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Abstract

In this paper we study the Hilbert scheme Hilbp(v)(P) of equidimensional locally Cohen-Macaulay
codimension 2 subschemes, with a special look to surfaces in P4 and 3-folds in P5, and the
Hilbert scheme stratification Hγ,ρ of constant cohomology. For every (X) ∈ Hilbp(v)(P) we
define a number δX in terms of the graded Betti numbers of the homogeneous ideal of X and
we prove that 1 + δX − dim(X) Hγ,ρ and 1 + δX − dimTγ,ρ are CI-biliaison invariants where Tγ,ρ
is the tangent space of Hγ,ρ at (X). As a corollary we get a formula for the dimension of any
generically smooth component of Hilbp(v)(P) in terms of δX and the CI-biliaison invariant. Both
invariants are equal in this case.

Recall that, for space curves C, Martin-Deschamps and Perrin have proved the smoothness of
the “morphism” φ : Hγ,ρ → Eρ := isomorphism classes of graded modulesM satisfying dimMv =
ρ(v), given by sending C onto its Rao module. For surfaces X in P4 we have two Rao modules
Mi ' ⊕Hi(IX(v)) of dimension ρi(v), ρ := (ρ1, ρ2) and an induced extension b ∈ 0Ext2(M2,M1)
and a result of Horrocks and Rao saying that a triple D := (M1,M2, b) of modules Mi of finite
length and an extension b as above determine a surface X up to biliaison. We prove that the
corresponding “morphism” ϕ : Hγ,ρ → Vρ = isomorphism classes of graded modulesMi satisfying
dim(Mi)v = ρi(v) and commuting with b, is smooth, and we get a smoothness criterion for Hγ,ρ,
i.e. for the equality of the two biliaison invariants. Moreover we get some smoothness results
for Hilbp(v)(P), valid also for 3-folds, and we give examples of obstructed surfaces and 3-folds.
The linkage result we prove in this paper turns out to be useful in determining the structure and
dimension of Hγ,ρ, and for proving the main biliaison theorem above.
AMS Subject Classification. 14C05, 14D15, 14M06, 14M07, 14B15, 13D02.
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Betti numbers, liaison, normal sheaf.

Contents
1 Introduction. 2

2 Notations and terminology. 3

3 The dimension of H(d, g) and biliaison invariants. 5

4 The dimension and the smoothness of H(d, p, π). 8

5 The smoothness of the “morphism” ϕ : Hγ,ρ → Vρ. 11

6 The tangent space of Hγ,ρ. 15

7 Linkage of surfaces. 17

8 Obstructed surfaces in P4. 21

9 Even liaison of codimension 2 subschemes of Pn+2. 24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Digital Archive at Oslo and Akershus University College

https://core.ac.uk/display/35072949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction.

A main object of this paper is to find the dimension of the Hilbert scheme, Hilbp(v)(P), of equidi-
mensional locally Cohen-Macaulay (lCM) codimension 2 subschemes of P := P

n+2. As an initial
ambitious goal we look for a formula for the dimension of any reduced component V of the Hilbert
scheme Hilbp(v)(P) in terms of the graded Betti numbers of the homogeneous ideal IX of a general
element (X) of V . Since we expect the matrices in the minimal resolution of IX to play a role,
it seems natural to modify our goal by introducing a biliaison invariant in the dimension formula.
Indeed in this paper we explicitly define an invariant δn+1

X (−n − 3) in terms of the graded Betti
numbers of IX and Hn

∗ (OX) and we prove that

dimV = 1 + δn+1
X (−n− 3)− sumext(X)

where sumext(X) is a CI-biliaison invariant (Corollary 9.4). In the case X is a curve (n = 1) with
Hartshorne-Rao module M , we use results of [38] to prove

sumext(X) =
1∑
i=0

0extiR(M,M) ,

(Theorem 3.7 and Remark 3.9) and there is a similar, but much more complicated formula in the
surface case (which we may deduce from Remark 6.4).

Let Hγ,ρ ⊆ Hilbp(v)(P) be the Hilbert scheme whose k-points (X) corresponds to equidimensional
lCM codimension 2 subschemes X of Pn+2 with constant cohomology (see [38] for the curve case).
If X is any equidimensional lCM codimension 2 subscheme of P, we define obsumext(X) in the
following way,

obsumext(X) = 1 + δn+1
X (−n− 3)− dim(X) Hγ,ρ .

We define sumext(X) by the same expression provided we have replaced Hγ,ρ by its tangent space,
Tγ,ρ, at (X). Then we prove that sumext(X) and obsumext(X) are CI-biliaison invariants (Theo-
rem 9.1). Since every arithmetically Cohen-Macaulay codimension 2 subscheme is in the liaison class
of a complete intersection (CI) by Gaeta’s theorem, it follows that sumext(X) = obsumext(X) = 0
and that dim(X) Hilbp(v)(P) = 1 + δn+1

X (−n − 3) for n > 0 if X is arithmetically Cohen-Macaulay
(Corollary 9.6). Even though we do not prove the explicit expression of sumext(X) in terms the Rao
modules of X in general, the theorem is motivated from the fact that the Rao modules are invariant
under biliaison up to shift. In fact it seems more effective to compute sumext(X) and obsumext(X)
by considering a nice representative X ′ in its even liaison class, e.g. the minimal element, and to
compute δn+1

X′ (−n− 3), dim(X′) Hγ,ρ, and dimTγ,ρ for X ′.
Since the curve case of the results above is rather well understood ([38], [33]), we will in the

present paper mostly concentrate on the study of the Hilbert scheme H(d, p, π) of surfaces of degree
d and arithmetic (resp. sectional) genus p (resp. π). Recall that, for space curves C, Martin-
Deschamps and Perrin proved the smoothness of the “morphism” φ : Hγ,ρ → Eρ: = isomorphism
classes of graded R-modules M satisfying dimMv = ρ(v), given by sending C onto its Rao module.
Earlier Rao proved that any graded R-module M of finite length determines the liaison class of a
curve, up to dual and shift in the grading ([47]). Note that Rao’s result is related to the surjectivity
of φ, while the smoothness of φ implies infinitesimal surjectivity. For surfaces in P4 there is a
result in Bolondi’s paper [6], stating that a triple D := (M1,M2, b) of graded modules Mi of finite
length and an extension b ∈ 0Ext2(M2,M1) determine the biliaison class of a surface X such that
Mi ' ⊕H i(IX(v)) modulo some shift in the grading. The result is a consequence of the main
theorem of [48] and Horrocks’ classification of stable vector bundles ([24]), as mentioned by Rao in
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[48]. Therefore it is natural to consider the stratification Hγ,ρ of H(d, p, π) where now ρ := (ρ1, ρ2)
and ρi(v) = dimH i(IX(v)), and to ask for the smoothness of the corresponding “morphism” ϕ :
Hγ,ρ → Vρ := isomorphism classes of triples (M1,M2, b) where Mi are graded R-modules which
satisfy dim(Mi)v = ρi(v) and where an isomorhpism between triples is an isomorphism between
the corresponding modules which commutes with the extensions. We prove in section 5 that the
answer is yes (Theorem 5.3). As a corollary we get a smoothness criterion for Hγ,ρ (Corollary 5.4,
Remark 6.3), i.e. for the equality sumext(X) = obsumext(X) to hold. Note that we do not prove
that ϕ extends to a morphism of schemes; we only prove that the corresponding morphism of the
local deformation functors is formally smooth. This, however, takes fully care of what we want.

In section 6 we determine the tangent space of Hγ,ρ at (X), and we prove a local isomorphism
Hγ,ρ ' H(d, p, π) at (X) under some conditions (Proposition 6.1, Remark 6.2). Note, however, that
if X has seminatural cohomology, we know that Hγ,ρ ' H(d, p, π) at (X) by the semicontinuity of
dimH i(IX(v)) and this observation mostly suffices for our applications. In section 7 we prove a
useful linkage result (Theorem 7.1) which we apply to determine the structure and the dimension
of Hγ,ρ and to prove our main theorem on the biliaison invariants. In this section we also give
conditions for a linked surface to be e.g. non-generic, thus proving the existence of surfaces with
“smaller” cohomology in some cases (Proposition 7.4).

Since the technical problems in describing well the stratification of H(d, p, π) and the morphism ϕ
are quite complicated (see [31]), we don’t follow up this trace for equidimensional lCM codimension
2 subschemes X ⊆ Pn+2 of dimension n ≥ 3. Instead we only use our main theorem on the biliaison
invariance of sumext(X) and obsumext(X) together with some new results on the smoothness and
the dimension of Hilbp(v)(P) in our study of the Hilbert schemes of e.g. 3-folds in section 9. We also
give a vanishing criterion for H1(NX), but unfortunately, as in [33], the results we get require that
the Hartshorne-Rao modules are rather “small”. When the conditions of these vanishing criteria do
not hold, we give examples of obstructed surfaces and 3-folds.

Acknowledgment. I heartily thank prof. G. Bolondi at Bologna for the discussion with him
on this topic. As the reader will see, especially for the results in section 5 and 6, Bolondi’s paper [6]
is a main source of ideas for the work presented here. It was prof. G. Bolondi who introduced me
to the idea of extending the results of [6], as Martin-Deschamps and Perrin do for space curves, to
get a stratified description of the Hilbert scheme H(d, p, π), and who pointed out several interesting
things to be proved (see also [31]). Parts of the paper are also a natural continuation of [8] and [9].
Moreover I warmly thank Hirokazu Nasu at Chiba for his valuable comments and useful Macaulay 2
computations to the obstructed surface in Example 8.3, which led me to include examples of smooth
obstructed surfaces (Example 8.4).

2 Notations and terminology.

A surface (resp. curve) X is an equidimensional, locally Cohen-Macaulay subscheme (lCM) of P4

(resp. P3) of dimension 2 (resp. 1) with sheaf ideal IX and normal sheaf NX = HomOP (IX ,OX).
If F is a coherent OP-Module, we let H i(F) = H i(P,F), H i

∗(F) = ⊕vH i(F(v)) and hi(F) =
dimH i(F), and we denote by χ(F) = Σ(−1)ihi(F) the Euler-Poincaré characteristic. Then p(v) =
χ(OX(v)) is the Hilbert polynomial of X. Put n = dimX and

s(X) = min{v|h0(IX(v)) 6= 0},
e(X) = max{v|hn(OX(v)) 6= 0}.

Let I = IX = H0
∗ (IX) be the homogeneous ideal. I is a graded module over the polynomial

ring R = k[X0, X1, .., Xn+2], where k is supposed to be algebraically closed (and of characteristic
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zero in section 5, 6 and in all examples since we there may use results and methods of papers
relying on this assumption). The postulation γ of X is the function defined over the integers by
γ(v) = γX(v) = h0(IX(v)).

Let Hilbp(v)(Pn+2) denote the Hilbert scheme of equidimensional lCM codimension 2 subschemes
of Pn+2 with Hilbert polynomial p (cf. [21]). X is called unobstructed if Hilbp(v)(Pn+2) is smooth
at the corresponding point (X), otherwise X is obstructed. A subscheme of Pn+2 belonging to
a sufficiently small open irreducible subset U of Hilbp(v)(Pn+2) (small enough so that any (X) of
U satisfies all the openness properties which we want it to have) is called a generic subscheme of
Hilbp(v)(Pn+2), and accordingly, if we state that a generic subscheme has a certain property, then
there is a non-empty open irreducible subset of Hilbp(v)(Pn+2) of subschemes having this property.

In the case of curves we put H(d, g) = Hilbp(v)(Pn+2) provided p(v) = dv+1−g. Moreover we let
M = M(C) := H1

∗ (IC) be the deficiency or Hartshorne-Rao module of the curve C. The deficiency
function ρ is defined by ρ(v) = h1(IC(v)). Let H(d, g)γ,ρ (resp. H(d, g)γ) denote the subscheme of
H(d, g) of curves with constant cohomology given by γ and ρ, (resp. constant postulation γ) where
“constant” means flat deformations of the corresponding modules, see [38]. Let DefM be the local
deformation functor consisting of graded deformations MS of M to P3 × Spec(S) modulo graded
isomorphisms ofMS overM , where S is a local artinian k-algebra with residue field k, i.e. such that
MS is S-flat and MS ⊗ k = M .

For a surface X we define the arithmetic genus p by p = χ(OX)− 1, while the sectional genus π
is given by χ(OX(1)) = d− π + 1 + χ(OX). By Riemann-Roch’s theorem we have

p(v) = χ(OX(v)) =
1
2
dv2 − (π − 1− 1

2
d)v + χ(OX). (1)

Put H(d, p, π) = Hilbp(v)(Pn+2) in this case. Moreover let Mi = Mi(X) be the deficiency modules
H i
∗(IX) for i = 1,2. The deficiency ρ = (ρ1, ρ2) of X is the function defined over the integers by

ρ(v) = ρX(v) = (ρ1(v), ρ2(v)) where ρi(v) = hi(IX(v)) for i = 1, 2. Let Hγ,ρ = H(d, p, π)γ,ρ (resp.
Hγ = H(d, p, π)γ) denote the subscheme of H(d, p, π) of surfaces with constant cohomology given
by γ and ρ, (resp. constant postulation γ) where again “constant” means flat deformations of the
corresponding modules.

For the notion of linkage, we refer to [39]. Note that liaison (resp. even liaison or biliaison) is
the equivalence relation generated by linkage (resp. direct linkages in an even number of steps).

For any graded R-module N , we have the right derived functors H i
m(N) and vExtim(N,−) of

Γm(N) := ⊕v ker(Nv → Γ(P, Ñ(v))) and Γm(HomR(N,−))v respectively (cf. [20], exp. VI or
[22]) where m = (X0, .., Xn+2). We use small letters for the k-dimension and subscript v for the
homogeneous part of degree v, e.g. vextim(N1, N2) = dim vExtim(N1, N2).

Let N1 and N2 be graded R-modules of finite type. As in [33] we need the spectral sequence

Ep,q2 = vExtpR(N1, H
q
m(N2))⇒ vExtp+qm (N1, N2) (2)

([20], exp. VI) and the duality isomorphism

vExtim(N2, N1) ∼= −v−n−3Extn+3−i
R (N1, N2)∨, i, v ∈ Z (3)

where (−)∨ = Homk(−, k) (cf. [30], Thm. 1.1, see [28], Thm. 2.1.4 for a full proof). Moreover there
is a long exact sequence

→ vExtim(N1, N2)→ vExtiR(N1, N2)→ ExtiO
P

(Ñ1, Ñ2(v))→ vExti+1
m (N1, N2)→ (4)

([20], exp. VI) which at least for equidimensional, lCM subschemes of codimension 2 (with n > 0)
relate the deformation theory of X, described by H i−1(NX) ' ExtiO

P

(Ĩ , Ĩ) for i = 1, 2 (cf. [28],
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Rem. 2.2.6), to the deformation theory of the homogeneous ideal I = IX , described by 0ExtiR(I, I),
in the following exact sequence

0→ vExt1R(I, I)→ H0(NX(v))→ vExt2m(I, I)
α−→ vExt2R(I, I)→ H1(NX(v))→ vExt3m(I, I)→

(5)

see [49] or [17] for related works on such deformation functors.

3 The dimension of H(d, g) and biliaison invariants.

In this section we consider the Hilbert scheme, H(d, g), of curves in P3 and results which we would
like to generalize to surfaces in P4. We will focus on the dimension of the Hilbert schemes and some
biliaison invariants which we naturally detect from this point of view.

Recall that χ(NC(v)) = 2dv + 4d and that χ(NC) = 4d is a lower bound for dim(C) H(d, g). For
this reason the number 4d is often called the expected dimension of H(d, g) even though it often
does not give the correct dimension of H(d, g) at (C). E.g. at ACM, generically comlete intersection
curves the dimension is never 4d if e(C) ≥ s(C).

To give a more reliable estimate for the dimension of the components of H(d, g), we have found
it convenient to introduce the following invariant, defined in terms of the numbers nj,i appearing in
a minimal resolution of the homogeneous ideal IC of C:

0→
r3⊕
i=1

R(−n3,i)→
r2⊕
i=1

R(−n2,i)→
r1⊕
i=1

R(−n1,i)→ IC → 0 . (6)

Note that we can define the graded Betti numbers, βj,k, of IC by just putting ⊕∞k=1R(−k)βj,k :=
⊕rji=1R(−nj,i).

Definition 3.1. If C is a curve in P3, we let

δjC(v) :=
∑
i

hj(IC(n1,i + v))−
∑
i

hj(IC(n2,i + v)) +
∑
i

hj(IC(n3,i + v)).

Put δj(v) = δjC(v). In [33] we proved the following result (Lem. 2.2 of [33])

Lemma 3.2. Let C be any curve of degree d in P3. Then the following expressions are equal

0ext1R(IC , IC)− 0ext2R(IC , IC) = 1− δ0(0) = 4d+ δ2(0)− δ1(0) = 1 + δ2(−4)− δ1(−4).

Remark 3.3. Comparing with the results and notations of [38] we recognize 1 − δ0(0) as δγ and
δ1(−4) as εγ,δ in their terminology. By Lemma 3.2 it follows that the dimension of the Hilbert
scheme Hγ,M of constant postulation and Rao module, which they show is δγ + εγ,δ − 0hom(M,M)
(Thm. 3.8, page 171), is also equal to 1 + δ2(−4)− 0hom(M,M).

Note that the difference of the ext-numbers in Lemma 3.2 is a lower bound for dimOH(d,g)γ ,(C)

([33], proof of Thm. 2.6 (i)). Mainly since H(d, g)γ is a subscheme of H(d, g), we used this lower
bound in [35], Thm. 24, to prove the following result

Theorem 3.4. Let C be a curve in P3 and let δj(v) = δjC(v) for any j and v. Then the dimension
of H(d, g) at (C) satisfies

dim(C) H(d, g) ≥ 1− δ0(0) = 4d+ δ2(0)− δ1(0).
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Moreover if C is a generic curve of a generically smooth component V of H(d, g) and M = H1
∗ (IC),

then
dimV = 4d+ δ2(0)− δ1(0) + −4homR(IC ,M)

where −4HomR(IC ,M) is the kernel of the map⊕
i

H1(IC(n1,i − 4))→
⊕
i

H1(IC(n2,i − 4))

induced by the corresponding map in (6).

Remark 3.5. Let C be any curve in P3 and suppose

−4HomR(IC ,M) = 0HomR(IC ,M) = 0.

Then C is unobstructed and the lower bound of the inequality of Theorem 3.4 is equal to dim(C) H(d, g)
by Thm. 2.6 of [33].

Remark 3.6. Let C be any curve in P3.
(i) If M = 0, then δ1(0) = 0 and we can use Remark 3.5 to see that C is unobstructed and that the
lower bound of Theorem 3.4 is equal to dim(C) H(d, g). This coincides with [13].
(ii) If diamM = 1, dimM = r and C is a generic curve, then C is unobstructed by [33] Cor. 1.6
and the lower bound is equal to 4d+ δ2(0) + rβ2,c. Indeed rβ1,c = 0 for a generic curve by [33], Cor.
4.4. Moreover in this case the “correction” number −4homR(IC ,M) is equal to rβ1,c+4. Hence we get

dimV = 4d+ δ2(0) + r(β2,c + β1,c+4).

This coincides with the dimension formula of [33], Thm. 3.4.

Theorem 3.4 is a consequence of the inclusion H(d, g)γ ↪→ H(d, g) of schemes. One may try the
same argument for the inclusion H(d, g)γ,ρ ↪→ H(d, g) since we also for these schemes know tangent
and obstruction spaces. This leads to

Theorem 3.7. Let C be a curve in P3 and M = H1
∗ (IC). Then the dimension of H(d, g) at (C)

satisfies

dim(C) H(d, g) ≥ 1 + δ2(−4)−
2∑
i=0

0extiR(M,M).

Moreover if C is a generic curve of a generically smooth component V of H(d, g), then

dimV = 4d+ δ2(0)− δ1(0) + δ1(−4)−
1∑
i=0

0extiR(M,M)

= 1 + δ2(−4)−
1∑
i=0

0extiR(M,M).

Proof. We consider the stratification H(d, g)γ,ρ of the Hilbert scheme H(d, g) and the “morphism” φ :
H(d, g)γ,ρ → Eρ: = isomorphism classes of R-modulesM given by mapping (C) ontoM(C). By [38],
Thm. 1.5, φ is smooth, and H(d, g)γ,M := φ−1(M) is a scheme of dimension 1+δ2(−4)−0hom(M,M)
(see Remark 3.3). If we ignore the scheme structures, we may still, for each curve C, consider the
corresponding local deformation functor, φC , of φ at (C), defined on the category of local artinian
k-algebras with residue field k. φC is smooth of fiber dimension as above by the results of [38], see
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also [33], Rem. 2.12 for the curve case and Theorem 5.3 of this paper for the corresponding result
for surfaces.

It is well known that 0ExtiR(M,M) for i = 1, 2, determine the local graded deformation functor,
DefM , of the R-module M := M(C), e.g.

0ext1(M,M)− 0ext2(M,M) ≤ dimEρ,M ≤ 0ext1(M,M),

where Eρ,M is the hull of DefM ([37], Thm. 4.2.4). Moreover we have equality to the right if and
only if DefM is formally smooth. Combining with the smoothness of φC and its fiber dimension we
get

1 + δ2(−4)−
2∑
i=0

0exti(M,M) ≤ dim(C) H(d, g)γ,ρ

≤ 1 + δ2(−4)− 0hom(M,M) + 0ext1(M,M)

(7)

with equality to the right if and only if H(d, g)γ,ρ is smooth at (C). This proves the inequality of
the theorem since dim(C) H(d, g) ≥ dim(C) H(d, g)γ,ρ. We also get the final statement because, at a
generic curve C with postulation γ and deficiency ρ, H(d, g)γ,ρ ∼= H(d, g) around (C)! Indeed if we
have dim(C) H(d, g)γ,ρ < dim(C) H(d, g), then a small neighborhood of (C) in H(d, g)γ,ρ is not open
in H(d, g), contradicting the assumption that C is generic in H(d, g). Hence we have equality in
dimensions and in fact a local isomorphism (e.g. by generic flatness) since H(d, g) is smooth at (C).
It follows that H(d, g)γ,ρ is smooth at (C) and the inequality of (7) to the right is an equality.

Remark 3.8. Let Tγ,ρ be the tangent space of H(d, g)γ,ρ at (C). Then we easily see from the proof
that the upper bound in (7) is equal to dimTγ,ρ.

If we want to generalize Theorem 3.7 to codimension 2 subschemes in Pn+2, the explicit replace-
ments of

∑1
i=0 0exti(M,M) in the generalized statements seem to be very complicated. However

observing that
∑1

i=0 0exti(M,M) is a biliaison invariant (since M is, up to a twist), it seems to be
the following weaker form of Theorem 3.7 and (7) which is natural to generalize:

Remark 3.9. If we define sumext(C) and obsumext(C) by sumext(C) = 1 + δ2(−4) − dimTγ,ρ
and obsumext(C) = 1+δ2(−4)−dim(C) H(d, g)γ,ρ , then sumext(C) and obsumext(C) are biliaison
invariants. We have

sumext(C) ≤ obsumext(C)

and equality holds if and only if H(d, g)γ,ρ is smooth at (C). Furthermore if C is unobstructed and
generic in H(d, g), then

dim(C) H(d, g) = 1 + δ2(−4)− sumext(C) .

We have not yet proved that obsumext(C) is a biliaison invariant, but it will follow from later
results, or from [38], Thm. 1.5 and Remark 3.3.

For curves we have

sumext(C) =
1∑
i=0

0extiR(M,M) , and (8)

1∑
i=0

0extiR(M,M) ≤ obsumext(C) ≤
2∑
i=0

0extiR(M,M) (9)

which we may use to compute sumext(C) and estimate obsumext(C). We may also compute these
invariants somewhere in the even liaison class, e.g. by letting C be the minimal curve and computing
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dim(C) H(d, g)γ,ρ , dimTγ,ρ and δ2(−4) in this case. If D is in the even liaison class of C, D ∈ Hγ′,ρ′ ,
and if we can compute δ2D(−4), then we get the dimensions of Hγ′,ρ′ and Tγ′,ρ′ , from the biliaison
invariants.

4 The dimension and the smoothness of H(d, p, π).

In this section we consider the Hilbert scheme, H(d, p, π), of surfaces in P4. Our goal is to see how
far we can generalize the results of the preceding section to surfaces. We will focus on the dimension
and the smoothness of the Hilbert scheme.

To compute the dimension of the components of H(d, p, π), we consider the minimal resolution
of I = IX :

0→
r4⊕
i=1

R(−n4,i)→
r3⊕
i=1

R(−n3,i)→
r2⊕
i=1

R(−n2,i)→
r1⊕
i=1

R(−n1,i)→ I → 0, (10)

and the invariant δj(v) = δjX(v) defined by

δjX(v) =
∑
i

hj(IX(n1,i + v))−
∑
i

hj(IX(n2,i + v))

+
∑
i

hj(IX(n3,i + v))−
∑
i

hj(IX(n4,i + v)).
(11)

Proposition 4.1. Let X be any surface in P4 of degree d and sectional genus π. Then the following
expressions are equal

0ext1R(I, I)− 0ext2R(I, I) + 0ext3R(I, I) = 1− δ0(0) = χ(NX)− δ0(−5)

= χ(NX)− δ3(0) + δ2(0)− δ1(0) = 1 + δ3(−5)− δ2(−5) + δ1(−5).
(12)

Moreover
χ(NX(v)) = dv2 + 5dv + 5(2d+ π − 1)− d2 + 2χ(OX). (13)

Proof. The first upper equality follows easily by applying vHomR(−, I) (for v = 0) to the resolution
(10) because HomR(I, I) ' R and because the alternating sum of the dimension of the terms in a
complex equals the alternating sum of the dimension of its homology groups. Similarly we compute
δ0(−5) which through the duality (3) leads to the alternating sum of 0extim(I, I). Combining with
(5), recalling HomO

P
(IX , IX) ∼= O

P
and Ext1O

P

(IX , IX) ∼= NX , we get the next equality in the first
line. The other equalities involving δj(v) follow from (2), (3) and (4) as outlined in [33], Lem2.2 in
the curve case. The surface case is technically more complicated because the spectral sequence of
the proof, Ep,q2 = vExtpR(I,Hq

m(I)), contains one more non-vanishing term. The principal parts of
the proof are, however, the same, and we leave this part to the reader. Similarly the arguments of
[33], Rem2.4, lead to the formula

χ(NX(v)) = χ(OX(v)) + χ(OX(−v − 5))− d2 (14)

for any surface X, from which (13) of Proposition 4.1 easily follows provided we combine with (1).
Since we do not have a reference of (13) in the generality of an arbitrary surface (i.e. locally Cohen-
Macaulay and equidimensional, see Remark below) and since the arguments of [33], Rem 2.4 was
only sketched, we will include a proof of (14).
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Firstly, we compute χ(OX(v)) = χ(OP(v))−χ(IX(v)), χ(OP(v)) =
(
v+4
4

)
, directly from (10) as

a large sum of binomials. Recalling that χ(OX(v)) is the polynomial (1) of degree 2, we get
4∑
j=1

(−1)j−1rj = 1 ,
4∑
j=1

(−1)j−1
∑
i

nj,i = 0 and
4∑
j=1

(−1)j−1
∑
i

n2
j,i = −2d . (15)

Now as in the very first part of the proof, we apply vHomR(−, I) to (10). Since we get vExtiR(I, I) ∼=
H i−1(NX(v)) for v >> 0 and i ≥ 1 directly from (2), (3) and (4) and we have HomR(I, I) ' R, we
find

dimRv − χ(NX(v)) = δ0(v) =
4∑
j=1

(−1)j−1
∑
i

χ(IX(nj,i + v)) , v >> 0 . (16)

By (10),

χ(IX(−v − 5)) =
4∑
j=1

(−1)j−1
∑
i

χ(OP(−nj,i − v − 5)) =
4∑
j=1

(−1)j−1
∑
i

χ(OP(nj,i + v)).

The right hand side of (16) is therefore equal to

χ(IX(−v − 5))−
4∑
j=1

(−1)j−1
∑
i

χ(OX(nj,i + v)).

Then we compute
∑4

j=1(−1)j−1
∑

i χ(OX(nj,i + v)) by just using (1) and (15). We get exactly

4∑
j=1

(−1)j−1
∑
i

χ(OX(nj,i + v)) = χ(OX(v))− d2,

and (16) translates to dimRv − χ(NX(v)) = χ(IX(−v − 5))− χ(OX(v)) + d2 and we get (14).

Remark 4.2. Note that the formula (13) of Proposition 4.1 is certainly straightforward to prove for
smooth surfaces by combining the well known formula

χ(NX(v)) = dv2 + 5dv + 5(d− π + 1)− 2K2 + 14χ(OX)

with the double point formula d2 − 10d− 5H.K − 2K2 + 12χ(OX) = 0.

Now we come to the analogue of Theorem 3.4. Also in this case 0ext1R(I, I) − 0ext2R(I, I) is
a lower bound of H(d, p, π)γ . Since the basic part of the proof of the Theorem below is similar
to the proof of Theorem 3.4, we will only sketch the proof. Note that in the surface case, we do
not succeed so nicely as in the curve case because the lower bound above is not directly given by
the first equality of Proposition 4.1, due to the term 0ext3R(I, I). Since we have 0Ext3R(I, I) ∼=
−5Ext2m(I, I)∨ ∼= −5HomR(I,M1)∨ by (2) and (3) and M1

∼= H2
m(I) we get at least

Proposition 4.3. Let X be a surface in P4, let Mi = H i
∗(IX) for i = 1,2 and put I = IX and

δj(v) = δjX(v) for any j and v. Then the dimension of H(d, p, π) at (X) satisfies

dim(X) H(d, p, π) ≥ 1 + δ3(−5)− δ2(−5) + δ1(−5)−
∑
i

h1(IX(n1,i − 5)).

Moreover let X be a generic surface of a generically smooth component V of H(d, p, π) and suppose
−5HomR(I,M2) = 0. Then

dimV = 1 + δ3(−5)− δ2(−5) + δ1(−5)−
1∑
i=0

−5extiR(I,M1).
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Proof. For the inequality, we remark that

0ext3R(I, I) = −5homR(I,M1) ≤
∑
i

h1(IX(n1,i − 5))

because −5HomR(I,M1) is the kernel of the map ⊕iH1(IX(n1,i − 5)) −→ ⊕iH1(IX(n2,i − 5))
induced by the corresponding map in (10). We conclude by Proposition 4.1.

To find dimV we proceed as in the proof of Theorem 3.4 (see the last part of the proof of
Theorem 3.7 for a close idea), and we get dimV = 0ext1R(I, I), i.e.

dimV = 1 + δ3(−5)− δ2(−5) + δ1(−5) + 0ext2R(I, I)− 0ext3R(I, I).

By (3) we have 0ext2R(I, I) = −5ext3m(I, I) and we conclude by the exact sequence associated to (2),

0→ −5Ext1R(I,H2
m(I))→ −5Ext3m(I, I)→ −5HomR(I,H3

m(I))→ −5Ext2R(I,H2
m(I))→ . (17)

Under more specific assumptions we are able to prove,

Proposition 4.4. Let X be any surface in P4 and suppose

0HomR(I,M1) = −5Ext1R(I,M1) = −5HomR(I,M2) = 0.

Then X is unobstructed and

dim(X) H(d, p, π) = 1 + δ3(−5)− δ2(−5) + δ1(−5)− −5homR(I,M1).

Proof. Due to [27], Rem. 3.7 (cf. [49], Thm. 2.1), H(d, p, π)γ ∼= H(d, p, π) at (X) provided
0HomR(I,M1) = 0. Then we see by the arguments of (17) that 0Ext2R(I, I) = 0. It follows that
H(d, p, π)γ is smooth at (X) of dimension 0ext1R(I, I). Then we conclude by Proposition 4.1.

Remark 4.5. (i) Proposition 4.4 is mainly proved in [30], sect. 1. In [30] we moreover use (2) and
(3) to prove a vanishing result for H1(NX). Indeed we show that H1(NX) = 0 provided

H1(IX(n2,i)) = H1(IX(n2,i − 5)) = 0 and H2(IX(n1,i)) = H2(IX(n1,i − 5)) = 0

for every i.
(ii) Let X be an arithmetically Cohen-Macaulay surface in P4. Then M1 = M2 = 0 and

δ1(v) = δ2(v) = 0 for every v and we can use Proposition 4.4 to see that X is unobstructed and
dim(X) H(d, p, π) = 1 + δ3(−5) = 1− δ0(0). This coincides with [13].

We will illustrate the results of this section by an example. If the assumptions of Proposition 4.4
or Remark 4.5 are not satisfied, then the surface may be obstructed, and we refer to section 8 for
such examples.

Example 4.6. Let X be the smooth rational surface with invariants d = 11, π = 11 (no 6-secant) and
K2 = −11 (cf. [43] or [11], B1.17, see also [16]). In this case the graded modules Mi ' ⊕H i(IX(v))
are supported at two consecutive degrees and satisfy

dimH1(IX(3)) = 2, dimH2(IX(1)) = 3,

dimH1(IX(4)) = 1, dimH2(IX(2)) = 1.
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Moreover I = IX admits a minimal resolution (cf. [11])

0→ R(−9)→ R(−8)⊕3 ⊕R(−7)⊕3 → R(−7)⊕2 ⊕R(−6)⊕12 → R(−5)⊕10 → I → 0.

It follows that −5HomR(I,M2) = 0 and −5ExtiR(I,M1) = 0 for i = 0, 1. By Proposition 4.4,
H(d, p, π) is smooth at (X) and

dim(X) H(d, p, π) = 1 + δ3(−5)− δ3(−5) + δ1(−5)

= 1 + 12h2(IX(1))− h2(IX(2)) + 3h1(IX(3))− h1(IX(4)) = 41.

In this example it is, however, easier to use Proposition 4.1 to get

1 + δ3(−5)− δ2(−5) + δ1(−5) = χ(NX)− δ3(0) + δ2(0)− δ1(0)

= 5(2d+ π − 1)− d2 + 2χ(OX) = 41

because δi(0) for i > 0 is easily seen to be zero. We may also use Remark 4.5 to see H1(NX) = 0.
Since any smooth surface satisfies

H2(NX) = 0 provided H2(OX(1)) = 0

(due to the existence of the natural surjection OX(1)5 → NX), we may conclude as above directly
from dimH0(NX) = χ(NX) = 41.

One may hope that a generalization of Theorem 3.7 to surfaces will contain a more complete
result. To do it we need to generalize some of the theorems in [38] to surfaces. This will be done in
the next two sections. The biliaison statements of Remark 3.9 will be generalized to any codimension
2 lCM equidimensional subscheme of Pn+2 and carried out in later sections.

5 The smoothness of the “morphism” ϕ : Hγ,ρ → Vρ.

In this section we prove the local smoothness of the “morphism” ϕ : Hγ,ρ → Vρ := isomorphism
classes of graded R-modules M1 and M2 satisfying dim(Mi)v = ρi(v) and commuting with b, given
by sending the surface X onto the class of the triple (M1,M2, b) where Mi = H i

∗(IX) and b ∈
0Ext2R(M2,M1) is the extension determined by X (cf. Remark 5.2 (ii)). To prove our theorem we
first take in Proposition 5.1 a close look to Bolondi’s short exact “resolution” of the homogeneous
ideal of a surface X ([6]) and how we can define the extension b given in Horrock’s paper [24]. As
in [11] the ideal is the cokernel of some syzygy modules of M1 and M2, up to direct free factors.
The proposition somehow uses and extends a result of Rao for a curve C, namely that the minimal
resolution of IC can be put in the following form

0→ L4
σ⊕0−→ L3 ⊕ F2 → F1 → IC → 0 (18)

where 0 → L4
σ→ L3 → ... → M → 0 is a minimal resolution of M and Fi are free modules ([47]).

Moreover we use local flatness criteria to generalize Bolondi’s construction in [6] so that it works for
flat resolutions over a local ring, rather than over a field. This is also the approach of [23] in the
curve case.

Let X be a surface in P4 and let

0→ P5
σ5−−→ P4

σ4−−→ P3
σ3−−→ . . . −→ P0

σ0−−→M1 → 0,

0→ Q5
τ5−−→ Q4

τ4−−→ Q3
τ3−−→ . . . −→ Q0

τ0−−→M2 → 0
(19)
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(for short σ• : P• → M1 → 0 and τ• : Q• → M2 → 0) be minimal free resolutions over R. Let K•
and L• be the syzygies of M1 and M2 respectively, i.e. Ki = kerσi and Li = ker τi. Recall that
syzygies have nice cohomological properties ([11], [6]), for instance

M1 = H1
∗ (K̃1) and H2

∗ (K̃1) = H3
∗ (K̃1) = 0,

M2 = H3
∗ (L̃3) and H1

∗ (L̃3) = H2
∗ (L̃3) = 0.

(20)

There is a strong connection between the resolutions (19), the minimal resolution (10) of I = IX
and the following minimal resolutions of A = H0

∗ (OX);

0→ P ′3
σ′
3−−→ P ′2

σ′
2−−→ P ′1

σ′
1−−→ P0 ⊕R→ A→ 0 (21)

where the morphism P0 ⊕R→ A of (21) is naturally deduced from P0 →M1 of (19) and the exact
sequence R → A → M1 → 0 and where σ′• : P ′• → ker(P0 ⊕ R → A) → 0 is a minimal R-free
resolution (cf. [38], p. 46). The connection we have in mind can be formulated and proved for a
family of surfaces with constant cohomology, at least locally, e.g. we can replace the field k by a
local k-algebra S with residue field k. Now, in [6], Bolondi uses some ideas of Horrocks [24] to define
an element b ∈ 0Ext2R(M2,M1) and the “Horrocks triple” D =: (M1,M2, b) associated to X such
that, conversely given D = (M1,M2, b) whereMi are R-modules of finite length, there is a surface X
whose homogeneous ideal I is defined in the following way. For some integer h ∈ Z there is an exact
sequence 0→ L′3 → K ′1 → I(h)→ 0 where L′3 (resp. K ′1) is isomorphic to the syzygy L3 (resp. K1)
up to some R-free module FL (resp. FK). Up to biliaison this construction is the inverse to the first
approach which defines (M1,M2, b) from a given X. To prove the main smoothness theorem of this
section, we need to adapt the approach above by determining FL and FK more explicitly and such
that it works over (at least an artinian) S. Using also ideas of Rao’s paper [47], we can prove

Proposition 5.1. Let X be a surface in P4
S, flat over a local noetherian k-algebra S with residue

field k, and suppose that M1 = H1
∗ (IX), M2 = H2

∗ (IX) and I = IX are flat S-modules. Then
there exist minimal R-free resolutions of Mi, I and A = H0

∗ (OX) as in (19), (10) and (21), with
R = S[X0, X1, .., X4]. Moreover let L′3 = kerσ′1 and let K ′1 be the kernel of the composition of σ′1
and the natural projection P0 ⊕R→ P0, cf. (21). Then there is an exact sequence

0 −→ L′3
b′−→ K ′1 −→ I −→ 0 (22)

of flat graded S-modules and a surjective morphism d : 0HomR(L′3,K
′
1) −→ 0Ext2R(M2,M1),

defining a triple (M1,M2, b) where b = d(b′), coinciding with the uniquely defined “Horrocks triple”
of [24] or [6]. Moreover L′3 (resp. K ′1) is the direct sum of a 3rd syzygy of M2 (resp. 1st syzygy of
M1) up to a direct free factor, i.e. there exist R-free modules FL and FK such that the horizontal
exact sequences in the diagram

0 −→ K ′1 −→ P ′1 −→ P0

↓ ◦ ↓ ◦ ‖

0→ K1 ⊕ FK → P1 ⊕ FK
σ1⊕0−−−→ P0

are isomorphic (i.e., the downarrows are isomorphisms). Similarly, the exact sequences 0→ Q5
(τ5,0)−→

Q4 ⊕ FL → L3 ⊕ FL → 0 and 0→ P ′3 → P ′2 → L′3 → 0 are isomorphic as well.

Remark 5.2. (i) By a surface X ⊆ P4
S in Proposition 5.1 we actually mean that X×Spec(S) Spec(k)

is a surface (i.e. locally Cohen-Macaulay and equidimensional of dimension 2).
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(ii) The proposition above, defining the “Horrocks triple” (M1,M2, b) from a given X ⊆ P4
S, can

be regarded as our definition of the “morphism” ϕ : Hγ,ρ → Vρ = isomorphism classes of graded
R-modules M1 and M2 satisfying dim(Mi)v = ρi(v) and commuting with b.

Proof. We obviously have minimal resolutions of Mi ⊗S k, IX ⊗S k and A⊗S k as described above
with R = k[X0, X1, .., X4], cf. (19), (10) and (21). These resolutions can easily be lifted to the
minimal resolution of the proposition by cutting into short exact sequences and using the flatness
of the modules involved.

By the definition of L′3 and K ′1 there is a commutative diagram

0 −→ R −→ R −→ 0
↓ ◦ ↓

0 −→ L′3 −→ P ′1 −→ P0 ⊕R −→ A −→ 0
‖ ◦ ↓ ◦ ↓

0 −→ K ′1 −→ P ′1 −→ P0 −→ M1 −→ 0

and we get the exact sequence (22) by the snake lemma. Comparing the lower exact sequence in the
last diagram with the following part of the minimal resolution of M1; → P1 → P0 → M1 → 0, we
get the commutative diagram of the proposition because K1 is the 1st syzygy of M1.

To prove the corresponding commutative diagram for L′3 and L3, we sheafify (22), and we get
M2 ' H3

∗ (L̃
′
3). Recalling the definition of L′3, we get the exact sequence

H4
∗ (P̃

′
2)∨ → H4

∗ (P̃
′
3)∨ →M∨2 ' Ext5R(M2, R(−5))→ 0

which we compare to the minimal resolution

Q∨4 → Q∨5 → Ext5R(M2, R)→ 0

obtained by applying HomR(−, R) to the resolution Q• → M2. Recalling H4
∗ (P̃

′
i )
∨(5) ' P ′∨i , we

get the conclusion, as in the proof of Thm. 2.5 of [47].
Finally to define the morphism d and to see that the defined triple (M1,M2, b) corresponds to

the one given by Horrocks’ construction (seen to be unique by [24]), one may consult [6] for the case
S = k which, however, generalizes to a local ring S. The important part is as follows. The definition
of K ′1 and K0 implies

Ext2(M2,M1) ' Ext3(M2,K0) ' Ext4(M2,K
′
1).

Next, by Gorenstein duality, we know ExtiR(M2, R) = 0 for i 6= 5. Hence the definition of the
syzygies Li leads to Ext4(M2,K

′
1) ' Ext3(L0,K

′
1) ' Ext1(L2,K

′
1) and to a diagram

0HomR(Q3,K
′
1)→ 0Hom(L3,K

′
1)→ 0Ext1(L2,K

′
1)→ 0

↓ ↓

0Hom(L′3,K
′
1) 0Ext2R(M2,M1)

(23)

where the horizontal sequence is exact and the first (resp. second) vertical map is injective and split
(resp. an isomorphism). We let d : 0HomR(L′3,K

′
1)→ 0Ext2R(M2,M1) be the obvious composition,

first using the “inverse” of the split map, and we get the conclusions of the proposition.

Now we will show the smoothness of ϕ. Indeed using Proposition 5.1 for S artinian, we get a
rather easy proof of
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Theorem 5.3. The “morphism” ϕ : Hγ,ρ → Vρ = isomorphism classes of graded R-modules M1 and
M2 satisfying dim(Mi)v = ρi(v) and commuting with b, is smooth (i.e. for any surface X in P4

k, the
corresponding local deformation functor of ϕ, given by (XS ⊆ P4

S) 7→ class of (M1S ,M2S , bS), see
right below, is formally smooth).

Proof. Let T → S → k be surjections of local artinian k-algebras with residue fields k such that
ker(T → S) is a k-module via T → k. Let XS ⊆ P4

S be a deformation of X ⊆ P4 to S with constant
postulation γ and constant deficiency ρ = (ρ1, ρ2). Let (M1S ,M2S , bS) be the “Horrocks triple”
defined by XS (cf. Proposition 5.1). Note that MiS for i = 1, 2 are S-flat by the definition of Hγ,ρ.
Let (M1T ,M2T , bT ) be a given deformation of (M1S ,M2S , bS) to T . To prove the smoothness at (X),
we must show the existence of a deformation XT ⊆ P4

T of XS ⊆ P4
S , whose corresponding “Horrocks

triple” is precisely (M1T ,M2T , bT ), modulo graded isomorphisms of (M1T ,M2T ) commuting with bT .
We have by Proposition 5.1 minimal resolutions ofMiS , IXS and AS over RS := S[X0, X1, .., X4]

as in (10), (19)-(21) and flat S-modules LiS , KiS , L′3S , K
′
1S fitting into the exact sequence (22) and

a surjection d defined as the composition (cf. (23))

0HomRS
(L′3S ,K

′
1S)→ 0HomRS

(L3S ,K
′
1S)→ 0Ext1RS

(L2S ,K
′
1S) ' 0Ext2RS

(M2S ,M1S)
∪pp ∪pp ∪pp ∪pp
b′S −→ βS −→ bS −→ bS

(24)

“on the S-level” (βS is simply the image of b′S via the map of (24)) which lifts the corresponding
resolutions/modules/sequences on the “k-level”. Since MiT are given deformations of MiS , we can
lift the minimal resolutions σ•S : P•S → M1S and τ•S : Q•S → M2S further to T , thus proving the
existence of deformations LiT , KiT , L′3T , K

′
1T of LiS , KiS , L′3S , K

′
1S resp. (the free submodules FLS

and FKS of L′3S andK ′1S are lifted trivially). So we have a diagram (23) and hence a sequence (24) “on
the T -level” where the elements b′T and βT are not yet defined. The element bT ∈ 0Ext1(L2T ,K

′
1T ) '

0Ext2RT (M2T ,M1T ) is, however, given and if we consider the diagram (cf. (23))

0HomRT (Q3T ,K
′
1T )→ 0HomRT (L3T ,K

′
1T )→ 0Ext1RT (L2T ,K

′
1T )→ 0

↓ ◦ ↓ α ◦ ↓

0HomRS (Q3S ,K
′
1S)→ 0HomRS (L3S ,K

′
1S)→ 0Ext1RS (L2S ,K

′
1S)→ 0

of exact horizontal sequences and surjective vertical maps deduced from 0→ L3T → Q3T → L2T →
0, we easily get a morphism βT ∈ 0Hom(L3T ,K

′
1T ) such that α(βT ) = βS , i.e., βT ⊗T S = βS .

Since L′3S ' L3S ⊕ FLS we can decompose the map b′S as (βS , γS) ∈ 0Hom(L′3S ,K
′
1S), and taking

any lifting γT : FLT → K ′1T of γS , we get a map b′T = (βT , γT ) ∈ 0Hom(L′3T ,K
′
1T ) fitting into a

commutative diagram

L3T ⊕ FLT ' L′3T
b′T−→ K ′1T

↓ ◦ ↓

L3S ⊕ FLS ' L′3S
b′S−→ K ′1S .

Once having proved the existence of such a commutative diagram, we can define a surface XT of
P

4
T with the desired properties, thus proving the claimed smoothness. Indeed it is straightforward

to see that coker b′T is a (flat) deformation of coker b′S = IXS to T . Moreover one knows that an
RT := T [X0, X1, .., X4]-module coker b′T which lifts a graded ideal IXS is again a graded ideal IT
(we can deduce this information by interpreting the isomorphisms H i−1(NX) ' ExtiO

P

(IX , IX) for

i = 1, 2 in terms of their deformation theories from which we see that c̃oker b′T is a sheaf ideal,
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and we conclude by taking global sections, cf. [49] or [33], Lem. 4.8 for further details). Hence we
have proved the existence of a surface XT = Proj(RT /IT ), flat over T which via T → S reduces
to XS . By the construction above the corresponding “Horrocks triple” is precisely the given triple
(M1T ,M2T , bT ), and we are done.

Corollary 5.4. Let X be a surface in P4. If the local deformation functors Def(Mi) of Mi are
formally smooth (for instance if 0Ext2R(Mi,Mi) = 0) for i = 1, 2, and if

0Ext3R(M2,M1) = 0,

then Hγ,ρ is smooth at (X).

Proof. With notations as in the very first part of the proof of Theorem 5.3, it suffices to prove that
there always exists a deformation (M1T ,M2T , bT ) of (M1S ,M2S , bS) since then the proof above shows
the existence of a deformation XT = Proj(RT /IT ) which reduces to XS via T → S. Since Def(Mi)
are formally smooth, it suffices to show the existence of bT which maps to bS ∈ 0Ext2RS (M2S ,M1S).
Let a = ker(T → S). If we apply 0HomRT (M2T ,−) to the exact sequence

0→ a⊗T M1T
∼= a⊗kM1 →M1T →M1S → 0

and use 0Ext3R(M2,M1) = 0, we see that 0Ext2RT
(M2T ,M1T ) → 0Ext2RT

(M2T ,M1S) is surjective.
Hence we get a surjective map

0Ext1RT
(L3T ,K

′
1T ) ' 0Ext2RT

(M2T ,M1T )→ 0Ext1RS
(L2S ,K

′
1S) ' 0Ext2RS

(M2S ,M1S)

and we are done.

Remark 5.5. If we, as in [38] for curves, had proven the existence of the “fiber” Hγ,D, D =
(M1,M2, b), of ϕ as a scheme, then Theorem 5.3 must imply the smoothness of Hγ,D while [8]
implies its irreducibility. Indeed [8], cor. 3.2 tells that the family of surfaces in P4 belonging to the
same shift of the same liaison class, with fixed postulation, form an irreducible family, from which we
see that Hγ,D is irreducible. Note that we can work with Hγ,D as a locally closed subset of Hγ,ρ (cf.
the arguments of [4], cor. 2.2, and combine with Proposition 5.1), even though we have not proved
that ϕ extends to a morphism of representable functors.

6 The tangent space of Hγ,ρ.

In this section we determine the tangent space of Hγ,ρ at (X) and we give a criterion for Hγ,ρ
∼=

H(d, p, π) to be isomorphic as schemes at (X). We end this section by considering an example.
Let X be a surface in P4 with graded ideal I = IX and let D = (M1,M2, b), Mi = H i

∗(Ĩ), be its
“Horrocks triple”. Recall that 0Ext1R(I, I) is the tangent space of Hγ at (X) because a deformation
in Hγ keeps the postulation constant, i.e. it corresponds precisely to a graded deformation of I [38].
Moreover there exist maps

ϕi : 0Ext1R(I, I)→ 0HomR(H i
∗(Ĩ), H i+1

∗ (Ĩ))

taking an extension 0 → I → E → I → 0 of 0Ext1R(I, I) onto the connecting homomorphism δi in
the exact sequence

H i
∗(Ẽ)→ H i

∗(Ĩ) δi−→ H i+1
∗ (Ĩ)→ H i+1

∗ (Ẽ).
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For saturated homogeneous ideals we have I = H0
∗ (Ĩ), and it follows that the composition E →

H0
∗ (Ẽ) → H0

∗ (Ĩ) is surjective, i.e. we get ϕ0 = 0. Moreover note that if δi−1 and δi are both zero
for some i, then the exact sequence 0→ I → E → I → 0 above defines an extension

0→ H i
∗(Ĩ)→ H i

∗(Ẽ)→ H i
∗(Ĩ)→ 0.

Since Mi = H i
∗(Ĩ) for i = 1, 2 and E = H3

∗ (Ĩ), there are well-defined morphisms

ψi : ker(ϕ1, ϕ2)→ 0Ext1R(Mi,Mi) for i = 1, 2

where (ϕ1, ϕ2) : 0Ext1R(I, I)→ 0Hom(M1,M2)× 0Hom(M2, E) and ϕi are defined above. Recalling
ρ = (ρ1, ρ2) we put

0Ext1R(I, I)ρ := ker(ϕ1, ϕ2). (25)

Using base change theorems, as in [38], we easily show that ker(ϕ1, ϕ2) is the tangent space of Hγ,ρ

at (X), i.e. we get

Proposition 6.1. 0Ext1R(I, I)ρ is the tangent space of Hγ,ρ at (X). In particular if

0HomR(I,M1) = 0, 0HomR(M1,M2) = 0 and 0Hom(M2, E) = 0, (26)

then the tangent spaces of Hγ,ρ,Hγ and H(d, p, π) are isomorphic at (X). Indeed Hγ
∼= H(d, p, π) as

schemes at (X), and if Hγ,ρ is smooth at (X), then Hγ,ρ
∼= Hγ are isomorphic as schemes at (X)

as well.

Proof. As earlier remarked, cf. (2) and (5), 0Ext1R(I, I) ∼= Ext1(IX , IX) ∼= H0(NX) provided
0HomR(I,M1) = 0. Moreover 0Ext1R(I, I)ρ ∼= 0Ext1R(I, I) since ϕi = 0 for i = 1, 2.

For the isomorphism as schemes we remark that Hγ ' H(d, p, π) follows from [27], Thm. 3.6 and
Rem. 3.7 (see [49] and [33], proof of Thm. 2.6 (i) for details). Finally if Hγ,ρ is smooth at (X),
then the embedding Hγ,ρ ↪→ Hγ is smooth at (X) (since the tangent map is surjective), hence etale,
hence an isomorphism at (X) since the embedding is universally injective.

Remark 6.2. If we suppose (26), then Hγ,ρ
∼= Hγ are isomorphic as schemes at (X) by [31], Thm.

3.7 without requiring the smoothness of Hγ,ρ at (X). See also Remark 9.3.

In [31] we also gave almost complete proofs of Remark 6.2 and of the following two non-trivial
results (cf. [31], Prop. 3.4 and Prop. 3.6). Note that Remark 6.3 generalizes Corollary 5.4.

Remark 6.3. Let X be a surface in P4. Then for i = 1, 2 there exist morphisms ei : 0Ext1R(Mi,Mi)→
0Ext3R(M2,M1) and an induced morphism

ē1 : 0Ext1R(M1,M1)→ 0Ext3R(M2,M1)/e2( 0Ext1R(M2,M2))

such that if the local deformation functors Def(Mi) of Mi are formally smooth (for instance if
0Ext2R(Mi,Mi) = 0) for i = 1, 2, and if the morphism ē1 is surjective, then Vρ is smooth at
D = (M1,M2, b) (i.e. the local deformation functor of D is formally smooth).

Remark 6.4. Let X be a surface in P4 and let ε = dim coker ē1. Then

dim 0Ext1R(I, I)ρ = 1 + δ3(−5) +
3∑
i=0

(−1)i 0extiR(M2,M1)

−
1∑
i=0

(−1)i 0extiR(M1,M1)−
1∑
i=0

(−1)i 0extiR(M2,M2) + ε.
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To illustrate the results we have proved, we consider an example of a surface X of P4 where
actually Vρ is smooth and non-trivial at the corresponding (M1,M2, b), cf. Corollary 5.4. Moreover
all conditions of Proposition 6.1 are satisfied, and it follows that Hγ,ρ and H(d, p, π) are isomorphic
and smooth at (X).

Example 6.5. Let X be the smooth elliptic surface with invariants d = 11, π = 12 and K2 = −4
(cf. [43] or [11], B7.6). Then the graded modules Mi ' ⊕H i(IX(v)) for i = 1, 2 vanish for every v
except in the following cases

h1(IX(3)) = 1, h2(IX(1)) = 2, h2(IX(2)) = 1.

Moreover I = IX admits a minimal resolution (cf. [11])

0→ R(−8)→ R(−7)⊕6 → R(−6)⊕13 → R(−5)⊕8 ⊕R(−4) → I → 0.

It follows that 0Exti(Mj ,Mj) = 0 for i ≥ 2 and j = 1, 2 and that 0Ext3(M2,M1) = 0. By
Corollary 5.4 and Proposition 6.1 we get that H(d, p, π) ∼= Hγ,ρ are smooth at (X). If we, however,
want to compute the dimension of H(d, p, π) at (X) and will avoid Remark 6.4 which we have
not proved, we still have to use the results of section 4. Let us only use the two “most general”
results there, Proposition 4.1 and Propositions 4.3, to illustrate the principle of semicontinuity a
little extended (to include the semicontinuity of the graded Betti numbers). Let V be the generically
smooth component of H(d, p, π) to which (X) belongs. Since H(d, p, π) ∼= Hγ,ρ at (X), then a generic
surface X̃ of V also belongs to Hγ,ρ. Inside Hγ, hence inside Hγ,ρ, the graded Betti numbers of the
homogeneous ideal of the surfaces obey semicontinuity by Remark 7(b) of [34]!! Since we from the
minimal resolution of IX can see that, for every i, βj,i 6= 0 for at most one j and since the Hilbert
functions of X and X̃ are the same, they have exactly the same graded Betti numbers. Moreover
note that hi(IX̃(v)) = hi(IX(v)) for any i, v since X has seminatural cohomology. It follows that

dimV = 1 + δ3(−5)− δ3(−5) + δ1(−5) =

1 + h3(IX(−1)) + 8h3(IX) + 13h2(IX(1))− 6h2(IX(2))− h1(IX(3)) = 50.

Since we have proved dimV = 1 + δ3(−5) − δ3(−5) + δ1(−5) it is easier to use Proposition 4.1 to
get

dimV = χ(NX)− δ3(0) + δ2(0)− δ1(0) = 5(2d+ π − 1)− d2 + 2χ(OX) = 50

because δi(0) for i > 0 is easily seen to be zero.

7 Linkage of surfaces.

The main result of this section shows how to compute the dimension of Hγ,ρ and the dimension of its
tangent space at (X) provided we know how to solve the corresponding problem for a linked surface
X ′ (Theorem 7.1). In another related result (Proposition 7.4 with c > 0) we give conditions on e.g.
a generic surface of H(d, p, π) such that corresponding linked surface X ′ is non-generic in the sense
dim(X′) Hγ′,ρ′ < dim(X′) H(d′, p′, π′). It follows that a new surface, the generic one with “smaller”
cohomology, has to exist! Indeed recall that linkage is a well known method for proving existence of
surfaces with certain properties, e.g. see [42], [26], [40], [46], [12], [44], [1] to mention a few papers
which use linkage in this way. In these and similar papers we see that the linked surface X ′ is
usually generic if X is generic. In Remark 7.2 we notice that if certain cohomological assumptions,
cf. (30), are satisfied, then X ′ is generic if and only if X is generic. Using Proposition 7.4 with c > 0,
however, then some of the cohomology groups of (30) are non-zero, and under some assumptions we
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get the existence of a non-generic surface X ′ ∈ Hγ′,ρ′ and hence a generic one /∈ Hγ′,ρ′ as well. In
proving the results of this section we substantially need the theory of linkage of families developed
in [29].

Since the main even liaison result of this paper, which we prove in the final section, requires that
the linkage theorem of this section is proven for equidimensional locally Cohen-Macaulay codimension
2 subschemes of Pn+2, we prove Theorem 7.1 in this generality. The other results and examples of
this section deal, however, with surfaces.

Now, if the surfaces X and X ′ are (algebraically) linked by a complete intersection (a CI) Y of
type (f, g), then the dualizing sheaf ωX′ satisfies ωX′ = IX/Y (f+g−5) where IX/Y = ker(OY → OX)
([45], [39]). Moreover ωX = IX′/Y (f + g − 5) and we get

χ(OX(v)) + χ(OX′(f + g − 5− v)) = χ(OY (v))

hi(IX′(v)) = h3−i(IX(f + g − 5− v)), for i = 1 and 2

hi(IX′/Y (v)) = h2−i(OX(f + g − 5− v)), for i = 0 and 2

hi(OX′(v)) = h2−i(IX/Y (f + g − 5− v)), for i = 0 and 2

(27)

from which we deduce d+ d′ = fg and π′ − π = (d′ − d)(f + g − 4)/2.
The generalization of (27) to equidimensional lCM codimension 2 subschemes of Pn+2 is clear,

e.g. we have
hi(IX′/Y (v)) = hn−i(OX(f + g − n− 3− v)), for i = 0 and n. (28)

Note that we now have n deficiency modules, whose dimensions ρi(v) = hi(IX(v)), i = 1, 2, ..., n
determine the vector function ρ = (ρ1, ..., ρn). Using this vector function, we easily generalize
(25) in such a way that we get the tangent space 0Ext1R(IX , IX)ρ of the Hilbert scheme Hγ,ρ ⊆
Hilbp(v)(Pn+2) of constant cohomology in this case. We allow n = 0 in which case there is no ρ and
Hγ,ρ ⊆ Hilbp(v)(P2) should be taken as the Hilbert scheme of constant postulation (“the postulation
Hilbert scheme”) and 0Ext1R(IX , IX)ρ as 0Ext1R(IX , IX). We have (cf. [38] for the curve case of the
theorem),

Theorem 7.1. Let X and X ′ be two equidimensional locally Cohen-Macaulay codimension 2 sub-
schemes of Pn+2, linked by a complete intersection Y ⊆ Pn+2 of type (f, g), and suppose that (X)
(resp. (X ′)) belongs to the Hilbert scheme Hγ,ρ (resp. Hγ′,ρ′) of constant cohomology. Then

i) dim(X) Hγ,ρ +h0(IX(f)) + h0(IX(g))

= dim(X′) Hγ′,ρ′ +h0(IX′(f)) + h0(IX′(g))

or equivalently,

dim(X′) Hγ′,ρ′ = dim(X) Hγ,ρ + h0(IX/Y (f)) + h0(IX/Y (g))

− hn(OX(f − n− 3))− hn(OX(g − n− 3)).

ii) The dimension formulas of i) remain true if we replace dim(X) Hγ,ρ and dim(X′) Hγ′,ρ′ by
the dimensions of their tangent spaces 0Ext1R(IX , IX)ρ and 0Ext1R(IX′ , IX′)ρ′ respectively.

iii) Hγ,ρ is smooth at (X) if and only if Hγ′,ρ′ is smooth at (X ′)
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Proof. Let D(p(v); f, g) be the Hilbert flag scheme parametrizing pairs (X,Y ) of equidimensional
lCM codimension 2 subschemes of Pn+2 such that Y is a CI of type (f, g) containing X. By [29],
Thm. 2.6, there is an isomorphism of schemes,

D(p(v); f, g) ' D(p′(v); f, g), (29)

given by sending (X,Y ) onto (X ′, Y ) where X ′ is linked to X by Y (cf. [25], Prop. (A.1)). We may
suppose n ≥ 1 in Theorem 7.1 since the case n = 0 is completely solved by Prop. 1.7 of [32]. Then
the projection morphism p : D(p(v); f, g) → Hilbp(v)(Pn+2), given by (X,Y ) 7→ (X), is smooth
at (X,Y ) provided H1(IX(f)) = H1(IX(g)) = 0 ([29], Thm. 1.16 (b)). By [29], Lem. 1.17 and
Rem. 1.20, this smoothness holds if we replace the vanishing above with the claim that the set of
global sections of the corresponding twisted ideal sheaves over the local ring of Hilbp(v)(Pn+2) at (X)
are locally free and commute with base change. Hence the following restriction of p to p−1(Hγ,ρ),
p−1(Hγ,ρ) → Hγ,ρ, is smooth, (or see [38] for related arguments). Since the fiber dimension of p at
(X,Y ) is precisely

h0(IX/Y (f)) + h0(IX/Y (g)) = h0(IX(f)) + h0(IX(g))− h0(IY (f))− h0(IY (g))

by [29], Thm. 1.16 (a), we get any conclusion of the theorem if we combine with (28).

Remark 7.2. Let X and X ′ be two surfaces in P4, linked by a CI of type (f, g). Then the arguments
of the proof above show that we can, under the assumptions

H1(IX(f)) = H1(IX(g)) = 0 and H1(IX′(f)) = H1(IX′(g)) = 0 (30)

replace Hγ,ρ and Hγ′,ρ′ in Theorem 7.1 (i) (resp. their tangent spaces in Theorem 7.1 (ii) ) by
H(d, p, π) and H(d′, p′, π′) (resp. by H1(NX) and H1(NX′)) and get valid dimension formulas in-
volving the whole Hilbert schemes (resp. their tangent spaces). Hence assuming (30), it follows that
X is unobstructed if and only if X ′ is unobstructed, see [29], Prop. 3.12 for a generalization. Note
also that we from the proof above (i.e. from [29], Thm. 1.16 (b)) and (30) get that X is generic if
and only if X ′ is generic, see [29], Prop. 3.8 for a related general result.

Example 7.3. Let X be the smooth rational surface of H(11, 0, 11) of Example 4.6, let Y be a CI
of type (5, 5) containing X, and let X ′ be the linked surface. Using (27) we deduce χ(OX′(v)) =
7v2− 12v+ 9 from χ(OX(v)) = (11v2− 9v+ 2)/2, i.e. (X ′) belongs to H(d′, p′, π′) = H(14, 8, 20) by
(1). Moreover ωX′ = IX/Y (5) is globally generated (cf. the resolution of I of Example 4.6) and the
graded modules M ′i ' ⊕H i(IX′(v)) are supported at two consecutive degrees and satisfy

dimH1(IX′(3)) = 1, dimH2(IX′(1)) = 1,

dimH1(IX′(4)) = 3, dimH2(IX′(2)) = 2.

From these informations we find the minimal resolution of I ′ = IX′ to be

0→ R(−9)⊕3 → R(−8)⊕14 → R(−7)⊕23 → R(−6)⊕11 ⊕R(−5)⊕2 → I ′ → 0.

Combining Example 4.6 and Remark 6.2 we see that Hγ,ρ is smooth at (X) and dim(X) Hγ,ρ = 41.
Thanks to Theorem 7.1, we get that Hγ′,ρ′ is smooth at (X ′) and that

dim(X′) Hγ′,ρ′ = dim(X) Hγ,ρ +2h0(IX/Y (5))− 2h2(OX(0)) = 57.

Moreover by Remark 7.2 or Proposition 6.1, H(d′, p′, π′) ' Hγ′,ρ′ is smooth at (X ′) and dim(X′) H(d′, p′, π′) =
57. Note that in this case we neither have 0Ext3(M2,M1) = 0 nor −5HomR(I,M2) = 0, i.e. we can
not use Corollary 5.4 or Proposition 4.4 to conclude that Hγ′,ρ′ is smooth at (X ′). But, as we have
seen, the linkage result above takes care of the smoothness and the dimension.
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If a surface X of P4 is contained in a CI Y of type (f, g), then there is an inclusion map IY → IX
which induces a morphism li+1

X/Y : H i(NX)→ H i(OX(f))⊕H i(OX(g)) for every i. We let βX/Y be
the composition of l1X/Y with the natural map H0(OX(f))⊕H0(OX(g))→ H1(IX(f))⊕H1(IX(g)).

Proposition 7.4. Let X and X ′ be surfaces in P4, geometrically linked by a complete intersection
Y ⊆ P4 of type (f, g), let (X) ∈ Hγ,ρ and (X ′) ∈ Hγ′,ρ′ and suppose dim(X) Hγ,ρ = dim(X) H(d, p, π).
Let c := dim(X′) H(d′, p′, π′)−dim(X′) Hγ′,ρ′ and suppose H1(IX(f)) = H1(IX(g)) = 0 and that l2X/Y
is injective. Then

h1(IX′(f)) + h1(IX′(g))− h2(IX′(f))− h2(IX′(g)) ≤ c ≤ h1(IX′(f)) + h1(IX′(g)) (31)

and we have equality on the right hand side if and only if H(d′, p′, π′) is smooth at (X ′). Furthermore,
if h1(IX′(v)) · h2(IX′(v)) = 0 for v = f and v = g, then

c = h1(IX′(f)) + h1(IX′(g)).

Proof. Since X and X ′ are generically complete intersections (due to geometric linkage) of codimen-
sion 2 in P4, it follows that the cotangent sheaves A2

X and A2
X′ are zero (cf. [10]). The vanishing

of the obstruction group, A2(X ⊆ Y ), of the Hilbert flag scheme D(p(v); f, g) at (X,Y ) is therefore
equivalent to βX/Y being surjective and l2X/Y being injective by (1.11) of [29], so A2(X ⊆ Y ) = 0
by assumption. Moreover since the linkage is geometric, we get A2(X ′ ⊆ Y ) = 0 by Cor. 2.14 of
[29], i.e. βX′/Y is surjective, l2X′/Y is injective and D(p′(v); f, g) is smooth at (X ′, Y ). Hence [29],
Thm. 1.27 applies (to a component V satisfying dimV = dim(X′) H(d′, p′, π′)) to get the bounds of
the codimension c above provided we can show that Hγ′,ρ′ , in a neighborhood of (X ′), is dense in
an (f, g)-maximal subset of H(d′, p′, π′) (i.e. dense in the image under the first projection of some
non-embedded component of D(p′(v); f, g)). By the proof of Theorem 7.1 we see that the restriction
of the first projection p′ to p′−1(Hγ′,ρ′), p′−1(Hγ′,ρ′) → Hγ′,ρ′ , is smooth. It follows that Hγ′,ρ′ is,
locally at (X ′), (f, g)-maximal provided we can show

dim(X′,Y ) p
′−1(Hγ′,ρ′) = dim(X′,Y )D(p′(v); f, g).

Thanks to (29) it suffices to show dim(X,Y ) p
−1(Hγ,ρ) = dim(X,Y )D(p(v); f, g) which readily follows

from the assumptions dim(X) Hγ,ρ = dim(X) H(d, p, π) and H1(IX(f)) = H1(IX(g)) = 0 because the
first projection, p : D(p(v); f, g) → Hilbp(v)(P4), as well as its restriction to p−1(Hγ,ρ), are smooth
at (X,Y ) by Remark 7.2. Then we get the final conclusion from [29], Cor. 1.29, which states that
h1(IX′(v)) · h2(IX′(v)) = 0 for v = f and g implies that H(d′, p′, π′) is smooth at (X ′) and we are
done.

Example 7.5. Let Z be the surface which is linked to the surface (X ′) ∈ H(14, 8, 20) of Example 7.3
via a complete intersection of type (5, 6) containing X ′. Then (Z) belongs to H(16, 15, 27), ωZ =
IX′/Y (6) is globally generated, and Mi(Z) = ⊕H i(IZ(v)), i = 1, 2, are supported at two consecutive
degrees. Moreover;

h0(IZ(5)) = 1, h1(IZ(4)) = 2 and h1(IZ(5)) = 1

h2(OZ(1)) = 1, h2(IZ(2)) = 3 and h2(IZ(3)) = 1 .
(32)

By Proposition 4.1, we know χ(NX′) = 5(2d′ + π′ − 1)− d′2 + 2χ(OX′) = 57 and since we obviously
have h2(NX′) = 0 (from h2(OX′(1)) = 0) and we get h0(NX′) = 57 from Example 7.3, we conclude
that h1(NX′) = 0. The conditions of Proposition 7.4 are therefore satisfied (replacing X by X ′ there).
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Hence, at (Z), we get that H(16, 15, 27)γ,ρ is smooth of codimension 1 in H(16, 15, 27). Moreover
H(16, 15, 27) is smooth at (Z), and

dim(Z) H(16, 15, 27)γ,ρ =

dim(X′) Hγ′,ρ′ +h0(IX′/Y (5)) + h0(IX′/Y (6))− h2(OX′)− h2(OX′(1)) = 65.

Hence Z belongs to a unique generically smooth component V of H(16, 15, 27) of dimension 66, and
since the generic surface Z̃ of V do not have the same cohomology as Z (since Z̃ /∈ H(16, 15, 27)γ,ρ),
we must get

dimH0(IZ̃(5)) = dimH1(IZ̃(5)) = 0

while elsewhere the dimension of the cohomology groups is unchanged, i.e. it is as in (32).

8 Obstructed surfaces in P4.

In this section we explicitly prove the existence of obstructed surfaces. Our examples are as close
as they can be to the arithmetically Cohen-Macaulay case. Indeed, in the examples, one of the Rao
modules in the pair (M1,M2) vanishes, the other is 1-dimensional. Moreover in Proposition 4.4 and
Remark 4.5 we gave conditions which imply unobstructedness. Our Example 8.3 is minimal with
respect to the mentioned conditions in the sense that only one of the many cohomology groups,
claimed in Remark 4.5 (i) to vanish, is non-zero. It also shows that we in Remark 7.2 can not
skip the assumption (30) since we in Example 8.3 link an unobstructed surface to an obstructed
surface where one of the cohomology groups of (30) is non-zero. Moreover, note that once having
constructed one obstructed surface we can find infinitely many by linking under the assumption (30).

In the following proposition we consider a codimension 2 subscheme X of Pn+2, containing a CI
Y of type (f1, f2), in order to find obstructed codimension 2 subschemes of Pn+2 for n ≥ 1. In this
situation we recall that the inclusion map IY → IX induces a morphismH0(NX)→ ⊕2

i=1H
0(OX(fi))

whose composition with ⊕2
i=1H

0(OX(fi))→ ⊕2
i=1H

1(IX(fi)) we denote βX/Y . Note that we below
do not need the cotangent sheaves to vanish since we work only with tangent (and not obstruction)
spaces of D(p(v); f1, f2).

Proposition 8.1. Let X be an equidimensional locally Cohen-Macaulay codimension 2 subscheme
of Pn+2, and let Y and Y0 be two complete intersections containing X, both of type (f1, f2) such that

i) βX/Y is surjective and βX/Y0
is not surjective,

ii) Hn(IX(fi − n− 3)) = 0 for i = 1 and i = 2.

Let X ′ (resp. X ′0) be linked to X by Y (resp. Y0). Then X0 is obstructed. Moreover if X is
unobstructed, then so is X ′.

Proof. If A1(X ⊆ Y ) is the tangent space of the Hilbert flag scheme D(p(v); f1, f2) at (X,Y ), then
it is shown in [29], (1.11) that there is an exact sequence

0→ ⊕2
i=1H

0(IX/Y (fi))→ A1(X ⊆ Y )→ H0(NX)→ ⊕2
i=1H

1(IX(fi))

where the rightmost map is βX/Y . The corresponding exact sequence for (X ⊆ Y0) together with
the assumption (i) show that

dimA1(X ⊆ Y ) < dimA1(X ⊆ Y0)

because it is easy to see h0(IX/Y (v)) = h0(IX/Y0
(v)) for every v. We claim that D(p(v); f1, f2) is

not smooth at (X,Y0). Suppose the converse. Since it is shown in [29], Thm. 1.16 (a) that the
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fibers of the first projection p : D(p(v); f1, f2)→ Hilbp(v)(Pn+2) are irreducible, it follows that there
exists an irreducible componentW of D(p(v); f1, f2) which contains both points, (X,Y ) and (X,Y0).
Hence if D(p(v); f1, f2) is smooth at (X,Y0), we get

dimA1(X ⊆ Y0) = dimW ≤ dim(X,Y )D(p(v); f1, f2) ≤ dimA1(X ⊆ Y ),

i.e. a contradiction.
Thanks to (29) we get that D(p′(v); f1, f2) is not smooth at (X ′0, Y0). Since h1(IX′

0
(fi−n−3)) =

hn(IX(f3−i−n−3)) = 0 for i = 1, 2, cf. (27), and since the vanishing of H1(IX′
0
(fi−n−3)) implies

that the first projection p′ : D(p′(v); f1, f2) → Hilbp
′(v)(Pn+2) is smooth at (X ′0, Y0) by [29], Thm.

1.16 (b), we conclude thatX ′0 is obstructed. Finally, for the last conclusion, if we have the surjectivity
of βX/Y and assume the unobstructedness of X, we get that D(p(v); f1, f2) is smooth at (X,Y ) by
[29], Prop. 3.12. Using (29) and (27) once more we conclude that X ′ is unobstructed, and we are
done.

We think the surjectivity of βX/Y may often hold, provided the generators of IY are among
the minimal generators of IX , but this is difficult to prove. In the Buchsbaum case, however, it
is easy to see the surjectivity, as observed in [7] for curves. Indeed even though the statement of
Proposition 8.1 and the remark below generalizes [7], Prop. 2.1 by far, the ideas of the proof are
quite close to the idea in Prop. 2.1 of [7].

Remark 8.2. In this remark we consider surfaces in P4 with minimal resolution given as in (10).
(i) Using (5) and the spectral sequence (2) we get an exact sequence

→ H0(NX)→ 0HomR(IX , H2
m(IX)) α−→ 0Ext2R(IX , IX)→

where 0HomR(IX , H2
m(IX)) ' ⊕iH1(IX(n1,i)) provided H1(IX(n2,i)) = 0 for any i. The natural

map H0(NX) → 0HomR(IX , H2
m(IX)) ' ⊕iH1(IX(n1,i)), which we denote βX , is correspondingly

defined as βX/Y above, but with the difference that a set of all minimal generators of IX is used. In
particular if the generators of IY are among the minimal generators of IX , then the composition of
βX with the projection ⊕iH1(IX(n1,i))→ ⊕2

i=1H
1(IX(fi)) is βX/Y . It follows that if

0Ext2R(IX , IX) = 0 and H1(IX(n2,i)) = 0 for any i ,

then βX/Y is surjective. Note that, by (3) and (2) (cf. the proof of Proposition 4.4), 0Ext2R(IX , IX) =
0 provided −5Ext1R(I,M1) = −5HomR(I,M2) = 0, i.e. provided

H1(IX(n2,i − 5)) = 0 and H2(IX(n1,i − 5)) = 0 for every i.

(ii) If, however, the minimal generators {F1, F2} of IY do not belong to a set of minimal genera-
tors of IX , say Fi = Hi ·Gi for some Gi ∈ IX , i = 1, 2, then βX/Y is easily seen to be non-surjective
under a manageable assumption. Indeed let gi be the degree of the form Gi, let Y0 be the CI with
homogeneous ideal IY0 = (G1, G2) and suppose the obvious map

h : ⊕2
i=1H

1(IX(gi))
(H1,H2)−−−−−→ ⊕2

i=1H
1(IX(fi)) is not surjective.

Then βX/Y can not be surjective because it factors via h, i.e. βX/Y = h ◦ βX/Y0
!

Example 8.3. If we link the smooth quintic scroll Z of H(5,−1, 1) with Rao modules H1
∗ (IZ) = 0,

H2
∗ (IZ) ' k and minimal resolution (cf. [11], B.2.1),

0→ R(−5)→ R(−4)⊕5 → R(−3)⊕5 → IZ → 0, (33)
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using a CI of type (5, 6) containing Z, then the ideal of the linked surface X has a minimal resolution

0→ R(−11)→ R(−10)⊕5 → R(−9)⊕10 → R(−8)⊕5 ⊕R(−6)⊕R(−5)→ IX → 0

and Rao modules given by H2
∗ (IX) = 0, h1(IX(6)) = 1 and H1(IX(v)) = 0 for v 6= 6. Using

(27) we see that (X) belongs to H(d, p, π) = H(25, 99, 71). This surface X has invariants such that
Proposition 8.1 and Remark 8.2 apply. Indeed we can link X to two different surfaces X ′ and X ′0
using CI’s Y and Y0 containing X, both of type (6, 8), generated in the following way. Let F5, resp.
F6, be the minimal generator of IX of degree 5, resp. 6, and let G be a general element of H0(IX(8)).
Then we take Y , resp. Y0, to be given by IY = (F6, G), resp. IY0 = (H · F5, G) where H is a linear
form. We may check that all assumptions of Remark 8.2 are satisfied. Hence we get that X ′ and X ′0
belong to a common irreducible component of H(d′, p′, π′) = H(23, 80, 61), that X ′0 is obstructed with
minimal resolution

0→ R(−8)→ R(−7)⊕5 ⊕R(−8)⊕R(−9)→ R(−6)⊕6 ⊕R(−8)→ IX′
0
→ 0,

while X ′ is unobstructed with minimal resolution

0→ R(−8)→ R(−7)⊕5 ⊕R(−9)→ R(−6)⊕6 → IX′ → 0.

Note that it is straightforward to find these resolutions since X ′ and X ′0 are bilinked to Z and we know
the minimal resolution of IZ , see [39] or the sequence (39) appearing later in this paper. We observe
that common direct free factors (“ghost terms”) are present in the minimal resolution, similar to what
happens for obstructed curve with “small Rao module”, cf. [33]. Moreover since the assumptions of
Proposition 4.4 are satisfied for X ′, we also get the unobstructedness of X ′ from that Proposition
and the dimension,

dim(X′) H(23, 80, 61) = 1 + δ3(−5)− δ2(−5) + δ1(−5) = 163.

However, since the conditions of Remark 4.5 (i) also hold, we get H1(NX′) = 0 and hence it is easier
to compute dim(X′) H(23, 80, 61) by using Proposition 4.1. We get

dim(X′) H(23, 80, 61) = χ(NX′) = 5(2d′ + π′ − 1)− d′2 + 2χ(OX′) = 163.

Note that neither the assumptions of Proposition 4.4, nor the assumptions of Remark 4.5 (i), are
satisfied for X ′0. Indeed Remark 4.5 (i) a little extended will show h1(NX′

0
) = 1 (i.e. just compute

the dimension using (17)). The surface X ′0 is easily seen to be reducible, as pointed out to me by H.
Nasu.

Example 8.4. If we link the surface X ′0 of Example 8.3 using a general CI of type (9, 9) containing
X ′0, we get a smooth obstructed surface S of degree 58. Indeed the assumptions of Remark 7.2 are
satisfied. So S is obstructed, and we have used Macaulay 2 ([19]) to verify that S is smooth provided
the CI’s used in the linkages of Example 8.3 are general enough under the specified restrictions. The
surface S is in the biliaison class of the Veronese surface in P4.

Finally if we link S via a general CI of type (9, 12) containing S, we get an obstructed surface
S′ of degree 50 by Remark 7.2. We have used Macaulay 2 to verify that the surface is smooth. The
surface S′ is in the biliaison class of the quintic elliptic scroll in P4. Since S′ is bilinked to the
surface X ′0 of Example 8.3 we easily find the minimal resolution of IS′ to be

0→ R(−11)→ R(−10)⊕5 ⊕R(−11)⊕R(−12)⊕2 → R(−9)⊕7 ⊕R(−11)→ IS′ → 0.

Note that we again have “ghost terms” in the minimal resolution in degree c+5 where h2(IS′(c)) 6= 0.
This feature seems to be related to obstructedness, as in the curve case, cf. [33].
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9 Even liaison of codimension 2 subschemes of Pn+2.

In this section we prove the main even liaison theorem of this paper, which holds for any equidi-
mensional lCM codimension 2 subscheme X of Pn+2. We also generalize Proposition 4.4 and the
vanishing result for h1(NX) of Remark 4.5 to schemes X of dimension n > 2 and we give an example
of an obstructed 3-fold.

First we define δmX (v). Let

0→
rn+2⊕
i=1

R(−nn+2,i)→
rn+1⊕
i=1

R(−nn+1,i)→ ...→
r2⊕
i=1

R(−n2,i)→
r1⊕
i=1

R(−n1,i)→ I → 0 (34)

be a minimal resolution of I = IX and let the invariant δm(v) = δmX (v) be defined by

δmX (v) =
n+2∑
j=1

rj∑
i=1

(−1)j+1hm(IX(nj,i + v)) . (35)

Since adding common direct free factors in consecutive terms of (34) does not change δmX (v), the
resolution of I does not really need to be minimal in the definition of δmX (v).

Theorem 9.1. Let X and X ′ be two equidimensional locally Cohen-Macaulay codimension 2 sub-
schemes of Pn+2, linked to each other in two steps by two complete intersections, and suppose that
(X) (resp. (X ′)) belongs to the Hilbert scheme Hγ,ρ (resp. Hγ′,ρ′) of constant cohomology. Then

i) δn+1
X (−n− 3)− dim(X) Hγ,ρ = δn+1

X′ (−n− 3)− dim(X′) Hγ′,ρ′ .

In particular obsumext(X) := 1 + δn+1
X (−n− 3)− dim(X) Hγ,ρ is a biliaison invariant.

ii) δn+1
X (−n− 3)− dim 0Ext1R(IX , IX)ρ = δn+1

X′ (−n− 3)− dim 0Ext1R(IX′ , IX′)ρ′ .

In particular sumext(X) := 1 + δn+1
X (−n− 3)− dim 0Ext1R(IX , IX)ρ is a biliaison invariant.

iii) We have sumext(X) ≤ obsumext(X), with equality if and only if Hγ,ρ is smooth at (X).

Remark 9.2. This result is motivated by Remarks 3.9 and 6.4. Indeed we were quite convinced that
Theorem 9.1 was true before starting proving it. Note that the dimension formula of Remark 6.4
was quite involved already for the case n = dimX = 2 and we expect a very complicated formula
for n > 2. So Theorem 9.1 may be a good practical approach to the problem of studying Hγ,ρ and
Hilbp(v)(Pn+2) with respect to smoothness and dimension for n > 1. However, except for the other
results of this paper, we have no better option for the use of Theorem 9.1 that to first compute
sumext(X) and obsumext(X) through a nice representative in the even liaison class, e.g. for the
minimal element of the class, before we use it for an arbitrary element in the even liaison class.

Remark 9.3. For the application of Theorem 9.1 there is one natural situation where Hγ,ρ is iso-
morphic to Hilbp(v)(Pn+2) at (X), namely in the case X has seminatural cohomology. We say
a subscheme X ⊆ P

n+2 has seminatural cohomology if for every v ∈ Z, at most one of groups
H0(IX(v)), H1(IX(v)), ...,Hn+1(IX(v)) are non-zero. In this case a generization (i.e. a deforma-
tion to more general element in Hilbp(v)(Pn+2)) of X is forced to have the same cohomology as X
by the semicontinuity of hi(IX(v)), i.e. Hγ,ρ

∼= Hilbp(v)(Pn+2) as schemes at (X).
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Proof. Let X be linked to X1 by a CI Y ⊆ Pn+2 of type (f, g) and let X1 be linked to X ′ by
some CI Y ′ ⊆ Pn+2 of type (f ′, g′). If (X1) belongs to the Hilbert scheme H1 := Hγ1,ρ1 of constant
cohomology, then by Theorem 7.1,

dim(X1) H1 = dim(X) Hγ,ρ + h0(IX/Y (f)) + h0(IX/Y (g))

− hn(OX(f − n− 3))− hn(OX(g − n− 3)),

dim(X1) H1 = dim(X′) Hγ′,ρ′ + h0(IX′/Y ′(f ′)) + h0(IX′/Y ′(g′))

− hn(OX′(f ′ − n− 3))− hn(OX′(g′ − n− 3)).

Let h = f ′ + g′ − f − g. Using (28) twice we get h0(IX′/Y ′(v)) = h0(IX/Y (v − h)). Hence

dim(X′) Hγ′,ρ′ = dim(X) Hγ,ρ + h0(IX/Y (f)) + h0(IX/Y (g))

− h0(IX/Y (f ′ − h)) + h0(IX/Y (g′ − h)) + η
(36)

where η is defined by

η := hn(OX′(f ′ − n− 3)) + hn(OX′(g′ − n− 3))− hn(OX(f − n− 3))− hn(OX(g − n− 3)). (37)

Next we need to find a free resolution of I ′ = IX′ in terms of the minimal resolution of I = IX in
(34). If we define E by the exact sequence

0→ ⊕rn+2

i=1 R(−nn+2,i)→ ...→ ⊕r3i=1R(−n3,i)→ ⊕r2i=1R(−n2,i)→ E → 0, (38)

we may put (34) in the form 0→ E → ⊕r1i=1R(−n1,i)→ I → 0. Then it is well known that there is
an exact sequence

0→ E(−h)⊕R(−f − h)⊕R(−g − h)→ ⊕r1i=1R(−n1,i − h)⊕R(−f ′)⊕R(−g′)→ I ′ → 0 (39)

which combined with (38) yields a free resolution of I ′ (see [39]).
We will use this resolution of I ′ and (34) to see the connection between δn+1

X (−n − 3) and
δn+1
X′ (−n− 3). First we need to compute β defined by

β :=
n+2∑
j=1

rj∑
i=1

(−1)j+1α(nj,i − n− 3) where α(v) := hn(OX′(v + h))− hn(OX(v)) .

We claim that

β = h0(IX(f)) + h0(IX(g))− h0(IX(f ′ − h))− h0(IX(g′ − h)) + h0(IX(−h)). (40)

Indeed by (28),

α(v) = h0(IX1/Y ′(f ′ + g′ − n− 3− v − h))− h0(IX1/Y (f + g − n− 3− v)).

Moreover since 0→ IY ′ → IX1 → IX1/Y ′ → 0 and 0→ IY → IX1 → IX1/Y → 0 are exact, we get

α(v) = h0(IY (f + g − n− 3− v))− h0(IY ′(f + g − n− 3− v)). (41)

Let r(v) := dimR(−n−3+v). Combining with the minimal resolutions of IY and I ′Y , we get

α(v) := r(f − v) + r(g − v)− r(−v)− r(f ′ − h− v)− r(g′ − h− v) + r(−h− v).
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Then we get the claim since (34) implies

h0(IX(v)) =
n+2∑
j=1

rj∑
i=1

(−1)j+1r(v − nj,i + n+ 3)

for any v and since h0(IX(0)) = 0.
Using the resolution of I ′ deduced from (39) and the definition (35) we get

δn+1
X′ (−n− 3) =

n+2∑
j=1

rj∑
i=1

(−1)j+1hn(OX′(nj,i + h− n− 3)) + ε

where ε is defined by

ε := hn(OX′(f ′ − n− 3)) + hn(OX′(g′ − n− 3))
− hn(OX′(f + h− n− 3))− hn(OX′(g + h− n− 3)).

Comparing ε with η in (37) and recalling the definition of α, we have ε = η−α(f−n−3)−α(g−n−3).
Moreover the definition of α, the proven claim and (35) lead to δn+1

X′ (−n−3) = δn+1
X (−n−3)+β+ε.

Combining we get

δn+1
X′ (−n− 3) = δn+1

X (−n− 3) + β + η − α(f − n− 3)− α(g − n− 3).

Comparing with (36) we get (i) of the Theorem provided we can show that

h0(IX/Y (f)) + h0(IX/Y (g))− h0(IX/Y (f ′ − h))− h0(IX/Y (g′ − h))

= β − α(f − n− 3)− α(g − n− 3).

Suppose h ≥ 0. Looking at (40), we see it suffices to show

−h0(IY (f))− h0(IY (g)) + h0(IY (f ′ − h)) + h0(IY (g′ − h)) = −α(f − n− 3)− α(g − n− 3).

Thanks to (41) it remains to show

h0(IY (f ′ − h)) + h0(IY (g′ − h)) = h0(IY ′(f)) + h0(IY ′(g)).

Using the minimal resolutions of IY and IY ′ and that h = f ′ + g′ − f − g ≥ 0, we easily show that
both sides of the last equation is equal to dimR(f−f ′) + dimR(f−g′) + dimR(g−f ′) + dimR(g−g′) and
we get what we want, i.e.

δn+1
X (−n− 3)− dim(X) Hγ,ρ = δn+1

X′ (−n− 3)− dim(X′) Hγ′,ρ′ (42)

provided h ≥ 0. Suppose h < 0. Then we can start with X ′ and link in two steps back to X, i.e. we
get an even liaison with h′ = f + g− f ′ − g′ ≥ 0 in which case we know that (42) holds. Hence (42)
is proved in general.

To show (ii) of the Theorem we only need to remark that, due to Theorem 7.1, (36) holds if we
replace dim(X) Hγ,ρ and dim(X′) Hγ′,ρ′ by the dimension of their tangent spaces 0Ext1R(IX , IX)ρ and
0Ext1R(IX′ , IX′)ρ′ respectively. With the proof of Theorem 9.1 (i) above, we therefore get (42) with
the mentioned replacements, i.e. we get Theorem 9.1 (ii).

Finally Theorem 9.1 (iii) follows by combining (i) and (ii) since e.g. the smoothness of Hγ,ρ at
(X) is equivalent to dim(X) Hγ,ρ = dim 0Ext1R(IX , IX)ρ.
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Corollary 9.4. Let X be an equidimensional lCM codimension 2 subschemes of Pn+2, and suppose
(X) be a generic point of a generically smooth component V of Hilbp(v)(Pn+2). Then sumext(X) =
obsumext(X) and

dimV = 1 + δn+1
X (−n− 3)− sumext(X).

Proof. Arguing as the last part of the proof of Theorem 3.7, we get that Hγ,ρ is isomorphic to
Hilbp(v)(Pn+2) at (X). Hence Hγ,ρ is smooth at (X). Then we conclude by Theorem 9.1.

Corollary 9.5. Let X be a surface in P4. If the local deformation functors Def(Mi) of Mi are
formally smooth (for instance if 0Ext2R(Mi,Mi) = 0) for i = 1, 2, and if 0Ext3R(M2,M1) = 0, then

sumext(X) = obsumext(X).

Proof. By Corollary 5.4 we get that Hγ,ρ is smooth at (X) and we conclude by Theorem 9.1 (iii).

Corollary 9.6. Let X be an arithmetically Cohen-Macaulay codimension 2 subschemes of Pn+2.
Then sumext(X) = obsumext(X) = 0. Moreover,

(i) if n > 0, then X is unobstructed and

dim(X) Hilbp(v)(Pn+2) = 1 + δn+1
X (−n− 3) = 1− δ0X(0) = χ(NX) + (−1)nδ0X(−n− 3),

(ii) if n = 0, then Hγ is smooth at (X) and

dim(X) Hγ = 1 + δ1X(−3) = 1− δ0X(0) = h0(NX) + δ0X(−3).

Proof. By Gaeta’s theorem ([14], [15], cf. [2], [3]) X is in the liaison class of a complete intersection
Y . Suppose n > 0. Then Hγ,ρ

∼= Hγ
∼= Hilbp(v)(Pn+2) at (X) by [13] or [27], Rem. 3.7, (cf.

[49], Thm. 2.1). Thanks to Theorem 9.1 it suffices to show that sumext(Y) = 0, or equivalently
that dim 0Ext1R(IY , IY )ρ = 1 + δn+1

Y (−n − 3). By definition, cf. (25), and (5), 0Ext1R(IY , IY )ρ =
0Ext1R(IY , IY ) = h0(NY ) and it is trivial to show h0(NY ) = 1 + δn+1

Y (−n− 3) by using duality and
the minimal resolution of IY .

Moreover note that for any equidimensional lCM codimension 2 subschemes X of Pn+2, we easily
show

n+1∑
i=1

0extiR(IX , IX) = 1− δ0X(0) = χ(NX) + (−1)nδ0X(−n− 3). (43)

as in Proposition 4.1 (see the first sentence of the proof for the left equality and second and third
sentence of the proof for the right equality). Hence if X is arithmetically Cohen-Macaulay we get
0extiR(IX , IX) = 0 for i ≥ 2 and we are done in the case n > 0. The case n = 0 is similar and
easier.

Remark 9.7. Corollary 9.6 coincides with [13] if n > 0, and with [18] and [36], Rem. 4.6 if n = 0.

Example 9.8. Let X be the smooth rational surface of H(11, 0, 11) of Example 4.6. Note that X
has seminatural cohomology and hence we have Hγ,ρ

∼= H(d, p, π) at (X) by Remark 9.3. Moreover
I = IX admits a minimal resolution

0→ R(−9)→ R(−8)⊕3 ⊕R(−7)⊕3 → R(−7)⊕2 ⊕R(−6)⊕12 → R(−5)⊕10 → I → 0. (44)

By Example 4.6 we conclude that Hγ,ρ
∼= H(d, p, π) is smooth at (X) and that dim(X) H(d, p, π) = 41.

However, since X is rational we obviously get 1 + δ3X(−5) = 1 from (44). By Theorem 9.1 we find
sumext(X) = obsumext(X) = −40. Now we link twice to get X ′, first using a CI of type (5, 5), then
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a CI of type (5, 6), both times using a common hypersurface of degree 5. Looking at (39) we find a
free resolution of I ′ = IX′ of the form

0→ R(−10)→ R(−9)⊕3 ⊕R(−8)⊕3 → R(−8)⊕2 ⊕R(−7)⊕12 ⊕R(−6)

→ R(−6)⊕10 ⊕R(−5)→ I ′ → 0.
(45)

By (28), h2(OX′) = 15 and h2(OX′(1)) = 1 and we get 1 + δ3X′(−5) = 25. It follows from
Theorem 9.1 and Proposition 6.1 that Hγ′,ρ′ ∼= H(d′, p′, π′) is smooth at (X ′) of dimension 1 +
δ3X′(−5)− sumext(X) = 65. Compare with Examples 7.3 and 7.5.

Before considering examples of 3-folds, we want to generalize some of the results of section 4.
For recent papers on the Hilbert scheme of 3-folds, see [5] and its references. See also [12] for a long
list of examples of 3-folds of non general type.

Proposition 9.9. Let X be an equidimensional lCM codimension 2 subschemes of Pn+2, let Mi =
H i
∗(IX) for i = 1,...,n and I = IX and suppose

0HomR(I,M1) = 0 and −n−3Extn−jR (I,Mj) = 0 for every j, 1 ≤ j ≤ n.

Then 0Ext2R(I, I) = 0, X is unobstructed and

dim(X) Hilbp(v)(Pn+2) = 0ext1R(I, I).

E.g. let dimX = 3. Then X is unobstructed and dim(X) Hilbp(v)(P5) = 0ext1R(I, I) if, for every i,

H1(IX(n1,i)) = H3(IX(n1,i − 6)) = H2(IX(n2,i − 6)) = H1(IX(n3,i − 6)) = 0. (46)

If in addition

H2(IX(n1,i − 6)) = 0, H1(IX(n2,i − 6)) = 0 and H1(IX(n1,i − 6)) = 0,

for every i, then dim(X) Hilbp(v)(P5) = 1− δ0X(0) = χ(NX)− δ0X(−6).

Proof. Thanks to [27], Rem. 3.7 (cf. [49], Thm. 2.1), the Hilbert scheme Hγ of constant postulation
is isomorphic to Hilbp(v)(Pn+2) at (X) provided 0HomR(I,M1) = 0. By (3) we get 0Ext2R(I, I) = 0
provided −n−3Extn+1

m (I, I) = 0. By (2) andMj
∼= Hj+1

m (I) we deduce the vanishing of the latter from
the assumptions of the proposition. It follows that Hγ is smooth at (X) of dimension 0ext1R(I, I).

Suppose n = 3. By the definition of vExt•R(I,−) and (34) we easily prove the vanishing of all
Ext•R(I,−)-groups of the first part of the proposition from the explicit vanishings in (46). Moreover
due (43), to get the final formula it suffices to show 0ExtjR(I, I) = 0 for j = 3, 4. By (3) we must
prove −n−3Extn−jm (I, I) = 0 for j = 0, 1. This is shown in exactly the same way as we did for
−n−3Extn+1

m (I, I) = 0, i.e. by using (2) and (34) and we are done.

Remark 9.10. (i) We can also generalize Remark 4.5 to equidimensional lCM codimension 2 sub-
schemes X ⊆ Pn+2 of higher dimension. Indeed using (5), (2) and (3), see the proof above, we get
H1(NX) = 0 provided 0Ext3m(I, I) = 0 and −n−3Extn+1

m (I, I) = 0, e.g. provided

0ExtjR(I,M2−j) = 0 for 0 ≤ j ≤ 1 and −n−3Extn−jR (I,Mj) = 0 for 1 ≤ j ≤ n.

Similarly H2(NX) = 0 provided 0Ext4m(I, I) = 0 and −n−3Extnm(I, I) = 0, e.g. provided

0ExtjR(I,M3−j) = 0 for 0 ≤ j ≤ 2 and −n−3Extn−jR (I,Mj−1) = 0 for 2 ≤ j ≤ n.
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We can in this way easily get a vanishing criteria for Hq(NX) = 0 for every q ≥ 1.
(ii) Suppose for instance n = dimX = 3. Then H1(NX) = 0 if, for every i,

H1(IX(n2,i)) = H2(IX(n2,i − 6)) = 0,

H2(IX(n1,i)) = H3(IX(n1,i − 6)) = 0 and H1(IX(n3,i − 6)) = 0.

Moreover H2(NX) = 0 if, for every i,

H1(IX(n3,i)) = 0, H2(IX(n2,i)) = H1(IX(n2,i − 6)) = 0 and

H3(IX(n1,i)) = H2(IX(n1,i − 6)) = 0.

As in the surface case, if some of the assumptions of Proposition 9.9 or Remark 9.10 are not
satisfied, we can find examples of obstructed 3-folds (e.g. X ′0 in the example below). Note that all
assumptions of Proposition 9.9 and Remark 9.10 (ii) are satisfied forX ′0, exceptH3(IX′

0
(n1,i−6)) = 0

for one i.

Example 9.11. We start with the smooth 3-fold Z ⊆ P := P
5 of [41] of degree 7 with Ω-resolution

0→ O⊕4
P
→ ΩP(2)→ IZ(4)→ 0,

where ΩP is the kernel of the map OP(−1)6 → OP induced by the multiplication with (X0, .., X5).
Note that h1(IZ(2)) = 1. If we link Z, first using a CI of type (4, 4) to get a 3-fold Z ′, then
a CI of type (6, 7) to link Z ′ to X, then X is a 3-fold with properties such that Proposition 8.1
applies. Indeed the ideas of Remark 8.2 also apply except for how we proved 0Ext2R(I, I) = 0. By the
proof of Proposition 9.9, however, we have 0Ext2R(I, I) = 0 for 3-folds provided H3(IX(n1,i − 6)) =
H2(IX(n2,i−6)) = H1(IX(n3,i−6)) = 0 for all i. To see that all these H i(IX(j))-groups vanish, we
first find the minimal resolution of IZ′. Combining the exact sequence 0→ OP → OP(1)6 → Ω∨

P
→ 0

with the mapping cone construction for how we get the resolution of IZ′ from the resolution of IZ ,
we find the minimal resolution

0→ R(−6)→ R(−5)⊕6 → R(−4)⊕6 → IZ′ → 0.

Hence H1
∗ (IZ′) = 0, H2

∗ (IZ′) = 0 and we get H3
∗ (IX) = 0, H2

∗ (IX) = 0 and H1
∗ (IX) ' H1(IX(7)) '

k, cf. (27). Now since the Koszul resolution induced by the regular sequence {X0, .., X5} implies that

0→ OP(−6)→ OP(−5)⊕6 → OP(−4)⊕15 → OP(−3)⊕20 → OP(−2)⊕15 → ΩP → 0

is exact, we can use the mapping cone construction to find the following Ω-resolution,

0→ OP(−9)⊕6 → ΩP(−7)⊕OP(−7)⊕OP(−6)→ IX → 0

of IX , leading to the minimal resolution

0→ R(−13)→ R(−12)⊕6 → R(−11)⊕15 → ...→ IX → 0.

It follows that all n3,i = 11 in the minimal resolution of IX and hence we see that 0Ext2R(I, I) = 0.
Then we proceed exactly as in Example 8.3. Indeed we link X to two different 3-folds X ′ and X ′0

using CI’s Y and Y0 containing X, both of type (7, 9), as follows. Let F6, resp. F7, be the minimal
generator of IX of degree 6, resp. 7, and let G be a general element of H0(IX(9)). Then we take Y ,
resp. Y0, to be given by IY = (F7, G), resp. IY0 = (H · F6, G) where H is a linear form. We may
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check that all assumptions of Proposition 8.1 are satisfied. Hence we get that X ′ and X ′0 belong to
a common irreducible component of Hilbp(v)(P5), that X ′0 is obstructed with minimal resolution

0→ R(−9)→ R(−8)⊕6 ⊕R(−9)⊕R(−10)→ R(−7)⊕7 ⊕R(−9)→ IX′
0
→ 0,

cf. (39), while X ′ is unobstructed with minimal resolution

0→ R(−9)→ R(−8)⊕6 ⊕R(−10)→ R(−7)⊕7 → IX′ → 0.

Again we have “ghost terms” in the minimal resolution of IX′
0
. From the resolution we find X ′0 to be

of degree 30 and with Hilbert polynomial

p(v) = 5v3 − 67
2
v2 +

247
2
v − 153.

The 3-fold X ′0 is reducible. Moreover since the assumptions of Proposition 9.9 are satisfied for X ′, we
also get the unobstructedness of X ′ from that Proposition and the dimension, dim(X′) Hilbp(v)(P5) =
1− δ0X′(0) = 327. Note that the assumptions of Proposition 9.9 are not satisfied for X ′0, due to the
existence of a minimal generator of degree 9 of IX′

0
and the fact h3(IX′

0
(3)) = 1.

Finally since Remark 7.2 generalizes to 3-folds by [29], Prop. 3.12, one may by linkage obtain
infinitely many obstructed 3-folds in the liaison class of X ′0.

We will finish this section by finding the Hilbert polynomials of OX and NX for any equidimen-
sional lCM 3-fold in P5 of degree d and sectional genus π. If S is a general hyperplane section, we
have an exact sequence

0→ OX(v − 1)→ OX(v)→ OS(v)→ 0,

and we easily deduce

p(v) := χ(OX(v)) =
1
6
dv3 +

1
2

(d+ 1− π)v2 + (χ(OS) +
d

3
+

1− π
2

)v + χ(OX) (47)

from (1). Moreover

Proposition 9.12. Let X be an equidimensional lCM 3-fold in P5 of degree d and sectional genus
π and let S be a general hyperplane section. Then

χ(NX(v)) =
1
3
dv3 + 3dv2 + (2χ(OS) + 5(π − 1) +

38
3
d− d2)v + (6χ(OS) + 15(π − 1) + 20d− 3d2).

Proof. Since we have no reference for this formula in this generality we sketch a proof. Indeed we
claim that

χ(NX(v)) = χ(OX(v))− χ(OX(−v − 6))− d2(v + 3). (48)

Note that, using (48), we get Proposition 9.12 by combining with (47). To show (48), we follow the
proof of Proposition 4.1. In addition to the formulas in (15) (where we only replace

∑4
j=1 by

∑5
j=1)

we get
5∑
j=1

(−1)j−1
∑
i

n3
j,i = 6(1− π − 2d).

Then we proceed as in (16). We get δ0(v) = −χ(IX(−v − 6)) − χ(OX(v)) + (3 + v)d2 for v >> 0
and then the claim.
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Example 9.13. Let X be the smooth Calabi-Yau 3-fold of [12], sect. 6, with invariants d = 17,
π = 32, χ(OX) = 0 and χ(OS) = 24, and deficiency modules M1 = 0, M2 = 0 and M3 given by

h3(IX(1)) = 4, h3(IX(2)) = 2, h3(IX(v)) = 0 for v /∈ {1, 2}.

Following [12] we find that I = IX has the following minimal resolution

0→ R(−8)⊕2 → R(−7)⊕8 → R(−6)⊕5 ⊕R(−5)⊕2 → I → 0. (49)

All assumptions of Proposition 9.9 are satisfied and we get that Hilbp(v)(P5) is smooth at (X) of
dimension

dim(X) Hilbp(v)(P5) = 1− δ0X(0) = 82.

Let us compute obsumext(X). Note that X has seminatural cohomology and hence we have Hγ,ρ
∼=

Hilbp(v)(P5) at (X) by Remark 9.3. Since h3(OX) = 1 and h3(OX(−1)) = 24, it follows that
obsumext(X) = 1 + δ4X(−6)− 82 = −28 by Theorem 9.1. Now we link twice to get X ′, first using a
CI of type (5, 6), then a CI of type (5, 5), both times using a common hypersurface of degree 5. This
is possible, cf. [12]. Thanks to (39) we find a free resolution of I ′ = IX′ of the form

0→ R(−7)⊕2 → R(−6)⊕8 → R(−5)⊕6 ⊕R(−4)→ I ′ → 0. (50)

By (28) h1(OX′(−2)) = 19 and h1(OX′(−1)) = 0 and we get 1 + δ4X′(−6) = 20. It follows from
Theorem 9.1 and Proposition 6.1 that Hγ′,ρ′ ∼= Hilbp

′(v)(P5) is smooth at (X ′) of dimension

1 + δ4X′(−6)− sumext(X) = 48.

We can also use Proposition 9.9 and check that 1− δ0X′(0) = 48.
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