the seq_create and the ran_create.
seq_create has a value of 4136 files per second while ran_create has 4147 files per second. They
both have the same amount of cpu usage during these operations with a 99 percent usage. Last
is the ran_del operation which has a measured mean and median value of 16 MB/s.

Descriptive Statistics

The two first sections have some very good results from these tests but unstable. If we look
at the put_block values we can see a big difference in the mean and median values as well as
a wide range. A range of 74 MB/s would suggest an unreliable rhythm of its operation. The
big difference of the mean and median only strengthens this assumption. Same goes for the
rewrite and get_block operation, rewrite with 24 MB/s and get_block with 116 MB/s wide range.

However, in the last two sections we can see a more stable work rate and good results. Both
seq_create and ran_create having a less to no difference between the mean and median. Only
10 KB/s for seq_create and 12 KB/s for ran_create. ran_del as well with a 23 KB/s difference,
although, it shows a slight instability if we look at the range of its min and max values.

40

318

388

i
il
o
fl
f
f
f
f
f
f
fl
fl
f
fl
f
1
{
t
f
f
f
i
f
f
f
f
i
f
f
f
f
f
{
t
f
f
f
{
t
f
f
f
i
f
f
f
|
i

put_block
" rbonnie_186x_nexus_local_vn_putijblock,dat’ mmm

k|
e e |
e e e |

298

288

428

27

get_block

"bonnie_106x_nesus_local_vn_get Jblock,dat.” mmmm
i
i
i
i
i
B
i
i
i
i
B
i
i
i
!
Ik

268

258

88

88

448

41

88

388

The seek operation did not contain any credible data during this test. However, the graphs for
put_block and get_block have valid data and will be presented. Figure 4.7 shows that the mean

Graphs of interest

fRauanba.y

248

Figure 4.7: Nexus onevm put block

value calculated for the put_block operation seems to be coordinating well with the values in

the graph. Seeing as the area between 260 MB/s to 290 MB/s has the most hits.

] -

fRauanba.y

368

348

Figure 4.8: nexus onevm get block

Furthermore, we can see from figure 4.8 that the most hits are around the area between 440

MB/s and 470 MB/s. Hence, making the calculated mean value credible and giving a correct

picture of how the performance was during the process.

This benchmark test of the virtual server running with one VM shows good performance, al-
though, it has some unstable results in the writing and reading section. Especially the put_block,
rewrite and get_block were the ones that seemed to be the most affected by this. However, the

Summary

rest of the results of this benchmark test shows good and stable results with no alarming num-
bers.

4.5 Iscsi basetest

These are the results for the iscsi base test. The virtualization server runs with one VM and the
server itself has a basic iscsi configuration which establishes contact with the iSCSI technology
on the SAN server.

Name Mean Median | (Mean - | Variance Min | Max | Range
Median)
putc 42653.101 | 42781 | 127.899 738863.323 | 37996 | 44117 6121
putc_cpu 84.848 85 0.152 2.553 75 88 13
put_block 45046.192 | 45216 | 169.808 482467.145 | 40918 | 46096 5178
put_block_cpu 6.697 7 0.303 0.312 6 8 2
rewrite 11346.717 | 11235 | 111.717 77779.880 | 10858 | 12216 1358
rewrite_cpu 0 0 0 nan 0 0 0
getc 14439.909 | 14465 | 25.091 76518.891 | 13491 | 15209 1718
getc_cpu 6.596 7 0.404 0.483 4 8 4
get_block 18294.232 | 18291 | 3.232 132275.875 | 17223 | 19437 2214
get_block_cpu 0 0 0 nan 0 0 0
seeks 478.597 | 477.800 | 0.797 266.913 404.3 | 570.1 | 165.8
seeks_cpu 0 0 0 nan 0 0 0
seq_create 4041.636 4037 | 4.636 3856.231 3838 | 4212 374
seq_create_cpu 96.929 97 0.071 1.379 94 101 7
seq-stat 0 0 0 nan 0 0 0
seq_stat_cpu 0 0 0 nan 0 0 0
seq-del 0 0 0 nan 0 0 0
seq-del_cpu 0 0 0 nan 0 0 0
ran_create 4242.646 4278 | 35.354 5385.319 3884 | 4469 585
ran_create_cpu 98.525 99 0.475 1.987 96 104 8
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 15243.495 | 14859 | 384.495 685322.775 | 13981 | 16433 2452

Table 4.4: Table of iscsi basetest

Overall Results

In the writing section one can see that both putc and putc_block have a very small difference
between their mean and median. We can also see that the cpu usage is very low on the put_block
compared to the putc. Rewriting seems perform at a much lower rate than putc and put_block
with a difference of 30 MB/s or more. Although, the speed of the operation is very low it has
a stable work rate looking at the max and min values.

Reading section of this benchmark test operates on a much lower performance than when

it comes to writing. Results from mean and median show 14 MB/s which is under half of what
writing section performs The cpu performance of the getc and getc_block are very low, especially

42

the getc_block which does not report any number even. Seeks seems to be working fine with a
number of 478 files found per second. In seq_create 4000 files is created per second from what
we can see in the mean and media which is a good performance. Same goes for the ran_create
with 4200 files and ran_del with 15000 files created per second. All of the creation operations
work with little difference in both average and the range between the max and min values.

Descriptive statistics

Iscsi performance varies a lot during the writing operations putc and put_block. If we look at
the max and min values they get, we see the range being large. This could indicate that the
iscsi performs on an unstable rate but by looking at the mean and median, it would be more
reasonable to assume that some irregularities could have caused this during the measurements.
Rewriting has a very low performance as we can see compared to the putc and putc_block pro-
cesses. Although, is shows a more stable work rate if we look at the range between max and
min. putc and put_block with 6 MB/s and 5 MB/s while rewrite performs with a range of 1,3
MB/s.

Reading operations also performs at a more stable rate than the putc and put_block. getc
and get_block have ranges of 1,7 MB/s and 2,2 MB/s. Furthermore, getc and get_block have a
much lower performance on the mean and median with 14 MB/s and 18 MB/s, that is really
low if we think about what I/O measurement would look like for a normal hard drive. Seeks
operations does good performance with 478 hits per second and has less to no difference with
its mean and median values. Same goes for the max and min values with a range of 374 files
per second.

In the last two sections where files are created and deleted, both seq_create and ran_create
have similar results in mean and median. The difference on their mean and median is very small
and not alarming. Furthermore, we can also see that the range indicates a stable performance
based on their max and min values. Although, ran_del has a much higher performance in
the mean and median, the operation gains a bit more instability Seeing as the number in the
difference and range of its operations rises.

43

Graphs of interest

[:1:]

568

40 -

38

28

168

Figure 4.9: iscsi putblock

The graph in figure 4.9 shows good argumentation for the calculated mean value from table
4.5, seeing as most of the measurements recorded were found around 43 and 46 MB/s. Figure

get_block

‘bonnie_186x_iscsi_1_get_block,dat” ETom

Figure 4.10: iscsi getblock

4.10 shows that most of the measured values are found in the area from 16,5 MB/s to 19 MB/s.
This makes the mean value from table 4.5 valid which has a value of 18 MB/s. By studying the
graphs in figure 4.11 we see that most of the measurements were recorded in the area between
430 to 460 files per second. This suggest that the mean value from table 4.5 is affected by
unstable work rate during the benchmark test.

44

a5

a8

as -

38

15

18

. @@
- @ @@ @@

& ;

N

=

@
=

Figure 4.11: iscsi seeks

Summary

One thing in particular that really is abnormal in these measurements is the difference between
the writing and reading operations. We can assume that there should be a slight difference
when it comes to reading and writing, although, the difference we see here is really interesting.
The number of getc is performing on less than half of what putc manages to produce per second
according to the mean and median values. Normally, the reading operations usually perform
on the same work rate as the writing operations do or better. Furthermore, we can see some
lower cpu usage from some of the operations which indicates that they are waiting for the hard
drive to finish up before they can start on their next operation.

45

4.6 Iscsi 3of3 test

These are the results for iscsi where three VMs are run upon Atlantis. Atlantis has iscsi client
software installed and is connected to keeper that runs as the iscsi server with the proper soft-
ware. This table is the representative data from all the three VMs that were running bonnie++
and gives an indication on how VMs are affected when more than one are operating on the
shared iscsi device.

Name Mean Median | (Mean - Variance Min | Max | Range
Median)
putc 16258.444 | 16021 | 237.444 11392432.166 | 12011 | 28651 | 16640
putc_cpu 34.626 35 0.374 42.820 25 59 34
put_block 15246.657 | 13532 | 1714.657 8762264.286 | 12583 | 21367 8784
put_block_cpu 2.323 2 0.323 0.239 2 4 2
rewrite 4440.919 4329 111.919 172536.923 3675 | 5821 2146
rewrite_cpu 0 0 0 nan 0 0 0
getc 7730.374 7994 | 263.626 599217.668 5974 | 11023 5049
getc_cpu 3.283 3 0.283 0.607 2) 3
get_block 8996.253 9353 | 356.747 2426084.492 | 6444 | 18603 | 12159
get_block_cpu 0 0 0 nan 0 0 0
seeks 231.807 235 3.193 7046.147 85.5 | 482.3 | 396.8
seeks_cpu 0 0 0 nan 0 0 0
num_files 16 16 0 nan 16 16 0
seq_create 3648.152 3816 167.848 168373.785 2434 | 4102 1668
seq_create_cpu 95.172 96 0.828 7.496 86 99 13
seq-stat 0 0 0 nan 0 0 0
seq_stat_cpu 0 0 0 nan 0 0 0
seq-del 0 0 0 nan 0 0 0
seq-del_cpu 0 0 0 nan 0 0 0
ran_create 3683.465 3866 182.535 221465.461 2476 | 4303 1827
ran_create_cpu 95.556 96 0.444 7.277 84 100 16
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 13978.010 | 14799 | 820.990 4517906.879 | 8749 | 16253 7504

Table 4.5: Table of iscsi 30f3 test

Overall Results

By a quick overview of the writing section we can see a greater gap between the put_block an
putc when it comes to the difference of mean and median. Furthermore, we can see that it is
the other way around in the range between max and min for these two operations. putc with
a 16 MB/s range and put_block with a 8 MB/s. Both of these operations have a very low cpu
usage, especially put_block with only 2 percent. Rewriting has lower performance as we can see
of the mean and median but has a smaller range between its max and min with 2 MB/s. The
reading section also has a large range in the getc and get_block operations between the max
and min values. getc has a 5 MB/s while get_block has 12 MB/s. The Seeks operation appears
to get a low performance by looking at the mean and median.

46

seq_create has good performance if we look at the mean and median values. Although, it
does not have the range of the other operations, it is still considerable if we look at the max and
min values. Same goes for the ran_create, shows good performance in the mean and median
values but also has a big range if we look at the max and min values. Cpu usage of these
operations is high which is to be expected with 95 to 96 percent usage. ran_del performs 13,9
MB/s in mean and 14,7 MB/s in median which leads to a bigger difference if we compare to
the values for seq_create and ran_create. Moreover, the range for ran_del is high compared to
the range for seq_create and ran_create.

Descriptive statistics

Both writing and reading operations for the iscsi benchmark test are showing unstable working
rate if we look upon the max and min values. putc has a min value of 12 MB/s and a max
value of 28 MB/s which ends up in a range of 16 MB/s. This strongly suggest that it works
in an unstable manner. Especially if we compare the mean and median values and see how
the max value is so much higher, assumptions could be made to describe it as unreliable as
well. Although, the range is half on the put_block operation, the difference in the mean and
median values is 1,7 MB/s. A very high number compared to the putc operation which strongly
indicates an unreliable work rate. rewrite has very low performance as we already covered in
the last section, but the range of the max and min values shows a more stable work rate for
this operation.

Furthermore, both getc and get_block have a shorter range compared to putc and put_block,
they are still too high to be seen as reliable. Although, the unstable results shown in range, we
can see that the difference between the mean and median are acceptable with only 0,26 MB/s
for getc and 0,35 MB/s for get_block. In the searching section looking at the seek operation
we see a very low min value of 85,5 files per second. The range is also very high compared the
number we have in max with a range of 396 files per second and a max value of 482 files per
second. This low min value could be explained by some irregularities during these benchmark
tests like for instance the cache of the cpu on the VM server acting up.

In the section where creating files are being measured we can see from both seq_create and
ran_create a stable work rate. seq_create has a a difference of 167 files per second which indicates
a reliable work rate and a range of 1,6 MB/s that is acceptable compared to the values we see
from the writing and reading operations. Lastly we see the ran_del performs at a much higher
rate than both seq_create and ran_create by looking at the mean and median values of these
operations. Moreover, the difference is higher but not really affecting the stability as much as
the range. The range between its max and min is are much higher than the max and min of
seq._create and ran_create, indicating an unstable rhythm in its working rate.

47

Graphs of interest

28

Figure 4.12: iscsi 30f3 putbl

Figure 4.12 shows the measurements recorded for the put_block operation. As we can see
the results are widely spread and there are many counts both at the start and at the end. This
could indicate that the mean value from table 4.6 is unbalanced based on the data we see in
the graph. However, figure 4.13 shows that the get_block operation data from the table 4.6 and

“bannie_108x_iscsi_Sof3_get_block.dat’ mumm

]

N

_

A

\

Figure 4.13: iscsi 30f3 getblock

the graph works in harmony.

48

e

§§§§

mmmmmmmmm

Figure 4.14: iscsi 30f3 seeks

Same situation can be seen in figure 4.14 since most of the measurements are recorded

between 100 to 350 files per second and the mean value for the seek operation in table 4.6 is on

230 files per second.

Summary

By looking through what we have observed, one thing in particular should be mentioned. The

difference in the performance between the writing and reading section was really the most

interesting. Seeing as the reading performance is measured to be half of what the performance
in the writing got but still they are operating at the same unstable work rate. Despite of the
bad performance in these two sections the ways of testing creating and deleting files scored high.
Both the difference and the range were at an acceptable number and indicating a more stable

work rate.

49

4.7 NFS basetest

This table shows the results from a NFS base test that was conducted on the virtualization
server Atlantis It was run without any VMs and Atlantis used the benchmark tool directly on
the environment shared by NFS.

Name Mean Median | (Mean - Variance Min Max | Range
Median)
putc 28534.444 | 28419 115.444 611578.954 | 27089 | 31697 4608
putc_cpu 60.212 60 0.212 3.238 57 67 10
put_block 27021.515 | 26818 | 203.515 1616586.290 | 24888 | 30831 5943
put_block_cpu 9.525 9 0.525 0.330 9 12 3
rewrite 13358.869 13337 | 21.869 47389.791 | 12861 | 13942 1081
’ rewrite_cpu 2.212 2 0.212 0.167 2 3 1
getc 23866.505 | 23721 145.505 647568.452 | 22146 | 26212 4066
getc_cpu 44.576 45 0.424 24.608 33 55 22
get_block 25155.343 | 25202 | 46.657 334903.781 | 23635 | 26436 2801
get_block_cpu 5.475 6 0.525 0.977 4 8 4
seeks 1049.258 | 1068.800 | 19.542 6178.578 615.0 | 1177.2 | 562.2
’ seeks_cpu 1.788 1 0.788 8.329 0 13 13
seq_create 38.697 39 0.303 0.433 38 40 2
seq_create_cpu 0 0 0 nan 0 0 0
seq_stat 4472.424 3714 758.424 1549846.850 | 3600 | 6756 3156
seq_stat_cpu 1.333 1 0.333 2.485 0 9 9
seq_del 77.657 78 0.343 2.407 74 79 5
seq-del_cpu 0 0 0 nan 0 0 0
ran_create 39.101 39 0.101 0.273 37 40 3
ran_create_cpu 0 0 0 nan 0 0 0
ran_stat 4939.737 4005 934.737 2523425.547 | 3916 | 7943 4027
ran_stat_cpu 0.465 0 0.465 1.239 0 9 9
ran_del 78.404 79 0.596 0.726 77 79 2

Table 4.6: Table of NF'S basetest

Overall Results

In the writing section of the NFS base test we can see that there is a very small difference
between the mean and median of putc with a 115 KB/s. However, its range between the min
and max shows a larger difference with a number of 4,6 MB/s. put_block seems also to have the
same phenomena with a difference for the mean and median of 203 KB/s and a range between
the min and max values of 5,9 MB/s. We can see that the cpu usage is much lower for the
put_block with a 9 percent usage compared to the putc operation that uses 60 percent during
its run.

rewrite operation performs at 13 MB/s which is a bit under half of the performance the
writing section produces during the benchmark tests. Furthermore, the difference of its mean
and median values is only 21 KB/s. Moreover, the range of the min and max values is 1 MB/s.
Both of these values are much smaller than the writing sections values. Same goes for the cpu

50

usage as well with only 2 percent usage as we can see from looking at the mean and median values

The reading section has similar results as in the writing section. getc has 23 MB/s while
get_block has 25 MB/s in mean and median. They have the same phenomena as in the reading
section with little difference between the mean and median and bigger range when it comes to
the max and min values. We can also see that the cpu usage for the getc and get_block is lower
with 44 percent and 5 percent usage. seeks seems to be performing quite well with a strong
mean of 1049 files and a median of 1068 files per second. Although, the min value 615 files per
second is only half of the maximum number of 1177 files per second.

By looking at the file operations like creating and deleting we clearly see bad performance
for being I/O benchmark tests. seq-create produces only between 38 to 39 files per second
according to the mean and median values. The performance of this NFS base test is so low
that we can get a number from the seq_stat. This operation reads through the file and sends
back the information about it like for instance permissions. In the mean we see that is stats
4472 files per second while in median it is 3714 files per second. This gives a higher difference
than the previous operations for this base test. seq_del also has a low performance by looking
at the mean value of 77 files per second and median of 78 files per second. The range of these
operations is very low and seems to be stable.

Next section which creates files in a different order seems also to perform low. ran_create
has a mean and median at 39 files per second which corresponds well with the min and max
values. ran_stat performs a bit higher compared to the seq_stat but this is also goes for the
difference of its mean and median values. Both seq_stat and ran_stat produces a very high range
and seem to have had problems during the benchmark test. ran_del performs on the same level
as seq_del.

Descriptive statistics

Writing and reading section have similar results produced from this benchmark test. There is
less to no difference in the mean and median values of the putc,put_block,getc and get_block
operations. However, we can see that putc and put_block have a larger range than the getc and
get_block, indicating a much more unstable work rate when it comes to writing. Moreover, the
rewriting operation performs with a lower mean and median but at a more stable work rate
with a range of 1 MB/s.

seeks is performing very well if we look at the mean and median values, up to 1000 files per
second. Although, if we look closer at the min and max values, 615 and 1177 files per second,
there is a wide range between them. Seeing as the mean and median values are much closer to
the max value than the min value, we could assume that some irregularities during its operation
occurred, causing bad results.

In the next sections we see operations with poor performance operating at stable work rate.
seq_stat and ran_stat stands out as the more unstable ones. Especially if we look at their max
and min values. They both have quite wide ranges, seq_stat with 3156 files per second and
ran_stat with 4027 files per second. The max value from both of them is also twice as big as the
mean and median values, which strongly suggests a very unstable and unreliable work rate for
these operations. Furthermore, seq_create, ran_create and ran_del have low performance but a
very stable work rate with a range of 2 to 5 files per second.

o1

Graphs of interest

Figure 4.17: NFS base seeks

From figure 4.17 we can see that the measurements recorded are heavily populated in the
area between 900 to 1150 files per second. These values corresponds well with the mean value
from table 4.7.

Summary

The overall results for this base test shows a very poor performance. Especially in the two
sections that handles and tests the creation and deletion of files. seq_create and ran_create
going as low as 38 to 39 files per second when we look at their mean and median values. This
also affects the outcome of the seq_stat and ran_stat that usually performs to fast to get a valid
measurement, because of the slow performance we can do some descriptive statistics of the data
coming from those operations as well. Seeks is the only operation under this base test that
performs well from what we have seen earlier.

93

4.8 NFS 3of3 test

From this table of data we can see the results from three VMs running a bonnie4++ benchmark
test on one of the virtualization servers, in this case Atlantis, which is connected to a shared
and mounted folder.

Name Mean Median | (Mean Variance Min Max Range
Median)
putc 25321.253 | 28261 | 2939.747 97671354.229 5540 | 40616 35076
putc_cpu 73.343 94 20.657 827.700 15 97 82
put_block 104609.697 | 111786 | 7176.303 6174875548.393 | 5495 | 289875 | 284380
put_block_cpu 35.444 38 2.556 715.863 1 85 84
rewrite 53472.293 | 51444 | 2028.293 1705559591.035 | 4035 | 180698 | 176663
rewrite_cpu 9.293 8 1.293 76.268 0 33 33
getc 21595.960 | 24070 | 2474.040 139606583.554 106 | 47859 47753
getc_cpu 54.051 58 3.949 935.725 0 95 95
get_block 141666.374 | 143731 | 2064.626 13727079249.163 | 6287 | 430634 | 424347
get_block_cpu 4.980 2 2.980 37.111 0 23 23
seeks 3005.201 | 306.200 | 2699.001 23392375.841 0 16365.1 | 16365.1
seeks_cpu 2 0 2 17.455 0 17 17
seq_create 2715.535 2929 | 213.465 1122266.734 355 4151 3796
seq_create_cpu 84 99 15 898.929 9 102 93
seq_stat 0 0 0 nan 0 0 0
seq_stat_cpu 0 0 0 nan 0 0 0
seq_del 35.293 0 35.293 122067.904 0 3494 3494
seq-del_cpu 0.020 0 0.020 0.040 0 2 2
ran_create 3010.030 3037 26.970 830162.595 342 4280 3938
ran_create_cpu 90.667 99 8.333 512.303 10 100 90
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 11903.657 | 12049 | 145.343 14317081.256 680 16409 15729

Overall Results

Table 4.7: Table of NF'S 30f3 test

By a quick view in the writing section we can see that the putc performs much lower than
put_block, putc has a mean of 25 MB/s and a median of 28 MB/s while put_block has 104
MB/s and 117 MB/s. Both of the operations have a high difference between the mean and me-
dian, same conditions can be stated for the ranges. putc has a range of 35 MB/s and put_block
with a 284 MB/s which seems to be very high. rewrite has twice the performance in mean with
53 MB/s and almost the same in median which looks a bit suspicious compared to what we

have seen before. Its range is also very high with a number of 176 MB/s.

In the reading section we have the same phenomena where getc operates with a mean value
of 21 MB/s and median of 24 MB/s while get_block has the mean value of 141 MB/s and 143
MB/s in median. Furthermore, we can see wide ranges according to their min and max values
as well. getc with a 47 MB/s and get_block with a very high range of 424 MB/s. Moreover,

o4

the seeks operation has a very big gap between its mean and median, seeing as its mean is 3005
files per second and median only 306 files per second. This could be affected by the range as
we can see that min is 0 and max is 16 MB/s.

However, if we look at the operations of creating and deleting files, we see little difference
with their mean and median. seq_create has a difference of 213 files per second while ran_create
has 26 files per second. Same goes for the ran_del that has 145 files per second. Despite the
good results in their difference between mean and median, they all have wide ranges if we look
at their min and max values. Especially ran_del that has a number of 15 MB/s compared to
seq_create with 3,7 MB/s and ran_create with 3,9 MB/s.

Descriptive statistics

As we mentioned earlier we can see some differences that really strikes out. The first two op-
erations tells us more than enough to see that the NFS has a very unstable work rate. putc
with a difference of 2,9 MB/s and put_block with 7 MB/s indicates an unreliable mean as well
as median. These two operations have also a very unstable work rate, with 35 MB/s and 284
MB/s. seeks has the most outstanding difference from these benchmark tests with a value of
2,6 MB/s, especially if we look at its mean of 3 MB/s and median of 306 KB/s. This operation
has a very unstable work rate as well by looking at its min and max values, seeing as the max
value of 16000 files per second is also its range.

Although, in the sections where files are being created and deleted in different order, the
mean and median were acceptable according to the values they have in difference. Only excep-
tion is the seq._del which usually have no credible measurements taken during these benchmark
tests, which seems to have had severe problems during this test. Its mean value of only 35
files per second and no median indicates the likelihood of irregularities causing these strange
numbers. However, it could simply be that its work rate is very unstable, and by looking at
its min and max values we can clearly see the wide range of 3494 files per second which is the
same as the max value.

ran_create and ran_del have also problems with unstable min and max values. Both of them
have a very wide range which is very easy to see by studying their max values. ran_create with
a 3,9 MB/s range and a max value of 4,2 MB/s, while ran_del has a 15,7 MB/s range and a
max value of 16,4 MB/s. These results puts a question mark on the mean and median on how
reliable they are.

95

Graphs of interest

put_block

+188x_nfs30f3_put_block.dat’ mmmm

o

fouanba.y

a
-

-

8,5 -

Figure 4.18: NF'S 30f3 putblock

From figure 4.18 we see that most of the measurements were taken in the area between 10
MB/s to 60 MB/s. However, there is many measurements taken in the higher regions of this

graph, suggesting a long tailed distribution. Table 4.8 seems to have a valid mean number with

25 MB/s when compared to the graphs recordings. It also seems to be a long tailed distribution

get_block

458

*188x_nfs30f3_get_block,dat” mmmm

468

358

368

258

2,5 -

fauanba.y

NFS 30f3 getblock

Figure 4.19:

in figure 4.19, with most of the measurement taken in the area between 10 to 60 MB/s and also
in the area between 170 to 220 MB/s. This could be justified by the mean value of 141 MB/s

in table 4.8, however, this graph shows great unpredictability for this type of technology.

56

seeks

r188x_nfs3o0f3_seeks,dat’ Emimm

2,5

B. I_| ‘ |
8 L L L A L L
a 288 488 6688 8688

16888 1268 1488 1668 1808

Frequency
=
£l

"

2]

Figure 4.20: NFS 30f3 seeks

Same goes for the graphs in figure 4.20 when we look how most of the measurements taken
resides in the area between 200 to 600 files per second and how the highest measurement taken
is over 16000 files per second. Suggests a clearly unstable work rate for this technology when
more are using it at the same time.

Summary

There were several of the operations that had a high difference between their mean and median
values. However, all of the operations had a wide range that made it even clearer for the ones
with high difference, that they were working at an unstable work rate. One surprise in this table
of data was the seq_del operation with a mean and a max value. This would suggest that the
performance was either very low or some irregularities occurred since normally this operation
measures no valid data while working properly.

57

4.9 DRBD basetest

These measurements are taken from a simple DRBD setup without any VMs up and running
on either Altantis or Nexus.

Name Mean Median | (Mean - Variance Min | Max | Range
Median)
putc 45244.414 | 45694 | 449.586 3458184.626 | 33992 | 47396 | 13404
putc_cpu 91.929 92 0.071 13.157 67 97 30
put_block 45408.515 | 45478 | 69.485 3271730.573 | 34123 | 49404 | 15281
put_block_cpu 7.434 7 0.434 0.407 5 9 4
rewrite 23021.475 | 23226 | 204.525 1158997.199 | 18143 | 24865 6722
rewrite_cpu 0 0 0 nan 0 0 0
getc 38075.253 | 38237 | 161.747 631781.967 | 33203 | 40033 6830
getc_cpu 49.414 49 0.414 2.121 41 53 12
get_block 70576.859 | 70806 | 229.141 1895523.435 | 60562 | 72337 | 11775
get_block_cpu 0 0 0 nan 0 0 0
seeks 356.824 358 1.176 125.870 299.1 | 378.7 79.6
seeks_cpu 0 0 0 nan 0 0 0
seq_create 4071.556 4079 | 7.444 2333.297 3872 | 4185 313
seq_create_cpu 97.404 97 0.404 0.604 95 99 4
seq-stat 0 0 0 nan 0 0 0
seq_stat_cpu 0 0 0 nan 0 0 0
seq-del 0 0 0 nan 0 0 0
seq-del_cpu 0 0 0 nan 0 0 0
ran_create 4262.859 4245 17.859 3088.586 4047 | 4336 289
ran_create_cpu 98.222 98 0.222 1.345 96 100 4
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 15802.121 | 16274 | 471.879 467742.753 | 14436 | 16673 2237

Table 4.8: Table of DRBD basetest

Overall Results

First glance over the results we can see that putc and put_block have the same results in mean
and median. Both of them have 45 MB/s as a mean and median, and a low difference between
them. Furthermore, we see that the min and max range of both of them are high. putc with a
13 MB/s and put_block with a 15 MB/s. rewrite seems to be performing close to half of what
putc and put_block have with 23 MB/s in mean and median. This operation has a lower range
of 6,7 MB/s between its min and max values.

In the reading section we have a lower result on getc with 38 MB/s in mean and median
compared to the putc. However, get_block has a much higher performance with 70 MB/s com-
pared to put_block and a lower range as well. seeks is performing stable with 356 files per second
in mean and 358 files per second in median, and have a range of 79 files per second between its
min and max values.

o8

When it comes to the creation and deletion testing, we see a less to no difference for both
seq-create and ran_create by looking at the mean and median values. There is a slightly higher
difference for ran_del but that could be that the performance is higher as well. Seeing as it has
15 MB/s in mean and 16 MB/s in median. The range values repeat the same trend we saw
with the difference numbers. seq_create has 313 files per second and ran_create has 289 while
ran_del has 2237 files per second.

Descriptive statistics

In the writing section we can see that the putc and put_block have high ranges, suggesting an
unstable work rate. Especially since the value of their difference from mean and median is less
to none. Seeing that both putc and put_block have 13 and 15 MB/s in range which is almost
half of the minimum value.

rewrite and getc performs on a much more stable rate as we see their ranges are half of putc
and put_block with 6,7 MB/s and 6,8 MB/s. Although, with the get_block we can see that
the range goes up again with 11 MB/s , but that could be that the performance in mean and
median is much higher as well.

seeks and the operations from the creation and deletion sections all seem to be in harmony
with their mean and median if we look at their difference which is very low. ran_del has the
highest numbers in difference and range in this section. However, if we compare the values from
ran_del with operations like seeks, seq_create and ran_create we can see that they are much
higher. This would suggest that it performs just as stable as the other operations but better
seeing as the numbers are higher.

Graphs of interest

35

30

a5

18

Figure 4.21: DRBD basetest putblock

From figure 4.21 we can see that most of the measured results for put_block are located
around 42 MB/s to 48 MB/s which corresponds well with the mean value from given in table
4.9. Figure 4.22 show that most of the data is in the area between 58 MB/s to 72 MB/s which
suggests that the mean value from table 4.9 of 70 MB/s is valid. As we can see in figure 4.23
most of the measurements are concentrated around 340 to 370 files per second. The mean value

99

b
]
3

%\\\\\\\\\\\N“M“\\

_

7

555555555555555555555
44444444444444444

mmmmmmmmm

Summary

DRBD seems to perform a bit lower on writing to blocks as one can see from put_block compared
to the reading operation get_block. There were also some instability for both writing and reading
during this benchmark test if we look at the ranges calculated from the measured min and max
values. The last two section with the creation and deletion of files seemed to be having better
performance and a much more stable work rate compared to the first operations.

4.10 DRBD 3013 test

This table of results contains the data measured from three VMs running the benchmark tool
bonnie++ on top of the virtualization server Atlantis

Name Mean Median | (Mean - Variance Min | Max | Range
Median)
putc 10024.525 | 9206 | 818.525 3988750.613 | 8181 | 16904 8723
putc_cpu 21.141 19 2.141 22.950 17 36 19
put_block 10918.495 | 10976 | 57.505 745612.129 8558 | 12888 4330
put_block_cpu 1.657 2 0.343 0.225 1 2 1
rewrite 7033.495 6891 142.495 439018.311 5794 | 9071 3277
rewrite_cpu 0 0 0 nan 0 0 0
getc 11255.434 | 11279 | 23.566 604215.599 8971 | 13099 4128
getc_cpu 12.121 12 0.121 1.157 9 15 6
get_block 38747.242 | 36494 | 2253.242 62389843.840 | 26706 | 66601 | 39895
get_block_cpu 0 0 0 nan 0 0 0
seeks 147.859 | 148.500 | 0.641 70.800 123.4 | 166.2 42.8
seeks_cpu 0 0 0 nan 0 0 0
seq-create 3134.626 2996 138.626 205190.214 2502 | 4009 1507
seq_create_cpu 95.455 96 0.545 5.056 88 99 11
seq-stat 0 0 0 nan 0 0 0
seq_stat_cpu 0 0 0 nan 0 0 0
seq-del 299.283 0 299.283 8777880.708 0 29629 | 29629
seq.-del_cpu 0.343 0 0.343 11.559 0 34 34
ran_create 3139.636 2958 181.636 202127.565 2509 | 4216 1707
ran_create_cpu 95.253 95 0.253 3.623 89 100 11
ran_stat 0 0 0 nan 0 0 0
ran_stat_cpu 0 0 0 nan 0 0 0
ran_del 12651.162 | 12275 | 376.162 2870622.237 | 8715 | 16349 7634

Table 4.9: Table of DRBD 30f3 test

Overall Results

The writing operations does not perform good during the benchmark test. putc has 10 MB/s
in mean and 9 MB/s in median. It also has a min value of 8 MB/s and twice as much in max
with 16,9 MB/s. put_block has the similar results in mean and median with 10 MB/s in each.
However, the gap between min and max is not that high for this operation, with a min value of

61

8,5 MB/s and a max value of 12,8 MB/s.

rewrite operations performs lower than putc and put_block with a value of 7 and 6,8 MB/s
in mean and median. Its min and max values has a lower gap than the previous operations.
Seeing as its min value is 5,7 MB/s and the max value is 9 MB/s.

In the reading section we can see that the performance is better. getc has 11 MB/s in mean
and median. Although, the max value is lower than for putc it has a smaller gap between min
and max which we can see by looking at its min value of 8,9 MB/s and max value of 13 MB/s.
get_put has a much higher performance with 38 MB/s in mean and 36 MB/s in median. This
seems to cause a much larger gap between its min and max values, as we can see with a min
value of 26 MB/s and a max value of 66 MB/s.

Operations when creating files are performing at a similar rate. seq_create and ran_create
have the same values in mean and median. Same goes for the min and max values, since both of
them have a min value of 2500 files per second and max value of 4000 files per second. Moreover,
the deletion operations are really unbalanced. Looking at the seq_del we have a mean value of
299 files per second and no median which gives the impression that this operation was struggling
From what we see from the min value of 0 and max value of 29629 files per second, we can
really back this up. As for ran_del we see a better performance and more stable as well. It has
a mean value of 12651 files per second and median of 12275 files per second , and a smaller gap
with a min value of 8715 files per second and a max value of 16349 files per second.

Descriptive statistics

The writing operation putc has a wider range than the reading operation getc with value of 8,7
MB/s. This indicates that writing with this technology is much more unstable than reading. It
is much easier to see the difference when it comes to put_block and get_block, seeing as put_block
has a range of 4 MB/s and get_block 39 MB/s. get_block has a much higher performance but
this seems to be affecting the stability of this operation.

In the creation of files operations we see nothing out of the ordinary, however, the deletion
operations are having problems if we look at seq_del. seq_del has a mean of 299 files per second
while its median is equal to 0. This would suggest that some irregularities is causing these
strange numbers. A path towards that direction only gets stronger when we look at the min
value of 0 and max which is 29629 files. By these measured results we could assume that there
is an unbalance when comparing the mean and median with the max value.

Graphs of interest

Seeing how the data measured lies within 8 to 12 MB/s in figure 4.24 the mean value of 10
MB/s is easily justified from table 4.10 Figure 4.25 shows that most of the measurements taken
for the get_block operation for DRBD with 3 VMs are found around 30MB/s to 40 MB/s. This
means that the mean value from table 4.10 is a bit unbalanced according to the graph. It is,
however, much better balance the mean value of 147 files per second for the seeks operation in
table 4.10 when we look at the graphs in figure 4.26. Since most of the measurements collected
are in the area between 120 to 160 files per second.

62

Summary

What we have seen of these results is low performance from both the writing and the reading
sections and all of their operations. It also was a high range for most of the operation, especially
the get_block operation. Although, creation of files seemed to be working rather well for this
technology, there were some strange results from the deletion tests. Seeing as seq_del seem to
be struggling a lot with very low performance and high difference in both its mean and median
as well as the min and max values.

4.11 Summary

We have so far covered every technology that have been tested during this project. In this sec-
tion we will summarize the results and make an easy viewable comparison of these technologies
with their base tests, where the mean and range value will be in focus when going through all
of the different operations.

Operation | Keeper | iscsi nfs drbd | nexus
putc 45871 | 42653 | 28534 | 45244 | 42277
put_block | 70315 | 45046 | 27021 | 45408 | 66632
gete 49877 | 14439 | 23866 | 38075 | 47166

get_block 72161 | 18294 | 25155 | 70576 | 70311
rewrite 29713 | 11346 | 13358 | 23021 | 28845
seeks 537 478 1049 356 486
seq-create | 3658 4037 38 4071
ran_create | 3746 4242 39 4262
ran_de 11898 | 15243 78 15802

o O O

Table 4.10: Table of Summary Results Mean Basetest

64

Performance Summary - Mean
Basetest

[Dkeeper_base
M iscsi_base
Winfs_base
[drbd_base
W nexus_base

I I
10 100 1000 10000 100000

Figure 4.27: Performance Summary Mean

Performance summary basetests Mean

From figure 4.27 we see the best results for each of the technologies by viewing their mean values
and comparing them. These results are based on the criterias and the type of environment I
used during this project. By looking close at this picture we can see that the basetests from
DRBD and keeper have even results in the reading operations. However, we can see that DRBD
performs better in the writing operations putc and put_block. NFS performs better if we look
at the seeks operation and iscsi does it slightly better during the file operations. Although,
overall it seems to be DRBD that performs best under the criterias chosen.

Operation | Keeper | iscsi | nfs | drbd | nexus

putc 1024 | 6121 | 4608 | 13404 | 1669
put_block 6930 | 5178 | 5943 | 15281 | 6985
getc 6207 | 1718 | 4066 | 6830 7307
get_block 8235 | 2214 | 2801 | 11775 | 4818
rewrite 29713 | 1358 | 1081 | 6722 1985
seeks 272 165 | 562 79 273
seq_create 257 374 2 313 0
ran_create 203 585 3 289 0
ran_del 1186 | 2452 2 2237 0

Table 4.11: Table of Summary Results Range Basetest

65

Performance Summary - Range
Basetest

[keeper_base
M iscsi_base
B nfs_base
Ml drbd_base
Il nexus_base

1 10 100 1000 10000 100000

Figure 4.28: Performance Summary Range

Performance summary basetests Range

In figure 4.28 the range values of all of the operations are gathered so that we can easily compare
them. Seeing that a high range value is unfortunate for the technologies, making them appear
unpredictable and have a certain amount of time it performs very low for instance, so that a
lower score is better in this figure. From the writing operations putc and put_block we can
see that keeper has a slightly lower range than nexus. Furthermore, in the reading operations
we can see that the iscsi technology has a lower range compared to the other technologies.
Moreover, we see that DRBD has the lowest range for the seeks operation. However, in the
final operations seq_create, ran_create and ran_del NFS has a much lower range than all of the
other technologies. This also tell us it performs best overall from a range point of view based
on the criterias and the experimental setup chosen.

66

Performace Summary - Mean

3 VMs
[iscsi 3of3
Wl nfs 3of3
W drbd 3of3
T T
100 1000 10000 100000 1000000

Figure 4.29: Performance Summary Mean 3VMs

operation | iscsi nfs DRBD

putc 16258 | 25321 10024
put_block | 15246 | 104609 | 10918
getc 7730 | 21595 11255
get_block 8996 | 141666 | 38747
rewrite 4440 | 53472 7033
seeks 231 3005 147

seq_create | 3648 2715 3134
ran_create | 3683 3010 3139
ran_del 13978 | 11903 12651

Table 4.12: Table of Summary Results Mean 3VMs test

Performance summary 3VMs Mean

By looking at figure 4.29 we see the mean results for all of the operations for the different
technologies running 3 VMs. In the writing and the reading operations we see that NFS has
a much better performance compared to the other technologies DRBD and iscsi. NFS has
no competition at all when it comes to the seeks operation. Furthermore, in the other file
operations seq_create, ran_create and ran_del NFS is passed by both DRBD and iscsi on all of
them. However, overall it seems to be NFS is the technology that performs best with 3 VMs
according to the criterias and the experimental setup I have chosen for this project.

67

Performance Summary - Range

3 VMs
M iscsi 30f3
Wnfs 30f3
[drbd 30f3
i T
10 100 1000 10000 100000 1000000

Figure 4.30: Performance Summary Range 3VMs

Operation | iscsi nfs DRBD

putc 16640 | 35076 8723
put_block | 8784 | 284380 4330
getc 5049 | 47753 4128

get_block | 12159 | 424347 | 39895
rewrite 2146 | 176663 3277
seeks 396 16365 42
seq_create | 1668 3796 1507
ran_create | 1827 3938 1707
ran_del 7504 | 15729 7634

Table 4.13: Table of Summary Results Range 3VMs test

Performance summary for 3 VMs Range

Figure Performance Summary Range 3VMs shows what the technologies running with 3 VMs
have of range for the different operations. Seeing how NFS performed so well according to figure
4.29 it has much wider range for all of the operations. DRBD and iscsi have more or less the
same values for range in the file operations seq_create, ran_create and ran_del. However, if we
look closer upon the writing and reading operations we can see that DRBD has a lower range
compared to the iscsi. The rewrite operation is the only encounter we see that DRBD performs
worse than iscsi. Based upon the results gathered from the experimental setup used for this
project and its criterias it is DRDB that performs best overall from a range point of view.

Best overall

Determine what technology that is best overall is not easy based on these criterias and experi-
mental chosen for this project. It depends more on what you or your company are looking for
and how many clients that will take use of this technology. DRBD and NFS are the ones that

68

shows themselves as the better technology based on these scenarios.

Based on these tests we can see that the more VMs added as clients, NFS is the one that
performs the best on an average. However, if you want to have a more predictable and stable
work rate DRBD is a better choice. Same relation is to be found for the base tests, seeing that
DRBD performs best on an average when standalone and NFS has a lower performance but a
much more stable work rate.

69

70

Chapter 5

Discussion

In this chapter we will go through and discuss some of the choices that were made during the
process that affected the outcome. Furthermore, it contains a retrospective view of the entire
process and the experimental setup, to see and explain what could have been done or should
have been done for the different choices made during the process.

5.0.1 The Process

From the very beginning of the process and the experimental testing started I had a open mind
of which SAN technology that would perform best. Seeing that all of the technologies I tested
are popular choices in smaller to larger companies. However, before the testing could start a
benchmark tool had to be found. The choice ended up with bonnie++ which is very popular
and used by both private and corporate people that are testing out different storage devices
and technologies. Although, there are many other benchmark tools out there that are highly
recommended[1], T have no regret of choosing bonnie++. It has a lot of documentation and
been in use for quite some time, making it easier to find answers to problems that may occur
when used. However, in spite of it being so popular there was no analysis tool that I could use
for my project. Thus, the decision to make my own tool was made. It did take me some time
to fully comprehend how I was going be able to gather the data from the bonnie++ output
with this tool, so that I could make the necessary statistics on the data and print it out in an
understandable format like tables and graphs. In the long run this saved me time since I now
could see and compare much easier by looking at tables and graphs.

By having both the benchmark tool chosen and analysis tool created, setting up the experi-
mental environment was left. If we look at the the figure 3.1 we see how we have two machines
that act as virtualization servers and two as SAN servers. The reason for having two SAN
servers was that DRBD would require them to serve as two nodes. Furthermore, I had varia-
tions on the machines concerning the SAN software and the amount of VMs running as users.
One thing that did not vary during these tests was the file system This could also have been
possible to vary and would have perhaps affected or changed some of the relations in the results.
In hindsight, it would have been interesting too see if it would affect the results and contribute
evidence to conduct a more thorough investigation when trying to identify the most optimal
SAN technology. In addition there could have been applied more VMs to further stress test the
SAN technologies to see if the relations would differ from the results I have ended up with three
VMs. I had intentions of testing with six and twelve VMs as well, however, time constraints and
the results from running three VMs seemed to be sufficient in order to receive interesting results.

71

The blade servers used during this project were located at another facility, which made it
time consuming to get the system back up and running again when problems occurred Both
travel distance and the steps to be allowed to go there made each problem of this magnitude
cost several hours of work.

The results from the benchmark tests that were performed with criterias I had chosen showed
that DRBD performed best overall according to the mean values from figure 4.27.Although, this
could have been affected by some technical issues which we will discuss later on. NFS, which
had a low performance according to the mean values had a much better outcome for its range
value in figure 4.28 with a very low value on some of the operations. Surprisingly, when adding
more VMs we see that NFS performed better overall on an average in figure 4.29. The reason
for using a word like surprising is because of some technological issues that happened during
the experiment which we will mention later.

5.0.2 The Results

When one takes a look at the results in general, one usually questions them, if they are valid
or to be dependent upon. These results, however, are according to the experimental setup and
the criterias sat for the bonnie++ benchmarking tool, valid. The decisions made for what type
of operations that should be more interesting for identifying and finding the best technology
I made based on the fact that SAN technologies use block devices to read and write. It is of
course possible to argument for other operations that could be more interesting in terms of
identifying and find the best SAN technology. The credibility of the data is also improved by
the feature in bonnie++, as mentioned in the background chapter, which does not take into
account the results from the operations that is being completed to fast. This lead to a few
operations not getting any data for each of the tested technologies.

The values chosen to compare the different technologies with was mean and range. With
the use of mean we can easily see how well each technology perform on an average while range
will showed us the difference between its highest and lowest measured performance during an
operation. Retrospectively, the two choices of measured values were enough to gain knowledge
which I could base a conclusion on. As long as the median would not be too different from the
mean value it would be credible to use as a measurement for performance. However, it turned
out to quite similar results overall in some cases which lead to some difficulties identifying the
optimal SAN technology. So I regret I did not take into consideration even more values when
summarizing and evaluating the final results.

The AoE and Pvfs technologies are not present in the result chapter or summary. Basically
I believe I aimed too high with collecting data for 5 technologies with the kind of experimental
setup chosen for this project and scenarios. Especially considering how it took me much more
time getting the necessary knowledge to configure and install DRBD. The reason for this is that
it is a very new technology and has compatibility issues with certain software which I should
have studied more so that I could have foreseen this in my time management schedule. This set-
back affected the time schedule for the whole process and forced me to do adjustments in the end.

This experiment is possible to repeat by anyone who read and understand the process of this

project. However, do not expect to get the exact same results as I have, but you should be able
to see the same relationships between the different technologies during basetesting and testing

72

with 3 VMs. The script used for analyzing the data and print out the tables and graphs of data
is fully accessible for those who wishes to use it. Same goes for the bonnie++ benchmarking
tool, it should be available for those who want to test it out.

Technological issues

During this project a few things did not work out as planned. When I started with the virtual
software such as Xen, it was a problem to configure and setup a combination of operating
system and kernel versions that would be xenified and work well with the systems at ABC
Startsiden. Seeing that they had some network configurations that would not cooperate well
with the Xen software. They way I solved this was to make the virtual server itself be connected
to the network and have a connection to the SAN server while the the VMs that would run
the benchmark test would have no awareness of the network. However, the VMs traffic would
go through to the virtual server and then further to the SAN server by sharing these images
over SAN that were used for creating these SANs. In hindsight, an attempt to work out the
networking configurations of the company could have been done, although, it was still a good
choice if we look at the fact that the VMs would create traffic on the devices shared from the
SAN technology. DRBD had some compatibility issues with the kernel version on the SAN
servers. It was also dependent on another SAN technology if it was to be tested with the
same experimental setup as explained in the methodology chapter. For obtaining results I
had to configure and install the DRBD resources on both of the virtualization servers which
would give it an advantage in form of caching for the VMs running on top with bonnie++. In
retrospect, I would have used more time on finding a way to solve these compatibilities issues.
However, it would have taken too much time to patch the kernel and to gain enough experience
to solve this within the few weeks I had sat aside for this technology. That is why I decided
on a scenario for this technology that would most likely affect its results and overall picture of
the three SAN technologies tested. NFS which had very good performance when testing with
three VMs had to be run several times for achieving results. Bonnie++ stopped running after
20 repetitions on all of the VMs each time it crashed which took a lot of time to redo and run
again. Especially since the benchmark tests was set to a 100 repetitions and it took about seven
hours to finish one benchmark test.

73

74

Chapter 6

Conclusion

As introduced in the first chapter: Companies need SAN technolgies for having a better way of
securing and backing up their data. However, there are many types which needs to be evaluated.
This thesis‘ aim was to investigate different technologies and based on these results answer this
question. Virtualization was used to simulate real ”users” within a company and bonnie++
created traffic to test the SAN technology. Although, some technical issues were present during
this process, it did not seem to affect the results too much. After having calculated and analyzed
the results for the SAN technologies that were tested. It was not possible to determine one
technology to be the most optimal and efficient among the chosen. Thus, DRBD and NFS were
pointing themselves out and performed best based on analyzes from the mean and range values,
saying that DRDB had the highest performance in mean while NFS worked more predictable
and had a more stable work rate. However, they changed places when adding more users, which
showed that NFS performed best on an average and DRBD had a more stable work rate.

Future work

There are many SAN technologies which you can choose for both smaller and larger companies.
In this thesis five SAN technologies were supposed to be tested but only three were fully tested
as explained in the discussion chapter. By using the scenarios and way of testing presented in
the methodology chapter one can potentially test out every SAN technology that is interesting.
Although, it will be a challenge when experimenting with technologies that are not a typical
SAN solution like DRBD, so further work on improving the lab setup would be beneficial in
terms of time. Furthermore, the analysis script can be further developed to gain more in depth
knowledge on how well a technology perform and more automation for the different steps taken
in order to receive results.

75

76

Bibliography

[11]

[12]

Ethan L. Miller Avishay Traeger, Erez Zadok and Darrell D. E. Long. Findings from the
first annual storage and file systems benchmarking workshop.

K.M. Begnum, K. Koymans, A. Krap, and J. Sechrest. Using virtual machines for system
and network administration education. Proceedings of SANE conference, 2004.

Kyrre M. Begnum. Towards autonomic management in system administration. 2008.
Sam Hopkins Brantley Coile. The ata over ethernet protocol. page 6, 2005.

Russel Coker. Bonnie++ homepage. http://www.coker.com.au/bonnie++/ accessed:13.
January 2009.

Lars Ellenberg. Drbd 8.0.x and beyond shared-disk semantics on a shared-nothing cluster.
2007.

Fabiano Lucchese John Tate and Richard Moore. Introduction to storage area networks.

Redbooks, 2006.

Robert B. Ross Rajeev Thakur Philip H. Carns, Walter B. Ligon III. Pvfs: A parallel
file system for linux clusters. Proceedings of the Extreme Linuz Track: jth Annual Linux
Showcase and Conference, 2000.

Barry Phillips. Have storage area networks come of age? Industry Trends, 1998.

LINBIT The DRBD project group. The drbd project installation and configuration.
http://www.drbd.org/docs/install/ accessed: 1. May 2009.

Andrew R. Pleszkun Stephen Aiken, Dirk Grunwald and Jesse Willeke. A performance
analysis of the iscsi protocol. 2003.

Smita Vishwakarma and Sankalp Bagaria. iscsi simulation study of storage system. Tenth
International Conference on Computer Modeling and Simulation, 2008.

77

Appendices

79

Appendix A

Selected bonnie+-+ output files

Iscsi basetest

NFS basetest

DRBD basetest

Iscsi representative data for 3 VMs

NFS representative data for 3 VMs

e DRBD representative data for 3 VMs

81

bonnie 100x iscsi 1

May 8, 2009
Name Mean Median | (Mean - Median) | Variance Min Max | Range
name 0.000 0.000 0.000 nan etch etch 0
file_size 1.000 1.000 0.000 nan 1G 1G 0
putc 42653.101 | 42781.000 127.899 738863.323 | 37996 | 44117 6121
putc_cpu 84.848 85.000 0.152 2.553 75 88 13
put_block 45046.192 | 45216.000 169.808 482467.145 | 40918 | 46096 5178
put_block_cpu 6.697 7.000 0.303 0.312 6 8 2
rewrite 11346.717 | 11235.000 111.717 77779.880 | 10858 | 12216 1358
rewrite_cpu 0.000 0.000 0.000 nan 0 0 0
getc 14439.909 | 14465.000 25.091 76518.891 | 13491 | 15209 1718
getc_cpu 6.596 7.000 0.404 0.483 4 8 4
get_block 18294.232 | 18291.000 3.232 132275.875 | 17223 | 19437 2214
get_block_cpu 0.000 0.000 0.000 nan 0 0 0
seeks 478.597 477.800 0.797 266.913 404.3 | 570.1 165.8
seeks_cpu 0.000 0.000 0.000 nan 0 0 0
num_files 16.000 16.000 0.000 nan 16 16 0
seq-create 4041.636 | 4037.000 4.636 3856.231 3838 | 4212 374
seq_create_cpu 96.929 97.000 0.071 1.379 94 101 7
seq-stat 0.000 0.000 0.000 nan 0 0 0
seq-stat_cpu 0.000 0.000 0.000 nan 0 0 0
seq-del 0.000 0.000 0.000 nan 0 0 0
seq.del_cpu 0.000 0.000 0.000 nan 0 0 0
ran_create 4242.646 | 4278.000 35.354 5385.319 3884 | 4469 585
ran_create_cpu 98.525 99.000 0.475 1.987 96 104 8
ran_stat 0.000 0.000 0.000 nan 0 0 0
ran_stat_cpu 0.000 0.000 0.000 nan 0 0 0
ran_del 15243.495 | 14859.000 384.495 685322.775 | 13981 | 16433 2452

\\\\\\\\\\\\\\\

BBBBBB
55555

- ¢ -

=

333333333333333
333333333333

|
=

n\\\\\\\\\\\\\\\\\\\\\\‘&\\\\\\\\\\\\\\\\\\\\“\

BBBBBBBBBBBB
3333333333333333
666666

eeeeeeeeee

T T
bonnie_188x_iscsi_l_seq_create,dat”

eeeeeeeeeeeeee

\\ |

rrrrrrrrrr

T T
" bonnie RN

rrrrrrrrrrrrr

lllllllllllllllll

\\\\

e

100x nfs direct

May 19, 2009
Name Mean Median | (Mean - Median) Variance Min Max Range
name 0.000 0.000 0.000 nan atlantis | atlantis 0
file_size 4.000 4.000 0.000 nan 4G 4G 0
putc 28534.444 | 28419.000 115.444 611578.954 27089 31697 4608
putc_cpu 60.212 60.000 0.212 3.238 57 67 10
put_block 27021.515 | 26818.000 203.515 1616586.290 | 24888 30831 5943
put_block_cpu 9.525 9.000 0.525 0.330 9 12 3
rewrite 13358.869 | 13337.000 21.869 47389.791 12861 13942 1081
rewrite_cpu 2.212 2.000 0.212 0.167 2 3 1
getc 23866.505 | 23721.000 145.505 647568.452 22146 26212 4066
getc_cpu 44.576 45.000 0.424 24.608 33 55 22
get_block 25155.343 | 25202.000 46.657 334903.781 23635 26436 2801
get_block_cpu 5.475 6.000 0.525 0.977 4 8 4
seeks 1049.258 1068.800 19.542 6178.578 615.0 1177.2 562.2
seeks_cpu 1.788 1.000 0.788 8.329 0 13 13
num_files 16.000 16.000 0.000 nan 16 16 0
seq-create 38.697 39.000 0.303 0.433 38 40 2
seq_create_cpu 0.000 0.000 0.000 nan 0 0 0
seq-stat 4472.424 | 3714.000 758.424 1549846.850 3600 6756 3156
seq-stat_cpu 1.333 1.000 0.333 2.485 0 9 9
seq-del 77.657 78.000 0.343 2.407 74 79 5
seq-del_cpu 0.000 0.000 0.000 nan 0 0 0
ran_create 39.101 39.000 0.101 0.273 37 40 3
ran_create_cpu 0.000 0.000 0.000 nan 0 0 0
ran_stat 4939.737 | 4005.000 934.737 2523425.547 3916 7943 4027
ran_stat_cpu 0.465 0.000 0.465 1.239 0 9 9
ran_del 78.404 79.000 0.596 0.726 7 79 2

|||||
N -

- N
\\ = ¢

8888888
22222

uuuuuuuuu

rewrite_cpu

|||||
N -

L

22

8

=
-~

§\\\\5

=

um§§

=

m. 2= @ @@\

= @@

. =
=

=

= @ %

Q§

uuuuuuuuu

uuuuuuuuu

pet_block_cpu

Ldat” e

ct [eeks

’188H_n#s_dire

&8

70

68

\\\\\\\\1

8888888888
3333333333333

uuuuuuuuuuuuuuuuuu

eeeeeee

| ||m

LA

888888888888888888888
1111111111

uuuuuuuuuuuuuuuuuu

11

rrrrrrr

base drbd 100x

May 19, 2009
Name Mean Median | (Mean - Median) Variance Min Max | Range
name 0.000 0.000 0.000 nan etch etch 0
file_size 300.000 300.000 0.000 nan 300M | 300M 0
putc 45244.414 | 45694.000 449.586 3458184.626 | 33992 | 47396 | 13404
putc_cpu 91.929 92.000 0.071 13.157 67 97 30
put_block 45408.515 | 45478.000 69.485 3271730.573 | 34123 | 49404 | 15281
put_block_cpu 7.434 7.000 0.434 0.407 b) 9 4
rewrite 23021.475 | 23226.000 204.525 1158997.199 | 18143 | 24865 6722
rewrite_cpu 0.000 0.000 0.000 nan 0 0 0
getc 38075.253 | 38237.000 161.747 631781.967 | 33203 | 40033 6830
getc_cpu 49.414 49.000 0.414 2.121 41 53 12
get_block 70576.859 | 70806.000 229.141 1895523.435 | 60562 | 72337 | 11775
get_block_cpu 0.000 0.000 0.000 nan 0 0 0
seeks 356.824 358.000 1.176 125.870 299.1 | 378.7 79.6
seeks_cpu 0.000 0.000 0.000 nan 0 0 0
num _files 16.000 16.000 0.000 nan 16 16 0
seq-create 4071.556 | 4079.000 7.444 2333.297 3872 | 4185 313
seq_create_cpu 97.404 97.000 0.404 0.604 95 99 4
seq-stat 0.000 0.000 0.000 nan 0 0 0
seq-stat_cpu 0.000 0.000 0.000 nan 0 0 0
seq-del 0.000 0.000 0.000 nan 0 0 0
seq.del_cpu 0.000 0.000 0.000 nan 0 0 0
ran_create 4262.859 | 4245.000 17.859 3088.586 4047 | 4336 289
ran_create_cpu 98.222 98.000 0.222 1.345 96 100 4
ran_stat 0.000 0.000 0.000 nan 0 0 0
ran_stat_cpu 0.000 0.000 0.000 nan 0 0 0
ran_del 15802.121 | 16274.000 471.879 467742.753 | 14436 | 16673 2237

888888888
3333333

uuuuuuuuu

T
.
[
L}
-
.

o
-
=
I
E
-l
=

55555555
333333

uuuuuuuuuuuuuuuuuu

_ T
.

[
m
-

\ 5

7777777

uuuuuuuuu

888888888
3333333

uuuuuuuuu

.
[X)
o

=

=

-

1

5555555555
44444444

uuuuuuuuu

eeeeeeeeee

rrrrrrrrrr

rrrrrrrrrrrrr

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

\\\\

= Kk

uuuuuuuuu

100x nfs3013

May 19, 2009
Name Mean Median (Mean - Median) Variance Min Max Range
name 0.000 0.000 0.000 nan etch etch 0
file_size 300.000 300.000 0.000 nan 300M | 300M 0
putc 25321.253 | 28261.000 2939.747 97671354.229 5540 40616 35076
putc_cpu 73.343 94.000 20.657 827.700 15 97 82
put_block 104609.697 | 111786.000 7176.303 6174875548.393 | 5495 | 289875 | 284380
put_block_cpu 35.444 38.000 2.556 715.863 1 85 84
rewrite 53472.293 | 51444.000 2028.293 1705559591.035 | 4035 | 180698 | 176663
rewrite_cpu 9.293 8.000 1.293 76.268 0 33 33
getc 21595.960 | 24070.000 2474.040 139606583.554 106 47859 47753
getc_cpu 54.051 58.000 3.949 935.725 0 95 95
get_block 141666.374 | 143731.000 2064.626 13727079249.163 | 6287 | 430634 | 424347
get_block_cpu 4.980 2.000 2.980 37.111 0 23 23
seeks 3005.201 306.200 2699.001 23392375.841 0 16365.1 | 16365.1
seeks_cpu 2.000 0.000 2.000 17.455 0 17 17
num_files 16.000 16.000 0.000 nan 16 16 0
seq._create 2715.535 2929.000 213.465 1122266.734 355 4151 3796
seq_create_cpu 84.000 99.000 15.000 898.929 9 102 93
seq-stat 0.000 0.000 0.000 nan 0 0 0
seq-stat_cpu 0.000 0.000 0.000 nan 0 0 0
seq-del 35.293 0.000 35.293 122067.904 0 3494 3494
seq-del_cpu 0.020 0.000 0.020 0.040 0 2 2
ran_create 3010.030 3037.000 26.970 830162.595 342 4280 3938
ran_create_cpu 90.667 99.000 8.333 512.303 10 100 90
ran_stat 0.000 0.000 0.000 nan 0 0 0
ran_stat_cpu 0.000 0.000 0.000 nan 0 0 0
ran_del 11903.657 | 12049.000 145.343 14317081.256 680 16409 15729

§5
§1

= .
‘\\. e]
“\\\\Q\M\\\Mu

uuuuuuuuu

putc_cpu

r188x_nfs3of 3_putc_cpu.dat” s

e

Jo Bl

7 R
Vol ol

25

28

15

Raouanba.ay

L}

168

98

&8

7a

1]

il]

48

30

28

b 2]

put_block

|

*188x_nfs3of3_put_block.dat”

308

258

houanba.ay

put_block_cpu

’1Béx_nfs3ofé_put_bloék-cpu.daé’ [EREERTY

[} T

Raouanba.ay

98

rewrite

’iaﬁx_nfséofa_reuéite.dat} ixvsaax]

I

208

168

148

houanba.ay

ite_cpu.dat” mmmm

I ’1BBH_nfs3olf3_reur1

\

8.4 a
188x_nfs3of3_getc.dat” s
paasa o b
0 R §§ § 7
Pustisfnl: N OGN NN 0N
48 45

Frequency

Frequency

getc_cpu

r1pex_nfs3of 3_getc_cpu, dat” [

get_block

3
' ' ' ' I’188:n:_ni‘slaoi‘3_gel;_lljlot:k.dai;l’ [EEERT

L || | L
258 388 3508 408 4

50

eeeee

||||||||
r

a]
=
o
c
2 1.5 q
T
@
[
w
1]
) || | I | | | || |
8 PN I N N RN N | AR N ! IR | I
208 408 608 fil::] 1888 1288 1488 1608 1888

\

e)
: -
. . T § o ; ; ; ; ; . . .
m . n\\n\x\n\\?\n\n\\?\u\n\\?\n\n\n\\?\\\ o
= e T
i)]
-]
2]
a =)
o ™
1]
0 [=0
£ F& B
3 - o
@ @
1 7]
L 1
n
o
@ L3 .m
[
]
x
= <
@ -]
= o
< 2 ™
F w |~ =
& 2
o ™
]
“ &
1]
[
o
“ -]

S
B

uuuuuuuuuuuuuuuuuu

§§5

eeeeeeeeeeeeee

7188x_nfs3of 3_seq_create_cpu,dat”

seq_del_cpu

uuuuuuuuu

w
§§

n\

E——
§§§§

]

e

EE———————

uuuuuuuuu

10

ran_create_cpu

;1BBH_nfs3of3_ran_créate_cpu.dat’ [EREERTY

“W“‘

168

98

&8

=
M~

-~}
w

=
')

Raouanba.ay

=
-

-~}
o

=
o

b 2]

ran_del

' '188H_Hf330f3_r$n_del.da€’ ixvsaax]

188

168

148

128

188

&8

68

48

b 2]

w

houanba.ay

T

11

bonnie 100x iscsi 3013

May 19, 2009
Name Mean Median | (Mean - Median) Variance Min Max | Range
name 0.000 0.000 0.000 nan etch3 | etch3 0
file_size 1.000 1.000 0.000 nan 1G 1G 0
putc 16258.444 | 16021.000 237.444 11392432.166 | 12011 | 28651 | 16640
putc_cpu 34.626 35.000 0.374 42.820 25 59 34
put_block 15246.657 | 13532.000 1714.657 8762264.286 | 12583 | 21367 8784
put_block_cpu 2.323 2.000 0.323 0.239 2 4 2
rewrite 4440.919 | 4329.000 111.919 172536.923 3675 | 5821 2146
rewrite_cpu 0.000 0.000 0.000 nan 0 0 0
getc 7730.374 | 7994.000 263.626 599217.668 5974 | 11023 5049
getc_cpu 3.283 3.000 0.283 0.607 2 5 3
get_block 8996.253 | 9353.000 356.747 2426084.492 | 6444 | 18603 | 12159
get_block_cpu 0.000 0.000 0.000 nan 0 0 0
seeks 231.807 235.000 3.193 7046.147 85.5 | 482.3 396.8
seeks_cpu 0.000 0.000 0.000 nan 0 0 0
num_files 16.000 16.000 0.000 nan 16 16 0
seq-create 3648.152 | 3816.000 167.848 168373.785 2434 | 4102 1668
seq_create_cpu 95.172 96.000 0.828 7.496 86 99 13
seq-stat 0.000 0.000 0.000 nan 0 0 0
seq-stat_cpu 0.000 0.000 0.000 nan 0 0 0
seq-del 0.000 0.000 0.000 nan 0 0 0
seq.del_cpu 0.000 0.000 0.000 nan 0 0 0
ran_create 3683.465 | 3866.000 182.535 221465.461 2476 | 4303 1827
ran_create_cpu 95.556 96.000 0.444 7.277 84 100 16
ran_stat 0.000 0.000 0.000 nan 0 0 0
ran_stat_cpu 0.000 0.000 0.000 nan 0 0 0
ran_del 13978.010 | 14799.000 820.990 4517906.879 | 8749 | 16253 7504

-
. F
T F

¢
P
- B

8888888
22222

uuuuuuuuu

e
e |
S

uuuuuuuuu

I’bt:mnie_l(:I(I:IM_isc:si_3r:if‘3_getc:.dali;’

get_blo

t_block,dat” mwmm

uuuuuuuuuuuuuuuuuu

eeeeeeeeee

’bt:mn.i.Ie_l(:lBM_iIsc:si_3t:ii‘3l_Seq_c:r‘elate.dat’I

=
| §§\§N§w§§§§§‘

”

Frequency

12

16

ran_del

" *bonnie_100x_iscsi_Jof3_ran_del,dat” moTm

1 R
A
PRI

118 12a 138 148 156 168 178

e

X
\

drbd 100x 2013

May 7, 2009
Name Mean Median | (Mean - Median) Variance Min Max | Range
name 0.000 0.000 0.000 nan etch etch 0
file_size 300.000 300.000 0.000 nan 300M | 300M 0
putc 10024.525 | 9206.000 818.525 3988750.613 | 8181 | 16904 8723
putc_cpu 21.141 19.000 2.141 22.950 17 36 19
put_block 10918.495 | 10976.000 57.505 745612.129 8558 | 12888 4330
put_block_cpu 1.657 2.000 0.343 0.225 1 2 1
rewrite 7033.495 | 6891.000 142.495 439018.311 5794 | 9071 3277
rewrite_cpu 0.000 0.000 0.000 nan 0 0 0
getc 11255.434 | 11279.000 23.566 604215.599 8971 | 13099 4128
getc_cpu 12.121 12.000 0.121 1.157 9 15 6
get_block 38747.242 | 36494.000 2253.242 62389843.840 | 26706 | 66601 | 39895
get_block_cpu 0.000 0.000 0.000 nan 0 0 0
seeks 147.859 148.500 0.641 70.800 123.4 | 166.2 42.8
seeks_cpu 0.000 0.000 0.000 nan 0 0 0
num_files 16.000 16.000 0.000 nan 16 16 0
seq-create 3134.626 | 2996.000 138.626 205190.214 2502 | 4009 1507
seq_create_cpu 95.455 96.000 0.545 5.056 88 99 11
seq-stat 0.000 0.000 0.000 nan 0 0 0
seq-stat_cpu 0.000 0.000 0.000 nan 0 0 0
seq-del 299.283 0.000 299.283 8777880.708 0 29629 | 29629
seq-del_cpu 0.343 0.000 0.343 11.559 0 34 34
ran_create 3139.636 | 2958.000 181.636 202127.565 2509 | 4216 1707
ran_create_cpu 95.253 95.000 0.253 3.623 89 100 11
ran_stat 0.000 0.000 0.000 nan 0 0 0
ran_stat_cpu 0.000 0.000 0.000 nan 0 0 0
ran_del 12651.162 | 12275.000 376.162 2870622.237 | 8715 | 16349 7634

333333333
3333333

e @@ @ @ @
- @ @0

\ NN
14 15 16

a
5
a \\\\\\\\\\\\\\\\
9 18

5555555555555555
333333333333333

EZ

E=l 8

=
- 0
B

B
== @

B
ZEE o
e
e
-
e
=

= @

n
B
e

==

B

L o

@

\§
¢
g \§
| ==
38 \\\M

L

_

- .
\\ __
\Q ¢
-

=
BBBBBBBBBBBB
3333333333

33333333
- - -

seq_del

28.6

-8.4

28.8

-8.2

29

seq_del_cpu

29,2

29.4

29.6

§\\\%

§M
-
— Lk

=

: 8
-

sy @ @ @@L
- @
_________®
1

3333333333
11111

ran_del

" rdrbd_188x_20f3_ran_del,dat” mmmm

178

136

128

118

10

