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Abstract 
The ability of POPs (persistent organic pollutants) to act as endocrine disruptors and their 

potential role in negative trends in male reproductive health have caused increased concern 

over the last few decades. There has been an increased focus on the endocrine disrupting 

capacity of environmental mixtures of pollutants, compared to earlier focus on single 

compound exposure studies.  

 

While Norwegian health authorities strongly recommend a higher consumption of fish and 

fish liver oil dietary supplements because of their beneficial health effects, they have been put 

forward as considerable sources of human intake of POPs.  

 

Leydig cells are responsible for the biosynthesis of testosterone, which is essential for male 

developmental and reproductive function. The predominant steroid biosynthesis ∆5 pathway is 

similar in pig and human. Thus, the porcine Leydig cell provides a useful model for 

investigating human testicular steroidogenesis. 

 

The aim of this study was to investigate the effects of POPs in three marine mixtures (“Cod”, 

“Waste” and “Tran”), representing different steps in the refinement process of cod liver oil 

used as a dietary supplement, on steroidogenesis in LH-stimulated primary porcine Leydig 

cells. The investigation of effects was performed through a holistic approach, including 

exploration of hormone production and regulation of genes involved in steroidogenesis, 

epigenetic and anti-oxidative mechanisms. In addition to the aspect of achieving a better 

understanding of the effect of POPs in mixtures on steroidogenesis, we also compared effects 

of the three mixtures. The mixtures gave three different exposure scenarios; exposure to 

“Cod” mixture (POPs extracted from crude cod liver oil), “Waste” mixture (POPs extracted 

from waste from the refinement process, containing mainly non-dioxin-like POPs) and “Tran” 

mixture (POPs extracted from finished cod liver oil dietary supplement). 

 

Environmentally relevant doses of the marine mixtures of POPs had a disrupting effect on 

steroidogenesis in primary LH-stimulated porcine Leydig cells. The “Cod”, “Waste” and 

“Tran” mixtures had a generally inhibitory effect on testosterone and 17β-estradiol 

production. The expression pattern of genes involved in steroidogenesis was decreased 

expression after exposure to all three mixtures. The decrease in gene expression could explain 
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the altered hormone production in exposed cells. There was a trend towards decreased 

expression aof genes involved in epigenetics and anti-oxidative mechanisms after exposure to 

the “Tran” mixture.  

 

The fact that endocrine disrupting effects were observed also with the “Tran” mixture, 

representing pollutants extracted from purified cod liver oil for human consumption, gives 

reason for concern. The beneficial effects of fish consumption and intake of cod liver oil 

supplements should be balanced against the increased exposure to POPs and their potential 

ability to exert negative health effects. Further investigation should be carried out to elucidate 

wether the endocrine disruption after “Tran” mixture exposure also occurs in vivo. 
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Sammendrag 
POPs (persistente organiske forurensende stoffer) kan utøve hormonforstyrrende effekter og 

deres potensielle rolle i negative trender i mannlig reproduktiv helse, har ført til økt 

bekymring de siste tiårene. Det har vært økt fokus på hormonforstyrrende effekter av naturlig 

forekommende blandinger av POPs, i motsetning til tidligere fokus på enkeltstoffer i 

eksponeringsstudier. 

 

Selv om norske helsemyndigheter sterkt anbefaler høyere konsum av fisk og 

fiskeoljeprodukter, som tran, er nettopp disse lansert som betydelige kilder til menneskers 

inntak av POPs. 

 

Leydigceller er ansvarlige for biosyntesen av testosteron. Testosteron er essensielt for 

mannlig utvikling og opprettholdelse av reproduktiv funksjon. ∆5 reaksjonsveien i steroid 

biosyntesen er den dominerende i både menneske og gris. Dette gjør Leydigceller fra gris til 

en nyttig modell for å undersøke steroidogenesen i humane testikler. 

 

Målet med denne masteroppgaven var å undersøke effektene av POPs i tre marine blandinger 

fra raffineringssteg i fremstillingen av tran (”Cod”, ”Waste” og ”Tran”) på steroidogenesen i 

LH-stimulerte, primære Leydigceller fra gris. Studiet av effekter ble utført gjennom en 

helhetlig tilnærming, inkludert undersøkelse av hormonproduksjon og regulering av gener 

involvert i steroidogenesen, epigenetikk og antioksidative mekanismer. I tillegg til å oppnå en 

bedre generell forståelse av effektene av de tre marine blandingene, var det av interesse å 

sammenlikne effektene av de ulike blandingene. Blandingene ga tre ulike 

eksponeringsscenarioer; eksponering for ”Cod” (POPs ekstrahert fra råprodukt fra 

torskelever), ”Waste” (POPs ekstrahert fra avfallsprodukt fra raffineringsprosessen, med 

hovedsakelig ikke-dioksin-liknende stoffer) og ”Tran” (POPs ekstrahert fra det ferdig 

raffinerte kosttilskuddet tran).  

 

Miljømessig relevante doser av de marine POPs blandingene hadde en forstyrrende effekt på 

steroidogenesen i LH-stimulerte Leydigceller fra gris. ”Cod”, ”Waste” og ”Tran” blandingene 

hadde en generell hemmende effekt på produksjonen av testosteron og 17β-østradiol. 

Tendensen for gener involvert i steroidogenesen var avtagende ekspresjon etter eksponering 

for alle tre blandingene. Den avtagende genekspresjonen kan forklare endringen i 
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hormonproduksjonen i eksponerte celler. Det var en tendens til avtagende ekspresjon av gener 

involvert i epigenetiske og antioksidative mekanismer etter eksponering for ”Tran” 

blandingen. 

 

Det gir særlig grunn til bekymring at hormonforstyrrende effekter ble observert ved 

eksponering for ”Tran” blandingen. Denne representerer forurensende stoffer ekstrahert fra 

ferdig renset tran.  De positive helseeffektene av konsum av fisk og tran må veies mot den 

økte eksponering for POPs, og deres potensielle negative helseeffekter. Videre undersøkelser 

bør utføres for å klarlegge om hormonforstyrrende effekter etter eksponering for ”Tran” 

blandingen også gjør seg gjeldende in vivo. 
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Abbreviations  
 
(RT) qPCR (Real time) quantitative polymerase chain reaction 

3β-HSD  3β-hydroxysteroid dehydrogenase 

AB  Alamar Blue 

AhR  Aryl hydrocarbon receptor 

AR  Androgen receptor 

ARNT  AhR nuclear translocator 

cAMP  Cyclic adenosine monophosphate 

CHX  Cyclohexane 

CRRT  Centre of Reproduction and Reproductive Toxicology 

Ct  Cycle thershold 

CYP   Cytochrome P450 

DDD  Dichloro-diphenyl-dichloroethane 

DDE  Dichloro-diphenyl-dichloroethylene 

DDT  Dichloro-diphenyl-trichlorethane 

DEPC  Diethylpyrocarbonate 

D-MEM/F-12 Dulbecco’s modified eagle medium: nutrient mixture F-12 

DMSO  Dimethyl sulfoxide 

E2  17β-estradiol 

ED  Endocrine disruptor 

ER   Estrogen receptor 

FBS   Fetal bovine serum 

FSH  Follicle-stimulating hormone 

g  g-force value 

GnRH  Gonadotropin-releasing hormone 

H2SO4  Sulphuric acid 

HCB  Hexachlorobenzene 

HCH  Hexachlorohexane 

ITS  Insulin-transferrin-selenous acid 

LH  Luteinizing hormone 

Ndl   Non-dioxine-like 

NVH   Norwegian School of Veterinary Science 
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PBDE  Polybrominated diphenyl ethers 

PCB  Polychlorinated biphenyls 

PCDD  Polychlorinated dibenzo-p-dioxines 

PCDF  Polychlorinated dibenzo-p-furanes 

POPs  Persistent organic pollutants 

PSN   Penicillin-Streptomycin-Neomycin 

RIA  Radioimmunoassay 

ROS  Reactive oxygen species 

Rpm  Revolutions per minute 

T  Testosterone 

TDS  Testicular dysgenesis syndrome 

XRE  Xenobiotic responsive element 
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1 Introduction 

1.1 Persistent organic pollutants 

There is an increasing concern about the global distribution of persistent organic pollutants 

(POPs). POP is a collective term that includes many families of chlorinated and brominated 

aromatics, including polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxines 

and –furans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs) and various organochlorine 

pesticides such as DDT (dichloro-diphenyl-trichlorethane) and its metabolites DDD (dichloro-

diphenyl-dichloroethane) and DDE (dichloro-diphenyl-dichloroethylene), chlordane, 

hexachlorobenzene (HCB) and hexachlorohexane (HCH). PCDD/Fs are unintended by-

products of combustions and industrial chemical production. PCBs and PBDEs have been 

produced for industrial uses. Pesticides such as DDT and chlordane have been produced to 

function as agrochemicals [1]. POPs are characterized by their ability to persist in the 

environment. Because of their lipophilic character and their ability to resist degradation, POPs 

accumulate in fatty tissue in humans and animals and biomagnify in the food chain. POPs are 

volatile and can be subject to long-range transport [1,2].  

 

The global concern about the distribution of POPs is associated with a wide range of adverse 

effects observed in humans and wildlife. Adverse effects include cancer, immune impairment, 

neurodevelopment changes, reduced birthweight and reproductive toxicity [3]. The question is 

not whether the compounds are toxic or not, but to which extent adverse health effects can 

occur form low-level, background exposure [3]. The main source of POPs in humans is 

dietary intake, particularly food of marine origin [4,5].  

 

As a consequence of the concern about global distribution of POPs, The Stockholm 

Convention on persistent organic pollutants (POP) was adopted in 2001 with an aim to protect 

human health and wildlife. The treaty requires ratifying countries to take necessary measures 

to eliminate or reduce the release of POPs into the environment [6]. 

 

Many POPs possess the ability to act as endocrine disruptors (EDs), thus altering the normal 

functioning of endocrine systems of humans and wildlife species [3,7,8]. There has been no 

clear evidence of a direct causal connection between exposure of background levels of 
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environmental EDs and adverse effects on human health. However, the concern of possible 

adverse effects on human health include declined reproduction function, premature puberty, 

altered immune function and cancer [9]. 

 

1.2 EDs and their mechanisms of toxicity 

The term endocrine disruptor (ED) has been widely used to describe chemicals that mimic the 

actions of hormones, inhibit the actions of hormones and/or alter the normal regulatory 

function of the endocrine system [5,10].  

 

Possible actions described for EDs are as agonists/antagonists of hormone receptors, or they 

exert their action through indirect interactions with the endocrine system [11-13].  

 

An agonist is a ligand that binds to a receptor and leads to activation and the same effects that 

can be caused by endogenous hormones. An antagonist is a ligand that inhibits or diminishes 

effects caused by binding of endogenous hormones to their receptors, because the receptor 

can not be activated as usual [13].  

 

In addition to direct receptor mediated effects, growing evidence also shows that EDs may 

modulate the activity and expression of steroidogenic enzymes. These enzymes have a key 

role in the formation and degradation of various steroid hormones [13-15]. Another possible 

action described for EDs is their interference in regulation of the concentration of hormone 

receptors. Crosstalk between the sex-hormone receptors and the aryl hydrocarbon receptor 

(AhR) has been observed. The AhR is involved in xenobiotic metabolism and in mediation of 

toxic effects of dioxin-like compounds. Interaction between AhR and estrogen receptor (ER) 

signalling has been most studied, but also transcriptional activity of the androgen receptor 

(AR) has been shown to be modulated in association with activated AhR [5,16].  

 

Upon binding of a ligand, the AhR translocates from the cytoplasma to the nucleus and is 

activated by dimerizing with the AhR-nuclear translocator (ARNT). The AhR/ARNT 

complex binds to xenobiotic response elements (XREs) on DNA level and activates 

expression of AhR target genes, such as CYP1A1 [5]. Several studies have reported that 

activated AhR inhibits expression of E2 induced genes [17]. The molecular mechanism for 

this inhibition is not clear, but several different mechanisms are suggested; direct inhibition 
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by the active AhR through binding to inhibitory XREs in ER target genes, synthesis of 

inhibitory proteins, increased proteasomal degradation of ER and altered estrogen 

synthesis/metabolism through increased aramoatase and CYP1A1 expression [17]. The 

mechanisms involved in the less studied crosstalk between AhR and AR signalling pathways 

are unclear, although activated AR has been suggested to compete with AhR  for transcription 

factors and modulators [5]. 

 

Some EDs have been reported to enhance the level of reactive oxygen species (ROS) in 

testicular cells [18,19]. Excessive levels of ROS can cause oxidative stress which in turn can 

lead to oxidative damage by a variety of mechanisms, including DNA damage and damage to 

cellular membranes [20]. The electron transport chain in mitochondria is an important source 

of ROS [18]. The mitochondria are very susceptible to oxidative damage. ROS mediated 

perturbation of mitochondria in hormone producing cells has been put forward as an 

explanation for endocrine disrupting effect of some EDs. It is suggested that perturbation of 

mitochondria contributes to lowered expression of important steroidogenic enzymes [19-21].  

 

 Additionally, EDs have been shown to have the ability to alter epigenetic patterns 

transgenerationally, and exerting an effect on the male reproduction system [22-24]. 

Epigenetics is defined as an alteration of gene expression without alterations to the DNA 

sequence. The most studied epigenetic modification is methylation of CpG sites in parts of the 

genome that are essential for development. It has been suggested that exposure to EDs such as 

POPs, may affect DNA methylation patterns [23]. Some EDs are suspected to be associated 

with global DNA hypomethylation (low levels of methylation), which has been associated 

with a wide range of diseases [25]. 

 

1.3 Environmental marine mixtures of POPs  

Recently, the focus on environmental mixtures of pollutants has increased. The focus in 

toxicological studies has typically been on exposure to single compounds and their effects.  

Pollutants in nature often occur as complex mixtures of different compounds. Exposure to 

mixtures of compounds is a more environmentally relevant exposure scenario, compared to 

exposure to single compounds. The responses of exposure to one compound may not be in 

correspondence to the responses of exposure to a mixture of compounds.  The effects of 
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exposure to mixtures of compounds can be additive, or act in an antagonistic or synergistic 

manner, compared to exposure to single compounds [3,8,26].  

 

Natural mixtures of POPs extracted from fish liver oil have been reported to exert effects on 

steroidogenesis in in vitro systems, as well as developmental and reproductive effects in male 

zebrafish [27-29].  

 

The Ministry of Health and Care Services in Norway generally recommends a higher intake 

of fish, due to its high contents of vitamin D and its richness in marine omega-3 fatty acids. A 

daily intake of cod liver oil dietary supplement for infants from the age of 4 weeks is 

specifically recommended [30]. 59 % of pregnant women participating in the Norwegian 

Mother and Child Cohort study reported consumption of cod liver oil/fish oil supplements 

during the first 4-5 months of pregnancy [31].  

 

Fish and fish products have a relatively high lipid content. Because of POPs ability to 

bioaccumulate in fatty tissues of organisms, elevated levels of POP can be found in fish and 

fish products including oils [32,33]. Fish has been put forward as a considerable source of 

human intake of POPs in the Nordic countries [4]. The concentration of POPs in fish oils 

varies depending on the type of fish used in the oil preparation and where these fish have been 

collected. Cod liver oils have been reported to have higher levels of POPs compared to other 

fish oils [34,35]. The beneficial effects of fish consumption and intake of cod liver oil 

supplements should be balanced against the increased exposure to POPs and their potential 

ability to exert negative health effects. 

 

1.3.1 Marine mixtures based on steps in the refinement process of dietary 
supplement of cod liver oil 

In manufacturing of dietary supplement of cod liver oil, crude cod liver oil undergoes several 

cleaning steps to remove POPs. These steps include a charcoal filtration to remove most of 

the dioxins and the dioxin-like (dl) PCBs. Subsequently, a distillation of the eluate removes 

most of the non-dioxin-like (ndl) compounds. The main oil fraction is processed further to 

become finished cod liver oil dietary supplement. Based on these cleaning processes, the 

laboratory of environmental toxicology at the Norwegian School of Veterinary Science 

(NVH) has developed three marine mixtures: POPs extracted from crude cod liver oil from 
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Atlantic cod (Gadus morhua) (referred to as “Cod” mixture), POPs extracted from 

concentrated waste residue from the distillation process containing mainly ndl-compounds 

(referred to as “Waste” mixture) and POPs extracted from finished cod liver oil dietary 

supplement (referred to as “Tran” mixture).  

 

1.3.2 A short description of selected POPs in the marine mixtures 

PCBs are a group of organic chlorine compounds produced for industrial uses. They have 

been widely applied as pesticide extenders, in plasticizers, hydraulic fluids, electrical 

transformers, cutting oils and sealants [1,36]. The number of chlorine atoms and their position 

in the molecule, give rise to 209 congeners of PCBs. PCBs with non-ortho or mono-ortho 

substitution of chlorine have a co-planar structure and dioxin-like properties, and may exert 

AhR-agonist activity [37]. Di- or multiple-ortho-substituted PCBs, which have two or more 

chlorine atoms in the ortho positions, have weak or no binding at all to the AhR, and exert 

their activity through other mechanisms. They have been reported to act as antagonists for 

both ER and AR [38]. The endocrine disrupting effects of PCBs are well established 

[14,15,36]. PCBs have been reported to alter hormone levels in vitro  [19] and  in vivo [21], 

and elevated human PCB concentrations have been associated with lower serum testosterone 

[39]. 

 

DDT has been used as an insecticide and has been especially effective against flies and 

mosquitoes [36]. The term DDT is often used to describe a family of isomers (p,p-DDT, o,p-

DDT) and their metabolites (p,p-DDE, o,p-DDE, p,p-DDD and o,p-DDD). o,p-DDT is the 

only DDT analogue to have a significant affinity for the estrogen receptor [14].  p,p-DDE is a 

potent anti-androgenic AR-antagonist  [40]. The endocrine disrupting effects of the 

organochloride family of DDTs in vito and in vivo are well established  [14,15,36].  

 

The organochlorine incecticides chlordane (cis- and trans-isomers, and its metabolite 

oxychlordane) and lindane (also known as γ-HCH) and the by-products of lindane production, 

α- and β-HCH, have shown endocrine disrupting effects in vitro and in vivo [41-44]. HCB has 

been used as a fungicide and endocrine disrupting effects have been reported in vitro and in 

vivo [45-47].   
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1.4 Trends in male reproductive health and roles of EDs 

There are several epidemiological studies that suggest negative trends in the male 

reproductive health during the last 50 years [48].  These negative trends include an apparent 

decrease in sperm quality, an increased incidence of testicular cancer and an increase in 

cryptorchidism and hypospadias [49]. A hypothesis was presented that the four conditions 

mentioned above, all have an origin in fetal life and all are indicative of one underlying 

syndrome, the testicular dysgenesis syndrome (TDS) [50]. The increasing concern about the 

negative trend in male reproductive health, has led to several epidemiological studies where 

possible associations between exposure to EDs  have been investigated [48].  

 

However, the issue of negative trends in semen quality and the hypothesis of common risk 

factors of TDS, remain controversial  [51,52]. Whereas the increase in incidence of testicular 

cancer is evident [53], the diagnostic criteria for cryptorchidism and hypospadias are not very 

well-defined, which makes data comparison more complicated [5]. The retrospective 

approach in collected materials on semen quality, makes quality control more difficult, and 

has emphasized by opponents of the hypothesis of  a general negative trend in male 

reproductive health [54]. 

 

Recent research has focused on geographical differences in male reproductive health. 

Epidemiological studies have been carried out as a collaboration between research groups in 

Denmark and Finland to compare trends in male reproductive health [5]. The incidence of 

testicular cancer was found to be higher in Danish and Norwegian men compared to Finish 

and Estonian men [53], whereas sperm counts were reported to be significantly higher in 

Finland and Estonia compared to Denmark and Norway [55]. An intermediate situation is 

reported in Sweden, where the incidence of testicular cancer is 50 % of that in Denmark , and 

the sperm count is 31 % higher compared to Denmark [56]. Although genetic differences 

could elucidate the differences in testicular cancer incidence and sperm counts between 

Finish/Estonian and Danish/Norwegian men, the Swedish intermediate position can not be 

explained by genetic factors alone [5]. There is no clear evidence that the differences 

described above are related to various degrees of exposure to EDs. There seems to be 

environmental factors involved in the observed differences, but whether EDs play a role in 

this context, needs to be further investigated. 
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1.5 The Leydig cell 

The Leydig cell of the testis is capable of synthesising testosterone from cholesterol. The 

main function of the Leydig cell in the testis is the biosynthesis and secretion of testosterone, 

which is essential for developmental and reproductive function in the male. Testosterone is 

critical in fetal development of male sexual differentiation, and postnatally in initiating and 

maintaining spermatogenesis and male secondary sex characteristics [36,57]. 

 

1.5.1 The hypothalamic-pituitary-gonadal axis and the Leydig cell 

The testes are comprised of two main components that serve different functions. The 

seminiferous tubules contain the bulk of the testes, including the Sertoli cells, which are 

involved in spermatogenesis. The Leydig cells (also called interstitial cells) are responsible 

for synthesising and secreting the steroid hormone testosterone and are the primary source of 

this androgenic hormone in the body [36]. Both of these testicular components engage in a 

complex interplay with each other and with the hypothalamus and the pituitary (Figure 1-1). 

The hypothalamus is located in the brain and synthesizes and secretes a gonadotropin-

releasing hormone (GnRH). GnRH is transported to the anterior pituitary, where it binds to 

the gonadotrophs and stimulates the release of luteinizing hormone (LH) and follicle-

stimulating hormone (FSH) [58]. 
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Figure 1-1 Hypothalamic-pituitary-gonadal (testicular) axis. GnRH: gonadotropin-releasing hormone, 

LH: luteinizing hormone, FSH: follicle-stimulating hormone, T: testosterone, DHT: dihydrotestosterone, 

ABP: androgen-binding protein, E2: estradiol, +: positive stimuli, -: negative feedback. The figure is from 

Gardner et al. [58]. 

 

The biosynthesis of steroid hormones by the Leydig cell is dependent on stimulation by the 

pituitary LH, which binds to membrane bound LH receptors on the Leydig cells. The LH 

receptor is a G-protein coupled receptor. The binding of LH to its receptor results in an 

activation of adenylyl cyclase and generation of cAMP [58]. The increased levels of cAMP 

leads to rapid effects, including cholesterol mobilization and elevated steroidogenic enzyme 

activity [36]. This leads to increased synthesis and secretion of androgens, which in turn 

inhibits secretion of LH from the pituitary and GnRH from the hypothalamus [58]. 

 

1.5.2 Steroidogenesis in porcine testicular Leydig cells 

The biosynthesis of testosterone from cholesterol involves a series of enzymatically regulated 

steps (Figure 1-2). The predominant pathway of biosynthesis of testosterone varies among 

species. The mouse and rat Leydig cells have been the major subjects of investigation of 
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Leydig cell steroidogenesis. The predominant pathway of Leydig cell steroidogenesis in mice 

and rats is the ∆4 pathway [59]. However, the ∆5 pathway is the predominant pathway in 

conversion of cholesterol to testosterone in the testis of human and pig [60,61]. This makes 

the porcine Leydig cell a more suitable model for studying human testicular steroidogenesis. 

 

Transfer of cholesterol from the outer to the inner mitochondrial membrane is an essential 

step to initiate the biosynthesis of testosterone. This step is rate-limiting in steoridogenesis 

and is mediated by the steroidogenic acute regulatory (StAR) protein [36]. 

 

Cholesterol that has been transferred from the outer to the inner mitochondrial membrane is 

subsequently converted to pregnenolone by CYP11A1 (cholesterol side-chain cleavage 

enzyme) [14]. Pregnenolone is converted to 17 α-hydroxypregnenolone by CYP17 (α-

hydroxylase) and then to dehydroepiandrosterone by CYP17 (17,20-lyase). 

Dehydroepiandrosterone is further converted to androstenedione by 3β-HSD (3β-

hydroxysteroid dehydrogenase) [60,61]. The weak androgen androstenedione is converted to 

testosterone by 17β-HSD (17β-hydroxysteroid dehydrogenase) [14]. A low level of CYP19 

(aromatase) also expressed in the Leydig cells, converts testosterone to estradiol [62]. 
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Figure 1-2 Pathways for testicular androgen and estrogen biosynthesis. Framed arrows indicate the ∆5 

pathway. Coloured frames indicate enzymes. The figure is modified from Gardner et al. [58] 
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1.6 Aim of the study 

There has been an increasing concern over the last few decades that exposure to 

environmental low level mixtures of endocrine disrupting POPs is associated with a negative 

trend in male reproductive health. Fish and fish liver oil dietary supplement have been put 

forward as a considerable source of human intake of POPs.  

 

Proper testosterone biosynthesis is essential for male developmental and reproductive 

function. Leydig cells are responsible for biosynthesis of testosterone. The details in steroid 

biosynthesis pathway vary among species, but human and pig share the predominance of the 

∆5 pathway. Thus, the porcine Leydig cell provides a useful model for investigating human 

testicular steroidogenesis. 

 

The aim of this study was to investigate the effects of POPs in three marine mixtures (“Cod”, 

“Waste” and “Tran”) from different refinement steps of dietary supplement of cod liver oil, on 

steroidogenesis in LH-stimulated primary porcine Leydig cells. In addition to the aspect of 

achieving a better understanding of the effect of POPs in mixtures on steroidogenesis, an 

interesting approach of this study was to compare effects of the three mixtures. The mixtures 

gave three different exposure scenarios; exposure to “Cod” mixture (POPs extracted from 

crude cod liver oil), “Waste” mixture (POPs extracted from waste in the refinement process, 

containing mainly ndl-POPs) and “Tran” mixture (POPs extracted from finished cod liver oil 

dietary supplement). 

 

Specifc aims were: 

• Exposure of primary LH-stimulated porcine Leydig cells to different dilutions of 

three marine mixtures based on stages in the refinement process in preparation of 

cod liver oil dietary supplement, to further investigate: 

 Cell viability 

 Biosynthesis of testosterone and 17-β estradiol 

 Gene expression of genes involved in steroiogensis, 

epigenetics and anti-oxidative mechansims 
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2 Materials and methods 
 
A complete table of suppliers, catalogue numbers and origin of materials, chemicals, 

instruments and software is presented in appendix 1. 

 

2.1 Isolation and culturing of porcine Leydig cells 

Primary Leydig cells maintain morphological and functional integrity and provide an in vitro 

model to investigate factors which regulate testicular steroidogenesis [63]. The protocol for 

isolating and culturing porcine Leydig cells described below, is adapted from protocols 

described by Bernier et al. and Lejeune et al. and is based on purification of Leydig cells by a 

discontinuous Percoll gradient [63,64]. 

 

2.1.1 Preparation of solutions, media, buffers and Percoll gradients for Leydig 
cell isolation 

Collagenase/Dispase stock: 500 mg Collagenase/Dispase (Roche) was dissolved in 10 ml of 

D-MEM/F-12 medium (Invitrogen) to produce a 100x Collagenase/Dispase stock solution and 

stored at -20 ºC.  

 

Collection and isolation medium with antibiotics: 10 ml of Penicillin-Streptomycin-Neomycin 

Antiobiotic Mixture (PSN) (Invitrogen) was added to 500 ml of D-MEM/F-12 medium, to 

make up a D-MEM/F-12 medium with 2 % PSN. 8 flasks (of 500 ml) were made for isolation 

of Leydig cells from approximately 90 testicles.  

 

Dissociation medium: 2 ml of thawed Collagenase/Dispase stock (100x) was added to 8 ml of 

isolation medium (with 2 % PSN). 5 ml of Fetal Bovine Serum (FBS) (Sigma) was added. 

This dilution was filter sterilized through a 0.22 µm filter (Pederson and son) into a sterile 

flask containing 75 ml of isolation medium (with 2 % PSN). The dissociation medium was 

stored at 4 ºC. 

 

Complete plating medium: 12.5 ml NuSerum (BD biosciences), 5 ml of ITS+ (BD 

biosciences) and 10 ml of PSN was added to 500 ml of D-MEM/F-12 medium. 
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Percoll solutions: A 90 % Percoll solution was made by adding 1 volume of Ham’s F-10 

(10x) (Biological Industries) to 9 volumes of undiluted Percoll (Sigma). The 90 % Percoll 

solution was used to prepare solutions of 21 %, 26 %, 34 % and 60 % Percoll in isolation 

medium. The Percoll solutions were stored at 4 ºC. 

 

2.1.2 Making the Percoll discontinuous gradients 

Each of the Percoll solutions were applied very slowly in the order illustrated in Figure 2-1 in 

50 ml conical tubes (BD Falcon) on the day of isolation. 12 gradients were constructed this 

way. This allowed purification of material derived from approximately 90 testicles. 

 

← 5 ml sample

← 8 ml 21 % Percoll solution

← 5 ml 26 % Percoll solution

← 7 ml 34 % Percoll solution

← 5 ml 60 % Percoll solution

← 5 ml sample

← 8 ml 21 % Percoll solution

← 5 ml 26 % Percoll solution

← 7 ml 34 % Percoll solution

← 5 ml 60 % Percoll solution

 
Figure 2-1 Setup for Percoll discontinuous gradient. 

 

2.1.3 Isolation of Leydig cells 

Leydig cells were obtained from testicles of 8-10 days old piglets from Bøhnsdalen farm in 

the municipal of Skedsmo. The castrations were carried out by authorized veterinarians from 

the Norwegian School of Veterinary Science (NVH).  The piglets were administrated 0.5 ml 

1% lidocain without adrenalin (Haukeland Sykehusapotek) subcutaneously on each scrotal 

half and in each spermatic cord. The scrotum was septically prepared and incised down to the 

external spermatic fascia using a 20 scalpel blade. Each testicle was exteriorized within the 

vaginal tunic and the spermatic cord sectioned with a scalpel blade. After the castration each 

piglet was administrated 30 mg ketoprofen (Merial SAS). The testicles were transported to 

NVH on ice in collection medium. Approximate time from castration to arrival at NVH did 

not exceed 2.5 hours.  

 

Approximately 12 testicles were collected in one petri dish in a little isolation medium. The 

epididymides were removed with scissors. The testicles were transferred to a new petri dish 

and decapsulated with tweezers and scalpels. 
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Approximately 30 testicles were collected in a new petri dish and minced with scissors. The 

minced testicles were poured into a 50 ml tube, sedimented and washed with isolation 

medium several times until clear supernatant was obtained. The tissue and medium from one 

50 ml tube was added to 90 ml of dissociation medium and put at 34 ºC and agitation. 

 

After 45 minutes some of the supernatant (approximately one third of the volume in the flask) 

was removed with a pipette and filtered through a metal filter into a beaker. Fresh isolation 

medium was added to the flask in the same amount of supernatant removed. The flask was put 

back at 34 ºC and agitation continued for another 45 minutes. 

 

The filtered supernatant was centrifuged at 250 g for 10 minutes at 4 ºC. The supernatant was 

discarded. To remove the bulk of tubule material, the pellet was resuspended in 50 ml of 

isolation medium, and the solution left to sediment at unit gravity for 5 minutes. The 

supernatant was pipetted into new 50 ml tubes, and left to sediment for 15 minutes. The 

supernatant was pipetted into new 50 ml tubes and centrifuged at 250 g for 10 minutes at 4 ºC. 

The supernatant was discarded. The pellet was resuspended in 5 ml of isolation medium and 

stored at 4 ºC. 

 

A second collection of supernatant from the 500 ml flask (which was put back on agitation 

after the first collection) was performed. This time no medium was put back into the flask. 

The flask was put back at 34 ºC and agitation for the final 45 minutes.  The second and third 

collection from the 500 ml flask was performed as described for the first collection. 

 

The suspensions from the three collections were pooled and diluted in a maximum of 60 ml of 

isolation medium (for 12 gradients). Approximately 5 ml of the diluted cell suspension were 

put very slowly and carefully on top of each of the Percoll gradients. The break on the 

centrifuge was set to 0 and the gradients were centrifuged at 1250 g for 30 minutes at 4 ºC. 

The top layers were aspirated off with a pipette. Approximately 5 ml of the 34 % Percoll 

layer, which contains the Leydig cells, were recovered with a new pipette. The collected 

Percoll was diluted 10X with isolation medium and centrifuged at 250 g for 20 minutes at 4 

ºC. The supernatant was discarded and the pellet was resuspended in isolation medium (in 

approximately 30 ml for about 90 testicles). 
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2.1.4 Cell plating, culturing and LH stimulation 

The cells were counted in a Bürker chamber. The cell suspension was diluted to a 

concentration of 300 000 cells/ml with isolation medium and complete plating medium in a 

1:1 ratio. 1 ml was added to each well of a 24 well plate (BD Falcon) for exposure studies. 

100 µl was added to each well of a 96 well plate (VWR) for cell viability studies. The cells 

were incubated for 72 hours at 34 ºC and 5 % CO2. After 72 hours the medium was removed 

and replaced with 1 ml and 100 µl of complete plating medium in the 24 well plates and the 

96 well plates, respectively. The remaining complete plating medium was stored at -70 ºC for 

use in hormone analyses. Immunochemical grade porcine LH (Tucker Endocrine Research 

Institute) was dissolved in M199 modified with Earle’salts, without L-glutamine, sodium 

bicarbonate and phenolred (Sigma). 20 µl and 2 µl of LH (25 ng/ml) was added to each well 

in the 24 well plates and the 96 well plates, respectively, to make up a final concentration of 

LH in each well of 0.5 ng/ml. 

 

2.1.5 3β-hydroxysteroid dehydrogenase staining 

Leydig cells can be identified by the presence of 3β-hydroxysteroid dehydrogenase (3β-HSD) 

[36].  A 3β-HSD staining was performed as described by Huang et al. [65] to assess the 

amount of Leydig cells in the cell preparation.  

 

The Leydig cells were isolated, plated and cultured as described above. A total of ~1 x 106 

cells were washed with a PBS buffer (0.15 M, pH 7.4). The cells were trypsinized by adding 

0.5 ml Trypsin-EDTA 1x solution (Sigma). After 2 minutes at 34 ºC the cells were transferred 

to a new tube and 5 ml of D-MEM/F-12 medium with 10 % FBS was added. The tube was 

centrifuged at 200 g for 6 minutes. The supernatant was discarded and the pellet was 

resuspended in 2 ml of a solution containing 0.2 mg/ml Nitrotetrazolium Blue chloride 

(Sigma), 0.12 mg/ml trans-Dehydroandrosterone (Sigma) and 1 mg/ml β-Nicotinamide 

adenine dinucleotide (Sigma) in PBS (0.05 M, pH 7.4), and incubated at 37 ºC on waterbath 

in 90 minutes. The amount of Leydig cells were determined by counting the total number of 

cells and the number of blue cells (Leydig cells) in a Bürker chamber. 
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2.2 Exposure to marine mixtures of POPs 

The marine mixtures of POPs used for exposure of Leydig cells in this study were based on 

extracts from fractions of different stages in the production of cod liver oil dietary 

supplement. The production includes several steps to remove POPs. A charcoal filtration is 

used to remove most of the dioxins and the dioxin-like (dl) PCBs. Subsequently, a distillation 

of the eluate removes most of the non-dioxin-like (ndl) compounds. The main oil fraction is 

processed further to become finished cod liver oil dietary supplement.   

 

2.2.1 Preparation of the marine mixtures 

The marine mixtures used in this study were developed at the laboratory of environmental 

toxicology at NVH. POPs were extracted from different steps in the production of cod liver 

oil dietary supplement manufactured from Atlantic cod (Gadus morhua). Three mixtures were 

prepared from 700 ml of crude Atlantic cod liver oil, 700 ml of commercially available cod 

liver oil dietary supplement, and 20 g of concentrated waste from the distillation of the eluate 

after the charcoal filtration. The lipids were removed using concentrated sulphuric acid 

(H2SO4) for clean-up. For the extraction of 100 ml batches of oil, approximately 200 ml of 

cyclohexane (CHX) and 1000 ml of H2SO4 were used.The mixtures were shaken and left 

overnight. The next day, the mixtures were frozen and thawed to separate the organic phase. 

The organic phase was reduced to 20 ml under N2 stream. Subsequently, 100 ml of H2SO4 

was added and the mixtures again kept overnight after shaking. The procedure with N2 

volume reduction was repeated, first 5 ml organic phase and 20 ml H2SO4, and then 1 ml 

organic phase and 5 ml H2SO4 until no visible oxidation colour formation in the acid could be 

observed two days after the acid had been changed. This procedure was carried out for 

approximately 12 weeks. The batches of extract from each mixture were pooled, and 

transferred to DMSO. The CHX was evaporated gently under N2 stream. Some precipitation 

was removed and approximately 1 ml of DMSO extract was obtained.  

 

The three mixtures: 

1. “Cod” mixture, POPs extracted from crude cod liver oil from before the charcoal filter 

process  

2. “Waste” mixture, POPs extracted from concentrated waste from distillation process, 

containing mainly ndl-compounds (e.g. ndl-PCBs, DDTs) 

3. “Tran” mixture, POPs extracted from finished cod liver oil dietary supplement 
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2.2.2 Chemical characterisation of the marine mixtures 

The three mixtures were analyzed at the laboratory of environmental toxicology at NVH to 

determine the contents of selected POPs (PCBs, HCHs, HCB, chlordanes and DDTs). 

From the stock solutions of each of the extracts, aliquots were diluted with CHX for chemical 

identification and quantification at the laboratory of environmental toxicology at NVH. The 

laboratory is accredited for analyzing the components reported here, according to the 

requirements of NS-EN ISO/IEC 17025:2000. PCBs, HCHs, HCB, chlordanes and DDTs 

were determined by gas chromatography with electron-capture detection (GC–ECD) 

according to a published method [66]. The detection limits ranged from 5 to100 ng/ml for 

PCBs, and from 2 to100 ng/ml for HCHs, chlordanes, HCB, and DDTs.  

 

2.2.3 Exposure  

Four dilutions of the marine mixture extracts were made. The cells were exposed to final 

dilutions of the extracts of 1/400, 1/1000, 1/2000 and 1/10000.  The exposure experiment was 

carried out three times. Exposure to each dilution of the marine mixtures was carried out in 

triplicate in each exposure experiment. 

10 µl and 1 µl of each of the dilutions of the three mixtures were added to each well in the 24 

well plates and the 96 well plates, respectively (Figure 2-2). The final DMSO concentration in 

each well was 0.25 %. The cells were incubated for 48 hours at 34 ºC and 5 % CO2. 
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DMSO solvent control DMSO solvent controlMedium control Medium control

”Cod” mix. dilution ”Waste” mix. dilution ”Tran” mix. dilution
1/400 1/1000 1/2000 1/10000 1/400 1/400 1/10001/1000 1/20001/2000 1/100001/10000

DMSO solvent control DMSO solvent controlMedium control Medium control

”Cod” mix. dilution ”Waste” mix. dilution ”Tran” mix. dilution
1/400 1/1000 1/2000 1/10000 1/400 1/400 1/10001/1000 1/20001/2000 1/100001/10000

 
Figure 2-2 Set up for exposure experiment. One exposure experiment was carried out on two 24 well 

plates. Each plate was set up with a solvent control (DMSO) and a blank control (medium) in triplicates.  

Each of the exposures to the four dilutions of the three mixtures was set up in triplicate. The final DMSO 

concentration in each well was 0.25 %.  

 

2.3 Viability analysis 

Cell viability was investigated using Alamar Blue assay (Invitrogen). A redox indicator is 

added to a cell culture. In living cells, the oxidized blue form of Alamar Blue (resazurin) is 

converted to a pink reduced form of Alamar Blue (resorufin) (Figure 2-3) [67,68]. The 

oxidized form of Alamar Blue is taken up by the cells and reduced, with a corresponding shift 

in its absorbance [69]. 

 

 
Figure 2-3 Reduction of reazurin (to the left) to resofurin (to the right). The figure was found 24.11.09 at: 

http://tools.invitrogen.com/content/sfs/manuals/mp01025.pdf  

The experiment was carried out as described in the manufacturer’s protocol. 10 µl fresh 

complete plating medium containing 10 % Alamar Blue was added to each of the wells in the 

96 well plate after 48 hours of exposure. The cells were incubated for three hours at 34 ºC and 

5 % CO2. The 96 well plate was placed in a spectrophotometer (Victor 3 1420 Multilabel 

Plate Reader, Perkin Elmer) and absorbance was measured at 570 and 600 nm to calculate the 

viability of the cells. 
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2.4 Hormone analysis 

The hormone analyses were performed using radioimmunoassay (RIA). The principle of RIA 

is binding of a radioactively labelled hormone (antigen) to a specific antibody to form a 

labelled complex. The assay makes use of the ability of an unlabelled hormone in a sample to 

compete with the labelled hormone. High levels of unlabelled hormone in a sample, gives 

lower measurements of radiation from the labelled hormones. The concentration of a hormone 

in an unknown sample, can be determined by comparing the binding of antigen-antibody with 

binding in standard solutions [70]. 

 

The medium from exposed cells in the 24 well plates was collected and stored at -70 ºC. The 

cell plates were stored at -70 ºC immediately after the medium was removed.  

 

The media’s content of two hormones, 17β-estradiol (E2) and testosterone (T) was analysed 

using Count-a-Count® kit (Siemens Medical Solutions Diagnostics). 

 

2.4.1 Estradiol analysis 

The kit was modified by replacing the standard curve in serum with standards prepared in cell 

culture medium. The standard curve ranged from 0-4000 pg/ml. The assay under new 

conditions had a limit of detection of 20 pg/ml corresponding to 95 % binding of the labelled 

hormone. Inter assay variation coefficients were 7.9 % (at 154.3 pg/ml) and 10.9% (at 1397.0 

pg/ml).  

 

E2 was diluted with 96 % ethanol to 1 mg/ml. Standards were made by diluting the 1mg/ml 

E2 solution with the complete plating medium (the same medium as used for the exposure) to 

4000 pg/ml, 1000 pg/ml, 250 pg/ml, 100 pg/ml, 40 pg/ml, 10 pg/ml and 0 pg/ml.  

 

The hormone analysis was performed as described in the manufacturer’s protocol. All of the 

samples were analysed in parallels. Each sample and standard was vortexed. 100 µl of the 

standards and samples were added to the tubes coated with antibody in parallels. 1 ml of 

tracer Estradiol 125I (labelled hormone) was added to each tube, including a tube with no 

coated antibody. The tubes were vortexed, covered with plastic film and incubated at room 

temperature for three hours. The tubes were decanted using a foam decanting rack and drained 
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for 2-3 minutes. Any residual droplets were shaken off on absorbant paper. The samples were 

counted in a 1470 Wallac Wizard Gamma Counter (Perkin Elmer) for 1 minute. 

 

2.4.2 Testosterone analysis 

The kit was modified by replacing the standard curve in serum with standards prepared in cell 

culture medium. The standard curve ranged from 0-20 ng/ml. The assay under new conditions 

had a limit of detection of 0.1 ng/ml corresponding to 95 % binding of the labelled hormone. 

Inter assay variation coefficients were 7.5 % (at 11.89 ng/ml) and 10.2 % (at 80.86 ng/ml).  

 

T was was diluted with 96 % ethanol to 1 mg/ml. Standards were made by diluting the 1 

mg/ml T solution with the comlete plating medium (the same medium as used for the 

exposure) to 20 ng/ml, 10 ng/ml, 2.5 ng/ml, 0.5 ng/ml, 0.1 ng/ml and 0 ng/ml.  

 

The hormone analysis was performed as described in the manufactuer’s protocol. All of the 

samples were analysed in parallels. Each sample and standard was vortexed. 50 µl of the 

standards and samples were added to the tubes coated with antibody in parallels. 1 ml of 

tracer Testosterone 125I (labelled hormone) was added to each tube, including a tube with no 

coated antibody. The tubes were vortexed, covered with plastic film and incubated on 

waterbath at 37 ºC for one hour. The tubes were decanted using a foam decanting rack and 

drained for 2-3 minutes. Any residual droplets were shaken off on absorbant paper. The 

samples were counted in a 1470 Wallac Wizard Gamma Counter (Perkin Elmer) for 1 minute. 

 

2.5 Gene expression analysis 

Gene expression analysis was performed using quantitative real-time polymerase chain 

reaction (RT-qPCR). RT-qPCR is widely applied to examine gene expression in basic 

research, molecular medicine and biotechnology. In RT-qPCR the target template is 

quantified by measuring amplification of a PCR product through corresponding increase in a 

fluorescent signal. The signal is associated with the formation of product in each cycle in the 

PCR [71,72]. 
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In relative quantification, the expression of a target gene, normalised to one or more 

coamplified reference genes which should be equally expressed in all the samples, is given as 

an increase or decrease relative to a control sample. 

 

2.5.1 DNA/RNA/protein isolation 

DNA, RNA and proteins were isolated using an AllPrep Mini Kit (Qiagen). DNA and 

proteins were isolated for future experiments (not part of this thesis). RNA was isolated for 

RT-qPCR analysis. The isolation of DNA, RNA and protein was performed according to the 

manufacturer’s protocol with certain modifications.  

 

The 24 well plates from the exposure experiments were removed from -70 ºC and 200 µl of 

RLT buffer was added to each well immediately for a direct lysis of the cells. The cells were 

scraped off by using a pipette tip. The triplicates form each exposure experiment were pooled 

and transferred to eppendorf tubes. Each sample was vortexed and transferred to a 

QIAshredder spin column (Qiagen) and centrifuged at 13000 rpm for 2 minutes for 

homogenization. The homogenized lysate was transferred to an AllPrep DNA spin column 

and centrifuged at 10000 rpm for 30 seconds. The DNA spin column was put aside for later 

processing.  

 

The flow-through was added 400 µl of 96 % ethanol and mixed well by pipetting. Up to 700 

µl of the sample was transferred to an RNeasy spin column and centrifuged at 10000 rpm for 

15 seconds. The flow through was transferred to a new tube for later protein purification. 700 

µl Buffer RW1 was added to the RNeasy spin column and centrifuged at 10000 rpm for 15 

seconds to wash the column. 500 µl Buffer RPE was added to the RNeasy spin column and 

centrifuged at 10000 rpm for 15 seconds to wash the spin column. 500 µl of Buffer RPE was 

added to the RNeasy spin column and centrifuged at 10000 rpm for 2 minutes to wash the 

spin column. 55 µl RNase-free water was added directly to the spin column membrane. The 

spin column was centrifuged at 10000 rpm for 1 minute to elute the RNA. The RNA was 

aliquoted and stored at -70 ºC.  

 

1000 µl of Buffer APP was added to the flow through put aside for protein purification and 

mixed vigorously by pipetting. The tube was incubated at room temperature for 10 minutes to 

precipitate protein. The tube was centrifuged at 13000 rpm for 10 minutes. The supernatant 
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was discarded. 500 µl of 70 % ethanol was added to wash the pellet before centrifuging at 

13000 rpm for 1 minute. The supernatant was removed with a pipette. The protein pellet was 

dried for 20 minutes to remove residual ethanol. 100 µl modified Reswell solution (appendix 

2) was added followed by vigorous mixing to resolve the pellet, before incubating at 95 ºC for 

5 minutes to dissolve and denature the protein. The sample was cooled to room temperature 

and centrifuged at 13000 rpm for 1 minute to pellet any residual insoluble material. The 

supernatant was stored at -20 ºC. 

 

500 µl of Buffer AW1 was added to the AllPrep DNA spin column. The column was 

centrifuged at 10000 rpm for 15 seconds. The flow through was discarded. 500 µl of Buffer 

AW2 was added to the spin column. The column was centrifuged at 13000 rpm for 2 minutes. 

The flow through was discarded. 100 µl of preheated EB (70 ºC) was added directly to the 

spin column membrane. The column was incubated at room temperature for 2 minutes and 

then centrifuged at 10000 rpm for 1 minute to eluate DNA. The DNA was aliquoted and 

stored at -70 ºC.  

 

2.5.2 RNA quantification, purity and quality check 

Quantity and purity of the isolated RNA was determined by NanoDrop ND-1000 

spectrophotometer (Thermo Scientific). 1 µl of the isolated RNA was pipetted directly on to 

the pedestal of the instrument. The absorbance was measured. The mean RNA concentrations 

ranged between ~210 - 270 ng/µl. The ratio of sample absorbance at 260 and 280 nm was 

used to assess the purity of nucleic acids. A 260/280 ratio of ~2.0 is considered as ”pure” for 

RNA according to the manufacturer’s manual. A lower value may indicate the presence of 

protein or other contaminants that absorb strongly near 280 nm. An acceptable purity was 

obtained for all the isolated RNA samples. The 260/280 ratio ranged from 2.10 to 2.16. 

 

The quality of the isolated total RNA was determined by Agilent 2100 Bioanalyzer (Agilent 

Technologies). A selection of six of the RNA samples was analyzed using the system’s on-

chip gel electrophoretic assay. According to the maufacturer’s manual, the assay is based on 

traditional gel electrophoresis principles that have been transfered to a chip format. Agilent 

2100 Bioanalyzer determines the ribosomal ratio to give an indication of the integrity of the 

RNA sample. In addition, the RNA integrity number (RIN) is used to estimate the integrity of 
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the RNA sample. The results indicated high quality for all the RNA samples. The ribosomal 

ratios and the RIN numbers were found satisfactory. 

 

2.5.3 RT-qPCR 

12 selected samples of total RNA isolated from the exposure experiments, were used to 

synthesize cDNA for RT-qPCR. The 12 selected samples consisted of RNA from cells 

exposed to DMSO (solvent control), “Cod” mixture (1/400 dilution), “Waste” mixture (1/400 

dilution) and “Tran” mixture (1/400 dilution) from three exposure experiments. cDNA was 

synthesized in duplicates from each RNA sample using the Superscript III Platinum Two-step 

qPCR kit with SYBR green (Invitrogen). Control amplifications without reverse transcriptase 

and without RNA were set up. The cDNA synthesis was performed according to the 

manufacturer’s manual. qPCR was performed using the Platinum® SYBR® green qPCR 

SuperMix-UDG (Invitrogen). The expression of 32 genes mainly involved in steroidogenesis, 

epigenetics and anti-oxidative mechanisms, was investigated (Table 2-1, Table 2-2 and Table 

2-3). Primerpairs for each gene were designed using PrimerExpress version 1.5 (Applied 

Biosystems) and are prsented in appendix 3. 
 
 
 
 



 34

 
 
Table 2-1 Gene expression of listed genes involved in steroidogenesis was analyzed 

 
 
 
 
 

Gene Main function 
CYP1A1 Cytochrome P450, subfamily 

1A, polypeptide 1 
Involved in metabolic activation of poycyclic 
aromatic hydrocarbons [5] 

LHRall Luteinizing hormone receptor, 
all splice variants 

Activate adenylyl cyclase to generate cAMP 
[73] 

HMGR Hydroxy-methyl-glutaryl-CoA 
reductase 

Catalyzes  rate-limiting step in cholesterol 
biosynthesis [74] 

CYB5 Cytochrome b 5 Involved in electron transfer [75] 
FTL Ferritin Light Chain Involved in intracellular iron storage [76] 
CYP51 Cytochrome P450, family 51 Involved in sterol biosynthesis [77] 
CYP21 Cytochrome P450, family 21 Involved in hydroxylation of progesterone and 

17α-hydroxyprogesterone (not in the 
∆5pathway) [61] 

INSL3 Insuline-like 3 Leydig cell specific, belongs to insulin like 
superfamily [78] 

NCOA1 Nuclear receptor coactivator1 Binds to nuclear steroid receptors and stimulates 
transcriptional activities [79] 

NR5A1 Nuclear receptor, subfamily 5A, 
member 1 (SF1) 

Transcriptional factor involved in 
steroidogenesis [80]  

NR0B1 Nuclear receptor, subfamily 0 B, 
member 1 (DAX1) 

Coregulatory role in transcription of other 
nuclear receptors, including NR5A1 [81] 

StAR Steroidogenic-acute-regulatory 
protein 

Involved in transport of cholesterol from outer 
to inner mitochondrian membrane [61] 

CYP11A1 Cytochrome P450, subfamily 
11A, polypeptide 1 

Catalyzes cleavage of  side chain of cholesterol 
to yield pregnenolone [61] 

CYP17A1 Cytochrome P450, subfamily 
17A, polypeptide 1 

Mediates 17α-hydroxylase and 17,20-lyase 
activity, converts pregnenolone via 17α-
hydroxypregnenolone to 
dehydroepiandrosterone [61] 

HSD3B 3β-hydroxysteroid 
dehydrogenase 

Catalyzes formation of androstenedione from 
dehydroepiandrosterone (in ∆5pathway) [61] 

HSD17B1 17β-hydroxysteroid 
dehydrogenase 1 

Catalyzes conversion of estrone to estradiol [61] 

HSD17B4 17β-hydroxysteroid 
dehydrogenase 4 

Catalyzes conversion of estradiol to estrone 
[82,83]  

ST5AR2 Steroid 5-α-reductase Catalyzes conversion of testosterone into 
dihydrotestosterone [84] 

CYP19A1 Cytochrome P450, subfamily 
19A, polypeptide 1 

Catalyzes the formation of 17β-estradiol from 
testosterone [61] 

AKR1C4 Aldoketo-reductase(3α-
hydroxysteroiddehydrogenase) 

Catalyzes transformation of dihydrotestosterone 
into 5α-androstan-3α-17β-diol [85] 
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Table 2-2 Gene expression of listed genes involved in epigenetic mechanisms was analyzed 
Gene Main function 
DNMT1 DNA methyl transferase 1 
DNMT3B DNA methyl transferase 

3B 

Maintenance of methylationpatterns of DNA 
cytocine residues [86,87] 

HAT1 Histone acetyl transferase1 Histone acetylation in transcriptional regulation [88] 
HDAC 1 Histone deacetylase 1 
HDAC2 Histone deacetylase 2 
HDAC 3 Histone deacetylase 3 

Histone deacetylation in transcriptional regulation 
and cell cycle progression [89] 

MBD1 Methyl-CpG-binding 
domain protein 1 

MeCP2 Methyl-CpG-binding 
protein 2 

Binds specifically to methylated CpG sites in DNA 
[90] 

 

 
Table 2-3 Gene expression of listed genes involved in anti-oxidative mechanisms was analyzed 
Gene Main function 
SOD2 Superoxide dismutase 2 Scavenges oxygen radicals from oxidation-

reduction and electron transport reactions 
in mitochondria [91] 

GSR Glutathione reductase Reduces disulfide form of glutathione [92] 
MGST1 Glutathione s-transferase, microsomal Catalyze conjugation of glutathione with 

xenobiotics, protects against lipid 
peroxidation and DNA damage [18,93]  

Alkbh4 AlkB, Homolog of E.coli, 4 Repair alkylation damage in DNA [94] 
 

2.5.3.1 Reverse transcription 

The RNA samples were adjusted with DEPC water to obtain the same concentration. RNA  

(980 ng) was mixed with 10 µl 2X RT Reaction Mix, 2 µl RT Enzyme Mix and DEPC water 

in a total volume of 20 µl in a well in a 96 well plate. The plate was gently mixed and cDNA 

synthesis was performed in the Tetrad PTC-225 Thermo Cycler (MJ Research) by incubating 

at 25 ºC for 10 minutes, 42 ºC for 50 minutes and 80 ºC for 5 minutes before chilling on ice. 1 

µl (2 U) of E.coli RNase H was added before incubation at 37 ºC for 20 minutes. The cDNA 

was stored at – 20 ºC until use.  

2.5.3.2 Two-fold dilution 

A two-fold dilution series was set up for 2 selected samples to decide the optimal cDNA 

concentration for qPCR. The cDNA was diluted to the decided concentrations in a two-fold 

series. RT-qPCR was performed as described below (RT-qPCR). 
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2.5.3.3 Temperature gradient 

To find the optimal annealing temperature for the primers used in the present study, a 

temerature gradient RT-qPCR was set up for each primer pair. The cDNA was synthesized 

from a set of samples of RNA similar to the samples from the exposure experiments. RT-

qPCR was performed as described below (RT-qPCR), but using annealing temperatures from 

58 ºC to 68 ºC.  

2.5.3.4 Reference genes 

A new cDNA synthesis was set up for a selection of RNA samples representative to the 

experimental study, to decide which reference genes to use for the RT-qPCR. cDNA synthesis 

was performed as described above (Reverse transcription) and RT-qPCR was performed as 

described below (RT-qPCR). The most stable reference genes from the tested candidate 

reference genes were determined using geNorm software (Primerdesign Ltd). The candidate 

reference genes were BACT, GAPDH, HPRT, PPIA, PGK1, S18. The most stable reference 

genes were HPRT (hypoxanthine-phophoribosyl-transferase) and BACT (β-actin). 

2.5.3.5 Amplification efficiency 

The amplification efficiency of the primerpairs was determined by setting up a 10-fold 

dilution series of cDNA from a pool of RNA samples. The cDNA synthesis was performed as 

described above (Reverse transcription) and the RT-qPCR was performed as described below 

(RT-qPCR). Amplification efficiency is calculated using the slope of the standard curve from 

Ct values plotted against cDNA concentration. The amplification efficiency of the primers 

was determined using the REST software (Corbett Research Ltd). The efficiency of all the 

primerpairs was found to be  ~100 %, which permits use of the 2-∆∆Ct method for relative 

quantitation of gene expression [95]. 

2.5.3.6 RT-qPCR 

cDNA was synthesized as described above (Reverse transcription) from 12 selected samples 

of RNA from the exposure experiments. The 12 selected samples consisted of RNA from cells 

exposed to DMSO (solvent control), “Cod” mixture (1/400 dilution), “Waste” mixture (1/400 

dilution) and “Tran” mixture (1/400 dilution) from three exposure experiments. The cDNA 

was diluted to the concentrations decided based on the two-fold dilution series set up. RT-

qPCR was mainly carried out as described in the manufacturer’s manual.  cDNA (20 ng) was 

mixed with 12.5 µl Platinum SYBR Green qPCR SuperMix-UDG, 0.5 µl forward primer (10 
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µM), 0.5 µl reverse primer (10 µM), 0.5 µl ROX dye  (10X diluted) and  DEPC water in a 

total volume of 25 µl in one well in a 96 well plate. The 96 well plate was gently mixed and 

qPCR was performed in the Chromo4 Real Time PCR Gradient Thermocycler (MJ Research) 

operated by the Opticon Monitor 3 software (Bio-Rad Laboratories) under the following PCR 

cycling conditions: 50 ºC for 2 minutes (UDG incubation), 95 ºC for 2 minutes (enzyme 

activation), followed by 40 cycles of 95 ºC for 15 seconds (denaturation), 62/60 ºC for 30 

seconds (annealing) and 72 ºC for 30 seconds (elongation). A melting curve analysis was 

done from 65 ºC to 90 ºC. RT-qPCR was performed as described above with annealing 

temperatures (60 and 62 ºC for two different setups with two groups of primers) and with 

HPRT and BACT as  reference genes.  

 

2.6 Statistical analysis 

Data were analyzed using the JMP 8 software (SAS Institute Inc.). The observed values were 

tested for normality using the Shapiro–Wilk’s test. In case of non-normality in the dependent 

variables a logarithmic transformation was performed to make a better fit to the normal 

distribution. The viability of the exposed cells was compared to the DMSO solvent control 

using Kruskal-Wallis test. General linear models (GLM) were used to assess dose–response 

relationships in hormone concentrations. Differences between mean hormone concentrations 

in exposed cells were compared to each other and to the DMSO solvent control using Tukey’s 

HSD test. Date of cell isolation and mixture dilution were set as independent variables. Raw 

data from the Opticon Monitor 3 software was imported into Excel. Fold changes in gene 

expression were created according to the 2-∆∆Ct method. The log 2-transformed fold change 

values of genes expressed in exposed cells were analyzed with the Student’s t-test. P-values < 

0.05 were considered to be statistically significant. 
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3 Results 

3.1 POPs in the marine mixtures 

The complete result of the analysis of selected POPs in the marine mixtures is presented in 

appendix 4. A summary of the analysis is presented in Table 3-1. 

 
Table 3-1 Summary of the analysis of selected POPs in the marine mixtures. The analysis was performed 

for selected POPs: HCB (hexachlorobenzene), Σchlordanes (sum of oxy-chlordane, cis-chlordane and 

trans-chlordane), ΣHCHs (sum of α-, β- and γ-hexachlorohexanes) ΣDDT (sum of dichloro-diphenyl-

trichlorethane and its metabolites DDD [dichloro-diphenyl-dichloroethane] and DDE [dichloro-diphenyl-

dichloroethylene]) and ΣPCBs (sum of selected congeners of polychlorinated biphenyls).  

  EXTRACT *  1/10 000 ** 1/2000 ** 1/1000 ** 1/400 ** 

  TRAN COD WASTE TRAN COD WASTE TRAN COD WASTE TRAN COD WASTE TRAN COD WASTE 

  ng/ml ng/ml ng/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml 

HCB 20 5000 323 2 500 32 10 2500 162 20 5000 323 50 12500 808 

Σ HCH   1180 450   118 45   590 225   1180 450   2950 1125 

Σ chlordane 242 24070 61700 24 2407 6170 121 12035 30850 242 24070 61700 604 60175 154250 

Σ DDT 591 37500 219000 59 3750 21900 296 18750 109500 591 37500 219000 1478 93750 547500 

Σ PCB 1723 88180 323370 172 8818 32337 862 44090 161685 1723 88180 323370 4309 220450 808425 

*The “Cod” mixture represents POPs extracted from crude cod liver oil from Atlantic cod (Gadus morhua) 
containing all POPs environmentally present. The “Waste” mixture represents POPs extracted from concentrated 
waste from a distillation process in the refinement of cod liver oil, containing mainly ndl-compounds (e.g. ndl-
PCBs, DDTs). The “Tran” mixture represents POPs extracted from the finished cod liver oil dietary supplement.  
**The dilutions (1/10000, 1/2000, 1/1000 and 1/400) are dilutions of the extracts. The cells were exposed to 
each of the dilutions of the extracts. 
 

3.2 3β-hydroxysteroid dehydrogenase staining 

After the isolation, plating and culturing of Leydig cells, a 3β-HSD staining was performed to 

assess the amount of Leydig cells in the cell preparation. The cell preparation was found to 

contain approximately 80 % Leydig cells. 
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3.3 Viability analysis 

There was no difference in viability between the cells exposed to any of the marine mitures 

and the DMSO solvent control (Figure 3-1, Figure 3-2 and Figure 3-3).  
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Figure 3-1 Mean viability (± SEM) of cells exposed to dilutions of “Cod” mixture as percentage of DMSO 

solvent control. There was no significant difference in viability between the exposed cells and the DMSO 

solvent control. 
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Figure 3-2 Mean viability (± SEM) of cells exposed to dilutions of “Waste” mixture as percentage of 

DMSO solvent control. There was no significant difference in viability between the exposed cells and the 

DMSO solvent control. 
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Figure 3-3 Mean viability (± SEM) of cells exposed to dilutions of “Tran” mixture as percentage of DMSO 

solvent control. There was no significant difference in viability between the exposed cells and the DMSO 

solvent control. 
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3.4 Hormone secretion 

The content of 17β-estradiol (E2) and testosterone (T) was measured in the media collected 

from cells exposed to the marine mixtures. The hormone levels are presented as percentage of 

DMSO solvent control in Figure 3-4, Figure 3-5 and Figure 3-6. The measured hormone 

concentrations and the percentage values are presented in appendix 5. 

 

Significant dose-response relationships were found in all of the mixture exposures for both E2 

and T, except for the E2 production in cells exposed to the “Tran” mixture (Figure 3-6).  

 

The E2 levels in cells exposed to “Cod” mixture were significantly different from the DMSO 

solvent control for the two highest concentrations of the mixture (1/1000 and 1/400 dilutions). 

The T levels in cells exposed to “Cod” mixture were significantly different from the DMSO 

solvent control for the two highest concentrations of the mixture (1/1000 and 1/400 dilutions) 

(Figure 3-4). 
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Figure 3-4 Mean (± SEM) testosterone (T) and 17β-estradiol (E2) levels in LH-stimulated Leydig cells 

exposed to “Torsk” mixture. Hormone levels are expressed as percentage of control, whereas statistical 

comparisons were performed on measured concentrations. *: Significantly different from DMSO solvent 

control (p<0.05). 
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The E2 levels in cells exposed to “Waste” mixture were significantly different from the 

DMSO solvent control for the two highest concentrations of the mixture (1/1000 and 1/400 

dilutions). The T levels in cells exposed to “Waste” mixture were significantly different from 

the DMSO solvent control for the three highest concentrations of the mixture (1/2000, 1/1000 

and 1/400 dilutions) (Figure 3-5). 
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Figure 3-5 Mean (± SEM) testosterone (T) and 17β-estradiol (E2) levels in LH-stimulated Leydig cells 

exposed to “Waste” mixture. Hormone levels are expressed as percentage of control, whereas statistical 

comparisons were performed on measured concentrations. *: Significantly different from DMSO solvent 

control (p<0.05). 
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The E2 levels in cells exposed to “Tran” mixture were significantly different from the DMSO 

solvent control for the highest concentration of the mixture (1/400 dilution). The T levels in 

cells exposed to “Tran” mixture were significantly different from the DMSO solvent control 

for all four concentrations of the mixture (1/10000, 1/2000, 1/1000 and 1/400 dilutions) 

(Figure 3-6). 
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Figure 3-6 Mean (± SEM) testosterone (T) and 17β-estradiol (E2) levels in LH-stimulated Leydig cells 

exposed to “Tran” mixture. Hormone levels are expressed as percentage of control, whereas statistical 

comparisons were performed on measured concentrations. *: Significantly different from DMSO solvent 

control (p<0.05). 
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3.5 Gene expression analysis 

The mean fold change values of CYP1A1 expressed in the cells exposed to the different 

mixtures (1/400 dilution) are presented in Figure 3-7. The expression of CYP1A1 was found 

to be significantly increased (7 200-fold, 3 800-fold and 102-fold, p<0.05) in cells exposed to 

“Cod”, “Waste” and “Tran “ mixtures, respectively.  
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Figure 3-7 Mean fold change (± SEM) of CYP1A1 in LH-stimulated Leydig cells exposed to the marine 

mixtures (1/400 dilution) compared to DMSO solvent control (which have been given the value 1). A value 

higher then 1 denotes an increase in gene expression; the fold change is equivalent to this value.  Statistical 

comparisons were performed on log 2-transformed fold change values. *: Significantly different from 

control (p<0.05). 
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In the cells exposed to the “Cod” mixture (1/400 dilution) (Figure 3-8), the expression of 

several genes was significantly decreased; NR0B1 (3.0-fold, p<0.05), StAR (2.5-fold, p<0.05), 

CYP11A1 (1.6-fold, p<0.05) and CYP19A1 (2.0-fold, p<0.05). 
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Figure 3-8 Mean fold change (± SEM) of expression of genes involved in steroidogenesis (group to the left), 

epigenetic mechanisms (group in the middle) and anti-oxidative mechanisms (group to the right) in LH-

stimulated Leydig cells exposed to “Cod” mixture (1/400 dilution) compared to DMSO solvent control 

(which have been given the value 1). A value higher then 1 denotes an increase in gene expression; the fold 

change is equivalent to this value. A value lower then 1 denotes a decrease in gene expression; the fold 

change is equivalent to the inverse value. Statistical comparisons were performed on log 2-transformed 

fold change values. *: Significantly different from control (p<0.05).  
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In the cells exposed to the “Waste” mixture (1/400 dilution) (Figure 3-9), the expression of 

several genes was significantly decreased; CYB5 (2.2-fold, p<0.05), NR5A1 (2.0-fold, 

p<0.05), NR0B1 (4.0-fold, p<0.05), StAR (16.9-fold, p<0.05), CYP11A1 (3.0-fold, p<0.05), 

HSD17B4 (1.7-fold, p<0.05) and CYP19A1 (5.1-fold, p<0.05). 
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Figure 3-9 Mean fold change (± SEM) of expression of genes involved in steroidogenesis (group to the left), 

epigenetic mechanisms (group in the middle) and anti-oxidative mechanisms (group to the right) in LH-

stimulated Leydig cells exposed to “Waste” mixture (1/400 dilution) compared to DMSO solvent control 

(which have been given the value 1). A value higher then 1 denotes an increase in gene expression; the fold 

change is equivalent to this value. A value lower then 1 denotes a decrease in gene expression; the fold 

change is equivalent to the inverse value. Statistical comparisons were performed on log 2-transformed 

fold change values. *: Significantly different from control (p<0.05). 
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In the cells exposed to the “Tran” mixture (1/400 dilution) (Figure 3-10), the expression of 

ST5AR2 was significantly increased (1.1-fold, p<0.05). The expression of several genes was 

significantly decreased; StAR (1.6-fold, p<0.05), DNMT3B (1.8-fold, p<0.05), MeCP2 (1.6-

fold, p<0.05), GSR (1.7-fold, p<0.05), MGST1 (1.6-fold, p<0.05) and Alkbh4 (1.5-fold, 

p<0.05). 
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Figure 3-10 Mean fold change (± SEM) of expression of genes involved in steroidogenesis (group to the 

left), epigenetic mechanisms (group in the middle) and anti-oxidative mechanisms (group to the right) in 

LH-stimulated Leydig cells exposed to “Tran” mixture (1/400 dilution) compared to DMSO solvent 

control (which have been given the value 1). A value higher then 1 denotes an increase in gene expression; 

the fold change is equivalent to this value. A value lower then 1 denotes a decrease in gene expression; the 

fold change is equivalent to the inverse value. Statistical comparisons were performed on log 2-

transformed fold change values. *: Significantly different from control (p<0.05). 
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4 Discussion 
The three marine POP mixtures were extracted from different stages in the cleaning process in 

the manufacturing of cod liver oil dietary supplement. The effects on hormone production and 

expression of genes involved in stereoidogenesis, epigenetics and anti-oxidative mechanisms 

were characterized using primary LH-stimulated porcine Leydig cells. The “Cod”, “Waste” 

and “Tran” mixtures had a generally inhibitory effect on hormone production. The trend for 

genes involved in steroidogenesis was decreased expression after exposure to all three 

mixtures. Genes involved in epigenetics and anti-oxidant mechanisms were not affected by 

exposure to the “Cod” mixture, however there was a tendency towards decreased expression 

after exposure to “Waste” and “Tran” mixture.  

 

4.1 The marine mixtures  

The marine mixtures used for exposure of Leydig cells in this study were based on extracts of 

POPs from fractions of different stages in the production of cod liver oil dietary supplement. 

The “Waste” mixture is based on a waste product in the cleaning process, whereas the “Cod” 

and “Tran” mixtures are based on start- and end products, respectively. The extract from the 

waste product was considerably more concentrated than the extracts that constitute the “Cod” 

and the “Tran” mixture, resulting in higher concentrations of ∑chlordane, ∑DDT (including 

metabolites DDD and DDE) and ∑PCB for the “Waste” mixture. This complicates the 

comparison of results from exposures to the three different mixtures.  

 

The concentrations of POPs in the exposures in this study are environmentally relevant, 

because they are within the ranges of wet weight plasma levels reported in humans and 

animals [96,97].  

 

4.2 Cell viability  

The fact that cell viability was not affected by exposure to any of the marine mixtures is 

important for interpretation of the results, since changes in hormone secretion and/or gene 

expression associated with exposure are not confounded by altered cell viability. 
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4.3 Hormone production 

The results from the hormone analyses suggest an inhibitory effect of the three marine 

mixtures on hormone production in LH-stimulated Leydig cells. Increasing concentration of 

the mixtures was negatively related to hormone production in a dose-responsive manner. 

These findings are consistent with several previous findings in studies with rat and mouse, 

showing decreased testosterone biosynthesis in vivo and in vitro after exposure to various 

organochlorine compounds [19,44,98,99]. 

 

The “Waste” mixture had the most evident inhibitory effect on hormone production of all the 

mixtures at the highest concentration (1/400 dilution). The E2 level was reduced to less than 

50 % of the control and the T level was reduced to less than 20 % of the control. However, the 

trend towards inhibitory effects on hormone production after exposure seemed to be similar 

for all three mixtures.  

 

The most surprising finding in the hormone analysis was the effect of the “Tran” mixture, 

which suggested a negative dose response effect on testosterone production. The testosterone 

levels after exposure to the two highest concentrations (1/1000 and 1/400 dilution) were 

reduced to less then 70 and 60 %, respectively, of the control. The “Tran“ mixture is based on 

the finished dietary supplement of cod liver oil, of which a higher intake is recommended by 

health authorities [30]. It remains for future investigations to see whether intake of cod liver 

oil dietary supplements is associated with endocrine disrupting effects in vivo. 

 

4.3.1 Opposite trends in preliminary basal hormone production 

Interestingly, preliminary data from our group suggest an opposite trend in the hormonal 

response to increasing POP concentrations in Leydig cells not stimulated with LH 

(Castellanos et al., data not shown), compared with the response reported in LH-stimulated 

cells in the present study. Similar trends of opposite effect on hormone production in basal vs. 

LH-stimulated culturing conditions have been reportedafter exposure to octylphenol (break 

down product of surfactant additive) and myxothiazol (inhibitor of mitochondrial electron 

transport) [100,101]. It is suggested that the mechanisms involved in inhibited testosterone 

production under stimulated conditions include mitochondrial dysfunction, but that this also 

stimulates basal testosterone production through a calcium mediated mechanism [100]. 

Mitochondria are storage organelles for calcium [102]. An additional inquiry to elucidate the 
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mechanisms involved in the present mixture exposure study, could be measurement of 

calcium levels after exposure.  

 

There are studies that do not suggest opposite effects on basal and LH-stimulated hormone 

production after exposure to organochlorine compounds. Murugesan et al. reported a decrease 

in both basal and LH-stimulated testosterone and 17β-estradiol production after exposure to a 

PCB mixture (Aroclor 1254) [18,19]. This could imply that other compounds than the PCBs 

in the marine mixtures, or an unknown mixture effect, contribute to the opposite effects on 

basal and LH-stimulated hormone production. 

 

4.4 Gene expression 

The gene expression analyses were set up with RNA form cells exposed to the highest 

concentrations (1/400 dilution) of the marine mixtures. At this concentration the T and E2 

levels from cells exposed to all the mixtures, were significantly different from the DMSO 

control. The gene expression analysis was performed on genes involved in steroidogenesis, 

epigenetic mechanisms and anti-oxidative mechanisms (Table 2-1, Table 2-2 and Table 2-3). 

 

The trend for genes involved in steroidogenesis was decreased expression after exposure to all 

three mixtures. Genes involved in epigenetics and anti-oxidant mechanisms were not affected 

by exposure to the “Cod” mixture, however there was a tendency towards decreased 

expression after exposure to “Waste” and “Tran” mixture. An overview of the three mixtures 

effect on regulation of genes is presented in Figure 4-1, Figure 4-2 and Figure 4-3. 
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Figure 4-1 Overview of effects of ”Cod” mixture on gene regulation in the ∆5 steroidogenesis pathway. 

The regulation of genes (yellow frames) is indicated with arrows. Orange arrows denote non-significant 

regulation. Lavender arrows denote significant regulation (p<0.05). 
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Figure 4-2 Overview of effects of ”Waste” mixture on gene regulation in the ∆5 steroidogenesis pathway. 

The regulation of genes (yellow frames) is indicated with arrows. Orange arrows denote non-significant 

regulation. Lavender arrows denote significant regulation (p<0.05). 

 



 53

 

Cholesterol

Cholesterol

Pregnenolone

17a-hydroxypregnenolone

Dehydroepiandrosterone

Androstenedione

Testosterone

Estradiol

Dihydrotesosterone

HMGRHMGR

(involved in cholesterol biosynthesis)

NR5A1 (SF1) NR0B1 (DAX1)

NCOA1 

Nuclear rexceptors – transcription factors

Nuclear receptor co-activator

StAR
Mitochondral membrane

CYP11A1

CYP17A1 (17,20-lyase)

CYP17A1 (a-hydroxylase)

3b-HSD

17b-HSD CYP19A1

ST5AR2

Down- or upregulation 
(non-sigificant)

Down- or upregulation 
(significant, p<0.05)

”Tran” mixture

DNMT3b

HDAC2

HDAC3

MBD1

MeCP2

DNMT1

HDAC1

Genes involved in epigenetics

SOD2

GSR

MGST1

ALKBH4

Genes involved in oxidative 
stress

 
Figure 4-3 Overview of effects of ”Tran” mixture on gene regulation in the ∆5 steroidogenesis pathway. 

The regulation of genes (yellow frames) is indicated with arrows. Orange arrows denote non-significant 

regulation. Lavender arrows denote significant regulation (p<0.05). 

 

4.4.1 CYP1A1 

CYP1A1 is known to play a critical role in metabolic activation of polycyclic aromatic 

hydrocarbons and is highly inducible by dioxin-like compounds through the AhR pathway 

[5]. The CYP1A1 induction in the cells exposed to the marine mixtures was remarkable. The 

expression of the CYP1A1 gene was increased 7 200-, 3 800- and 102-fold compared to 

control for cells exposed to “Cod”, “Waste” and “Tran” mixtures, respectively.  

 

Previous analyses have been performed on the marine mixtures used for exposure in this 

study. The mixtures were subjected to an AhR reporter gene assay. The results suggested that 

the “Waste” extract had 10 times lower AhR activity than the “Cod” extract, while no 

significant induction was reported for the “Tran” extract (data not shown). 
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Nonetheless, there was a marked increase of gene expression of CYP1A1 in cells exposed to 

all the mixtures, including the “Tran” mixture.  The extent of increase declines in 

consistencey with the mixtures contents of dioxin-like compounds. The increased gene 

expression of CYP1A1 in cells exposed to the “Tran” mixture could involve AhR-independent 

mechanisms. AhR-independent CYP1A1 induction has been described, however the 

mechanisms involved in the induction remain unclear [103,104].  

 

4.4.2 Genes involved in steroidogenesis 

The expression of HMGR was increased after exposure to all of the three mixtures, however 

non-significantly. HMGR has an important function in a rate-limiting step in cholesterol 

synthesis [105]. Increased HMGR expression have been reported in rat liver after PCB 

exposure [106]. The results from RT-qPCR were varying for HMGR, and the altered 

expression of HMGR should be verified with additional experiments. 

 

The expression of NR0B1 (nuclear receptor subfamily 0, group B, member 1, also known as 

DAX1) was significantly decreased in LH-stimulated Leydig cells exposed to “Cod” and 

“Waste” mixture (3.0-fold and 4.0-fold, respectively) and non-significantly decreased after 

“Tran” mixture exposure.  NR0B1 encodes a protein which has been implied to have a role in 

sex determination and gonadal differentiation [107]. It has also been suggested that NR0B1 is 

responsible for the establishment and maintenance of the steroidogenic axis of development. 

NR0B1 is a nuclear receptor that acts as a coregulatory protein that regulates transcription of 

other nuclear receptors, NR5A1 (nuclear receptor subfamily 5A, member 1, also known as 

SF1) [81,107].  NR5A1 is a transcriptional activator of steroidogenic enzymes, and proper 

expression of NR5A1 in the gonads is essential for normal reproductive development and 

function [108] The interactions between the nuclear receptors NR0B1 and NR5A1 are 

complex. NR5A1 have been reported to act upstream of the NR0B1 gene to regulate its 

expression, wheras NR0B1 has been reported to inhibit NR5A1 mediated transcription 

through direct protein-interaction [107]. In the LH-stimulated Leydig cells the expression of 

NR5A1 was decreased after exposure to the marine mixtures, however only significantly after 

exposure to the “Waste” mixture (2.0-fold). 

 

The expression of the StAR gene was significantly decreased in cells exposed to all of the 

marine mixtures. The decrease was 2.5-fold, 16.9-fold and 1.6-fold in cells exposed to “Cod”, 
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“Waste” and “Tran” mixtures, respectively. The main function of the StAR protein is 

mediating transport of cholesterol from the outer to the inner membrane of the mitochondria. 

This step is essential to initiate the conversion of cholesterol to steroids and is considered the 

rate-limiting step in steroidogenesis [36]. It has been shown that exposure of adult rats to a 

PCB mixture (Aroclor 1254) did not alter the gene expression of StAR in Leydig cells [109]. 

The decreased expression of the StAR gene in this study could be due to other organochlorine 

compounds in the marine mixtures. HCH (e.g. the pesticide lindane) has been shown to 

reduce StAR expression in mouse Leydig cells [44]. The lowered expression of StAR agrees 

with the lowered hormone levels in the LH-stimulated Leydig cells exposed to the marine 

mixtures. 

 

The expression of CYP11A1 was significantly decreased in LH-stimulated Leydig cells 

exposed to the “Cod” and “Waste” mixture (1.6-fold and 3.0-fold, respectively) and non-

significantly decreased after “Tran” mixture exposure. CYP11A1 (cholesterol side-chain 

cleavage) is an enzyme bound to the inner membrane of the mitochondria and catalyzes the 

conversion of cholesterol to pregnenolone, considered a rate-limiting step in steroidogenesis 

[14,61]. CYP17A1 is involved in conversion of pregnenolone into 17α-hydroxypregnenolone 

and further into dehydroepiandrosterone and 3βHSD is involved in the further conversion into 

androstenedione in the ∆5 pathway in Leydig cells [61]. There was a non-significant decrease 

in the expression of these genes after exposure to all of the mixtures. 17β-HSD catalyzes the 

conversion of androstenedione into testosterone (type 3, not analyzed in this study), as well as 

the conversion of estrol to estradiol (type 1) [61]. There were no significant changes in the 

expression of 17β-HSD type 1 in LH-stimulated Leydig cells exposed to the marine mixtures. 

Studies with exposure of adult rats to a PCB mixture (Aroclor 1254) have shown diminished 

enzyme activity of CYP11A1, 3β-HSD and 17β-HSD, as well as inhibited gene expression of 

these enzymes [21,109], which is in accordance with the present results. 

 

The expression of CYP19A1 was significantly decreased in LH-stimulated Leydig cells 

exposed to “Cod” and “Waste” mixture (2.0-fold and 5.1-fold, respectively). There was a non-

significant slight decrease in the expression of CYP19A1 after exposure to the ”Tran” mixture. 

CYP191A1 catalyzes conversion of C19 androgenes (androstenedione and testosterone) to 

C18 estrogenes (estrone and estradiol), respectively [61].   
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The general trend was down regulation of central genes involved in LH-stimulated Leydig 

cells steroidogenesis after exposure to the marine mixtures. The pattern in gene expression 

was similar between the three mixtures (Figure 4-1, Figure 4-2, Figure 4-3). The decreased 

expression of StAR and CYP11A1, both considered to regulate rate-limiting steps in 

steroidogenesis, could explain the inhibited hormone biosynthesis after exposure to the 

marine mixtures. 

 

4.4.3 Genes involved in epigenetic mechanisms 

Epigenetics is defined as an alteration of gene expression without alterations to the DNA 

sequence. The most studied epigenetic modification is methylation of CpG sites in parts of the 

genome that are essential for development. It has been suggested that exposure to EDs such as 

POPs, may affect DNA methylation patterns [23].  

 

The expression of genes involved in epigenetic mechanisms (Table 2-2) was analyzed. 

Exposure to the “Tran” mixture resulted in significant decrease in gene expression of 

DNMT3B and MeCP2 (1.8-fold and 1.6-fold, respectively). DNMT1 and MBD1 had a non-

significantly decreased expression. 

 

DNMT3B and DNMT1 (DNA methyltransferase 1 and 3B) are involved in maintaining 

patterns of methylated cytosine residues in the genome, which play an important role in 

regulation of gene expression [86,87]. MBD1 and MeCP2 (methyl-CpG-binding protein 1 and 

2) are associated with transcriptional repression. It is believed that they are involved in 

recruiting histone deacetylases (HDACs) to methyl-CpG enriched regions in the genome to 

repress transcription [90].   

 

Methylation can thereby inhibit gene expression directly by interfering with transcription 

factors, or by binding of methyl-CpG-binding proteins that recruit HDACs to methyl CpG 

enriched areas to repress transcription [90]. As a consequence of decrease in expression of 

genes involved in methylation and methylbinding proteins, a state of hypomethylation and 

possibly increased gene expression of the methylation target genes could be expected. Global 

methylation levels were found to be inversely associated with blood plasma levels for several 

POPs in a Greenlandic Inuit study [25].   
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The only significant decrease in genes involved in methylation and deacetylation was found 

inn cells exposed to ”Tran” mixture. There was a non-significant decrease in cells exposed to 

”Waste” mixture, and no change in gene expression after exposure to ”Cod” mixture. This is 

striking, as the ”Cod” mixture has higher concentrations of POPs than ”Tran” mixture. It 

could be speculated whether the trend for decreased AhR activity and CYP1A1 induction in 

cells exposed to the ”Cod”, ”Waste” and ”Tran” mixtures, respectively, is associated with the 

decreased expression of genes involved in methylation, deacetylation and methylbindig 

proteins after “Waste” and “Tran” mixture exposure. What characterize the “Waste” and 

“Tran” mixtures are their low levels of dioxin-like compounds. The role of HDACs in AhR 

independent CYP1A1 induction through CYP1A1 promoter binding have been suggested 

[110,111]. A decreased expression of HDACs could result in lower deacetylation of the 

CYP1A1 promoter, and thus an induction of CYP1A1. It is, however, unclear why the 

expression of genes involved in epigenetic mechanisms is decreased after exposure to the 

“Tran” and “Waste” mixture (non-significantly), and not the “Cod” mixture. 

 

4.4.4 Genes involved in anti-oxidative mechanisms 

Oxidative stress due to elevated levels of reactive oxygen species (ROS) have been suggested 

to cause decreased steroidogenic potency in Leydig cells [19,109,112]. A number of POPs 

have been shown to induce oxidative stress [21,112-114]. 

 

The expression of genes involved in anti-oxidative mechanisms (Table 2-3) after exposure to 

the marine mixtures, was analyzed. Exposure to the “Tran” mixture resulted in significant 

decrease in gene expression of MGST1, Alkbh4 and GSR (1.6-fold, 1.5-fold and 1.7-fold, 

respectively). Alkbh4 and MGST1 had a non-significantly decreased expression after exposure 

to “Waste” mixture. 

 

Alkbh4 (E.coli homolog of AlkB) is involved in protecting cells against mutation and cell 

death induced by alkylating agents [94]. Some alkylating agents have been shown to induce 

oxidative stress [115]. GSR (glutathione reductase) catalyzes the reduction of glutathione 

disulfide to the antioxidant form of glutathione [92]. MGST1 (microsomal glutathione s-

transferase 1) is part of a major group of detoxification enzymes. It catalyzes conjugation of 

glutathione with a variety of xenobiotics and their metabolites, and protects against lipid 

peroxidation of membranes and DNA damage [18,93]. A decreased activity of these types of 
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anti-oxidant enzymes concurrent with elevated levels of oxidative stress in rat Leydig cells 

after exposure to a PCB-mixture (Aroclor 1254), have been reported [21]. It is unclear 

whether the decreased activity of anti-oxidant enzymes leads to higher levels of oxidative 

stress, or the increase in oxidative stress leads to decreased anti-oxidant activity.  

 

As for the genes involved in epigenetic mechanisms, the only significant decrease in genes 

involved in anti-oxidative mechanisms was found inn cells exposed to ”Tran” mixture. There 

was a non-significant decrease in cells exposed to ”Waste” mixture, and no change in gene 

expression after exposure to ”Cod” mixture. As discussed above, this is suprising, as the 

”Cod” mixture has higher concentrations of POPs than ”Tran” mixture. It could be speculated 

whether the trend of decreased AhR activity and CYP1A1 induction in cells exposed to the 

”Cod”, ”Waste” and ”Tran” mixtures, respectively, is associated with the decreased 

expression of genes involved in anti-oxidative mechanisms, as well as with genes involved in 

methylation, deacetylation and methylbindig proteins as discussed above. However, one 

would expect more oxidative stress with higher concentrations of POPs and higher CYP1A1 

induction. It could be argued that a reduced expression of anti-oxidant genes could imply 

reduced oxidative stress, but it seems unreasonable that exposure to DMSO control would 

exert more oxidative stress then the “Tran” mixture.  

 

4.5 Future perspectives 

The decreased expression of StAR and CYP11A1, both considered to regulate rate-limiting 

steps in steroidogenesis, could explain the inhibited hormone biosynthesis after exposure to 

the marine mixtures. The mechanisms underlying the decreased expression of these genes 

remain to be further investigated. 

 

Steroidogenesis in Leydig cells is predominantly regulated through interaction of LH with the 

LH receptor, which leads to several intracellular modifications including activation of cAMP 

dependent protein kinase A (PKA) [59,116]. The LH receptor is a G protein-coupled receptor. 

Binding of LH to its receptor activates the trimeric G protein. The activated G protein in turn 

activates the enzyme adenylyl cyclase. Activated adenylyl cyclase catalyzes the production of 

cAMP from ATP. cAMP binds to regulatory subunits of the inactive PKA, resulting in an 

activation. PKA phosphorylates serine or theronine residues in various proteins/enzymes 

[117]. The StAR protein, which is essential in steroidogenesis, is a target for serine 
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phosphorylation mediated by PKA [118].  PKA can act as an activator of gene transcription. 

Genes regulated by PKA has a cis-acting DNA sequence called the cAMP-response element 

(CRE) that binds the phosphorylated form of a transcription factor called CRE-binding 

protein (CREB) [117]. In Leydig cells the cAMP-regulated genes codes for several 

enzymes/proteins involved in testosterone biosynthesis.  

 

In order to elucidate the mechanisms behind the changes in hormone biosynthesis and gene 

expression in Leydig cells after exposure to marine mixtures, several additional inquiries 

could be carried out. It would be interesting to measure the levels of cellular adenylyl cyclase, 

cAMP and PKA to search for potential changes in cellular levels, and thereby possible target 

points in the signalling pathway, where the POPs in the marine mixtures exert their actions. A 

general decrease in gene expression could be due to low activity of adenylyl cyclase, low 

levels of intracellular cAMP or low degree of activation of PKA. Investigation of enzyme 

activity of central enzymes like StAR and CYP11A1 would be useful to see whether their 

activity is in accordance with the gene expression pattern. 

 

Investigation of DNA methylation and histone deacetylation activity after exposures to the 

mixtures could be performed to clarify possible alteration of the methylation and 

deacetylation patterns.  

 

Measurements of the amount of ROS and DNA damage, as well as antioxidant enzyme 

activity would be important in order to investigate the marine mixtures’ ability to exert 

oxidative stress on the Leydig cells. It has been suggested that oxidative stress may lead to 

decreased expression, function and activity of critical components of the steroidogenic 

pathway, including StAR and steroidogenic enzymes, with a resulting a decline in 

testosterone secretion in Leydig cells [19,112].  
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5 Conclusions 
Environmentally relevant doses of the marine mixtures of POPs had a disrupting effect on 

steroidogenesis in primary LH-stimulated porcine Leydig cells. The “Cod”, “Waste” and 

“Tran” mixtures exerted an overall inhibitory effect on testosterone and 17β-estradiol 

production. The genes involved in steroidogenesis had a tendency towards decreased 

expression after exposure to all three mixtures. The decrease in gene expression could explain 

the altered hormone production in exposed cells. Genes involved in epigenetics and anti-

oxidative mechanisms were not affected by exposure to the “Cod” mixture, however there 

was a trend towards decreased expression after exposure to “Waste” (non-significantly) and 

“Tran” mixture.  

 

The fact that endocrine disrupting effects were observed also with the “Tran” mixture, 

representing pollutants extracted from purified cod liver oil for human consumption, gives 

reason for concern. The beneficial effects of fish consumption and intake of cod liver oil 

supplements should be balanced against the increased exposure to POPs and their potential 

ability to exert negative health effects. Further investigation should be carried out to elucidate 

wether the endocrine disruption after “Tran” mixture exposure also occurs in vivo. 
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7 Appendices 

Appendix 1 
 
Materials 
 
Product name Product/catalogue 

number 
Manufacturer City, country 

Materials and chemicals 
ITS + Premix 354352 BD biosciences Erembodegem, 

Belgium  
NuSerum 355100 BD biosciences Erembodegem, 

Belgium  
24 well plates 353847 BD Falcon Erembodegem, 

Belgium 
50 ml conical tubes 352070 BD Falcon Erembodegem, 

Belgium 
Nutrient Mixture F-10 (Ham) 
10X with L-Glutamine, w/o 
Sodium Bicarbonate 

01-090-5 Biological 
Industries 

Beit Haemek, 
Israel 

Lidocaine 1% without 
adrenaline 

 Haukeland 
Sykehusapotek 

Bergen, 
Norway 

alamarBlue® DAL 1100 Invitrogen Paisley, UK 
D-MEM/F-12 (1:1) (1X), liquid 
cell culture medium 

31330038 Invitrogen Paisley, UK 

Penicillin-Streptomycin-
Neomycin (PSN) Antibiotic 
Mixture 

15640-055 Invitrogen Paisley, UK 

Platinum® SYBR® green qPCR 
SuperMix-UDG 

11733-038 Invitrogen Paisley, UK 

Superscript® III Platinum® 
Two-step qPCR kit with 
SYBR® green 

11735-032 Invitrogen Paisley, UK 

Ketoprofen  Merial SAS Lyon, France 
Filter sterile (for pipetteboy) 
0,22 um 

 Pederson and son  

AllPrep DNA/RNA/Protein 
Mini Kit 

80004 Qiagen Hilden, 
Germany 

Qiashredder 79654 Qiagen Hilden, 
Germany 

Collagenase/Dispase from 
Vibrio alginolyticus/Bacillus 
polyxema 

10269638001 Roche Basel, 
Switserland 

Coat-a-count® Estradiol TKE22 Siemens Medical 
Solutions 
Diagnostics 

Dublin, Ireland 

Coat-a-count® Total TKTT2 Siemens Medical Dublin, Ireland 
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Testosterone  Solutions 
Diagnostics 

Trypsin-EDTA Solution 1X 59430C Sigma Oslo, Norway 
DMSO D2650-5X5ML Sigma Oslo, Norway 
Fetal Bovine Serum F2442 Sigma Oslo, Norway 
M199 modified with Earle’salts, 
without L-glutamine, sodium 
bicarbonate and phenolred, 
powder, cell culture tested 

M3769 Sigma Oslo, Norway 

Nitrotetrazolium Blue chloride N6876 Sigma Oslo, Norway 
Percoll® pH 8.5-9.5, cell culture 
tested 

P4937 Sigma Oslo, Norway 

Trans-Dehydroandrosterone D4000 Sigma Oslo, Norway 
β-Nicotinamide adenine 
dinucleotide  

260150 Sigma Oslo, Norway 

Porcine LH  Tucker Endocrine 
Research Institute 
LLC 

Atlanta, GA, 
USA 

96 well plates 167008 VWR Dublin, Ireland 
Instruments 
Agilent 2100 Bioanalyzer  Agilent 

Technologies 
Waldbronn, 
Germany 

1470 Wallac Wizard Gamma 
Counter 

 Perkin Elmer Milan, Italy 

Victor3TM 1420 Multilabel 
Counter 

 Perkin Elmer Milan, Italy 

NanoDrop ND-1000 
spectrophotometer 

 Therno Scientific Wilmington, 
DE, USA 

Tetrad PTC-225 Thermo Cycler   MJ Research Waltham, MA, 
USA 

Chromo4 Real Time PCR 
Gradient Thermocycler  

 MJ Research Waltham, MA, 
USA 

Software 
PrimerExpress version 1.5  Applied 

Biosystems 
Foster City, 
CA, USA 

geNorm software   Primerdesign Ltd Southhampton, 
UK 

REST software   Corbett Research 
Ltd 

Cambridge, UK 

Opticon Monitor 3 software  Bio-Rad 
Laborotories 

Hercules, CA, 
USA 

JMP 8 software  SAS Institute Inc.  Carey, NC, 
USA 
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Appendix 2 
 

Reswell solution 
Reswell solution was used instead of Alo buffer in AllPrep kit for izolation of RNA, DNA 

and proteins. The solution was made using a protocol from the University of Aberdeen. 

 

Protein extraction: 

Resuspend protein pellet in modified Reswell solution: 

 2.07 g Urea 

 0.76 g Thiourea 

 0.2 g CHAPS 

 0.015 g Dithiotheritol 

Add 3 ml MilliQ water. Aliquot and freeze at -20 ºC 
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Appendix 3 
 
Primer sequences for qPCR 
 
Gene Primer Sequence (5’-3’) 

AKR1C4 F TGCCAATCACGATGAAGCCT 
 

Aldo-keto reductase family, 
member C4 

AKR1C4 R CGCAGGTCCACCGTATCAAA 
 

Alkbh4 F ATTTACTACACCGACACTGGCTGG AlkB, homolog of 4 
Alkbh4 R TCACGAAGTCCTCAATCAGCGT 
CYB5 F TCAAAGATTGCCAAGCCTTCG Cytochrome b 5 
CYB5 R ACAACCAGTGCTGAGATGGCTG 
CYP11A1 F CACCCCATCTCCGTGACC Cytochrome P450, subfamily 

11A, polypeptide 1 (Cholesterol 
side-chain-cleaving enzyme) 

CYP11A1 R GCATAGACGGCCACTTGTACC 

CYP17A1 F AGCCAAGACGAACGCAGAA Cytochrom P450, subfamily 
17A, polypeptide 1 CYP17A1 R CCCCAAAGATGTCCGCAAC 

CYP19A1 F AAAGCACCCCCAGGTTGAA Cytochrome P450, subfamily 
19A, polypeptide 1 CYP19A1 R CCACCACTTCGAGTTTTTGCA 

CYP1A1 F TTCCGACACACCTCCTTCGT Cytochrome P450, subfamily 
1A, polypeptide 1 CYP1A1 R ACAAAGACACAACGCCCCTT 

CYP21 F CCATAGAGAACAGGGACCACCT Cytochrome P450, subfamily 
21A, polypeptide 2 (Steroid-21-
hydroxylase) 

CYP21 R TAGTCCAGCATGTCCCTCCAC 

CYP51 F TATGTGCCATTTGGAGCTGG Cytochrome P450, family 51 
CYP51 R CGAAGCATAGTGGACCAAATTG 
DNMT1 F TTGTCAACAGCCTGAGTGCGGAAA DNA methyltransferase 1 
DNMT1 R TTGGCAAGCTTGTTTGCTGCGT 
DNMT3b F AGCTACAGGACTGCTTGGAGTT DNA methyltransferase  3B 
DNMT3b R TGTCGAGTTCGACTTGGTGGT 
FTL F TTCCTGGATGAGGAGGTGAAGC Ferritin light chain 
FTL R CTTTCGAAGAGGTACTCGCCCA 
GSR F ATGCTGGCATAGAGGTGCTGAA Glutathione reductase 
GSR R TGGTGCTAAAGGTGGGTTTCCT 
HAT1 F GCATGCAACATGAACAGCTGGA Histone acetyl transferase 1 
HAT1 R TTGAGCGAGGCGTTCAATAACACG 
HDAC1 F TCCAAATGCAGGCCATTCCTGA Histone deacetylase 1 
HDAC1 R ATTGAGATGCGCTTGTCAGGGT 
HDAC2 F TTGGACCGGACTTCAAGCTGCATA Histone deacetylase 2 
HDAC2 R GTGCATGAGGCAACATGCGTAA 
HDAC3 F AAGGAGAACGCAGCTGAACAA Histone deacetylase 3 
HDAC3 R AGCCGGAAGCCTCAAACTTCTT 
HMGR F CTCGTGGCCAGCACCAATA 3-hydroxy-3-methylglutaryl-

CoA-reductase HMGR R GGAAAACGTACCACTGGAGTCAT 
HSD17B1 F TCGGGTCGCATATTGGTGA 17-beta-hydroxysteroid 

dehydrogenase 1 HSD17B1 R GCGCAGTAAACAGCGTTGAA 
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HSD17B4 F TTGCCATGAGAGTTGTGAGGAA 17-beta-hydroxysteroid 
dehydrogenase 4 HSD17B4 R GTCTTACAAGGGCTCCAAGGG 

HSD3B F GGAGGAAGCCAAGCAGAAAA 3-beta-hydroxysteroid 
dehydrogenase HSD3B R TTTTCAGCGCCTCCTTGTG 

INSL3 F GAGGACGGGCGAGCTGT Insulin-like 3 
INSL3 R ACTGGCCATCAGCCCATG 

 
LHR all splice 
variants F 

GGCCTCAGCCGACTATCAC LH receptor 

LHR all splice 
variants R 

AGCTTCTATCTTTTCCAGG 

MBD1 F TTATACGAACCGCCGGCAGAAT Methyl-CpG-binding domain 
protein 1 MBD1 R TTGGGCTTGTCACAGCAGAAGT 

MeCP2 F ACAGACTCACCAGTTCCTGCTT Methyl-CpG-binding protein 2 
MeCP2 R TTCCCTGAGCCCTAACACCTTA 
MGST1 F GAACGTGTACGAAGAGCCCACC Microsomal glutathione s-

transferase MGST1 R TGGCCGTAGAGAGATCTGGACC 
NCOA1 F AGCAAACGCTCCTGTTGGCATCAA Nuclear receptor coactivator 1 
NCOA1 R TGGGCCAACATTTGGGCATTCA 
NR0B1 F GACCGTGCTCTTTAATCCGGA Nuclear receptor, subfamily 0, 

group B, member 1 (DAX1) NR0B1 R TCCTGATGTGTTCGCTAAGGATC 
NR5A1 F GCCAGGAGTTCGTCTGCCT Nuclear receptor, subfamily 5, 

group A, member 1 
(Steroidogenic factor 1) 

NR5A1 R GTTCGCCTTCTCCTGAGCG 

SOD2 F ATTGCTGGAAGCCATCAAACGCGA Superoxide dismutase 2 
SOD2 R TGCTCCTTGTTGAAACCGAGCCAA 
ST5AR2 F ATCGGCTATGCCTTGGCCA Steroid alpha-5-reductase 2 
ST5AR2 R AAGCTCGCAGCCCAAGGAA 
HPRT F  GTGATAGATCCATTCCTATGACTGTAGA Hypoxanthine 

phosphoribosyltransferase (ref. 
gene)  

HPRT R TGAGAGATCATCTCCACCAATTACTT 

BACT F CTCGATCATGAAGTGCGACGT Beta-actin (ref. gene) 
BACT R GTGATCTCCTTCTGCATCCTGTC 
StAR F AGAGCTTGTGGAGCGCATG Steroidogenic acute regulatory 

protein StAR R CATGGGTGATGACTGTGTCTTTTC 
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Appendix 4 
 
POPs in the marine mixtures 
 
 

TRAN COD WASTE TRAN COD WASTE TRAN COD WASTE TRAN COD WASTE TRAN COD WASTE
ng/ml ng/ml ng/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml

HCB 20 5000 323 2 500 32 10 2500 162 20 5000 323 50 12500 808

a-HCH 670 150 67 15 335 75 670 150 1675 375
b-HCH 200 170 20 17 100 85 200 170 500 425
g-HCH 310 130 31 13 155 65 310 130 775 325
Σ HCH 1180,00 450,00 118 45 590 225 1180 450 2950 1125

oksyklordan 13,7 130 200 1 13 20 7 65 100 14 130 200 34 325 500
cis-klordan 68 8640 21500 7 864 2150 34 4320 10750 68 8640 21500 170 21600 53750
trans-klordan 160 15300 40000 16 1530 4000 80 7650 20000 160 15300 40000 400 38250 100000
Σ klordan 241,7 24070 61700 24 2407 6170 121 12035 30850 242 24070 61700 604 60175 154250

pp-DDE 271 23000 119000 27 2300 11900 136 11500 59500 271 23000 119000 678 57500 297500
pp-DDD 160 7000 60000 16 700 6000 80 3500 30000 160 7000 60000 400 17500 150000
pp-DDT 160 7500 40000 16 750 4000 80 3750 20000 160 7500 40000 400 18750 100000
Σ DDT 591 37500 219000 59 3750 21900 296 18750 109500 591 37500 219000 1478 93750 547500

PCB-28 12,4 1100 400 1 110 40 6 550 200 12 1100 400 31 2750 1000
PCB-52 77,4 3430 3500 8 343 350 39 1715 1750 77 3430 3500 194 8575 8750
PCB-47 18,3 1170 1000 2 117 100 9 585 500 18 1170 1000 46 2925 2500
PCB-74 32,8 2400 3100 3 240 310 16 1200 1550 33 2400 3100 82 6000 7750
PCB-66 36,4 2250 3200 4 225 320 18 1125 1600 36 2250 3200 91 5625 8000
PCB-101 160 10600 22000 16 1060 2200 80 5300 11000 160 10600 22000 400 26500 55000
PCB-99 33 5510 15000 3 551 1500 17 2755 7500 33 5510 15000 83 13775 37500
PCB-110 117 6790 31000 12 679 3100 59 3395 15500 117 6790 31000 293 16975 77500
PCB-151 10 2230 5910 1 223 591 5 1115 2955 10 2230 5910 25 5575 14775
PCB-149 110 6000 25000 11 600 2500 55 3000 12500 110 6000 25000 275 15000 62500
PCB-118 160 7560 18000 16 756 1800 80 3780 9000 160 7560 18000 400 18900 45000
PCB-153 240 13600 60000 24 1360 6000 120 6800 30000 240 13600 60000 600 34000 150000
PCB-105 68 3100 12200 7 310 1220 34 1550 6100 68 3100 12200 170 7750 30500
PCB-141 26 600 3460 3 60 346 13 300 1730 26 600 3460 65 1500 8650
PCB-137 10 600 3690 1 60 369 5 300 1845 10 600 3690 25 1500 9225
PCB-138 220 10900 57600 22 1090 5760 110 5450 28800 220 10900 57600 550 27250 144000
PCB-187 50 1360 8870 5 136 887 25 680 4435 50 1360 8870 125 3400 22175
PCB-183 56 890 5450 6 89 545 28 445 2725 56 890 5450 140 2225 13625
PCB-128 48,8 1750 8640 5 175 864 24 875 4320 49 1750 8640 122 4375 21600
PCB-156 30,6 1110 5770 3 111 577 15 555 2885 31 1110 5770 77 2775 14425
PCB-157 30 700 2390 3 70 239 15 350 1195 30 700 2390 75 1750 5975
PCB-180 97 3130 18100 10 313 1810 49 1565 9050 97 3130 18100 243 7825 45250
PCB-170 50 1100 6730 5 110 673 25 550 3365 50 1100 6730 125 2750 16825
PCB-189 9 460 1 46 5 230 9 460 23 1150
PCB-194 17,7 300 1440 2 30 144 9 150 720 18 300 1440 44 750 3600
PCB-206 3 460 0,3 46 2 230 3 460 8 1150
Σ PCB 1723,4 88180 323370 172 8818 32337 862 44090 161685 1723 88180 323370 4309 220450 808425

2.5x10-3 (1/400)EXTRACT 1x10-4 (1/10 000) 5x10-4 (1/2000) 1x10-3 (1/1000)
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Appendix 5 
 
Measured hormone concentrations 
 
  COD Waste Tran 
  E2 mean (pg/ml) SEM E2 mean (pg/ml) SEM E2 mean (pg/ml) SEM 
DMSO 1570 159 1570 159 1570 159
1/10000 1581 245 1518 242 1463 231
1/2000 1411 212 1375 196 1485 217
1/1000 1284 185 1204 173 1396 205
1/400 1047 141 734 100 1346 197
       
  COD Waste Tran 
  T mean (ng/ml) SEM T mean (ng/ml) SEM T mean (ng/ml) SEM 
DMSO 61,8 2,9 61,8 2,9 61,8 2,9
1/10000 69,0 4,4 55,0 3,5 49,6 3,4
1/2000 57,2 3,9 42,1 5,4 45,2 2,7
1/1000 41,5 3,4 44,0 8,5 41,7 4,0
1/400 27,5 4,5 8,0 1,5 31,9 1,9
 
 
 
Hormone levels as percentage of control 
 
  Cod Waste Tran 
  E2 mean SEM E2 E2 mean SEM E2 E2 mean SEM E2 
DMSO  100 0,0 100 0,0 100 0,0
1/10000 100,7 15,6 97,2 15,5 93,2 14,7
1/2000 89,9 13,5 88,0 12,5 94,6 13,9
1/1000 81,8 11,8 77,1 11,1 88,9 13,1
1/400 66,7 9,0 47,0 6,4 85,7 12,6
       
  Cod Waste Tran 
  T mean SEM T T mean SEM T T mean SEM T 
DMSO  100 0,0 100 0,0 100 0,0
1/10000 111,6 7,1 89,0 5,6 80,2 5,5
1/2000 92,5 6,3 68,0 8,8 73,2 4,4
1/1000 67,1 5,4 71,2 13,7 67,5 6,4
1/400 44,5 7,4 12,9 2,5 51,7 3,0
 


