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Abstract

Todays computer networks are continuously expanding both in size and ca-
pacity to accommodate the demands of the traffic they are designed to handle.
Depending on the needs of the network operator, different aspects of this traf-
fic needs to be measured and analyzed. Processing the full amount of data on
the network would be a daunting task, and to avoid this only certain statistics
describing the individual packets are collected. This data is then aggregated
into ”flows”, based on criteria from the network operator. IPFIX is a recent
IETF effort to standardize a protocol for exporting such flows to a central node
for analyzation. But to effectively utilize a system implementing this protocol,
one needs to know the impact of the protocol itself on the underlying network
and consequently the traffic that flows through it.

This document will explore the performance, capabilities and limitations
of the IPFIX protocol. A packet-capture system utilizing the IPFIX protocol
for flow export, will be set up in a controlled environment, and traffic will be
generated in a predictable manner. Measurements indicate IPFIX to be a fairly
flexible protocol for exporting various traffic characteristics, but that it also has
scalability issues when deployed in larger, high-capacity networks.
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Preface

The work documented in this thesis, marks the completion of a 2 year master
program in Network and System Administration at Oslo University College in
collaboration with the University of Oslo. The degree has spanned the years
2005 - 2007, and the thesis has been written in the final semester.

Project Background The idea for this project came after working on a project
involving flow information export, at a network consulting company (IPnett
AS). Not knowing anything about flows, some research had to be done about
flow export. It soon became clear that very little information, besides RFCs and
Internet-Drafts, was available about IPFIX/NetFlow v10. Being so new and
untested, but at the same time being an effort to standardize such a widely
popular family of protocols as NetFlow, sparked an interest in finding out
more about this protocol. In discussions with professor Mark Burgess, it also
became clear that it would be interesting to see how a push-based, centralized
protocol would scale in todays ever growing networks.

Target Audience The content of this document, should be easily accessible
to most people with a minimum knowledge about basic networking. It is,
however, advisable to have a prior understanding of networking concepts and
protocols such as IP, TCP and UDP, to fully comprehend the material herein.
Other technologies used in the project, will be discussed in the opening chap-
ters. The experiments performed will be discussed, and results presented in
a simple and objective way. Configuration files for the applications used, and
other periphery information, will be provided in the Appendix. An effort is
made to keep the language and terminology in this document as clear as pos-
sible, so not to exclude any readers.

Thesis Outline The following is a rough description off each of the chapters
in the thesis. For a more complete view of the document structure, please refer
to the table of contents.

Chapter 1: Introduction This chapter contains an introduction to the subject
of the thesis. It explains the importance of the technology explored in
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this document. It identifies areas of interest within the subject, and it
explains the motivation behind the project itself.

Chapter 2: Background This chapter gives a presentation of the technology
chosen as subject for this thesis, and any other areas directly related to
the work. It also discusses any previous research within this area.

Chapter 3: Methodology This chapter explains the methods and ideas behind
the test procedures used in this project.

Chapter 4: Experimental Design This chapter documents the specific equip-
ment, tools and applications used to perform the tests. It also identifies
the limitations of the test bed.

Chapter 5: Results This chapter presents the results from the tests performed.
It explains the individual tests, and comments on the findings. Tables
and graphs are used to visualize the results.

Chapter 6: Conclusion, Discussion and Future Work This chapter contains dis-
cussion and conclusions deduced from the findings that has surfaced in
the course of the project. It also contains sections describing related and
future work within this field of research.

Appendix This chapter contains a collection of configuration files, scripts and
other information related to the project.
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Chapter 1

Introduction

This chapter serves as an introduction to the subject of the thesis. It gives an
overview of the ideas and motivations behind this project.

1.1 Measuring Network Traffic

Traffic measurements are necessary to operate all types of IP networks, be-
cause the network must be provisioned after the type and volume of traffic it
hosts. Network operators also need a detailed view of network traffic for se-
curity reasons. The composition of the traffic mix must be studied when find-
ing dominant applications, users, or when estimating traffic matrices. All of
these measurements could be done by logging the individual packages pass-
ing through central points in the network (typically routers and/or switches).
But with the increasingly higher volumes of monitoring data, brought about
by the ever-growing network capacities, this strategy is no longer feasible. In-
stead similar packets (packets with a set of common properties) are grouped
together in composite flows. These flows keep statistical records of the types of
traffic they are generated from. This way, similar types of traffic can be stored
in a more compact format, without loosing too much information.

Making correct measurements on IP networks is not an easy task. Net-
works built on IP are not designed to reveal detailed statistics of the traffic
between two endpoints. And the functionality for transmitting data between
two such points, is divided in layers that only communicate through standard
interfaces. Very few measurement capabilities are embedded into the different
protocols operating on different layers. Because of all the challenges surround-
ing the subject of precise measurements in IP networks, a lot of work has been
put down into the field. One of the latest technologies developed for use in
this area, is the subject of this thesis: IPFIX.
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CHAPTER 1. INTRODUCTION

1.1.1 Techniques

Measurement techniques are typically divided up into 2 categories, namely;
active and passive.

Active Measurements

When doing active measurements, artificial traffic is being injected into the
normal mix of network traffic, to test the network response. Statistics are then
generated from the networks reaction to this known traffic. Common meth-
ods in this area, are the use of Round Trip Times (RTT) and one-way delay
measurements. RTT can e.g. measure the total propagation delay to- and from
an observation point. One-way delay measurements, gives an estimation of
the time it takes to propagate a signal between 2 points in a network. For this
to work, both sides in the measurement must have their clocks synchronized.
Another type of test, that is definitely active, is the stress test. More intru-
sive than the other types of tests, caution must be taken when performing it.
In networks, the stress test is often used to gain insight into the maximum
throughput of a connection, by overloading the link one one side, and listen-
ing on the other. Delay, errors and other Quality of Service (QoS) aspects can
be measured this way.

Passive Measurements

In contrast to active measurements, passive measurements utilize the exist-
ing traffic in the network, monitoring through fixed observation points. Since
no test traffic is sent, passive measurements can only be applied in situations
where the traffic of interest is already present in the network. Passive mea-
surement is also referred to as non-intrusive measurement or as measurement
of observed traffic. It cannot provide the kind of controllable experiments that
can be achieved with active measurements. On the other hand it does not suf-
fer from undesired side effects, caused by sending test traffic (e.g., additional
load, potential differences in treatment of test traffic and real traffic). Some
traffic is often being generated on the network, though, when exporting the
collected data into a central database. The network monitoring performed in
this project falls under the passive category.

1.1.2 Exporting Flows

One of the most common ways of getting network measurements, is by ex-
porting flow information from the network nodes. This is done by aggregating
network information into flow datagrams. A flow datagram describes, amongst
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1.2. APPLICATIONS

other things, the source, destination and size of a flow. when collected, this in-
formation provides a method for getting a detailed view of the network traffic.
The use of flows allows for differentiation of different types of traffic through
a selection of traffic properties.

1.2 Applications

Flow information export has become almost a de-facto standard of information
retrieval for a number of applications and services. Common to all of them is
a need to collect and analyze an ever-growing volume of traffic. This section
will present some of the most common usages of flow information export[1].

1.2.1 Usage-based Accounting

Several new business models for selling IP services and IP-based services, have
been put into production in recent times. Such services often need accounting
based on time or volume, and accounting data can then serve as direct input
for various billing systems. With enough detailed data, the accounting can
be performed per user or per user group. It can differentiate between basic
services and high level services, or even on a per content basis. Advanced
filtering on classes of service, per application or per path used in the network,
is also possible.

1.2.2 Traffic Profiling

Traffic profiling is the process of characterizing IP flows by using a model that
represents key parameters of the flow (e.g. duration, volume, time, etc.). It is
considered an indispensable component of network planning, network dimen-
sioning, trend analysis and business model development. Since the objectives
of traffic profiling can vary greatly, so can the requirements from the traffic
measurements. This means it is in need of great flexibility in the infrastruc-
ture, configuration and classification from the measurement facility. Typical
information needed for traffic profiling is the distribution of used services and
protocols in the network, the amount of packets of a specific type (e.g., per-
centage of IPv6 packets) and specific flow profiles.

1.2.3 Traffic Engineering

Traffic engineering is a term for measurement, modelling, characterization and
control of a network. Its ultimate goal is the optimization of network resource
utilization and traffic performance. Traffic engineering comes as a direct re-
action to measurements made in network, and requires direct access to the
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CHAPTER 1. INTRODUCTION

network nodes, making it a 2-level operation. Level 1; passively obtain mea-
surement results, Level 2; actively use these to tune network parameters. Typi-
cal parameters required from measurements are: link utilization, load between
specific network nodes, number, size and entry/exit points of the active flows
and routing information.

1.2.4 Attack/Intrusion Detection

Capturing flow information to analyze network data is important factor in
network security. As a first perimeter defense, flow monitoring can allow for
detection of unusual situations or suspicious flows, from e.g. a denial of ser-
vice attack. As a second perimeter defense, flow analysis can be used to gather
information about the offending flows, allowing for the planning of a defense
strategy. Intrusion detection requires even more from the flows, as it not only
uses specific characteristics of flows, but also stateful packet flow analysis. Lo-
cating activities characterized by specific communication patterns.

1.2.5 Quality of Service Monitoring

QoS monitoring is the passive measurement of quality parameters for IP flows.
It often requires the correlation of data from multiple observation points (e.g.,
for measuring one-way metrics), which again demands clock synchronization
of the involved metering processes. Since QoS monitoring can lead to a huge
amount of measurement result data, it would highly benefit from mechanisms
to reduce the measurement data, like aggregation of results and sampling.

1.3 IPFIX

IPFIX is an IETF working group[2]. The IPFIX working group has specified the
Information Model (to describe IP flows) and the IPFIX protocol (to transfer IP
flow data from IPFIX exporters to collectors). The goal of the IPFIX working
group is now to produce best current practice and guideline documents concern-
ing implementation, application and usage of the IPFIX protocol. But even if
the specifications for the protocol is ready, the protocol still has to be thor-
oughly tested before network operators will feel confident to implement it in
a production environment

1.4 Challenges

The solutions in a specific subject, is seldom what makes the subject interest-
ing. But the challenges it poses, on the other hand, is what makes it intriguing.
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1.4. CHALLENGES

And IPFIX has some major challenges to overcome before it will be adopted as
an industry standard.

New Standard Being such a recent development, there exists very little mate-
rial today concerning IPFIX. Both in terms of information and other doc-
umentation about the protocol itself (mostly RFCs and Internet-Drafts),
as well as actual implementations of it. There are also very few records of
networks currently running flow information export through IPFIX. This
is possibly a chicken vs. egg situation, where one situation is dependant
on the other, and vice versa.

Prior Knowledge A flow information export system is often implemented on
a network to learn about the traffic already on it. But blindly imple-
menting such a system, could have a serious impact on the normal traf-
fic. Unfortunately these are the same systems used to gain that knowl-
edge, working as the typical Catch 22. But by documenting tests of these
systems under a controlled environment, while doing small-scale pas-
sive measurements on central network nodes, should provide operators
with enough information to implement a flow information export system
without to big of an impact on the normal traffic.

Sampling Generating flow records from all traffic seen in a high-capacity net-
work, can be almost impossible. Resource limitations (both in CPU and
in available bandwidth) has been overcome by sampling techniques. When
sampling, one only records a small sample of the traffic seen, and hopes
that it will be representative off all the traffic. It is not uncommon to have
a sample-ratio of e.g. 1:1000. But this is not good enough for all of the
applications of flow information export. For example, when using flows
to do intrusion detection, every single packet must be inspected.

Transport Protocol IPFIX specifies that any implementation must support UDP,
TCP and SCTP as transport protocols for flow information export. But it
also specifies SCTP as the preferred protocol. This might be a hindrance
to widespread adoption of the protocol, as SCTP also is fairly new and
untested. The protocol is only supported on a few platforms, and while
the SCTP seems solid on paper, operators are awaiting confirmation from
real world tests.

Scalability Questions are being raised if the old NetFlow architecture, which
IPFIX is based on, will have the scalability to keep up with the growth
of the high-capacity networks of today. Seeing that IPFIX is both push-
based and centralized, it is not hard to imagine intolerable volumes of
exported traffic. In short terms, the main problem is two folded; Firstly
since it is centralized, the bandwidth needed for export will increase to-
gether with the normal bandwidth usage on the network. Secondly since
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CHAPTER 1. INTRODUCTION

it also is push-based, the central node has no control over the incoming
flows, and will probably be the most narrow bottleneck.
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Chapter 2

Background

This chapter contains background information on the technologies being used
in the project and documented in this thesis.

2.1 Internet Protocol Flow Information eXport - Overview

Internet Protocol Flow Information eXport (IPFIX)[1, 2] is a protocol devel-
oped by the IETF IPFIX working group, which aims to standardize the format
used for the export of network flow data towards data collection devices and
network management systems. Network flow data annotates, here, the aggre-
gation of data packets into composite flows, by characteristics of the data pack-
ets. This is a field where Ciscos proprietary NetFlow protocol is the dominant.
IPFIX is based on the most recent incarnation of NetFlow, namely version 9.
This means that the IPFIX protocol is built on a template-based system of infor-
mation exchange, making it very flexible with regards to changing the default
information fields of the exported flow records. Because of the template-based
solution of flow records, it is fairly easy to tailor an IPFIX based flow informa-
tion export system to a network operators specific needs.

2.1.1 Terminology

This section will briefly explain some terminology commonly used when dis-
cussing IPFIX. The expressions herein will be used throughout this document.

Flow The IPFIX working group has defined a flow as: A set of IP packets passing
an observation point in the network during a certain time interval. All packets
belonging to a particular flow have a set of common properties. A packet is
defined to belong to a flow if it completely satisfies all the defined properties
of the flow. This definition will cover potentially any traffic seen at the
observation point. From a single packet with a specific sequence number,
to every single packet on the network.
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CHAPTER 2. BACKGROUND

Observation Point The observation point is a location in the network where
IP packets can be observed. Normally this means a central node in the
network, typically a router or a switch, or an external probe connected to
such a point.

Metering Process The metering process is the functionality at the observa-
tion point, that generates flow records from the packet headers seen at
a Network Interface.The metering process consists of a set of functions
that includes packet header capturing, time stamping, sampling, classi-
fying, and maintaining flow records. The maintenance of flow records
may include creating new records, updating existing ones, computing
flow statistics, deriving further flow properties, detecting flow expira-
tion, passing flow records to the exporting process, and deleting flow
records.

Flow Record A flow record contains information about a specific flow that
was metered at an observation point. A flow record contains measured
properties of the flow (e.g. the total number of bytes of all packets of
the flow) and usually characteristic properties of the flow (e.g. source IP
address).

Exporting Process The exporting process sends flow records, generated by
the metering process, to one or more collecting processes on a collecting
node.

Collecting Process The collecting process receives flow records from one or
more exporting processes. Normally the flow records are then stored in
a database system, but this action is not covered by the IPFIX protocol.

2.1.2 Architecture

Exporter Collector

Network

Observation Point

Metering
Process

Exporting
Process

Figure 2.1: IPFIX Architecture: The diagram shows a simplified version of the IP-
FIX architecture
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2.1. INTERNET PROTOCOL FLOW INFORMATION EXPORT - OVERVIEW

Figure 2.1 on the facing page shows the simple schematic of the compo-
nents needed for flow information export. The component labeled Exporter in
the diagram, can either be a central node in the network (typically a router or a
switch), or an external probe connected to this device. The exporter will have a
metering process running at all times, capturing the traffic on the network. This
process is also responsible for sorting the data packets into flows, and format
the flow records. In addition to this, the exporter also has a exporting process
running. The exporting process does not run at all times, but is called when
either the flow buffer is full, or after a certain time period. Whatever comes
first (the time period is configurable). When the exporting process is called,
it walks the flow cache, and starts sending the flows to a designated Collector.
When sending flow data, IPFIX utilizes 1 of 3 transport protocols. It is speci-
fied that IPFIX must support UDP and TCP, as well as SCTP. The Collector has
a collecting process running at all times, responsible for receiving flows, when-
ever they come in. Since the IPFIX protocol is push-based, the collector has no
influence on when the flows will be coming in. What to do with the flow data
after the collector receives it, is out of the scope for the IPFIX protocol, but the
most common thing to do is to store the data in a database.

2.1.3 Flow Keys

As explained, the metering process sorts data packets into flows based on a
number of properties of the packets, and a time frame. These special properties
of the data packet are called Flow Keys. and the IPFIX protocol specifies 7 of
these flow keys as the basis of which packets belongs together in a flow. These
keys are:

• Source IP address

• Destination IP address

• Source port

• Destination port

• Layer 3 protocol type

• Type of Service (ToS) byte

• Logical input interface

Together with a configurable time frame, they are used by the metering
process when generating flow records.
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CHAPTER 2. BACKGROUND

2.1.4 Templates

Templates enable the possibility of using specific information fields when ex-
porting flows. The templates are defined by the network administrator, and
can be configured to contain more- or less information fields than the default
setting. This is a very flexible way of exposing a variety of traffic/flow char-
acteristics. The use of flow templates is a feature that should make possible
future enhancements to flows, without simultaneously requiring changes to
the basic flow-record format. The templates are sent from the exporter to the
collector at the beginning of each export session. They are also periodically
resent, to ensure that the collector is aware of the format of the flow records it
will receive.

2.1.5 Transport Protocol

When exporting flow data, the connection between the exporter and collector
is set up over a transport protocol. IPFIX specifies that all implementations
must support UDP, TCP and SCTP as transport protocols. It also specifies the
preferred protocol to be SCTP. The most popular transport protocol for flow
information export, seems to be UDP. This is probably because it yields by
far the least overhead, and most operators do not need the added reliability
that TCP and SCTP offers. An overview of the SCTP protocol can be found in
section 2.2 on the next page

2.1.6 Message Format

The components and format[3] of an IPFIX message sent from an exporter to a
collector is as follows:

Message Header This is the common header, appended to all IPFIX messages.
The header contains the protocol version number, the message length,
the time of export, a sequence number and the ID number of the obser-
vation domain. The header has a total length of 20 bytes.

Template The IPFIX template specifies the format of the flow records sent,
and is always present in new export sessions. This is to ensure that the
collector is aware of the flow record format.

Option Template Template for specifying optional information fields for the
flow-records. Always present in new sessions, and periodically retrans-
mitted (as with the normal template).

Data Set The data set contains the flow-record(s) with the information fields
specified in the template or option template.

22



2.2. STREAM CONTROL TRANSMISSION PROTOCOL - OVERVIEW

A correctly formatted IPFIX message must contain the message header, and
at least 1 of the other 3 components (template, option template or data set).

2.2 Stream Control Transmission Protocol - Overview

The IETF IPFIX working group requires IPFIX implementations to support 3
different transport protocols for the export of flow information. These are:
UDP, TCP and SCTP. Out of these, SCTP is the preferred protocol. But since
the protocol has been developed very recently, only a few platforms have SCTP
support. People are sceptic towards it, because it is fairly untested, and the
protocol consequently suffers from a very low adoption rate. These reasons,
along with the fact that it adds plenty of overhead to the transport protocol, are
why people are still mostly using UDP for flow information export. But since
it is named as the preferred protocol for SCTP, it still warrants an overview of
it in this document.

The SCTP (Stream Control Transmission Protocol)[4, 5, 6, 7, 8] is a recently
developed, reliable transport protocol for use on top of a potentially unreli-
able, connectionless packet service such as IP. It is designed as a general pur-
pose, message oriented transport protocol, particularly needed when trans-
porting signalling data. Being message oriented, means it preserves its mes-
sage boundaries in the same way that UDP does. This means it is operating on
whole messages instead of single bytes. So if one message of several related
bytes of information is sent in one step, exactly that message is received in one
step. Being reliable, means detecting lost, duplicate and out-of-order data in
addition to containing flow- and congestion-control mechanisms, in the much
the same way as TCP does. It bases these mechanisms on checksums, sequence
numbers and selective retransmissions.

Chunk 1

Chunk N

SCTP
Common
Header

32 bits

Source Port Destination Port

Verification Tag

Checksum

Type Flags Length

User Data

User Data

LengthFlagsType

Figure 2.2: SCTP Packet Format: The diagram shows the simplified architecture of
a typical SCTP packet
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Figure 2.2 on the preceding page shows the format of a SCTP packet. The
first 12 bytes of any given SCTP packet, will contain the common header,
consisting of source/destination port, a 32-bit verification tag, and a 32-bit
checksum (Adler-32 algorithm) as protection from transmission errors. After
the header, comes N number of chunks, depending on the individual pack-
ets/messages. The chunk contains a Type-field, that describes the type of chunk
being transmitted. This can be a data-chunk, or various control-chunks. It also
has a Flag-field specific to the type of chunk, and a Length-field denoting the
length of the chunk. The User Data-field contains the payload.

SCTP introduces a new way of setting up connections, where the initial-
ization of a connection is completed after 4 steps. This is known as the SCTP
4-way Handshake. A simple diagram of this handshake is presented in figure 2.3
on the next page.

In figure 2.3 on the facing page, Host B is the passive host of the connection
setup (in other words: Host A initiates the connection). A passive side in such
an association in SCTP, will not allocate any resources until it receives and
validates the 3. of the messages. This mechanism will, to a certain degree,
help dealing with the issues of Denial of Service attacks. But on the other hand,
the added overhead of SCTP compared with other transport protocols makes
it also a candidate for such attacks. And since the adoption rate of SCTP is
fairly low, it is unknown if the 4-way handshake is an effective mechanism
against DoS situations.

SCTP operates on 2 distinct levels when transporting datagrams. The first
level is responsible for reliable transfers of datagrams. This is achieved by
checksums, sequence numbers and selective retransmissions. After a packet
has been validated, it continues to a second level, responsible for maintain-
ing the ordering of the received datagrams. This order is maintained within
individual streams, but not between different. To enable detection of loss of-
and duplicate data packets, as well as reliable datagram delivery, Transport Se-
quence Numbers (TSN), and Stream Sequence Numbers (SSN) are introduced.
The acknowledgements sent by the receiver, are based on these numbers.

SCTP can also do multi-homed streaming of data, which refers to SCTPs abil-
ity to transmit several independent streams of messages in parallel to nodes
which can be reached with more than 1 IP address. If the network hosting
these nodes is configured to send data to the node over different paths, the as-
sociation can become tolerant of physical network failure. SCTP can perform
retransmission of data over still available paths, if failures are detected.
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Host A Host B

Closed

Cookie Wait

Cookie Echoed

Established

Closed

Established

INIT

INIT_ACK

COOKIE_ECHO

COOKIE_ACK

4-Way Handshake

V: verification tag
I: initiation tag

V=0
I=TagA

V=TagA
I=TagB

V=TagB

V=TagA

Figure 2.3: The SCTP 4-Way Handshake: The diagram shows the architecture of
the typical SCTP 4-Way Handshake
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Chapter 3

Methodology

This chapter will describe the more detailed goals of the project, introduced in
chapter 1 on page 13. It will also elaborate on the methods used to reach these
goals, and how the reader should evaluate the resulting measurements.

3.1 The Scientific Method

The scientific method is a body of techniques for investigating phenomena and ac-
quiring new knowledge, as well as for correcting and integrating previous knowledge.
It is based on gathering observable, empirical, measurable evidence, subject to specific
principles of reasoning[9, 10]. It is a tool for researchers to propose specific pre-
dictions as explanations of natural phenomena, and design experimental mod-
els/designs to test the validity of said predictions. One of the most weighted
goals of the scientific method, is that the process must be objective, to reduce
a biased interpretation of the results. It is expected that all of the data gath-
ered must be documented and shared, so it can be inspected by peers in the
scientific field. This will allow for verification of the results by attempts of
reproduction, in addition to the establishment of statistical measures of the
reliability of the final result. All of the work put into this document and the
project which it describes, have been done in accordance with the scientific
method to the best of the authors abilities.

3.2 Objectives

The objective of this project is not based on the classical, well formed hypothe-
sis, formulated after observing a phenomenon and trying to rationally explain
its behavior. In fact, the motivation stems from quite the opposite, namely the
lack of observations of a phenomenon. The IPFIX protocol is based on a very
recent Internet-Draft by the IETF IPFIX working group. This means that there
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are very few working implementations of the protocol, and equally few obser-
vations of its behavior. The lack of documented observations and the fact that
the protocol itself is so new, creates some big challenges when evaluating it, as
well as an inspiration to do so. Since there seems to be very little documenta-
tion of the behavior of a working implementation of IPFIX, this projects focus
will be on observing its basic behavior, comment on the protocols design and
evaluate its choice of architecture.

Special attention has been given to the task of separating the protocol from
its implementation during the testing and evaluation phases. It is important
that the evaluation of the protocol does not suffer from eventual faults in the
implementation used for testing. The primary objective of the project is to eval-
uate the functionality of the protocol under normal operations. This means
that that it is imperative to measure and follow the test-data, and give less
attention to the applications actually running the services. As a secondary
objective, however, measuring the resource usage of the implementation can
be of interest. Excessive resource usage can be an indication of, either a bad
implementation, or a design flaw in the protocol. It can be a difficult task to
evaluate this, and it falls outside the scope of this project. In any case; if such
anomalies are found, they will be reported. The evaluation of these findings,
can then be done by the reader.

3.3 System Model

To put the protocol to test, a system consisting of 5 nodes was chosen (the
reason for the number of nodes, was the availability of equipment in the local
lab). These nodes would be able to host exporting/collecting processes, as well
as generate traffic, monitor resource usage and take measurements, to evaluate
the IPFIX protocol. A simple diagram showing the proposed system topology,
is presented in figure 3.1 on the facing page.

By running the different modules needed in the test setup as local pro-
cesses on each node, the total system resource overhead was reduced, com-
pared to alternative model approaches (see section 3.3.1 on the next page).
And since there was a lack of devices especially engineered to export IPFIX
compatible flows in the local lab, this approach would be the one involving
the least amount of work to set up. And less time setting up the test system,
meant that more time could be used on actual testing. And time is always
a factor when doing a project, such as this. The proposed system topology
should also be an adequate analogy to similar flow information export sys-
tems in real world scenarios. Here, each node could emulate a subnet, able
to generate traffic between local processes (emulating nodes in the same sub-
net) and between processes on different nodes (emulating nodes in different
subnets). Each node would then have one exporting process, emulating an

28



3.3. SYSTEM MODEL

Exporter

Traffic
Generator

Collector

Exporter Exporter Exporter

Traffic
Generator

Traffic
Generator

Traffic
Generator

Figure 3.1: Test System: The diagram shows the simplified topology/architecture of
the test bed. 5 nodes are interconnected through a switch. 4 of the nodes are generating
traffic between each other and exporting all flows seen on their NICs, and 1 of the nodes
is acting as a collector.

exporting node in a subnet. One node in the proposed topology, would be
reserved for the collecting process. All traffic seen on the Network Interface
Card on each traffic-generating node, would then be exported as a flow to a
central collecting node. This enables the monitoring, and consequent evalu-
ation, of the flow information export protocol in use. Both by capturing and
analyzing the generated traffic on the network, and also by monitoring the re-
source usage on the nodes. Tools for this would be set up on each node, and
configured to capture and log all activity. These traffic dumps and logs would
then be used as data for the analyzation process of the test.

3.3.1 Alternative Models

Alternative approaches to evaluate the IPFIX protocol, was also considered.
The most obvious one, was to use typical, specialized hardware, such as routers
and switches that supported IPFIX, and get measurements from them. This
would have a couple of clear advantages. Firstly, the protocol itself would al-
ready be implemented, and should not pose as a challenge to configure and
get working. Secondly, the nature of the specialized hardware would mean
that resource usage on the nodes would not be a cause of concern, as it should
not have any impact on the performance of the protocol. The biggest prob-
lem with this approach, would be to get access to such equipment. Since the
school did not possess IPFIX enabled devices, this approach would rely on the
cooperation of external partners. Using external partners would complicate
the project work, with respect to the availability of both equipment and exter-
nal advisors. It would also mean that the tests would not necessarily be carried
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out in a controlled environment, but perhaps in a production network. If that
was the case, there would be no way to manipulate the base-traffic in the same
way as in a laboratory. This approach was fairly quickly discarded.

Yet another approach to a system model that was considered for some time,
was the use of virtualization. This could be done in the local laboratory, with
the present equipment. The idea was to build virtual network(s), designed to
emulate real world network scenarios. This model also had its advantages,
and the most noticeable; configurability. With a virtualized network, one has
almost complete control over the node- and network parameters. It also comes
off as a fairly elegant solution, since all of the nodes and components would
have the same mode of operation as in a real world scenario. This in contrast
to the chosen model, where instances of exporters, traffic generators and mea-
surement tools only lives as separate processes inside one machine. Without
getting to philosophic, an argument could be made that this is the same thing
that is happening when virtualizing, only with more overhead. But at least
all of the configurations would be done in a way, similar to a real scenario.
A couple of points counted against going the virtualization route. Firstly, us-
ing virtualization would mean a lot more work when setting up the test bed.
And even if this could be done in cooperation with others, using the same
system for tests involving virtualization, the increased setup time would be
damaging to the already constricted time slot for this project. In addition, the
virtualization would add resource overhead to the tests, possibly having an
impact on results. One could argue that this overhead would not matter, since
the performance of the IPFIX protocol would always stay relative to the data
it is exposed to. But in the end, this approach was also abandoned in favor of
the simple test design chosen (see section 3.3 on page 28).

3.3.2 Protocol Implementation

The fact that the draft of the IPFIX protocol is fairly recent, meant that very few
implementations of the protocol for generic hardware existed. And since the
protocol originally was designed for specialized hardware, such implementa-
tions are often left up to the individual vendors. Searching for IPFIX enabled
NetFlow probes for generic x86 hardware, was a task simplified by the fact
that there exists only a handful of these. Choosing an implementation for test-
ing was even easier, as there seemed to be only one IPFIX enabled application
ready for deployment, as other implementations only consisted of IPFIX com-
patible libraries. Due to time restrictions, writing an application that could
take advantages of these libraries, was not an option. A complete implementa-
tion of the IPFIX protocol, would consist of both an exporter and a collector, as
discussed in section 2.1 on page 19. One of the nodes in the test setup would
act as the collector, while all the other blades would have an export process
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running. The chosen applications for exporting/collecting IPFIX flows, are
described in sections 4.1.2 on page 35 and 4.1.2 on page 36 respectively.

3.3.3 Generating Test Data

In a real life scenario, the flow information export protocol would be exposed
to a varied mix of network traffic. It is not the goal in the tests described
in this document, to recreate this mix of traffic in the strictly controlled test
environment. Instead a traffic generator capable of outputting specific types
of data, is to be used. By controlling the generated data down to packet level, a
clear understanding of the impact of the flow information export protocol can
be gained. So while the final results might not seem to be directly comparable
to a typical real life situation, the results will be of a kind such that the reader
should be able to relate them to a specific scenario. This, of course, demands
that the reader already has some knowledge of what kind of traffic is present
on the network in question. The traffic generator chosen for the tests described
in this document, is presented in section 4.1.2 on page 36. It is based on a
client/server architecture, and is configurable on a per-flow basis.

3.3.4 Selected Measurements

When measuring the effects of IPFIX on a network, the interesting data will be
the traffic volume emitted when exporting flow records. To a certain degree,
it is also interesting to measure the strain on the system providing the flow
information export service. But this will not necessarily have any direct impact
on the traffic already present on the network, and it will for the most parts be
a testament to the specific implementation being tested. In the tests presented
in this document, resource usage will be monitored, but not commented on
unless they exceed normal levels. This is just to ensure that the IPFIX protocol
does not suffer from any possible resource depletion.

The IPFIX protocol specifies 3 possible protocols for transport of flow-data
(namely UDP, TCP and SCTP). These are not the main focus of this project,
and evaluating them on a specific basis falls outside of the scope of this doc-
ument. UDP and TCP are considered as well known protocols, and the SCTP
evaluations referenced to in this document are made by Stewart, et. al.[7] and
Rajamani, et. al[8]. Instead the measurements taken in the test will be on the
bandwidth usage of the flow information export under various types of base-
line traffic, and with various configuration of flow records. Comparisons with
similar protocols to IPFIX will also be done. One thing to keep in mind when
measuring bandwidth usage, is to present the final results in a way that cor-
rectly reflects the strain on the network. Elaboration on this topic can be found
in section 5.1.3 on page 45.
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All of the tested applications produce logs of the activity, and these logs
could potentially be used as measurements in the tests. But to ensure even
more objectivity, a separate application will be responsible for all measure-
ments from the separate activities on the system. This application is presented
in section 4.1.2 on page 36.

3.3.5 Sources of Errors

There are some possible sources of errors in this test model, but by identifying
them early in the process, they can be attended to accordingly.

One of the things to look out for, is excessive resource usage on the nodes
running processes pertaining to IPFIX. This could be indicative of problems
with running processes, or just normal symptoms of processes with intense
resource usage. In either case it could mean that essential processes for the
final result could be affected, and the results thereby tainted. To ensure that
this will not skew any of the results, a lightweight monitoring application will
be running on each of the nodes, logging essential system information. This
way, any possible errors due to resource depletion, can be identified, and the
specific tests redone with new configurations.

Another possible problem, could be errors within the applications running
the flow export service itself. Since no comparable results exist, it could be
hard to identify any errors from the measurements taken during tests. The
applications will be running in very verbose mode, and all output will be logged
and inspected. But there is no guarantee that any errors in the application
itself, would show up on any logs. This is a calculated risk when running
recent or otherwise immature applications. It all boils down to how much one
trusts the implementation.

The measurements themselves could also contain errors, if the measuring
application fails. The application chosen for the task, is a very mature pro-
gram that has been tried and tested over an extensive period of time. This
is, of course, a heavily weighted factor when analyzing the risk of errors in
measurements.

And lastly, there could be errors, or at least misrepresentations, when pre-
senting the results from the tests. This especially holds true when presenting
bandwidth usage. A more in-depth discussion of this is present in section 5.1.3
on page 45. In particular there is a danger of averaging the data over a too large
time interval when presenting the discrete measurements on a seemingly con-
tinuous timeline.
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Experimental Design

This chapter contains discussion about the simple experimental setup, that
allows for inspection and analysis of the IPFIX protocol. It will present the
equipment and tools used to carry out the measurements in the experiments,
in detail. It will also address some of the shortcomings with the experimental
design, and discuss the impact of these on the final results.

4.1 System Configuration

All of the experiments were carried out on the IBM BladeCenter HS20 available
in OUCs network lab. The BladeCenter was chosen because of its relatively
high capacity in processing power, RAM and internal network bandwidth. An
overview of the test setup can be seen in figure 4.1 on the following page. Due
to resource limitations, this setup was also used by other master students at
OUC for work on their master thesis, and some compromises in the form of
time-sharing and choice of operating system had to be made. This was known
before the experiments started, and should not be viewed as a hindrance to
the work documented in this paper. The BladeCenter in the lab had 6 blades
installed.

4.1.1 Hardware Equipment

All of the blades in the IBM HS20 BladeCenter chassis are identical in hard-
ware. However, since one of the blades was malfunctioning at the beginning
of the experiments, only 5 blades were actively used.

IBM HS20 BladeCenter Chassis

Table 4.1 on the next page gives an overview of the IBM HS20 BladeCenter
Chassis.
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Blade1

Blade2

Blade3

Blade4

Blade5

Blade6

IBM BladeCenter HS20

Nortel Gb Switch

128.39.73.21

128.39.73.22

128.39.73.23

128.39.73.24

128.39.73.25

128.39.73.26

Figure 4.1: IBM BladeCenter HS20: The diagram shows the internal network con-
figuration of the BladeCenter, where the individual blades are connected to a Nortel
Gigabit-switch

HS20 BladeCenter Chassis
Blade Bays 14 dual-processor blades
Media DVD-rom and USB port available to all blades
Networking Nortel Networks Layer 2/3 Copper Gigabit Ethernet
Management Software IBM Director

Table 4.1: Description of the IBM HS20 BladeCenter Chassis: The BladeCenter
chassis supports redundant power supplies and has a separate network interface for
management.
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IBM HS20 Blades 1-6

HS20 Blade 1-6
CPU Intel Xeon Processors (dual) - 2.8GHz
RAM 1GB PC2-3200 DDR2
Network Dual Gb NICs
Hard Drive 32GB Ultra320 SCSI
Operating System Ubuntu 6.04, Kernel 2.6.15-xen (XEN enabled)

Table 4.2: Description of the IBM HS20 Blades: All of the blades are connected
internally through a Gigabit switch. They share the same hard drive, USB port, CD-
rom, mouse keyboard and screen, which is administered via a KVM switch.

Table 4.2 gives an overview of the hardware in IBM HS20 Blades 1-6.

4.1.2 Tools

All of the software used in the different tests, is open source and available to
everybody. Unless specified otherwise, they are the standard version available
from the Internet.

Operating System - Linux

Linux[11] was installed onto all of the Blades. To accommodate for the needs
of multiple students using the BladeCenter as a test bed in their master thesis
work, a Xen-enabled kernel was chosen. As a result of this, Ubuntu 6.04 (LTS)
with kernel 2.6.16-xen is used in all of the tests documented in this paper.

IP flow exporter - nProbe

nProbe[12] is an open source NetFlow/IPFIX probe, able to capture packets
flowing on an Ethernet segment, compute the corresponding flow and export
them to a designated collector, using NetFlow/IPFIX. Flow parameters are con-
figurable, and nProbe is able to export flows to both commercial applications
and other open source tools such as nTop. nProbes packet capture mechanism
is built on the libpcap packet capture library. There was initially some problems
with getting nProbe to function properly, but with the help of the author (Luca
Deri), and a version of nProbe from the development branch, the application
was able to capture packets and export them using the the latest IETF draft for
IPFIX.

The following is console output from the program, showing the version
number:
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bash 1 \$ ./nprobe -v

Welcome to nprobe v.4.9.1 for i686-pc-linux-gnu

Built on 04/11/07 11:34:14 AM

Copyright 2002-06 by Luca Deri <deri@ntop.org>

IP flow collector - nTop

nTop[13] is an open source NetFlow/IPFIX probe and collector, from the same
author as nProbe. nTop is able to both capture and export traffic flows as well
as collect and analyze them. When used purely as a collector, nTop can be
controlled from a relatively simple web interface. Since nProbe uses less re-
sources than nTop when capturing and exporting flows, nTop is used purely
as a collector in the experimental setup.

The following is console output from the program, showing the version
number:

bash 2 Welcome to ntop v.3.2 SourceForge .tgz

[Configured on Nov 30 2005 4:16:33, built on Nov 30 2005 04:17:15]

Copyright 1998-2005 by Luca Deri <deri@ntop.org>.

Traffic Generator - Harpoon

Harpoon[14] is a flow level traffic generator. It utilizes a two level design, with
a client- and a server-part, to generate flows with specific statistical qualities. It
is possible to use harpoon to extract distributional parameters from measured
network traces, to replicate the traffic. But it can also be manually configured
through input files, to generate traffic from some relatively simple parameters.
This is the desired option for all of the tests in this experimental setup. An
example of such configuration-files, can be found in appendix A.1 on page 71.

Packet Capture - Tcpdump

Tcpdump[14] is a common tool for capturing traffic from a network interface.
It is built upon the thoroughly tested libpcap packet capture library, and can
both display the captured packets directly on the console, or dump the them
into a binary pcap-file. In addition it can utilize BPF-filters for minimizing the
processing load, or rendering more useful output, on networks with a high
volume of traffic.

Data Mining - Tcpstat

Tcpstat is a tool for collecting statistics about network interfaces. It can collect
information about network usage by either monitoring a specific network in-
terface, or reading from a previously captured dump-file. For the experiments
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documented in this paper, it is used for gathering bandwidth information from
previously captured tcpdump-files.

System Monitor - Atsar

Atsar is a program designed to collect different statistics about the system it is
running on. It accomplishes this by reading the files under the proc directory
in predetermined intervals, and logging the output. Atsar is used as a system
monitor on both the exporting and collecting nodes in the experimental setup.
Its primary function herein, is to check if the results could be influenced by
strain on the components in the system (and not by the design of the protocol).

Plotting - Gnuplot

Gnuplot[15] is a command-driven interactive function plotting program. It is
used to plot the graphs of the measured values in the experiments.

Time Synchronization - NTP

The Network time Protocol[16] (NTP) is a protocol for synchronizing the clocks
of networked computers. Since the experimental setup utilizes multiple hosts/nodes,
it is imperative that they keep the same time, so it is possible to correlate the
results on the individual nodes with each other.

Post Processing - Script

A small python script was used for light post processing of the collected net-
work data. Since the throughput measurement is a figure relative to the times-
pan of the collected data, as discussed in section 5.1.3 on page 45, this script
provided a flexible way of normalizing the final data. The script can be found
in appendix A on page 71.

4.2 Limitations

The IPFIX protocol is designed to be implemented It is heavily based on Ciscos
NetFlow protocol version 9. Cisco originally designed the NetFlow protocol
for use on networks utilizing the companys own routers. While this doesn’t
hinder the IPFIX protocol to be implemented on other type of nodes, such as
generic x86 computers, it does explain why there is just a few available im-
plementations for such nodes. The fact that IPFIX has its roots from a pro-
tocol designed for routers, combined with the fact that it is a fairly new pro-
tocol, means that there only exits a very low number of implementations for

37



CHAPTER 4. EXPERIMENTAL DESIGN

standard x86 boxes. There are some applications, both open and proprietary,
that are capable of receiving IPFIX formatted flow-data. And there seems to
be even fewer applications capable of exporting such flows. When choosing
which implementations to use for testing IPFIX, the deciding factor quickly
became the flow exporter. There seems to be only 1 readily available, open
application that supports the export of IPFIX formatted flows. And that is
nProbe[12]. In addition there exists libraries, such as libipfix, that has support
for IPFIX, but these would require an external application to utilize its func-
tionality.

But even if there is only a limited number of solutions that implement the
protocol in question, and only 1 implementation is actually tested, this should
not affect the outcome of the tests. It is imperative to keep in mind when look-
ing at the results, that it is how the protocol dictates behavior that produces
the results, and not the implementation of it. To make sure that the implemen-
tation is not a limiting factor, a monitoring application for system resources
was used during all tests.

4.2.1 CPU

The CPU present on the blades, could theoretically become an bottleneck in
the experimental design. Both the metering process on the exporting nodes,
and the collecting process on the collecting node, requires a certain amount of
processing power. The blades are, however, equipped with dual Intel Xeon
processors running at 2.8GHz. This is a fairly powerful processor, even by
todays standards, and it should not be any weaker than its counterparts found
in state of the art routers.

The following is console output from reading cpuinfo for one of the CPUs:
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bash 3 $ cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 15

model : 4

model name : Intel(R) Xeon(TM) CPU 2.80GHz

stepping : 3

cpu MHz : 2800.220

cache size : 2048 KB

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 5

wp : yes

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat

pse36 clflush dts acpi mmx fxsr sse sse2 ss ht

tm pbe lm constant_tsc pni monitor ds_cpl cid

cx16 xtpr

bogomips : 5602.96

4.2.2 RAM

The amount of RAM is also a potential bottleneck in the experimental test
setup. This applies especially to the metering process on the exporting nodes,
that needs to hold a vast amount of information in buffers before writing to
disk, when capturing packets off the network. The blades are each equipped
with 1GB of RAM, which on a x86 system, is comparable to many types of
routing equipment. The atsar application used in the experiments, is able to
log both memory and cpu usage during the tests. This will alow for analysis
of resource usage, and discussion of the possibility that resource depletion is
tainting the protocol test results.

4.2.3 Hard Drive

The hard drive read/write speed could affect the packet-capture operation,
when capturing high volume traffic. The blades have a 32GB Ultra320 SCSI
hard drive, which should yield decent performance.

The following is concole output from the hdparm application, timing the
drive speed:
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bash 4 $ sudo hdparm -tT /dev/sda1

/dev/sda1:

Timing cached reads: 3348 MB in 2.00 seconds =

1674.81 MB/sec

Timing buffered disk reads: 174 MB in 3.01 seconds =

57.83 MB/sec

4.2.4 libpcap

Libpcap[17] is the packet capture library used in both nProbe and tcpdump. It
provides a high level interface to packet capture systems, and is an essential
component in the experimental setup. It is both well documented and thor-
oughly tested, and should be a suitable solution when analyzing the IPFIX
protocol. Still, there is one concern that has become evident during the test
period; Since both the application being tested, nProbe, and the application
used for measurement, tcpdump, rely on the same component for their core-
functionality, errors in the test itself might not be discovered in the measure-
ments. But even if this is true, libpcap is the most widely used component for
this type of application. It would seem that choosing any other type of packet-
capture mechanism, would mean choosing a more uncertain, and not so well
tested solution.

During the tests, the limits of the packet-capture mechanism quickly sur-
faced. Depending on the size of the packets and the traffic volume, i.e. the
number of packets per second, the packet-capture mechanism started drop-
ping packets. This behavior occurred both in nProbe, and in tcpdump. The
common denominator here being the libpcap library. This indicates that it is
not a individual problem with either of the applications, but rather a common
problem with the packet capture library. Atsar was used to log both CPU and
RAM usage, to discover if the culprit could be heavy hardware resource us-
age. But when looking at the Atsar-log from the sessions where libpcap started
dropping packets, there was no evidence of high CPU or RAM usage.

Since tcpdump was set to write to a binary dump-file, using the -w option,
the disk write speed could be a bottleneck when capturing a high number of
packets. But sending the dumped packets to /dev/null, and thereby avoiding
writing the file to disk, did not reduce packet loss at high speeds. In addition
tcpdump was set to not resolve IP addresses and BPF-files (Berkley Packet Fil-
ter) were introduced, in an effort to reach larger traffic volumes before packet
loss occurred. To no avail.

After spending a fairly long time trying to fix libpcap, a decision to run all
tests with speeds that libpcap could keep up with without dropping packets,
was made. For the protocol analysis, there is no need to push high volumes
of traffic during testing. Since this is not a test of the implementation, but
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of the protocol underneath, testing with low traffic volumes should give the
same results as with high volumes. The results presented will be relative to
the amount of traffic produced. Also, it would be wrong to directly compare a
generic software implementation of IPFIX for x86, to IPFIX implementations in
dedicated hardware (i.e. routers and switches). On commodity x86 hardware,
libpcap is used as the most stable and effective packet capture library. On the
other hand, on most routers and switches all packet capture is performed in
hardware, and does not suffer from the same limitations as its software coun-
terpart. But evaluating the individual implementations of the IPFIX protocol,
is not within the scope of this thesis.

4.2.5 SCTP

The Stream Control Transport Protocol[4, 5] is the preferred transport proto-
col for IPFIX. But in despite of this, it seems to be very seldom utilized in
flow information export systems. This is largely due to the fact that it is a re-
cently developed protocol, and lacks support on many platforms. So on the
one hand, administrators might be reluctant to implement such a new and
untested protocol, and on the other hand they might not be able to because
of lack of support in operating systems. Recent versions of the Linux ker-
nel, should however support SCTP. And together with SCTP libraries (sctplib),
compiling programs with SCTP support should be possible.

Unfortunately it was not possible to compile the nProbe application with
SCTP support on the machines used for the tests described in this document.
This might have something to do with the fact that the machines were not
running a vanilla kernel, but rather a Xen-enabled one (this situation could
not be changed, as the test system was utilized by others throughout the test
period). Or it could be incompatibility with the version of nProbe, acquired
from Luca Deris development branch. In either case, it meant that testing SCTP
as the flow information transport protocol, would not be possible. One could
chose to see this as a testament of the continued immaturity of SCTP, and as
one of the reasons the protocol is not more widely adopted.
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Chapter 5

Results

This chapter will clarify the individual tests, and present and comment on the
results. It will also address any encountered anomalies that deviate from the
initial methodology.

5.1 Test Procedures

It is imperative to emphasize that all of the tests are designed to highlight as-
pects of the underlying protocol used, namely IPFIX, and not the implementa-
tion of said protocol, namely nProbe and nTop. This means that measurements
of e.g. resource usage will not play an important role in the test setup. As long
as depletion of resources does not interfere with the execution of the export-
ing protocol itself, it will not be a factor when analyzing the results. High
resource usage on the specific implementation will, however, indicate points
in the system where one is likely to run into limitations, even when using other
implementations. So even if the exact measurements of said resource measure-
ments, only is relevant for the specific implementation, it should be considered
indicative for how a general implementation of the IPFIX protocol will behave.
After all, even if IPFIX is designed for specialized hardware, there is nothing in
the protocol that limits it to such hardware. And measurements on generic x86
hardware, will apply to the general protocol just the same as tests performed
on other systems.

So when testing the IPFIX protocol, the important issues will be how the
protocol behaves on the network, independent of the specific implementation.
This can roughly be split up into two parts, namely the impact of the IPFIX pro-
tocol on the underlying traffic, and the scalability of the protocol itself. This
means looking into what happens with the flows after the capturing process,
and the traffic characteristics of exporting the flows from an exporting node
to a collecting. The capturing process on the exporting node, and the storage
facility on the collecting node, can be implemented in different ways on differ-
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ent systems, and should not be considered a major factor when analyzing the
export protocol.

As every network has its own characteristics, based on the hardware it is
built on and the services it provides, the testing should be performed on a
simple system in a controlled environment. By having complete control over
the different parameters in the tests, the analysis can be as neutral as possible.
And the results can be subjectively interpreted, for use in individual scenarios.

5.1.1 Test Details

Common for all of the tests, is the use of Harpoon as a traffic generator. This
application provides the possibility to vary e.g. the size of the generated pack-
ets, the time between concurrent connections, the type of transport protocol
and the total amount of traffic. In most of the tests TCP-traffic with inter-
connection-times of 0.1 sec. is used. The size of the data-packets and the total
amount of traffic was subject to variations. The specific details on this is pro-
vided in the subsection for each test.

Also common to all tests, is the use of nProbe/nTop as exporter/collector.
For the most parts, the applications are used with their default setting for IPFIX
use (where applicable). This means that UDP is used as the transport protocol
for the flows from the exporter to the collector. UDP also seems to be the by far
most common transport protocol for flows, used in these types of flow-export
systems.

When focusing on the how the protocol handles the flow-data after the
metering process on the exporting node, and before handing them off to the
storage facility on the collecting node, the remaining phase can essentially be
described as transport of flow-data. And since the underlying protocol for
this transport is controlled by the exporter/collector, in the following tests, the
measurements taken should be purely quantitative, and describe the proto-
col overhead compared to the normal traffic. In other words: measuring the
added bandwidth usage when exporting flow-data. This raw data can then be
used as a basis for calculating the impact of IPFIX on more specific situations.

5.1.2 Resource Usage

When analyzing a protocol primarily designed for specialized hardware, only
using commodity hardware and software implementations, it is important to
keep an eye on the resource usage in the test bed. Experience suggests that
a software implementation will almost always have a lower threshold for er-
rors under heavy load, than a similar mechanism implemented in hardware.
During tests, the Atsar application was used to monitor the resource usage
on the computers used in the tests. The most important factors to monitor
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during testing of the IPFIX implementation, are CPU-usage and RAM-usage.
These resources will be exploited especially during the packet-capture phase,
when walking the hash of flows before exporting, and when receiving flows
for buffering and committing to disk.

For most of the tests documented in this paper, the resource usage did not
exceed the limits for normal usage, and should consequently not have any
impact on the resulting measurements. For tests where the resources on the
nodes were depleted more than normal, this will be commented on in the notes
for the specific test.

5.1.3 Measuring Bandwidth

The chosen time-interval from which the bandwidth is computed, is an impor-
tant factor when measuring and calculating bandwidth numbers.

When bandwidth is measured, the resulting numbers are computed from
discrete samples of data, and these numbers that describes the bandwidth will
vary according to the interval in which they are sampled. In a network with
small and rapid bursts of data packets, the bandwidth of the passing data will
not be correctly reflected, if the time-interval from where the bandwidth is
computed is sufficiently large. This is because the bandwidth will be measured
as an average over the chosen time-interval, and is known as the averaging
effect. And if the time-interval is very short, the resulting bandwidth will be
unrealisticly high for very short periods of time.

Because the network interface receives datagrams packet by packet, and
not by the packets individual bits, this becomes an issue. When every packet,
of multiple bits, is reported being transferred instantaneously, the resulting
bandwidth of a sufficiently small time-interval will go towards infinity. In
practice making the true bandwidth indeterminable. So when thinking of
bandwidth in terms of single bits, the notion of bandwidth itself ceases to exist,
because the bits are not moving from the network stacks point of view. This
dilemma is known as Zenos Paradox[18].

In the tests documented in this paper, the time-interval for bandwidth mea-
surements is set to 1 second. This is because the collective amount of flow-
export data that travels across the network when the buffers are being flushed,
comes in bursts that lasts just under 1 second. So using a 1 second bandwidth
average, will reflect the user perceived amount of bandwidth, actually being
utilized.

5.2 Tests

When using the Harpoon application to generate traffic, the configuration
files is used to fine-tune the parameters. Since the application works as a
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client/server pair, one configures the amount of traffic being sent from the
server to the client. The application does not take into account that the client
needs to request a file transfer from the server, when configuring the band-
width usage. In other words; the configured bandwidth usage is for uni-
directional traffic. But the total amount of traffic generated on the network
will be higher, as one measures the bi-directional traffic. The results presented
in this section, will take the bi-directional traffic into account, as this will have
an impact on normal network usage.

Note therefore that the actual bandwidth usage in the results, will be higher
than what is configured in the traffic generator. This just to clear up any con-
fusion about the individual numbers.

5.2.1 Initial Testing

For the first tests, the goal was really just to see how the implementation of
the IPFIX protocol behaved when exposed to real data. The server part of the
Harpoon application was set up to serve the client data files of 1500 bytes each.
The client was set up with interconnection times of 0.1 seconds between each
request. All of the traffic was sent using the TCP protocol. The configuration
files was tuned so to give a total uni-directional bandwidth usage ranging from
0.5Mb/s to 3Mb/s. As discussed in section 5.2 on the preceding page, this
would always yield a slightly higher bi-directional bandwidth usage. This can
be seen from the resulting graphs. The test period was set to 300 seconds of
actively.

The nProbe application was configured to use the default configuration,
exporting data over the UDP transport protocol to the nTop collector.

Table 5.1 on the next page shows the information fields in use when export-
ing flows with the default configuration in nProbe. The size of each informa-
tion field is given in bytes, and if one adds all of the fields together, one will
find the total size of each exported flow. The table shows that each flow, using
the default configuration in nProbe, will weigh in at 45 bytes. This is also the
deciding factor, together with the current flow specification, when looking at
the network overhead from the exporting process.

The graphs in figures 5.1 on page 48, 5.2 on page 48 and 5.3 on page 49
shows the results from 3 of the initial tests. The complete test results can be
seen in table 5.2 on page 50. The first thing to mention about these tests, is
that libpcap started dropping some packets in the two tests configured for
highest bandwidth usage. That is; the tests configured for 2.5Mb/s and 3Mb/s
experienced a 0.1% and 0.2% drop in packets (from libpcap) respectively. And
since libpcap is utilized in both the exporting application, as well as in the
measurements, the total error margin is actually doubled. This occurs when
the libpcap instance in the exporter catches all of the packets which tcpdump
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Size Flow Label Description

4 %IPV4 SRC ADDR IPv4 Source Address
4 %IPV4 DST ADDR IPv4 Destination Address
4 %IPV4 NEXT HOP IPv4 Next Hop Address
2 %INPUT SNMP Input Interface SNMP Idx
2 %OUTPUT SNMP Output Interface SNMP Idx
4 %IN PKTS Incoming Flow Packets
4 %IN BYTES Incoming Flow Bytes
4 %FIRST SWITCHED SysUptime (msec) of the First Flow Packet
4 %LAST SWITCHED SysUptime (msec) of the Last Flow Packet
2 %L4 SRC PORT IPv4 Source Port
2 %L4 DST PORT IPv4 Destination Port
1 %TCP FLAGS Cumulative of All Flow TCP Flags
1 %PROTOCOL IP Protocol Byte
1 %SRC TOS Type of Service Byte
2 %SRC AS Source BGP AS
2 %DST AS Destination BGP AS
1 %SRC MASK Source Subnet Mask
1 %DST MASK Destination Subnet Mask

Table 5.1: Description of the default nProbe information fields: The size of the
individual information fields is given in bytes
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Figure 5.1: Initial Testing: The graph shows the bandwidth usage both with, and
without flow exportation in a system generating appr. 0.5Mb/s of uni-directional traf-
fic
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Figure 5.2: Initial Testing: The graph shows the bandwidth usage both with, and
without flow exportation in a system generating appr. 1.5Mb/s of uni-directional traf-
fic
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Figure 5.3: Initial Testing: The graph shows the bandwidth usage both with, and
without flow exportation in a system generating appr. 2.5Mb/s of uni-directional traf-
fic

drops, and vice versa. So there exists an error margin in those two tests, albeit a
small one. In figure 5.3 this drop in packets is visualized in the normal network
traffic baseline. The graph clearly shows a more deteriorating behavior than the
other resulting graphs with no packet loss.

It is also apparent that the flow-data behaves in a very predictable man-
ner, exporting the first flow after 60 seconds, and then every 30 seconds. The
last burst of flow-data should not be considered in these intervals, as it only
emitted when the nProbe application manually shuts down. This is the flow
data left in the cache, that is being flushed on exit. The IPFIX protocol speci-
fies 2 options for when the exporters cache should be flushed: either when the
cache/buffer is full, or after a certain time. The reasons for this seems evident;
when the cache/buffer is full, it needs to be flushed, and if a data connection is
abruptly terminated, it needs to be marked as a complete flow sooner or later.
Both the size of the buffer in the exporter, and the time interval between each
flush, is configurable in the exporter.

Table 5.2 on the next page shows the amount of traffic sent over the net-
work throughout the test, both by the traffic generator, and by the flow ex-
porter. It also shows how much traffic overhead, using IPFIX to export flows
would yield. The numbers for the tests with a configured traffic volume of
2.5Mb/s and 3.0Mb/s has an error margin of 0.2%and 0.4% respectively. Still
the trend seems very indicative on how the flow export overhead behaves un-
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Traffic Data Traffic & Flow Data Flow Data Overhead

0.5Mb/s 25712696 26245042 532364 2.07%
1Mb/s 51376676 52379346 1002670 1.95%
1.5Mb/s 77016182 78437548 1421366 1.85%
2Mb/s 102593210 104375966 1782756 1.74%
2.5Mb/s 127778403 129889569 2111166 1.65%
3Mb/s 153215883 155600621 2384738 1.56%

Table 5.2: Volume of the data sent over the network: All of the data volumes are
given in bytes, and the overhead is given as a percental increase over the normal traffic
volume

der increasing traffic loads. A simple graph showing this evolution, can be
seen in figure 5.4 on the facing page. The main factor deciding the export
overhead, is the underlying traffic. Since each flow being exported is 45 bytes,
the overhead will depend on how much data that specific flow describes. The
more data that is, the less the overhead becomes. Example: A flow of 45 bytes
could theoretically describe 1GB of data on the network. The reason the flow
overhead decreases with increasing traffic volumes, is two-folded.

Firstly: The transport protocol for the traffic generator is, in this case, TCP.
While the transport protocol for flow export is UDP. The network overhead for
TCP is larger than for UDP, so with an increasing volume of data being sent
over TCP, the resulting flow-data being sent over UDP generates less overhead
through the transport protocol.

Secondly: The timing of the max interval for a flow, is not always optimal
in terms of efficiency. A flow that otherwise could have fitted within the other
parameters, can be split up into two flows if it is not started at the same time as
the flow time-interval. Resulting in twice as much flow-data being exported.
This is, of course, not a trivial task to accomplish.

Figure 5.4 on the next page shows a fairly linear evolution of the IPFIX
overhead, under increasing traffic volumes. This is to be expected, as the dif-
ference in traffic volume is 0.5Mb/S in each test. The small variances from a
truly linear progression, comes from the time-interval deciding the individual
flows.
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Figure 5.4: Initial Testing: This simple graph shows the evolution of the over-
head factor in the initial tests. Test nr. 1 has the lowest configured throughput
(0.5Mb/s), gradually increasing to test nr. 6 which has the highest configured through-
put (3Mb/S)

5.2.2 Protocol Overhead

The second batch of tests, looks more closely at the IPFIX overhead compared
to the network traffic. The Harpoon traffic generator was configured to gener-
ate traffic over the UDP protocol, as to reduce the total overhead generated by
the use of the TCP transport protocol in the previous tests. The server part of
the Harpoon application was configured to serve UDP packets with a payload
of 45, 90 and 450 bytes, for the three individual tests respectively. The client
part was configured for 50 concurrent sessions with interconnection times of
0.1 seconds between each request. The test period was set to 180 seconds.
Examples of the configuration files for the UDP traffic, can be seen in the ap-
pendix section A.1 on page 71

The nProbe application was configured to use the default configuration,
exporting data over the UDP transport protocol to the nTop collector.

Looking at the graphs in figures 5.5 on the next page, 5.6 on the following
page and 5.7 on page 53, the first thing to notice is that the normal traffic base-
line, does not appear to be as smooth as with the initial tests over TCP. This
should not affect the results at all, since there is plenty of bandwidth left for
the flow export. The low export itself seems just as predictable as the previous
tests. At least when it comes to the intervals between the bursts of flow-data
being exported. But more interesting, is looking at the amount of data being
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Figure 5.5: Protocol Overhead: The graph shows the bandwidth usage both with,
and without flow exportation, in a system generating traffic over UDP. 50 concurrent
clients are being served UDP packets with a payload of 45 bytes
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Figure 5.6: Protocol Overhead: The graph shows the bandwidth usage both with,
and without flow exportation, in a system generating traffic over UDP. 50 concurrent
clients are being served UDP packets with a payload of 90 bytes
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Figure 5.7: Protocol Overhead: The graph shows the bandwidth usage both with,
and without flow exportation, in a system generating traffic over UDP. 50 concurrent
clients are being served UDP packets with a payload of 450 bytes

exported, compared to the amount of data in the generated traffic. Since now
both types of data are being sent over the UDP transport protocol, the over-
head of the transport protocol itself, should be eliminated.

Traffic Data Traffic & Flow Data Flow Data Overhead

Test # 1 42188256 49258960 7070704 16.76%
Test # 2 49798480 56990944 7192464 14.44%
Test # 3 107888272 115304576 7416304 6.87%

Table 5.3: Volume of the data sent over the network: All of the data volumes are
given in bytes, and the overhead is given as a percental increase over the normal traffic
volume. For the generated traffic, payloads of 45, 90 and 450 bytes have been served
over UDP

Table 5.3 shows how much data that was sent over the network in the 3
tests, and the calculated overhead on the traffic data when when exporting
flows. 1 parameter varied in the individual tests, namely the size of the file
being served to the clients in the traffic generation phase. In test nr. 1 (figure 5.5
on the preceding page) the payload was set to 45 bytes, in test nr 2 (figure 5.6
on the facing page) the payload was 90 bytes, and finally in test nr. 3 (figure 5.7)
the payload was 450 bytes. Theoretically, an exported flow will always have
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the same size. In this case, the default settings implies that the size on 1 flow
will be 45 bytes (see table 5.1 on page 47). But the actual data it describes is not
limited to 45 bytes, but can in theory be any size, depending on what type of
data is being sent. The limiting factor is often the maximum time interval for
the flow data. This means that the more data that actually goes into each flow,
the less overhead it will be when exporting that flow.

There is only a slight increase in the volume of the flow-data in the 3 sepa-
rate test, despite the fact that the volume of the generated data increases signif-
icantly. This is reflected in the column with the calculated amount of overhead
created by the flow-export process in the individual tests. Under optimal con-
ditions, the volume of the flow-data would not increase. The reason it does so
in this batch of tests, is because of timing issues, and maybe also because of
imperfections in the traffic generator.

The timing issues mentioned in the initial tests, of course remain the same
for this batch. The problem is that a connection that normally could fit into one
flows timeslot, will spill over into a new flows timeslot, if connection starts late
enough into one such timeslot. When this happens, the volume of the flow(s)
describing the connection, will double. As more network data is generated,
more data will spill over into 2 timeslots, and the volume of the flow-data will
increase.

There is also a possibility that the traffic generator itself does not produce
the exact same number of connections, even if it is configured to do so. It is
however unlikely that this should have any significant impact on the results,
as the traffic generator is just as likely to produce less connections as it is to
produce more.
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5.2.3 Varying Information Fields

The underlying traffic on the network, is not the only factor deciding the over-
head when exporting flows. Since NetFlow v9, the flow format has been tem-
plate based, and can as such be configured to export flows of very little size.
IPFIX is heavily based on NetFlow v9, and is even known as NetFlow v10,
and can thus be configured in a similar manner. In the following tests, the
nProbe application was configured to use 3 different templates, which again
yielded 3 different sizes on each flow exported. The first test used the default
template described in table 5.1 on page 47, where each flow-record exported
was 45 bytes in size. The next test utilized the template described in table 5.5,
giving flow-records with the size of 16 bytes. The final test used a very small
template, described in table 5.4, resulting in flow-records with a size of 6 bytes.

Size Flow Label Description

4 %IPV4 SRC ADDR IPv4 Source Address
2 %L4 SRC PORT IPv4 Source Port

Table 5.4: Description of the 2 configured nProbe information fields: The size
of the individual information fields is given in bytes

Size Flow Label Description

4 %IPV4 SRC ADDR IPv4 Source Address
4 %IPV4 NEXT HOP IPv4 Next Hop Address
4 %IN BYTES Incoming Flow Bytes
2 %L4 SRC PORT IPv4 Source Port
1 %TCP FLAGS Cumulative of All Flow TCP Flags
1 %SRC TOS Type of Service Byte

Table 5.5: Description of the 6 configured nProbe information fields: The size
of the individual information fields is given in bytes

The Harpoon traffic generator was configured to use the TCP transport
protocol, serving files of 1500 bytes each, and tuned to generate approximately
1.2Mb/s of uni-directional traffic. The same settings was used in all of the tests,
and each test was set to last 180 seconds.

The graphs in figures 5.8 on the following page, 5.9 on the next page and 5.10
on page 57 all show a familiar pattern, comparable to the result graphs from
the previous tests. Just by looking at the graphs, one can see that the total
volume of the emitted flows, is decreasing in size as the number of exported
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Figure 5.8: Varying Information Fields: The graph shows the bandwidth usage
both with, and without flow exportation in a system generating appr. 1.2Mb/s of uni-
directional traffic, using the default amount of information fields for export, totalling
45 bytes per flow
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Figure 5.9: Varying Information Fields: The graph shows the bandwidth usage
both with, and without flow exportation in a system generating appr. 1.2Mb/s of uni-
directional traffic, using 6 information fields for export, totalling 16 bytes per flow
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Figure 5.10: Varying Information Fields: The graph shows the bandwidth usage
both with, and without flow exportation, in a system generating appr. 1.2Mb/s of
uni-directional traffic, using a 2 information fields, totalling 6 bytes per flow

Traffic Data Traffic & Flow Data Flow Data Overhead

Test # 1 38543033 39278999 735966 1.91%
Test # 2 38565072 38825170 260098 0.67%
Test # 3 38551500 38649710 98210 0.25%

Table 5.6: Volume of the data sent over the network: All of the data volumes are
given in bytes, and the overhead is given as a percental increase over the normal traffic
volume
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information fields in the templates goes down. Table 5.6 on the previous page
presents the raw data gathered from the tests.

As expected, the volume of the exported flows, will drastically decrease
with the number (and size) of the information fields in the current template.
Not only that, but since the size of each exported flow is known, along with
the total size of all flows, the number of flows in each test can be calculated by
dividing the total size with the size of one flow. The number of flows should
theoretically be the same for each test, since the same configuration in the traf-
fic generator was used. But for reasons earlier mentioned (flow time-interval
and imperfections in the traffic generator), there will always be small differ-
ences.

Test nr 1 exported flows with the size of 45 bytes, and had a total export
volume of 735966 bytes. This means that it exported 16355 flows.

Test nr 2 exported flows with the size of 16 bytes, and had a total export
volume of 260098 bytes. This means that it exported 16256 flows.

Test nr 3 exported flows with the size of 6 bytes, and had a total export
volume of 98210 bytes. This means that it exported 16368 flows.

These numbers seem consistent enough to indicate that the exporter func-
tions as expected, and after the IPFIX specifications.
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5.2.4 Comparing Export Protocols

As mentioned, there exists several protocols and formats for exporting flow-
data. The predominant protocol seems to have been Ciscos NetFlow v5, which
is in the process of being superseded by NetFlow v9. IPFIX is heavily based
on NetFlow v9, and is often referred to as NetFlow v10. It therefore seems
natural to make a quick comparison of these protocols. The nProbe application
supports all 3 protocols, and was configured to use these in the separate tests.
The test procedure was similar to the one described in section 5.2.3 on page 55,
and the Harpoon traffic generator was configured to use the TCP transport
protocol, serving files of 1500 bytes each, and tuned to generate approximately
1.2Mb/s of uni-directional traffic. The same settings was used in all of the tests,
and each test was set to last 180 seconds.

The nProbe application was set to use the default configuration for all pro-
tocols, exporting data over the UDP transport protocol to the nTop collector.
For the template based protocols, NetFlow v9 and IPFIX, this meant that each
flow record would be 45 bytes in size with a header of 20 bytes. NetFlow v5
has a fixed format, and consists of a 24-byte header and a 48-byte payload,
totalling 72 bytes.
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Figure 5.11: Comparing Export Protocols: The graph shows the bandwidth us-
age both with, and without flow exportation in a system generating appr. 2.5Mb of
unidirectional traffic, using the NetFlow v5 protocol

From the graphs in figures 5.11, 5.12 on the following page and 5.13 on
the next page, it seems clear that all the protocols show similarities. But from
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Figure 5.12: Comparing Export Protocols: The graph shows the bandwidth us-
age both with, and without flow exportation in a system generating appr. 2.5Mb of
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age both with, and without flow exportation in a system generating appr. 2.5Mb of
unidirectional traffic, using the IPFIX protocol
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the looks of it, it seems that NetFlow v5 yields a higher overhead than Net-
Flow v9 and IPFIX, which again seems to perform on par with each other.
More information on NetFlow v5 and NetFlow v9 can be obtained from Cis-
cos website[19] and RFC3954[20]. The fact that it is the nProbe application that
is utilizing the different protocols with default settings, is also a reason to why
the three protocols shows such similar behavior in the tests.

Traffic Data Traffic & Flow Data Flow Data Overhead

NetFlow v5 38579476 40141608 1562132 4.05%
NetFlow v9 38561094 39302088 740994 1.92%
IPFIX 38543033 39278999 735966 1.91%

Table 5.7: Volume of the data sent over the network: All of the data volumes are
given in bytes, and the overhead is given as a percental increase over the normal traffic
volume

Looking at the resulting volumes of traffic in table 5.7, confirms the findings
from the graphs. The overhead from the NetFlow v5 protocol is almost double
of what is found in NetFlow v9 and IPFIX. NetFlow v9 and IPFIX, on the other
hand, produce almost the exact same overhead, relative to the traffic they are
exposed to. This may at first seem a bit surprising, since the size of each flow
exported in NetFlow v5 almost matches the default sizes for NetFlow v9 and
IPFIX, and should accordingly produce almost the same overhead from the
equal number of flows. And the volume of the generated data in the 3 tests
should not have any impact on the relative overhead in each protocol. The
answer to this problem is found when looking at the export-logs for the three
tests. While IPFIX and NetFlow v9 finds 15670 and 15734 flows respectively,
the NetFlow v5 exporter finds 31404 flows in the generated traffic.

The export process in NetFlow v5 itself, only yields a slightly higher over-
head than NetFlow v9 and IPFIX. This is confirmed in the whitepapers for the
protocols. But the metering process divides the traffic up into just about dou-
ble the number of flows. This, of course, has a huge impact on the calculated
overhead.
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5.2.5 Summary

To evaluate the IPFIX protocol, it is necessary to focus on the transport phase,
between the exporter and the collector. The metering process in the collector,
and the data storage in the collector, are subject to the individual implemen-
tations of the protocol. They are, however, a necessary part of a monitoring
system based on flow export, and should not be completely overlooked. The
tests in this chapter has been designed to shed light on the issues common
to the transport phase, and the architecture of the system. The results from
the tests, have been presented in an objective way, and should be individually
evaluated relative to the needs and limitations of the reader.

Most of the results are presented as graphs of network behavior, and tables
containing the total traffic volumes. These two models should be carefully
compared to each other, and also to the transport protocol used for flow ex-
port. E.g. the total calculated overhead in one test, while giving the correct
volume of traffic needed when implementing a flow-exporter, does not give
a true picture of what is needed of available bandwidth for that same imple-
mentation. The graphs, on the other hand, gives a better understanding of
the instant network usage, but a more poorly measure of the specific volumes.
The choice of transport protocol for the flow export, will decide the criteria
for available network resources. In all of the tests described in this document,
and for many real life implementations, UDP is the choice of transport proto-
col. This because it is supported on most platforms, and has very little over-
head compared with TCP (and even less overhead compared to SCTP). Using
any of the two other supported transport protocols, would mean more over-
head for flow export, but also a more reliable means of transportations. In
other words, there are both positive and negative effects of using the different
transport protocols, especially on networks with limited resources. Testing all
possible scenarios, is out of the scope for this document. A reasonably good
understanding of UDP and TCP (and preferably SCTP), is therefore needed to
evaluate the results in this chapter.
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Chapter 6

Conclusions, Discussion and Future
Work

This chapter will try to summarize the results of the completed tests, and com-
ment on the protocol and its applications.

6.1 IPFIX

One of the major challenges when writing this document, was that working
with such a new and untested protocol meant that sources of information, re-
lated work and working implementations was hard to find. On the other hand,
this was perhaps also the greatest motivation to choose such a subject. But be-
cause of this, the choice of implementation to test, was in practise limited to
one application; namely nProbe. And concern has been raised, that great care
must be taken, so not to evaluate the implementation of a protocol, but rather
the protocol itself. This has been handled by, amongst other things, ensuring
that the system resources on the nodes running the application, never was a
limiting factor during tests. This is also why focus has been on the actual trans-
port/export of data between exporter and collector, and not the efficiency of
the specific nodes when doing so.

While being a fairly new proposed standard, IPFIX is an evolution of the
tried and tested generations of the NetFlow protocol. It is heavily based on
NetFlow v9, and does not bring any radical changes to the table. One of the
goals of the IPFIX working group is to standardize existing practice in the area
of IP Flow Information Export, and thus securing the interoperability between
vendor specific products. This is by no means an easy task, but one that seems
to be within reach of the project. This is perhaps the most weighted goal as
well, since it does not seem that IPFIX comes with any other significant advan-
tage (performance, usability or otherwise), over comparable protocols such as
NetFlow v9. But even without any obvious significant advantages, the IPFIX
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protocol still is a solid performer compared to other flow export protocols.
And the introduction of template based flow information specifications, not
found in earlier incarnations of NetFlow (before v10), means IPFIX provides a
highly flexible way of specifying and exporting flow information. But to uti-
lize the flexibility to its full potential, a lot of manual configuration, and prior
knowledge of network usage, is needed.

The tests described in this document clearly identifies 3 parameters that af-
fects the overhead, and thereby the efficiency, of the IPFIX protocol. Namely:
the characteristics of the underlying traffic, the specific flow-template in use,
and lastly the choice of transport protocol. Starting with the first parameter,
the underlying traffic, it comes as no surprise that it has an impact on the pro-
duced overhead of the flow export. Using the definition of a flow as done by
IPFIX, a flow could describe GB worth of traffic on the network, or just a few
bytes. This characteristic is common to all export protocols dealing with flows,
and should be considered a mutual phenomena, and not something specific for
the IPFIX protocol. The second parameter, the templates used for flow infor-
mation retrieval, is where IPFIX (along with NetFlow v9) really shines. This
mechanism makes the protocol extremely flexible, when compared to similar
protocols. This flexibility can be used to tune the export settings to a level
where the generated overhead is minimal. The challenge here, is to find the
right balance between the flow information needed, and the generated over-
head. And depending on the type of analysis, the need is often present for
a large number of information fields. This again means that there seldom is
room for large reductions in the templates. And all changes to the template,
must be made manually, so this quickly becomes a labor of trial and error. Espe-
cially if the present traffic is somewhat dynamical in nature. The third param-
eter, is the type of transport protocol chosen for the flow export. Here IPFIX
specifies that any implementation needs to support the use of both the tradi-
tional UDP and TCP protocols, as well as the relatively new SCTP protocol.
The choice of transport protocol, has an effect on the bandwidth utilization
when exporting, but also on the reliability of the export itself. It seems that
UDP is currently the predominant choice, because it yields the least overhead
on the network. It is also the least reliable protocol, but that does not seem
to be a deciding factor for most network operators. This is probably due to
the fact that the type of analysis being made, only requires an estimate of the
traffic, and not an exact measurement for any given point in time. Because of
this, sampling is also a very common strategy to limit resource usage on the
network when exporting flows. The IPFIX working group recommends SCTP
as the protocol for transporting flows. And while it produces an even greater
overhead than both UDP and TCP, it also should provide an additional layer
of reliability, by utilizing a mechanism for congestion control on the network.
Perhaps the biggest problem with SCTP, is the fact that it is a fairly new and
untested protocol. Firstly this means that only a select few platforms actually
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supports it, making it difficult to implement. An example of which actually
occurred in the experimental setup for the tests in this document. Secondly,
since the protocol is fairly untested, there might be security risks or unknown
problems involved, when using it in a production environment. One thing
worth noting, is that the nature of the protocol itself, makes it a candidate for
exploitation through a Denial of Service attack. Generally speaking, a low adop-
tion rate of SCTP is probably one of the biggest obstacles for IPFIX to pass, on
its way to becoming the leading industry standard.

Since the measurements taken in the tests are of quantitative data captured
between the exporter and the collector, the specific implementation of the IP-
FIX protocol should not have any impact on the final results. Given that the
implementation follows the protocol specifications, of course.

One issue that has yet to be properly addressed, is knowing the impact on
the existing traffic on the network, when implementing IPFIX (or any other
flow information export protocol, for that matter). One of the main reasons
to export flow information, is to analyze the network usage. In other other
words; to effectively implement flow information export, one needs to know
a lot about the type of traffic present on the network, in advance. The status
of the current protocols for flow export, suggests that if one does not have
the proper knowledge of the existing network usage, the implementation of
such protocols could have consequences for the existing traffic. This dilemma
is to a certain degree addressed by C. Estan et. al. in the paper Building a
Better NetFlow[21], discussed in subsection 6.2.1 on the next page. The solution
presented therein is not ideal, as it handles data-sampling as a prerequisite for
adapting the flow information export. But perhaps some of the adaptive ideas
could be incorporated into a protocol that does not rely on data-sampling, but
instead adjusts the information fields in the existing flow-templates used for
exportation.

IPFIX is a push-based protocol on top of a centralized architecture. It is a natu-
ral evolution from the early NetFlow protocols, adding valuable mechanisms,
such as templates and wider options for the choice of transport protocol. But
no matter how much refinement that has been put into the development of
the protocol, it can not escape its push-based/centralized nature. In a world
where the evolution is pointing to more complex network topologies, higher
capacity links with larger volumes of traffic flowing through them, the ques-
tion remaining is if a protocol based on the NetFlow design will be able to scale
up with the increasing demands of the public. The NetFlow protocols was
designed to be push-based, because they were designed to be run on nodes
(switches, routers) with very limited hardware capabilities. These nodes had
no resources for storing and processing vast amounts of information. It there-
fore makes perfect sense to export this data through a push-based protocol.
That way, the node can flush its buffer of data when it reaches a level near its
maximum capacity. The NetFlow protocols were also designed to be used in
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a centralized architecture, where the exporting nodes would push all of their
data onto a central node. This central node was not a switch or a router, but
rather a generic computer. It did not have the same limitations of resources as
the exporting nodes. It therefor made sense to let one central node do all of the
heavy processing of the data, to offload any additional stress on the export-
ing nodes. As the complexity of the topology, volume of traffic and capacity
of the networks has grown, so has the capacity of the routing and switching
nodes. And the idea of a push-based/centralized protocol, might not be the
best option any more. Especially when it comes to scalability. When scaling
upwards, this architecture will hit two barriers. Number one is network ca-
pacity; as the load on the network increases, the available bandwidth for flow
export will decrease. Unfortunately the need for bandwidth to export flows
will grow proportionally to the original network load. And if multiple ex-
porters are experiencing the same increase in network traffic, this effect will
be further strengthen when these exporters are pushing traffic to one central
point. Number two is collector capacity; one central node receiving flow in-
formation from several collectors will experience the collective load from all of
the exporters. Its capacity to process all this data will probably be lower than
the collective capacity from all the exporters. And since IPFIX is push-based,
the collecting node has no influence on when to request incoming flow data,
so to distribute this over time.

In the authors opinion, the introduction of SCTP as the preferred transport
protocol, is an effort to push back the scalability boundary of the protocol. It is
note a cure of the problem, but rather a treatment to prolong the protocols lifes-
pan. With the rising demands of modern networks, a need for a more scalable
flow information export protocol will surely surface. Specialized hardware
such as routers and switches have increased processing capacities, making dif-
ferent types of architecture a more feasible option. Either making the protocol
pull-based from the central collectors point of view, or maybe even more radi-
cal changes such as making the whole protocol decentralized, would probably
be a more solid foundation for a scalable flow information export protocol.

6.2 Future Work

6.2.1 Adaptive NetFlow

Some of the essence learned from the work put into this document, is that
utilizing NetFlow to analyze network behavior, is somewhat of a Catch 22; To
effectively know what impact implementing flow export on a network will
have, one needs to know about the amount and type of traffic already on the
network. That might be tricky since that is also the reason to implement export
of flow data; to gain information about the amount and type of traffic utilizing
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the network.

C. Estan et. al. proposes a modification to the traditional NetFlow protocol,
called Adaptive NetFlow[21]. This modification addresses some of the short-
comings present in older NetFlow versions, hindering the collection and sub-
sequent analysis of data from the network. One of the more common problems
with NetFlow protocols, is the vulnerability to Denial of Service attacks; During
flooding attacks, both routing-node memory and network bandwidth can be
consumed by generated flow-data, exceeding normal operating boundaries.
And while this can be countered by the introduction of data-sampling in the
flow-exporter, a single, static sample rate will not accommodate the plethora
of underlying traffic mixes, resulting in a skewed resource/accuracy relation-
ship for certain types of traffic. Another issue with traditional NetFlow, is the
routing-nodes inability to report, without bias, the number of active flows for
aggregates with non-TCP traffic.

To help solve some of these problems, Estan et. al. introduces some new
concepts for the NetFlow protocol. Firstly they propose a mechanism to auto-
matically adjust the sampling rate for the network data, to a level that does not
deplete the resources in the exporting, node or the network as a whole. This
is done by starting at the maximum sampling rate sustainable in the node,
and adjusting it down as the traffic mix increases in volume. This mechanism
will continuously calculate the sampling rate needed for not exhausting the
memory in the exporting nodes. This will, of course, also affect the produced
volume of flow data. In order to keep the the final result of flow data consistent
during such a procedure, the byte and packet count of the existing entries must
be adjusted accordingly. This process is dubbed renormalization. Secondly they
propose a mechanism called Flow Counting Extension, capable of estimating
the number of active flows in various aggregates, including non-TCP traffic.
This is based on an algorithm called adaptive sampling, and comes in addition
to the mechanism for counting active TCP flows. This estimated number of
active flows, is better suited to detect anomalies in non-TCP traffic, and can
then be used as a parameter when adapting the sampling-rate to accommo-
date the current traffic-mix. Anomalies in non-TCP traffic can be indicators of
malicious scans, and worms.

While the focus when developing Adaptive NetFlow, was to provide a robust
layer to traditional NetFlow during flooding attacks or surges of traffic. It is
easy to see the advantages of an adaptive approach when implementing a system
for flow information export on a network, without the prior knowledge of the
composition of traffic present on the network. And also on network with large
fluctuations in network utilization, an adaptive, rather than static, strategy of
data collection would be preferable.
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6.2.2 IPFIX Aggregation

The IPFIX Aggregation Internet-Draft[22], is working document for the IETF,
describing the aggregation of IPFIX flows. It addresses issues concerning the
build up of high volumes of flow-data to be exported to a central collecting
node. There are situations where the level of flow information, can be height-
ened without loss to the analyzation process. Using aggregation techniques,
measurement information from several similar flows can be aggregated into
one flow aggregate. The rules for choosing similar flows and grouping sub-
sets of flows, can be customized. By extending the original IPFIX protocol and
information model to include new abstract data types and template sets, ef-
ficient transactions of both aggregated flows and the rules of which they are
produced, can be achieved between exporting and collecting nodes.

Utilizing a centralized architecture, the collector in a flow information ex-
port system can often become a bottleneck. Especially in typical high-speed,
large-scale network, capable of sustaining large volumes of data transfers.
Flow measurements in theses types of environments, will produce huge amounts
of flow-data. But at the same time, many applications for processing flow
measurement data does not require detailed flow-level information, but rather
collected information from flow aggregates. The level of flow information, are
application-specific. The Internet-Draft presents a scheme for such flow aggre-
gation, reducing the number and size of exported flow records, and adapting
to the application-specific needs for flow details. This is achieved by discard-
ing unnecessary flow information, and aggregating similar flows into compos-
ite flow aggregates before exportation.

The Internet-Draft specifies 2 possible architectures for flow aggregation.
An internal aggregator can be implemented as a process, running on an IPFIX
enabled device. Aggregating flows captured by the metering processes, and
exporting them as one flow aggregate. An external aggregator can be deployed
as an extra layer of hardware in the network topology. Such external devices,
capable of aggregating IPFIX flows, are called concentrators. The use of external
aggregators/concentrators, will enable cascading, multi-level aggregation of
flows. In such a topology, the concentrators can be arranged in a hierarchical
manner, aggregating child-flows to a parent concentrator or a final collector
for analysis.

The configuration of the aggregators, is proposed handled in a rule-based
approach. A list of aggregation rules, each consisting of instructions for each
flow information field, must be supplied to the aggregator. each instruction
should consist of 3 elements. The first element should identify which informa-
tion field the instruction is intended for. The second element should inform
the aggregator what to do with the flow information field; discard, keep, mask
or aggregate. the third field should have an optional parameter that must be
matched for the flow to be aggregated; e.g. 10.10.0.0/16. This way, each rule
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will define the content of the flow record as well as the template to export the
flow aggregate information. Fields not present in the aggregation instructions
are not part of the flow record.
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Configuration Files

A.1 Harpoon Configuration Files

A typical configuration file for the server part of a Harpoon traffic generation
session will look like the following. Here TCP-traffic is generated, with the
server serving packets with the size of 1500 bytes. The server will serve up to
10 clients at a time, and have the IP address of 192.168.0.2

<harpoon_plugins>

<plugin name="TcpServer" objfile="tcp_plugin.so"

maxthreads="50" personality="server">

<file_sizes> 1500 </file_sizes>

<active_sessions> 10 </active_sessions>

<address_pool name="server_pool">

<address ipv4="192.168.0.2/32" port="10000" />

</address_pool>

</plugin>

</harpoon_plugins>

The client configuration file from the same session, will look slightly dif-
ferent. Once again TCP is chosen as the protocol, and there is a pause of 0.1
seconds between each connection. The client will spawn 10 parallel sessions
to the server, and the IP addresses of both server and client is defined.

<harpoon_plugins>

<plugin name="TcpClient" objfile="tcp_plugin.so"

maxthreads="50" personality="client">
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<interconnection_times> 0.1 </interconnection_times>

<active_sessions> 10 </active_sessions>

<address_pool name="client_source_pool">

<address ipv4="192.168.0.1/32" port="0" />

</address_pool>

<address_pool name="client_destination_pool">

<address ipv4="192.168.0.2/32" port="10000" />

</address_pool>

</plugin>

</harpoon_plugins>

This is the server part of a configuration for generating UDP traffic. The
server will serve up to 50 concurrent clients packets with a payload of 450
bytes.

<harpoon_plugins>

<!-- constant bit-rate UDP sources -->

<plugin name="UDPCBRserver" objfile="udpcbr_plugin.so"

maxthreads="50" personality="server">

<file_sizes>

450

</file_sizes>

<active_sessions> 50 </active_sessions>

<address_pool name="server_pool">

<address ipv4="128.39.73.22/32" port="10001" />

</address_pool>

</plugin>

</harpoon_plugins>

The client part of the UDP configuration will specify the interconnection
times between each request and the number of concurrent sessions.

<harpoon_plugins>

<!-- constant bit-rate UDP sources -->

<plugin name="UDPCBRClient" objfile="udpcbr_plugin.so"
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maxthreads="50" personality="client">

<active_sessions> 50 </active_sessions>

<interconnection_times>

0.1

</interconnection_times>

<datagram_size> 10000 </datagram_size>

<bitrate> 1000000 </bitrate> <!-- bits per second -->

<address_pool name="client_destination_pool">

<address ipv4="128.39.73.22/32" port="10001" />

</address_pool>

<address_pool name="client_source_pool">

<address ipv4="128.39.73.23/32" port="0" />

</address_pool>

</plugin>

</harpoon_plugins>
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Scripts

B.1 Python Normalization Script

The following python script is used for post processing of the measured band-
width results. It just converts b/s to Mb/s and normalizes timeline of the
measurements with regards to the sample-interval. The factor variable should
equal the number of seconds used for the sample-interval (which again should
be a positive integer).

#!/usr/bin/env python

import sys, string

try:

datafile = sys.argv[1]; outfilename = sys.argv[2];

factor = sys.argv[3];

except:

print "usage: " + sys.argv[0] + " <datafile> \

<outfilename> <factor>"; sys.exit(1)

ifile = open(datafile, ’r’)

ofile = open(outfilename, ’w’)

for l in ifile.readlines():

counter = 1

value = l.split()[0]

value = float(value) / 1000000

while counter <= int(factor):

ofile.write(’%s\n’ % (value))
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counter = counter + 1

ofile.close()
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Tables

C.1 IPFIX Template Values

Table C.1 shows an overview of the different fields available in a template that
can be used when exporting flows with nProbe in the IPFIX format. In other
words, these are the values that can be extracted from the packets flowing on
a network, and exported to a central collector for analysis.

Table C.1: Description of IPFIX Export Format Op-
tions: As a template based export format, IPFIX can be very
flexible with regards to the needs of the monitoring applica-
tion

ID Flow Label Description

[ 1] %IN BYTES Incoming flow bytes
[ 2] %IN PKTS Incoming flow packets
[ 3] %FLOWS Number of flows
[ 4] %PROTOCOL IP protocol byte
[ 5] %SRC TOS Type of service byte
[ 6] %TCP FLAGS Cumulative of all flow TCP flags
[ 7] %L4 SRC PORT IPv4 source port
[ 8] %IPV4 SRC ADDR IPv4 source address
[ 9] %SRC MASK Source subnet mask (bits)
[ 10] %INPUT SNMP Input interface SNMP idx
[ 11] %L4 DST PORT IPv4 destination port
[ 12] %IPV4 DST ADDR IPv4 destination address
[ 13] %DST MASK Dest subnet mask (bits)
[ 14] %OUTPUT SNMP Output interface SNMP idx
[ 15] %IPV4 NEXT HOP IPv4 next hop address

Continued on next page
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Table C.1 – continued from previous page

ID Flow Label Description

[ 16] %SRC AS Source BGP AS
[ 17] %DST AS Destination BGP AS
[ 21] %LAST SWITCHED SysUptime (msec) of the last flow pkt
[ 22] %FIRST SWITCHED SysUptime (msec) of the first flow pkt
[ 23] %OUT BYTES Outgoing flow byte
[ 24] %OUT PKTS Outgoing flow packets
[ 27] %IPV6 SRC ADDR IPv6 source address
[ 28] %IPV6 DST ADDR IPv6 destination address
[ 29] %IPV6 SRC MASK IPv4 source mask
[ 30] %IPV6 DST MASK IPv4 destination mask
[ 32] %ICMP TYPE ICMP Type * 256 + ICMP code
[ 34] %SAMPLING INTERVAL Sampling rate
[ 35] %SAMPLING ALGORITHM Sampling type (deterministic/random)
[ 36] %FLOW ACTIVE TIMEOUT Activity timeout of flow cache entries
[ 37] %FLOW INACTIVE TIMEOUT Inactivity timeout of flow cache entries
[ 38] %ENGINE TYPE Flow switching engine
[ 39] %ENGINE ID Id of the flow switching engine
[ 40] %TOTAL BYTES EXP Total bytes exported
[ 41] %TOTAL PKTS EXP Total flow packets exported
[ 42] %TOTAL FLOWS EXP Total number of exported flows
[ 56] %IN SRC MAC Source MAC Address
[ 57] %OUT DST MAC Destination MAC Address
[ 58] %SRC VLAN Source VLAN
[ 59] %DST VLAN Destination VLAN
[ 60] %IP PROTOCOL VERSION [4=IPv4][6=IPv6]
[ 61] %DIRECTION [0=ingress][1=egress] flow
[ 70] %MPLS LABEL 1 MPLS label at position 1
[ 71] %MPLS LABEL 2 MPLS label at position 2
[ 72] %MPLS LABEL 3 MPLS label at position 3
[ 73] %MPLS LABEL 4 MPLS label at position 4
[ 74] %MPLS LABEL 5 MPLS label at position 5
[ 75] %MPLS LABEL 6 MPLS label at position 6
[ 76] %MPLS LABEL 7 MPLS label at position 7
[ 77] %MPLS LABEL 8 MPLS label at position 8
[ 78] %MPLS LABEL 9 MPLS label at position 9
[ 79] %MPLS LABEL 10 MPLS label at position 10
[ 90] %FRAGMENTED 1=some flow packets are fragmented
[ 91] %FINGERPRINT TCP fingerprint

Continued on next page
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Table C.1 – continued from previous page

ID Flow Label Description

[ 92] %NW LATENCY SEC Network latency (sec)
[ 93] %NW LATENCY USEC Network latency (usec)
[ 94] %APPL LATENCY SEC Application latency (sec)
[ 95] %APPL LATENCY USEC Application latency (sec)
[ 96] %IN PAYLOAD Initial payload bytes
[ 97] %OUT PAYLOAD Initial payload bytes
[ 98] %ICMP FLAGS Cumulative of all flow ICMP types
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