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Moduli Spaces of Reflexive Sheaves of
Rank 2

Jan O. Kleppe

Abstract. Let F be a coherent rank 2 sheaf on a scheme Y ⊂ P
n of dimension at least two and let

X ⊂ Y be the zero set of a section σ ∈ H0(F). In this paper, we study the relationship between the

functor that deforms the pair (F, σ) and the two functors that deform Fon Y , and X in Y , respectively.

By imposing some conditions on two forgetful maps between the functors, we prove that the scheme

structure of e.g., the moduli scheme MY(P) of stable sheaves on a threefold Y at (F), and the scheme

structure at (X) of the Hilbert scheme of curves on Y become closely related. Using this relationship,

we get criteria for the dimension and smoothness of MY(P) at (F), without assuming Ext2(F, F) = 0.

For reflexive sheaves on Y = P
3 whose deficiency module M = H1

∗
(F) satisfies 0Ext2(M, M) = 0 (e.g.,

of diameter at most 2), we get necessary and sufficient conditions of unobstructedness that coincide in

the diameter one case. The conditions are further equivalent to the vanishing of certain graded Betti

numbers of the free graded minimal resolution of H0
∗

(F). Moreover, we show that every irreducible

component of M
P3 (P) containing a reflexive sheaf of diameter one is reduced (generically smooth)

and we compute its dimension. We also determine a good lower bound for the dimension of any

component of M
P3 (P) that contains a reflexive stable sheaf with “small” deficiency module M.

1 Introduction and Main Results

Let Y ⊂ P
n be an equidimensional, locally Cohen-Macaulay (CM), closed subscheme

of dimension at least two over a field k and let F be a coherent rank 2 sheaf on Y . Let

HilbX/Y be the local Hilbert functor of flat deformations XS ⊂ Y ×S, S a local artinian

k-algebra, of a codimension 2 locally CM subscheme X of Y . An effective method of

studying the Hilbert scheme, Hilbp(Y ), of subschemes of Y with Hilbert polynomial

p with respect to smoothness, dimension, and irreducibility at (X), is to look at other

local deformation functors D over HilbX/Y , D → HilbX/Y , which allow a surjective

tangent map tD → tHilbX/Y
= H0(NX/Y ), NX/Y = (IX/Y /I2

X/Y )∗, and a corresponding

injective map of obstruction spaces. We consider such deformation functors D that

determine Hilbp(Y ) locally under various assumptions. In particular, we look at the

functor of deforming a pair (F, σ) as well as at the functor of deforming the pair

(X, ξ), where ξ is an extension as in the Serre correspondence

(1.1) ξ; 0 → OY
σ

−→ F → IX/Y ⊗ L → 0,

see [14, 16, 44–46] for the existence of such extensions. Let DefF (resp. DefF,σ) be

the local deformation functor of flat deformations FS of F (resp. OY×S
σS−→ FS
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of OY
σ

−→ F). Note that we have an obvious forgetful map p : DefF,σ → DefF.

A theorem of Hartshorne on the Serre correspondence of rank 2 reflexive sheaves

states that via (1.1) there is a one-to-one correspondence between pairs (F, σ), where

the zero set of σ ∈ H0(F) has codimension 2 in P
3, and pairs (X, ξ), where ξ ∈

H0(ωX(4−c1)) generates the twisted canonical sheaf ωX(4−c1) except at finitely many

points ([14, Thm. 4.1]). Motivated by that result, we define a natural projection

q : DefF,σ → HilbX/Y given by

(OY×S
σS−→ FS) → ((coker σS) ⊗OY×S

(OY×S ⊗OY
L−1)),

which one may think of as determined by a (relative) Serre correspondence and the

forgetful map (XS, ξS) → (XS). We shortly write coker σS ⊗L−1 for (coker σS)⊗OY×S

(OY×S ⊗OY
L−1) and we have written Y × S for Y × Spec(S).

A main result of this paper (Theorem 2.1) states that if H0(OY ) ≃ k and

Hi(OY ) = 0 for i = 1, 2, then Ext1(IX/Y ⊗ L,F) is the tangent space of DefF,σ and

Ext2(IX/Y ⊗ L,F) contains the obstructions of deforming (F, σ). Moreover,

(i) p : DefF,σ → DefF is smooth (i.e., formally smooth) provided H1(F) = 0, and

(ii) q : DefF,σ → HilbX/Y is smooth provided Ext2(F,OY ) = 0.

Let MY(P) be the moduli scheme of GM-stable sheaves with Hilbert polynomial P on

Y . For the existence of MY(P), we refer to [16] and to Maruyama’s papers [27, 28].

Note that F is called GM-stable if it is torsion-free, and, for every coherent sub-

sheaf F ′ of F of rank one, we have the inequality PF ′ < PF/2 of Hilbert poly-

nomials. Then, using small letters for the dimensions, e.g., h0(F) = dim H0(F)

and exti(F,F) = dim Exti(F,F) and supposing H1(F) = 0, Ext2(F,OY ) = 0,

Hi(L−1) = 0 for i = 0, 1, 2 and ωY invertible, we prove that

ext1(F,F) − hom(F,F) + h0(F) = h0(NX/Y ) − 1 + h0(ωX ⊗ ω−1
Y ⊗ L−1) and

dim(F) MY(P) + h0(F) = dim(X) Hilbp(Y ) + h0(ωX ⊗ ω−1
Y ⊗ L−1),

supposing F to be GM-stable in the latter formula. It follows that MY(P) is smooth

at (F) if and only if Hilbp(Y ) is smooth at (X). Moreover, F is a generic sheaf of

some component of MY(P) if and only if X is generic in Hilbp(Y ), see Theorem 2.1

for further details. Note that all Exti( · , · )-groups above are global Ext-groups of

OY -Modules.

Let F = H0
∗(F) := ⊕H0(F(v)), M = H1

∗(F) and E = H2
∗(F). If 0Hom(F, M) = 0

and Y is arithmetically Cohen-Macaulay (ACM), then we show that the local graded

deformation functors of F and of (F, H0
∗(σ)) are isomorphic to DefF and DefF,σ re-

spectively. We get the following variation of Theorem 2.1(i): p is smooth provided

0Hom(F, M) = 0 and Y is ACM.

One may interpret the morphisms p and q in Theorem 2.1 as corresponding to

natural projections in an incidence correspondence of schemes of corepresentable

functors, connecting MY(P) closely to Hilbp(Y ). Under the assumptions of Theo-

rem 2.1, the projections are smooth of known fiber dimension. Since the fiber di-

mensions are easy to see and the Serre correspondence is well understood ([14]),

related arguments as in the theorem are used in the literature, especially to compute
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dimensions of or describe very specific moduli schemes (e.g., [4,8,13,15,17,31,33,42]

and see [45, §4] for results and a discussion). It is, however, under the mere assump-

tions of (i) and (ii) above that we are able to see precisely that the scheme struc-

tures of MY(P) and Hilbp(Y ) are “the same”. To apply Theorem 2.1, we neither

need H1(NX/Y ) = 0 nor Ext2
OY

(F,F) = 0 to prove the smoothness of the moduli

schemes. This, we think, significantly distinguishes our theorem from the results and

the proofs of the mentioned papers. For the complete picture, we have no better

reference than a preprint of the author ([18], for the case Y = P
3) and the paper

[9] which explicitly makes use of (without proofs) and slightly extends the results of

[18], and we therefore include full proofs.

As an application, we prove several results concerning smoothness and dimension

of the moduli space, MP3 (c1, c2, c3), of stable reflexive sheaves of rank 2 with Chern

classes c1, c2, and c3 on P
3. In some cases, especially for c3 = 0 or small c2 or large c3,

one knows the answer, e.g., see [1, 3, 4, 6, 9, 13–15, 29, 32, 33]. Much is still unknown

about MP3 (c1, c2, c3), see [39] for an overview of recent research. Let

ed(F) = ext1
OY

(F,F) − ext2
OY

(F,F).

If F is stable, then ed(F) is sometimes called the “expected dimension” of MY(P) at

(F) and ed(F) = 8c2 − 2c2
1 − 3 if Y = P

3. We prove that MP3 (c1, c2, c3) is smooth

at (F), i.e., that F is unobstructed, and we find dim(F) MP3 (c1, c2, c3) provided we

have sufficient vanishing of vHomR(F, M) and vHomR(M, E) for v = 0 and −4 (The-

orem 3.1). This result generalizes [32], which gives the complete answer for M = 0.

Let 0Ext2
R(M, M) = 0. Using that the composition

η : 0HomR(F, M) × 0HomR(M, E) −→ 0HomR(F, E),

commutes with the cup product, we show that F is obstructed if η 6= 0 (see [10, 22,

47]). Thanks to this result, we get that the sufficient conditions of unobstructedness

of Theorem 3.1 are close (resp. equivalent) to being necessary conditions provided

the diameter of M is small (resp. one). Since we can substitute the non-vanishing of

the Hom-groups of Theorem 3.1 by the non-triviality of certain products of graded

Betti numbers appearing in the minimal resolution,

0 →
⊕

i

OP (−i)β3,i →
⊕

i

OP (−i)β2,i →
⊕

i

OP (−i)β1,i → F → 0,

of F, we get, as perhaps the most interesting result of the third section, that F is

obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0.

Here M has diameter 1 and is concentrated in degree c (i.e., Mc 6= 0 and Mv = 0

for v 6= c. Moreover, if F is an unobstructed stable sheaf and dimk M = r, then the

dimension of the moduli scheme MP3 (c1, c2, c3) at (F) is

dim(F) MP3 (c1, c2, c3) = 8c2 − 2c2
1 − 3 + 0homR(F, E) + r(β1,c+4 + β2,c),
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see Theorem 3.6 for details. Notice that 0homR(F, E) is explicitly computed in Re-

mark 4.2.

We also show that every irreducible component V of MP3 (c1, c2, c3) whose generic

sheaf F satisfies diam M = 1 is reduced (i.e., generically smooth) and we deter-

mine dim V (Theorem 3.8). If diam M = m, we give examples of moduli spaces

MP3 (c1, c2, c3) containing a non-reduced component for every integer m ≥ 3. If

diam M = 2, we conjecture that the corresponding component of MP3 (c1, c2, c3) is

generically smooth. We also give a new formula for the dimension of any generically

smooth irreducible component of MP3 (c1, c2, c3) (Theorem 4.4). Even though some

of the results of this paper may have a direct proof in which the condition “reflex-

ive” is replaced by “torsion-free”, we have chosen just to use Theorem 2.1 and the

corresponding results for Hilbp(P
3).

1.1 Notations and Terminology

Let R = k[X0, X1, . . . , Xn] be a graded polynomial ring over an algebraically closed

field k of arbitrary characteristic with the standard grading, m = (X0, . . . , Xn) and

let Y ⊂ P
n be a closed equidimensional, locally Cohen–Macaulay (CM) subscheme.

We keep the other notations of the introduction. A curve X in P
n (resp. in Y ) is

an equidimensional, locally CM subscheme of P := P
n (resp. of Y ) of dimension

one with sheaf ideal IX (resp. IX/Y ) and normal sheaf NX = HomOP
(IX,OX) (resp.

NX/Y = HomOY
(IX/Y ,OX) in Y ). X is unobstructed if the Hilbert scheme is smooth

at the corresponding point (X) = (X ⊂ P
n), otherwise X is obstructed. The Hilbert

scheme of space curves of degree d and arithmetic genus g is denoted by H(d, g),

see [12] for existence. If F is a coherent OY -Module, we let Hi(F) = Hi(Y,F) and

hi(F) = dim Hi(F), and we denote χ(F) = Σ(−1)ihi(F). Then IX := H0
∗(P, IX) is

the saturated homogeneous ideal of X in P
n.

Let M = M(F) be the deficiency module H1
∗(F). F is said to be unobstructed if

the hull ([40]) of the local deformation functor, DefF, is smooth. By stable we mean

GM-stable, i.e., stable in the sense of Gieseker and Maruyama in which the Hilbert

polynomial (and not the first Chern class) is used to define stability (see [16, Chpt.

I]). Thus a stable F is unobstructed if and only if MY(P), the moduli scheme of stable

sheaves with Hilbert polynomial P on Y , is smooth at (F) ([16, Thm. 4.5.1]). The

two concepts of stability are the same if Y = P
3 and F is reflexive ([14, Rem. 3.1.1]).

Stable sheaves are simple, i.e., Hom(F,F) ≃ k ([16, Cor. 1.2.8]). Recall that a co-

herent sheaf F is reflexive if and only if F ≃ F∗∗ where F∗
= HomOY

(F,OY )

(see [14]). In the case Y is a smooth threefold, we denote by MY(c1, c2, c3) the mod-

uli scheme of stable reflexive sheaves of rank 2 on Y with Chern classes c1, c2, and

c3. Thus MY(c1, c2, c3) is open in MY(P). For any F of MY(c1, c2, c3), there exists an

exact sequence (1.1) after replacing F by some F(t). As mentioned, (1.1) defines

a one-to-one correspondence between pairs (F, σ), where σ vanishes in codimen-

sion 2 and pairs (X, ξ), where ξ generates ωX ⊗ ω−1
Y ⊗ L−1 almost everywhere (the

Hartshorne–Serre correspondence, see [14, Thm. 4.1] and [44, Thm. 1]).

A sheaf F of rank 2 on P
3 is said to be Buchsbaum if m · M(F) = 0. We

define the diameter of M(F) (or of F) by diam M(F) = c − b + 1, where

b = min{n|h1(F(n)) 6= 0} and c = max{n|h1(F(n)) 6= 0} and by diam M(F) = 0
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if M(F) = 0. The diameter of a curve C , diam M(C), is correspondingly defined.

A curve in a sufficiently small open irreducible subset of H(d, g) (small enough to

satisfy all the openness properties that we want to pose) is called a generic curve

of H(d, g), and accordingly, if we state that a generic curve has a certain property,

then there is a non-empty open irreducible subset of H(d, g) of curves having this

property. A generization C ′ ⊂ P
3 of C ⊂ P

3 in H(d, g) is a generic curve of some

irreducible subset of H(d, g) containing (C). In the same way, we use the word

generic and generization for a stable sheaf. By an irreducible component of H(d, g)

or MP3 (c1, c2, c3) we always mean a non-embedded irreducible component.

For any graded R-module N, we have the right derived functors Hi
m

(N) and

vExti
m

(N,−) of Γm(N) =
⊕

v ker(Nv → Γ(P, Ñ(v))) and Γm(HomR(N,−))v re-

spectively (see [11, Exp. VI]). We use small letters for the k-dimension and subscript

v for the homogeneous part of degree v, e.g., vexti
m

(N1, N2) = dim vExti
m

(N1, N2),

for graded R-modules Ni of finite type. There is a spectral sequence ([11, Exp. VI])

(1.2) E
p,q
2 = vExt

p
R(N1, H

q
m(N2)) ⇒ vExt

p+q
m (N1, N2)

(⇒ means “converging to”) and a duality isomorphism ([21, Thm. 1.1]);

(1.3) vExti+1
m

(N2, N1) ≃ −vExtn−i
R (N1, N2(−n − 1))∨,

where (−)∨ = Homk(−, k), generalizing the Gorenstein duality vHi+1
m

(M) ≃

−vExtn−i
R (M, R(−4))∨. These groups fit into a long exact sequence ([11, Exp. VI])

(1.4)

→ vExti
m

(N1, N2) → vExti
R(N1, N2) → Exti

OP
(Ñ1, Ñ2(v)) → vExti+1

m
(N1, N2) →

which e.g., relates the deformation theory of X ⊂ P
3, described by Hi−1(NX) ≃

Exti
OP

(IX, IX) for i = 1, 2, to the deformation theory of the homogeneous ideal I =

IX (or equivalently of A = R/I), described by 0Exti
R(IX, IX), in the following exact

sequence

(1.5) vExt1
R(I, I) →֒ H0(NC (v)) → vExt2

m
(I, I)

α
−→ vExt2

R(I, I) → H1(NC (v))

→ vExt3
m

(I, I) → 0

(see [22, §2]). Let M(X) = H2
m

(I). Note that, in this situation, Charles Walter proved

that the map α : vExt2
m

(I, I) ≃ vHomR(I, H2
m

(I)) → vExt2
R(I, I) of (1.5) factorizes via

vExt2
R(M(X), M(X)) in a natural way. The factorization is in fact given by a certain

edge homomorphism of the spectral sequence (1.2) with N1 = M(X), N2 = I and

p + q = 4 (see [10, Thm. 2.5]). We frequently refer to [22] and all results we use

from [22] (except possibly [22, Ex. 3.12]) are true without the characteristic zero

assumption of the field quoted for that paper.

2 The Scheme Structure in the Serre Correspondence

In this section, we will prove the basic Theorem 2.1 and its variations. Moreover,

we give some applications and examples of moduli schemes MY(c1, c2, c3) in the case
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Y = P
3. In particular, we show that some MP3 (c1, c2, c3) contains a non-reduced

component.

The local deformation functors DefF, DefF,σ , and HilbX/Y of the introduction

were defined on the category l whose objects are local artinian k-algebras S with

residue field k and whose morphisms are homomorphisms of local rings over k.

There is also another local deformation functor on l associated with (1.1):

DefX/Y,ξ(S) = {
(

XS ⊂ YS, ξS) | (XS ⊂ YS) ∈ HilbX/Y (S) and ξS ⊗S k = ξ
}

,

where YS := Y × S, LS := OYS
⊗OY

L and ξS ∈ Ext1(IXS/YS
⊗ LS,OYS

). We have the

following main result about the relationship of dimensions and scheme structures in

the Serre correspondence.

Theorem 2.1 Let Y be an equidimensional, locally CM closed, subscheme of P
n of

dimension dim Y ≥ 2 and suppose H0(OY ) ≃ k and Hi(OY ) = 0 for i = 1, 2. More-

over, suppose there exists an exact sequence (1.1), where X ⊂ Y is an equidimensional,

locally CM, closed subscheme of codimension 2 in Y and L is an invertible OY -Module.

Let IX/Y = ker(OY → OX). Then

(a) Ext1
OY

(IX/Y ⊗L,F) is the tangent space of DefF,σ and Ext2
OY

(IX/Y ⊗L,F) contains

the obstructions of deforming (F, σ). Moreover DefF,σ ≃ DefX/Y,ξ are isomorphic

on l and

(i) p : DefF,σ → DefF is smooth (i.e., formally smooth) provided H1(F) = 0,

and

(ii) q : DefF,σ → HilbX/Y is smooth provided Ext2
OY

(F,OY ) = 0.

(b) Suppose H1(F) = 0, Ext2
OY

(F,OY ) = 0, and that ωY is invertible. Then

ext1
OY

(F,F) − homOY
(F,F) + h0(F) = h0(NX/Y ) − 1 + h0(ωX ⊗ ω−1

Y ⊗ L−1)

−
2

∑

i=0

(−1)ihi(L−1).

Suppose in addition that F is stable (i.e., GM-stable) and Hi(L−1) = 0 for i =

0, 1, 2. Then

dim(F) MY(P) + h0(F) = dim(X) Hilbp(Y ) + h0(ωX ⊗ ω−1
Y ⊗ L−1).

It follows that MY(P) is smooth at (F) if and only if Hilbp(Y ) is smooth at (X).

Furthermore, F is a generic sheaf of some irreducible component of MY(P) if and

only if X is generic in some irreducible component of Hilbp(Y ).

Remark 2.2 Under the assumptions of Theorem 2.1(a), we get that H1(F) ≃
H1(IX/Y ⊗ L) and Ext2

OY
(F,OY ) ≃ Ext2

OY
(IX/Y ⊗ L,OY ) by using (1.1). Moreover,

if the dualizing sheaf ωY is invertible (i.e., Y locally Gorenstein), then

Ext2
OY

(F,OY )∨ ≃ Hdim Y−2(F ⊗ ωY ) and

Ext2
OY

(IX/Y ⊗ L,OY )∨ ≃ Hdim Y−2(IX/Y ⊗ L ⊗ ωY ).
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In the case where Y is locally Gorenstein and the closed immersion Y →֒ P
n

induces an isomorphism Pic(Y ) ≃ Pic(P
n) = Z, we will use this isomorphism to

look at the first Chern class c1 as an integer, i.e., L ≃ ∧2F = OY (c1). Then (1.1) takes

the form

(2.1) ξ; 0 → OY
σ

−→ F → IX/Y (c1) → 0.

Moreover, put ωY = OY (e). By Remark 2.2, Theorem 2.1 immediately implies the

following.

Corollary 2.3 Suppose, in addition to the general assumptions of Theorem 2.1, that

Y is locally Gorenstein and that Y →֒ P
n induces an isomorphism Pic(Y ) ≃ Pic(P

n).

Then Ext1
OY

(IX/Y (c1),F) is the tangent space of DefF,σ and Ext2
OY

(IX/Y (c1),F) con-

tains the obstructions of deforming (F, σ). Moreover

(i) p : DefF,σ → DefF is smooth provided H1(IX/Y (c1)) = 0, and

(ii) q : DefF,σ → HilbX/Y is smooth provided Hdim Y−2(IX/Y (c1 + e)) = 0.

Furthermore, suppose Hi(OY (−c1)) = 0 for i = 0, 1, 2,

H1(IX/Y (c1)) = 0, Hdim Y−2(IX/Y (c1 + e)) = 0

and that F is a stable sheaf. Then

ext1
OY

(F,F) + h0(F) = h0(NX/Y ) + h0(ωX(−c1 − e)),

dim(F) MY(P) + h0(F) = dim(X) Hilbp(Y ) + h0(ωX(−c1 − e)),

and F is unobstructed (resp. generic in MY(P)) if and only if X is unobstructed (resp.

generic in Hilbp(Y )).

Somehow we may look upon the corollary as the Hartshorne–Serre correspon-

dence for flat families. We do not, however, need F to be reflexive (only torsion-free

as one may easily deduce from (2.1)).

We shortly return to the proof of Theorem 2.1. First, we give an example to see that

conditions as in Corollary 2.3 are needed for comparing the structure of H(d, g) and

MP3 (c1, c2, c3), while the same example “twisted” leads to a non-reduced component

of MP3 (c1, c2, c3) once the conditions of the theorem are satisfied. Below we will

use the following result ([20, Prop. 3.2]). Let C and X be two space curves that are

algebraically linked by a complete intersection of two surfaces of degrees f and g (a

c.i. of type ( f , g)), see [30] for the theory on linkage. If we suppose

(2.2) H1(IC (v)) = 0 for v = f , g, f − 4 and g − 4,

then C is unobstructed (resp. generic) if and only if X is unobstructed (resp. generic),

and we have

dim(C) H(d, g) + h0(IC ( f )) + h0(IC (g)) = dim(X) H(d ′, g ′) + h0(IX( f )) + h0(IX(g)).
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Example 2.4 The generic curve C of Mumford’s well-known example of a non-

reduced component of H(14, 24) satisfies H1(IC (v)) = 0 for v 6= 3, 4, 5 ([36]).

Moreover, there is a c.i. of type (6, 6) containing C whose linked curve is smooth.

Hence by the result mentioned in (2.2), the linked curve is the general curve X of a

non-reduced component of H(22, 56) of dimension 88. We leave to the reader to ver-

ify that X is subcanonical (ωX ≃ OX(5)) and satisfies H1(IX(v)) = 0 for v 6= 3, 4, 5.

(a) If we take a general element of H0(OX) ≃ H0(ωX(−5)) ≃ Ext1(IX,OP3 (−9)),

we get an extension

ξ; 0 → OP3
σ

−→ E → IX(9) → 0

in which E is a stable vector bundle with c1 = 9 and c1(E(−5)) = −1, c2(E(−5)) = 2.

It is well known that MP3 (−1, 2, 0) is smooth [15], i.e., E is unobstructed while X is

obstructed. The assumption H1(IX(c1 + e)) = 0 of Corollary 2.3 is, however, not

satisfied. Indeed, H1(IX(c1 + e)) = H1(IX(5)) 6= 0.
(b) If we take a general global section of OX(3) ≃ ωX(−2), we get an extension

ξ; 0 → OP3
σ

−→ F → IX(6) → 0

in which F is a stable reflexive sheaf belonging to MP3 (6, 22, 66) ≃ MP3 (0, 13, 66).

Since all assumptions of Corollary 2.3 are satisfied, we conclude that F is the gen-

eral point of a non-reduced component of MP3 (0, 13, 66) of dimension −h0(F) +

dim(X) H(22, 56) + h0(ωX(−2)) = −8 + 88 + 21 = 101. Note that, in this case, we

have ed(F) = 8c2 − 2c2
1 − 3 = 101, i.e., the component is non-reduced of the least

possible dimension.

Example 2.5 Here we apply Corollary 2.3 directly to Mumford’s example of a

generic obstructed curve C of H(14, 24).

(a) If we take a general element of H0(ωC (2)) ≃ Ext1(IC ,OP3 (−2)), we get an

extension

ξ; 0 → OP3
σ

−→ F → IC (2) → 0

in which F is a stable reflexive sheaf with c1 = 2 and c1(F(−1)) = 0, c2(F(−1)) = 13.

The assumptions H1(IC (c1)) = 0, H1(IC (c1 − 4)) = 0 of Corollary 2.3 are satisfied

and we get a non-reduced component of MP3 (0, 13, 74) of dimension

−h0(F) + dim(C) H(14, 24) + h0(ωC (2)) = −1 + 56 + 51 = 106.

(b) If we take a general global section of H0(ωC (3)) ≃ Ext1(IC ,OP3 (−1)), we get,

by Corollary 2.3 (with c1 = 1), an extension where F is a stable reflexive sheaf belong-

ing to a non-reduced component of MP3 (1, 14, 88) ≃ MP3 (−1, 14, 88) of dimension

−1 + 56 + 65 = 120.

(c) If we take a general global section of H0(ωC (−2)) ≃ Ext1(IC ,OP3 (−6)), we

get, by Corollary 2.3 (with c1 = 6), an extension where F is a semistable obstructed

reflexive sheaf belonging to the moduli space of semistable sheaves MP3 (6, 14, 18) ≃
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MP3 (0, 5, 18). Even though F is obstructed, i.e., the hull of the local deformation

functor is singular, we do not yet know the hull’s precise relationship to the local ring

OM,(F) of MP3 (0, 5, 18) at (F), and we are not able to state whether OM,(F) is singular

or not.

Proof of Theorem 2.1 (a) Using Laudal’s results ([23]) for the local deformation

functor of deforming a category, we claim that Ext1(IX/Y ⊗L,F) is the tangent space

of DefF,σ and that Ext2(IX/Y ⊗ L,F) contains the obstructions of deforming (F, σ).

Indeed, letting e be the category consisting of two objects, OY and F, and one non-

trivial morphism σ, it follows from [23, Thm. 4.1.14] that there are cohomology

groups A(·)(e) such that A1(e) is the tangent space of DefF,σ and A2(e) contains the

obstructions of deforming (F, σ). Moreover, thanks to [23, Lem. 3.1.7] (see [23, p.

155] to see how Lemma 3.1.7 applies to a category similar to e), there is a spectral

sequence

E
p,q
2 = lim

←−

(p)







Extq(F,F) Extq(OY ,OY )

ցαq

ւ
Extq(OY ,F)







converging to A( · ) := A( · )(e). Here both arrows correspond to natural maps in-

duced by the section OY
σ

−→F and lim
←−

(p) is the right derived functor of lim
←−

over the

category e, see [24, § 2] for another example. Since E
p,q
2 = 0 for p ≥ 2, we get the

exact sequence

0 → E
1,q−1
2 → Aq → E

0,q
2 → 0.

Moreover, Extq(OY ,OY ) = 0 for 0 < q < 3 by the assumption Hi(OY ) = 0 for

i = 1, 2, and we get E
0,q
2 = ker αq and E

1,q
2 = coker αq for q > 0. Observe also that

E
1,0
2 = coker α0 because k ≃ H0(OY ) ≃ Hom(OY ,OY ) ⊂ Hom(F,F). We therefore

have an exact sequence

0 → coker αq−1 → Aq → ker αq → 0

for any q > 0. Combining with the long exact sequence

(2.3) → Hom(F,F)
α0

−→ H0(F) → Ext1(IX/Y ⊗ L,F)
p1

−→ Ext1(F,F)
α1

−→

H1(F) → Ext2(IX/Y ⊗ L,F)
p2

−→ Ext2(F,F)
α2

−→ H2(F)

deduced from 0 → OY → F → IX/Y ⊗ L → 0, we get the claim.

(i) From (2.3) and the proven claim that leads to the fact that p1 (resp. p2) is the

tangent map (resp. a map of obstruction spaces, mapping obstructions to obstruc-

tions) of p, we get the smoothness of p, since p1 is surjective and p2 is injective. We

will, however, give an independent proof that one may use (slightly changed) to prove

the remark below.

Let (T, mT) → (S, mS) be a small artinian surjection (i.e., of local artinian k-alge-

bras with residue fields k whose kernel a satisfies a · mT = 0). To prove the (formal)

smoothness of p, we must, by definition, show that the map

DefF,σ(T) → DefF,σ(S) ×DefF(S) DefF(T)
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is surjective. Let σS : OY×S → FS be a deformation of σ to S and let FT be a deforma-

tion of FS to T. It suffices to find a map σT : OY×T → FT such that σT ⊗T idS = σS,

i.e., we must prove that H0(FT) → H0(FS) is surjective. Taking global sections of the

short exact sequence

0 → F ⊗k a ≃ FT ⊗T a → FT → FS → 0 ,

we get the surjectivity because H1(F) ⊗k a = 0.

(ii) Again we have a long exact sequence

(2.4)

→ Ext1(IX/Y ⊗ L,OY ) → Ext1(IX/Y ⊗ L,F)
q1

−→ Ext1(IX/Y ⊗ L, IX/Y ⊗ L) →

Ext2(IX/Y ⊗ L,OY ) → Ext2(IX/Y ⊗ L,F)
q2

−→ Ext2(IX/Y ⊗ L, IX/Y ⊗ L) →

containing maps q1 (resp. q2) that we may interpret as the tangent map (resp. a map

of obstruction spaces, which maps obstructions to obstructions) of q. Indeed, since

Ext1(IX/Y , IX/Y ) ≃ NX/Y and Hom(IX/Y , IX/Y ) ≃ OY , the assumption Hi(OY ) = 0

for i = 1, 2 and the spectral sequence relating global and local Ext-groups show

Ext1(IX/Y , IX/Y ) ≃ H0(NX/Y ) and the injectivity of Ext2(IX/Y , IX/Y ) →֒ H1(NX/Y )

(see [47] or [43]; the case Y = P
3 was in fact proved in [18]), as well as

(2.5) Exti(IX/Y ⊗ L, IX/Y ⊗ L) ≃ Exti(IX/Y , IX/Y )

for i = 1, 2 . Hence we get the smoothness of q because q1 is surjective and q2

is injective by the assumption Ext2(IX/Y ⊗ L,OY ) ≃ Ext2(F,OY ) = 0. We will,

however, again give an independent proof using the definition of smoothness.

Let T → S, a and σS : OY×S → FS be as in the proof of (i) above. Let GS =

coker σS and let GT be a deformation of GS to T. By the theory of extensions, it

suffices to show that the natural map

Ext1(GT ,OY×T) → Ext1(GS,OY×S)

is surjective. Modulo isomorphisms we refind this map in the middle of the long

exact sequence

→ Ext1(GT ,OY×T ⊗T a) → Ext1(GT ,OY×T) → Ext1(GT ,OY×S)

→ Ext2(GT ,OY×T ⊗T a)

Since Ext2(GT ,OY×T ⊗T a) ≃ Ext2(IX/Y ⊗ L,OY ) ⊗k a = 0, by assumption we get

the smoothness.

To see that DefF,σ(S) ≃ DefX/Y,ξ(S) are isomorphic, take a deformation OY×S
σS−→

FS of OY
σ

−→ F. Since FS is flat, so are coker σS and (coker σS)⊗OYS
(OYS

⊗OY
L−1).

The former, coker σS, fits into a short exact sequence starting with 0 → OY×S
σS−→ FS,
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i.e., we get an extension ξS satisfying ξS ⊗S k = ξ. The latter is a flat deformation of

IX/Y . Thanks to the isomorphism Ext1(IX/Y , IX/Y ) ≃ H0(NX/Y ) and the injectivity

Ext2(IX/Y , IX/Y ) →֒ H1(NX/Y ) above, one knows that a deformation of IX/Y defines

a deformation of X in Y , i.e., we get an element (XS ⊂ YS) ∈ HilbX/Y and hence we

get (XS ⊂ YS, ξS) ∈ DefX/Y,ξ(S). This defines a map DefF,σ(S) → DefX/Y,ξ(S). Since

the morphism the other way is just an obvious forgetful map, we get a functorial

isomorphism DefF,σ(S) ≃ DefX/Y,ξ(S), as claimed in the theorem.

(b) To prove the first dimension formula, we continue (2.3) to the left. Using

H1(F) = 0, we get

1
∑

i=0

(−1)i+1 exti(IX/Y ⊗ L,F) = ext1(F,F) − hom(F,F) + h0(F),

while (2.4) (continued), Ext2(F,OY ) = 0, Hom(IX/Y , IX/Y ) ≃ OY and (2.5) show

1
∑

i=0

(−1)i+1 exti(IX/Y ⊗L,F) = ext1(IX/Y , IX/Y ) − 1 +
1

∑

i=0

(−1)i+1 exti(IX/Y ⊗L,OY ).

Since Ext1(IX/Y , IX/Y ) ≃ NX/Y , it remains to show

1
∑

i=0

(−1)i+1 exti(IX/Y ⊗ L,OY ) = h0(ωX ⊗ ω−1
Y ⊗ L−1) −

2
∑

i=0

(−1)ihi(L−1).

Since Hom(IX/Y ⊗ L,OY ) ≃ L−1, Ext1(IX/Y ,OY ) ≃ ωX ⊗ ω−1
Y and Ext2(IX/Y ⊗

L,OY ) = 0 (Remark 2.2), we get hom(IX/Y ⊗ L,OY ) = h0(L−1) and

ext1(IX/Y ⊗ L,OY ) = h0(ωX ⊗ ω−1
Y ⊗ L−1) + h1(L−1) − h2(L−1)

by the spectral sequence relating global and local Ext-groups, and we get the first

dimension formula.

Finally, to see the last dimension formula (resp. the genericness property), let U ⊂
Hilbp(Y ) be a small enough open (resp. small enough open irreducible) subscheme

containing (X) and let IXU /YU
be the sheaf ideal of XU ⊂ YU := Y ×U , the universal

object of Hilbp(Y ) restricted to U . Let LU := L⊗OY
OY×U . Using (2.4), which takes

the form

0 → H0(OY ) → Ext1(IX/Y ⊗L,OY ) → Ext1(IX/Y ⊗L,F)
q1

−→ Ext1(IX/Y , IX/Y ) → 0,

and recalling that q1 is the tangent map of q : DefF,σ → HilbX/Y and that q is smooth,

we can look upon the fiber of q as Ext1(IX/Y ⊗ L,OY )/k. In the same way, since F is

stable and hence simple, we can use the exact sequence (2.3) to see that the fiber of p is

isomorphic to H0(F)/k. Hence we get the second dimension formula since the func-

tor DefF is pro-represented by the completion of the local ring of MY(P) at (F) ([16,

Thm. 4.5.1]). More precisely, the family D := P(Ext1(IXU /YU
⊗ LU ,OYU

)∨) → U

parametrizes exactly extensions as in (1.1) over U , and the definition of a moduli
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space implies the existence of a morphism p : D → MY(P) whose corresponding lo-

cal homomorphism at (F, σ) and (F) induces p. Note that p is smooth at (X ⊂ Y, ξ)

and hence maps the generic points of D onto generic points of MY(P). This also

proves that F is a generic sheaf of some component of MY(P) if and only if X is

generic in some component of Hilbp(Y ). Note that, just by comparing the two di-

mension formulas, we get the statement on the smoothness of the theorem, and we

are done.

Remark 2.6 (a) Suppose Y is ACM and let B := H0
∗(OY ). Applying H0

∗(−) onto

(1.1), we get an exact sequence

0 → B
H0

∗
(σ)

−→ F → coker(H0
∗(σ)) → 0

inducing a long exact sequence (*) as in (2.3) in which we have replaced the global

Ext-groups of sheaves with the corresponding graded 0Ext-groups. Similar to DefF
(resp. DefF,σ), we may define local deformation functors DefF (resp. DefF,H0

∗
(σ)) on

l of flat graded deformations FS of F (resp. B ⊗k S
H0

∗
(σS)

−→ FS of B
H0

∗
(σ)

−→F). There is a

natural forgetful map p0 : DefF,H0
∗

(σ) → DefF whose tangent map fits into (*) and

corresponds to p1 in (2.3). Since 0Ext1
B(B, F) = 0 in (*), it follows that

p0 : DefF,H0
∗

(σ) → DefF

is smooth by the first (i.e., the cohomological) proof of Theorem 2.1(i), above.

(b) Suppose Y is ACM and 0HomB(F, M) = 0. Then we claim that DefF ≃ DefF .

Indeed, by (1.4),

0 → 0Ext1
B(F, F) → Ext1

OY
(F,F) → 0Ext2

m
(F, F) → 0Ext2

B(F, F) → Ext2
OY

(F,F)

is exact and 0Ext2
m

(F, F) = 0HomB(F, M) by (1.2). Hence we get the claim by the

cohomological argument used in Theorem 2.1(i). In the same way (or directly), we

can prove that DefF,σ ≃ DefF,H0
∗

(σ). It follows that the morphism p : DefF,σ → DefF
of Theorem 2.1 is smooth.

3 Reflexive Sheaves on P
3 of Small Diameter

As an application we concentrate on MY(c1, c2, c3) with Y = P
3. A main result of

this section states that in the diameter one case the obstructedness of F is equivalent

to the non-vanishing of certain products of graded Betti numbers of the free graded

minimal resolution of H0
∗(F) (Theorem 3.6). We also show that generic diameter

one sheaves are unobstructed and we determine the dimension of the corresponding

component (Theorem 3.8). We end this section with a conjecture for generic sheaves

of diameter 2.

Recalling the notions F = H0
∗(F), M = H1

∗(F), E = H2
∗(F) and ed(F) :=

ext1(F,F) − ext2(F,F) = 8c2 − 2c2
1 − 3, we first consider sufficient conditions of

unobstructedness.
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Theorem 3.1 Let F be a reflexive sheaf of rank 2 on P
3, and suppose that one of the

following conditions holds:

(i) vHomR(F, M) = 0 for v = 0 and v = −4;

(ii) vHomR(M, E) = 0 for v = 0 and v = −4;

(iii) 0HomR(F, M) = 0, 0HomR(M, E) = 0 and M is unobstructed as a graded module

(e.g., 0Ext2
R(M, M) = 0).

Then F is unobstructed. Moreover, if 0Exti
R(M, M) = 0 for i ≥ 2 and F is stable, then

MP3 (c1, c2, c3) is smooth at (F) and its dimension at (F) is

dim(F) MP3 (c1, c2, c3) = ed(F) + −4homR(F, M) + −4homR(M, E) + 0homR(F, E) .

Furthermore, −4homR(M, E) = 0ext1
R(F, M) and −4homR(M, E) + 0homR(F, E) =

−4ext1
R(F, F).

Note that Theorem 3.1 applies to prove unobstructedness if M = 0 (this case is

known by [32]). The natural application of Theorem 3.1 is to sheaves whose graded

modules M are concentrated in a few degrees, e.g., diam M ≤ 2. For such modules we

can prove more, namely that the sufficient conditions of unobstructedness of Theo-

rem 3.1 are quite close to being necessary conditions. Indeed, if the diameter of M is

one, they are necessary! Moreover, in such cases a minimal resolution of F is often

sufficient for computing the Hom-groups in the theorem (see also Lemma 3.4).

To find necessary conditions, we consider the cup product or, more precisely, its

“images” in 0HomR(F, E), −4HomR(F, M)∨ and −4HomR(M, E)∨ via some natural

maps, see [10, 22, 47] and [25, § 2]. Here we only include the cup product factoriza-

tion given by (a) and hence (b)(i) below, for which there is a proof in [22, Prop. 3.6]

of the corresponding result for curves using Walter’s factorization of α in (1.5). We

remark that this result for curves, to our knowledge now, was first proved by Fløystad

(an easy consequence of [10, Prop. 2.13]). For similarly generalizing the cases (ii)

and (iii) of (b), we refer to [22, Prop. 3.8]. Note that the necessary conditions in (b)

apply to many other sheaves than to those of diameter one (i.e., those with M ′
= 0),

e.g., they apply to Buchsbaum sheaves and to sheaves obtained by liaison addition

([30]) of curves.

Proposition 3.2 Let F be a reflexive sheaf of rank 2 on P
3 and suppose that

0Ext2
R(M, M) = 0.

(a) If the natural morphism

0HomR(F, M) × 0HomR(M, E) −→ 0HomR(F, E)

(given by the composition) is non-zero, then F is obstructed.

(b) Suppose M admits a decomposition M = M ′ ⊕ M[t] as R- modules, where the

diameter of M[t] is one and supported in degree t. Then F is obstructed provided

(i) 0HomR(F, M[t]) 6= 0 and 0HomR(M[t], E) 6= 0, or

(ii) −4HomR(F, M[t]) 6= 0 and 0HomR(M[t], E) 6= 0, or

(iii) 0HomR(F, M[t]) 6= 0 and −4HomR(M[t], E) 6= 0.
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Proof of Theorem 3.1 and Proposition 3.2 To prove the results, we may replace F

by F( j) for j ≫ 0 because, for both results, the assumptions as well as the con-

clusions hold for F if and only if they hold for F( j). In particular, we may assume

H1(F(v)) = 0 for v ≤ 0 and hence Ext2(F,OP3 )∨ ≃ H1(F(−4)) = 0. It follows that

the maps p and q of Theorem 2.1 are smooth. From the Hartshorne–Serre corre-

spondence we get an exact sequence

0 → R → F → IX(c1) → 0,

which implies M = H1
∗(F) ≃ H1

∗(IX(c1)). We also get the exact sequence

0 → E = H2
∗(F) → H2

∗(IX(c1)) → H3
∗(OP3 ).

Using these sequences and H1(IX(c1 + v)) = 0 for v ≤ 0, we get

vHomR(F, M) ≃ vHomR(IX, H1
∗(IX)) and(3.1)

vHomR(M, E) ≃ vHomR(H1
∗(IX), H2

∗(IX))

for −4 ≤ v ≤ 0 because vHomR(R, M) = 0 and

vHomR(M, H3
∗(OP3 )) ≃ vExt4

m
(M, R) ≃ M∨

−v−4 = 0

by (1.2) and (1.3). Now recall that in [22] we proved results similar to Theorem 3.1

and Proposition 3.2 for the unobstructedness (resp. obstructedness) of X with the

difference that the Hom-groups, vHomR(Hi
∗(F), Hi+1

∗ (F)) for F were exchanged by

the corresponding groups, vHomR(Hi
∗(IX), Hi+1

∗ (IX)) for IX . Therefore, (3.1) and

Theorem 2.1 show that F is unobstructed in Theorem 3.1 (resp. obstructed in Propo-

sition 3.2) because X is unobstructed (resp. obstructed) by [22, Thm. 2.6] (resp.

[22, Prop. 3.6 and Thm. 3.2] and Remark 3.3.

To prove the dimension formula, we suppose 0Exti
R(M, M) = 0 for 2 ≤ i ≤ 4.

With this assumption the map α in (1.5) is zero for v = 0 by Walter’s observation.

Note that there is a corresponding connecting map α(N1, N2) : 0Ext2
m

(N1, N2) →

0Ext2
R(N1, N2) appearing in (1.4). Indeed, α = α(IX, IX).

We claim that α(F, F) = 0. To prove it we use the functoriality of the sequence

(1.4) and α = 0. Since the natural map 0Ext2
R(IX(c1), F) → 0Ext2

R(IX(c1), IX(c1)) is

an isomorphism by (3.1),

0Ext2
R(IX(c1), F)∨ ≃ −4Ext2

m
(F, IX(c1)) ≃ −4HomR(F, M), and

0Ext2
R(IX(c1), IX(c1))∨ ≃ −4Ext2

m
(IX, IX) ≃ −4HomR(IX, H1

∗(IX)),

see (1.2) and (1.3), we get α(IX(c1), F) = 0. In a similar way, the natural map

0Ext2
m

(IX(c1), F) → 0Ext2
m

(F, F) is an isomorphism (i.e., both groups are naturally

isomorphic to 0HomR(F, M) by (1.2)), and we get the claim from α(IX(c1), F) = 0.

Now, using the fact that the projective dimension of F is 2, the proven claim, and

(1.4), we get an exact sequence

0 → 0Ext2
R(F, F) → Ext2

OP
(F,F) → 0Ext3

m
(F, F) → 0.
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As above, we have 0Ext2
R(F, F)∨ ≃ −4HomR(F, M) and similarly 0Ext3

m
(F, F)∨ ≃

−4Ext1
R(F, F) by (1.3). We get ext2

OP
(F,F) = −4homR(F, M) + −4ext1

R(F, F). Using

(1.2), we get an exact sequence

(3.2) 0 → 0Ext1
R(F, M) → 0Ext3

m
(F, F) → 0HomR(F, E) → 0Ext2

R(F, M) →

and hence −4ext1
R(F, F) = 0 ext1

R(F, M) + 0homR(F, E), because

(3.3) 0 Ext2
R(F, M) ≃ −4Ext2

m
(M, F)∨ ≃ −4HomR(M, M)∨ ≃ 0Ext4

m
(M, M)

≃ 0Ext4
R(M, M) = 0

by (1.2) and (1.3). By the arguments of (3.3), we also get

−4Ext1
R(M, M)∨ ≃ 0Ext3

R(M, M) = 0 and

0ext1
R(F, M) = −4ext3

m
(M, F) = −4homR(M, E),

and putting things together, we are done.

Remark 3.3 Theorem 2.6(iii) of [22] actually proves a slightly weaker statement

than needed to prove Theorem 3.1(iii). However, putting different results of e.g., [22]

together, we get what we want. Indeed, we claim that a curve X ⊂ P
3 is unobstructed

provided

(3.4) 0HomR(IX, H1
∗(IX)) = 0, 0HomR(H1

∗(IX), H2
∗(IX)) = 0,

and H1
∗(IX) is unobstructed as a graded module (e.g., 0 Ext2

R(H1
∗(IX), H1

∗(IX)) = 0).

This is mainly a consequence of results proven in [26] by Martin-Deschamps and Per-

rin. Indeed, their smoothness theorem for the morphism from the Hilbert scheme of

constant cohomology, H(d, g)cc, onto the scheme of “Rao modules” ([26, Thm. 1.5,

p. 135]) combined with their tangent space descriptions (pp. 155–156), or more

precisely combined with [22, Prop. 2.10], which states that the vanishing of the two

Hom-groups in (3.4) leads to an isomorphism H(d, g)cc ≃ H(d, g) at (X), we con-

clude easily.

We can compute the number 0homR(F, E) in terms of the graded Betti numbers

β j,i of F;

(3.5) 0 →
⊕

i

R(−i)β3,i →
⊕

i

R(−i)β2,i →
⊕

i

R(−i)β1,i → F → 0

(sheafifying, we get the “resolution” of F in the introduction), by using the following

result.

Lemma 3.4 Let F be a reflexive sheaf of rank 2 on P
3, and suppose −4HomR(F, F) =

0. Then

0homR(F, E) =

∑

i

(β1,i − β2,i + β3,i) · (h2(F(i)) − h3(F(i))).
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Proof Recall E := H2
∗(F) ≃ H3

m
(F). If we apply vHomR(−, E) to the minimal reso-

lution (3.5), we get a complex

(3.6) 0 → 0HomR(F, H2
∗(F)) →

⊕

i

H2(F(i))β1,i →
⊕

i

H2(F(i))β2,i

→
⊕

i

H2(F(i))β3,i → 0.

Since the alternating sum of the dimension of the terms in a complex equals the

alternating sum of the dimension of its homology groups, it suffices to show that

0Ext1
R(F, E) = 0, 0Ext2

R(F, E) ≃ 0HomR(F, H3
∗(F)), and

(3.7) 0homR(F, H3
∗(F)) =

∑

i

(β1,i − β2,i + β3,i) · h3(F(i)).

Using (1.2) and that 0Ext4
m

(F, F) ≃ −4HomR(F, F)∨ = 0 by assumption, we get

0Ext1
R(F, H3

m
(F)) = 0 and an exact sequence

0 → 0 HomR(F, H4
m

(F)) → 0Ext2
R(F, H3

m
(F)) → 0Ext5

m
(F, F)

→ 0 Ext1
R(F, H4

m
(F)) → 0.

Since we have 0Ext5
m

(F, F) = 0, the proof is complete provided we can prove (3.7). To

this end, it is sufficient to see that (3.6), with H2 replaced by H3, is exact. Since we

have 0Exti
m

(F, F) = 0 for i = 5, 6, by duality, we get 0 Exti
R(F, H4

m
(F)) = 0 for i = 1, 2

by (1.2), and we are done.

Remark 3.5 For later use we remark that if we apply 0homR(−, M), M = H1
∗(F)

to (3.5), we get

2
∑

i=0

(−1)i
0exti(F, M) =

∑

i

(β1,i − β2,i + β3,i) · h1(F(i)),

see (3.6). Suppose F is reflexive and −4HomR(F, F) = 0. Using (1.2) as in (3.2) and

the proof above, we get

3
∑

i=2

(−1)i
0exti

m
(F, F) =

2
∑

i=0

(−1)i
0exti(F, M) − 0homR(F, E).

Hence we have

3
∑

i=2

(−1)i
0exti

m
(F, F) =

∑

i

(β1,i − β2,i + β3,i) · (h1(F(i)) − h2(F(i)) + h3(F(i))).

It is easy to substitute the non-vanishing of the Hom-groups of Theorem 3.1 by

the non-triviality of certain graded Betti numbers in the minimal resolution of F.

Indeed, we have the following.



Moduli Spaces of Reflexive Sheaves of Rank 2 1147

Theorem 3.6 Let F be a reflexive sheaf of rank 2 on P
3, let M = H1

∗(F), and suppose

M 6= 0 is of diameter 1 and concentrated in degree c. Then F is obstructed if and only if

β1,c · β2,c+4 6= 0 or β1,c+4 · β2,c+4 6= 0 or β1,c · β2,c 6= 0 .

Moreover, if F is an unobstructed stable sheaf and dimk M = r, then the dimension of

the moduli scheme MP3 (c1, c2, c3) at (F) is

dim(F) MP3 (c1, c2, c3) = 8c2 − 2c2
1 − 3 + 0homR(F, E) + r(β1,c+4 + β2,c).

Before proving Theorem 3.6, we remark that we have the following result.

Proposition 3.7 Let F be a reflexive sheaf of rank 2 on P
3 and suppose M 6= 0 is of

diameter 1. Then F is obstructed if and only if at least one of the following conditions

holds:

(i) 0HomR(F, M) 6= 0 and 0HomR(M, E) 6= 0,
(ii) −4HomR(F, M) 6= 0 and 0HomR(M, E) 6= 0,

(iii) 0HomR(F, M) 6= 0 and −4HomR(M, E) 6= 0.

Proof Indeed, if F is obstructed, then it is a simple reformulation of Theorem 3.1

to see that we have either (i) or (ii) or (iii). The converse follows immediately from

Proposition 3.2 by letting M ′
= 0.

Proof of Theorem 3.6 By applying vHomR(−, M) to the minimal resolution (3.5),

we get

(3.8) 0homR(F, M) = rβ1,c and −4homR(F, M) = rβ1,c+4

because m · M = 0. Moreover, we have −v−4 Ext1
R(F, M)∨ ≃ vHomR(M, E) by (1.3)

and (1.2). Computing −v−4 Ext1
R(F, M) via the minimal resolution (3.5) of F as in

(3.8), we get

0homR(M, E) = rβ2,c+4 and −4homR(M, E) = rβ2,c .

Since r 6= 0, we get the unobstructedness criterion and the dimension formula of

Theorem 3.6 from Proposition 3.7 and Theorem 3.1.

Theorem 3.8 Every irreducible component V of MP3 (c1, c2, c3) whose generic sheaf F

satisfies diam M ≤ 1 is reduced (i.e., generically smooth). Moreover, if dimk M = r,

then

dim V = 8c2 − 2c2
1 − 3 + 0homR(F, E) + r(β1,c+4 + β2,c).

Proof By replacing F by F( j) for j ≫ 0 (see the proof of Theorem 3.1(i)), we can use

the Hartshorne–Serre correspondence to get a corresponding curve X such that all as-

sumptions of Corollary 2.3 are satisfied. Hence X is generic and diam H1
∗(IX) ≤ 1.

Since it is proved in [22, Cor. 4.3] that a generic curve X of diameter at most one

is unobstructed, it follows by Corollary 2.3 that F is unobstructed, i.e., that the cor-

responding component of MP3 (c1, c2, c3) is generically smooth. Since the dimen-

sion formula follows from Theorem 3.6 (and from Theorem 3.1 if M = 0), we are

done.
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Example 3.9 (char k = 0) Using some results of Chang on Ω-resolutions of Buchs-

baum curves ([2] or [47, Thm. 4.1]), one shows that there exists a smooth connected

curve X of diameter 1 satisfying h0(IX(e)) = 1, h1(IX(e)) = r, h1(OX(e)) = b,

h1(OX(v)) = 0 for v > e and with e = 1 + b + 2r and Ω-resolution

0 → OP (−2)3r−1 ⊕ OP (−4)b → OP ⊕ Ω
r ⊕ OP (−3)b−1 → IX(e) → 0

for every pair (r, b) of positive integers (cf. [22, Ex. 3.12]). Moreover, the degree and

genus of X are d =
(

e+4
2

)

− 3r − 7 and g = (e + 1)d −
(

e+4
3

)

+ 5. Recalling that

Ω corresponds to the first syzygy in the Koszul resolution of the regular sequence

{X0, X1, X2, X3}, we get an exact sequence

0 → OP (−4) → OP (−3)4 → OP (−2)6 → Ω → 0 .

Hence we can use the mapping cone construction to show that there is a resolution

(3.9) 0 → OP (−4)r → OP (−4)b ⊕ OP (−3)4r ⊕ OP (−2)3r−1

→ OP (−2)6r ⊕ OP ⊕ OP (−3)b−1 → IX(e) → 0,

where we may possibly skip the factor OP (−2)3r−1 (thus reducing OP (−2)6r to

OP (−2)3r+1) to get a minimal resolution. Instead of looking into this problem, we

will illustrate [22, Thm. 4.1], which makes a deformation theoretic improvement to

a theorem of Rao ([38, Thm. 2.5]). Indeed, since the composition of the leftmost

non-trivial map in (3.9) with the projection onto OP (−2)3r−1 is zero by Rao’s theo-

rem, there is, by [22, Thm. 4.1], a deformation with constant cohomology and Rao

module to a curve that makes OP (−2)3r−1 redundant (no matter whether the orig-

inal factor was redundant or not)! So we certainly may skip the factor OP (−2)3r−1

and reduce OP (−2)6r to OP (−2)3r+1, at least after a deformation (to a curve that we

still denote by X).

Now, by the Hartshorne–Serre correspondence, there is a reflexive sheaf F given

by

0 → OP

σ
−→ F → IX(e + 4) → 0,

which, combined with the Horseshoe lemma [48], leads to the following minimal

resolution of F,

(3.10) 0 → Or
P
→ Ob

P
⊕OP (1)4r → OP (2)3r+1⊕OP (4)⊕OP (1)b−1⊕OP → F → 0 .

Note that h1(F(−4)) = h1(IX(e)) = r, i.e., the number c of Theorem 3.6 is c =

−4. From (3.10), we see that β2,0 = b 6= 0 and β1,−4 = 1. By Theorem 3.6, F is

obstructed.

Computing Chern classes ci of F, we get c1 = e + 4, c2 = d =
(

c1

2

)

− 3r − 7 and

c3 =
(

c1

3

)

−
(

c1

2

)

(3r + 7) + 6r + 22. The simplest case is (r, b) = (1, 1), which yields a

reflexive sheaf F whose normalized sheaf F(−4) is semistable and with Chern classes
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(c ′1, c ′2, c ′3) = (0, 2, 4) (the corresponding curve X has d = 18, g = 39 and is Ser-

nesi’s example of an obstructed curve, see [41] or [5], see also [35], which thoroughly

studies MP3 (0, 2, 4) and [34], which uses Sernesi’s example to show the existence of

a stable rank 3 obstructed vector bundle). For (r, b) 6= (1, 1), then e > 4 and we see

easily that the obstructed sheaves constructed above are stable. If (r, b) = (2, 1), then

the normalized sheaf has Chern classes (c ′1, c ′2, c ′3) = (0, 7, 24), while (r, b) = (1, 2)

yields stable sheaves with (c ′1, c ′2, c ′3) = (−1, 6, 22). One may show that all curves cor-

responding to the sheaves of the case (r, 1) satisfy h1(NX) = 1. The ideal of the local

ring of H(d, g) at (X) is generated by a single element, which is irreducible for r > 1,

see [22, Ex. 3.12, (3.16)]. As in the curve case, we expect that the corresponding

point (F), in every case with r > b = 1, belongs to a unique irreducible component

of MP3 (c1, c2, c3), while (F), for sheaves with r ≤ b and b ≥ 2, sits in the intersection

of exactly two irreducible components of MP3 (c1, c2, c3), see [22, Prop. 4.6], which

applies to all curves appearing in this example.

In Examples 2.4 and 2.5, the diameter of M of the obstructed generic sheaves

is 3. Combining the results of this paper with the large number of non-reduced

components one may find in [19], we can easily produce similar examples for every

diam M ≥ 3. Indeed, as is well known, a smooth cubic surface X ⊂ P
3 satisfies

Pic(X) ≃ Z
⊕7. It follows from the main theorem of [19] (or of [37]) that the general

curve that corresponds to (3α, α5, 2) ∈ Z
⊕7 is the generic curve of a non-reduced

component of H(d, g) for every α ≥ 4. (Mumford’s example in [36] corresponds to

α = 4.) The diameter is 2α− 5. In the same way, the general curve that corresponds

to (3α + 1, α5, 2) ∈ Z
⊕7 is the generic curve of a non-reduced component of H(d, g)

with diam M = 2α − 4 for every α ≥ 4. Using Corollary 2.3 for c1 = 2, we get non-

reduced components of MP3 (c1, c2, c3) for every diam M(F) ≥ 3, F the generic sheaf.

Thanks to Theorem 3.8, there is only one value of diam M(F) left, and we expect the

following to be true.

Conjecture 3.10 Every irreducible component of MP3 (c1, c2, c3) whose generic sheaf

F satisfies diam M = 2 is reduced (i.e., generically smooth).

There is some evidence for this conjecture, namely that every Buchsbaum curve

of diameter at most 2 admits a generization in H(d, g) that is unobstructed ([22,

Cor. 4.4]), i.e., belongs to a generically smooth irreducible component. By the ar-

guments in the proof of Theorem 3.8, every Buchsbaum sheaf of diameter at most 2

must belong to a generically smooth irreducible component of some MP3 (c1, c2, c3).

4 A Lower Bound of dim MP3(c1, c2, c3).

In this section, we want to give a lower bound of the dimension of any irreducible

component of MP3 (c1, c2, c3) in terms of the graded Betti numbers of a minimal res-

olution of the graded R-module F = H0
∗(F). The lower bound is straightforward to

compute provided we know the dimension of the cohomology groups Hi(F(v)) for

any i and v. Recall that it is well known that ed(F) = 8c2 − 2c2
1 − 3 is a lower bound

([14, Prop. 3.4]), but there are many examples of so-called oversized irreducible com-

ponents whose dimension is strictly greater that ed(F). Our lower bound is usually
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much closer to the actual dimension of the oversized components provided H1
∗(F)

is “small”. If a component of MP3 (c1, c2, c3) is generically smooth, we also include a

formula for the dimension of the component, which is a sum of the lower bound and

a correction number that we make explicit.

Definition 4.1 If F is a reflexive sheaf of rank 2 on P
3, we let (see (3.5))

δ j
=

∑

i

(β1,i − β2,i + β3,i) · h j(F(i)).

Remark 4.2 If F is reflexive on P
3 and −4HomR(F, F) = 0, then

0homR(F, E) = δ2 − δ3

by Lemma 3.4. This makes the dimension formulas of Theorems 3.1, 3.6, and 3.8

more explicit.

Proposition 4.3 Let F be a reflexive sheaf of rank 2 on P
3 satisfying −4HomR(F, F) =

0. Then

0ext1
R(F, F) − 0ext2

R(F, F) = 0homR(F, F) − δ0
= ed(F) + δ2 − δ1 − δ3.

Proof To see the equality to the left, we apply 0HomR(−, F) to the resolution (3.5).

We get

0homR(F, F) − 0ext1
R(F, F) + 0ext2

R(F, F) = δ0.

Moreover the right hand equality follows from (1.3) and (1.4). Indeed, we have al-

ready looked at some consequences of (1.3) in Lemma 3.4 and Remark 3.5. We have

0ext2
m(F, F) − 0ext3

m(F, F) = δ1 − δ2 + δ3

by Remark 3.5. Combining with the exact sequence (1.4), which implies

ed(F) = 0ext1
R(F, F) − 0ext2

R(F, F) + 0ext2
m(F, F) − 0ext3

m(F, F),

we get the last equality.

Theorem 4.4 Let F be a stable reflexive sheaf of rank 2 on P
3. Then the dimension of

MP3 (c1, c2, c3) at (F) satisfies

dim(F) MP3 (c1, c2, c3) ≥ 1 − δ0
= 8c2 − 2c2

1 − 3 + δ2 − δ1 − δ3.

Moreover, if F is a generic sheaf of a generically smooth component V of MP3 (c1, c2, c3)

and M = H1
∗(F), then

dim V = 8c2 − 2c2
1 − 3 + δ2 − δ1 − δ3 + −4homR(F, M)

where −4HomR(F, M) is the kernel of the map

⊕

i

H1(F(i − 4))β1,i −→
⊕

i

H1(F(i − 4))β2,i

induced by the corresponding map in (3.5).
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Remark 4.5 Let F be a stable reflexive sheaf of rank 2 on P
3 and let M = H1

∗(F).

(i) If M = 0, then δ1
= 0 and we can use Theorem 3.8 and Remark 4.2 to see that

the lower bound of Theorem 4.4 is equal to dim(F) MP3 (c1, c2, c3). This coincides

with [32].

(ii) If diam M = 1 and F is a generic sheaf, then the lower bound is equal to 8c2 −
2c2

1 − 3 + 0homR(F, E)− δ1 by Remark 4.2. We claim that −δ1
= rβ2,c. Indeed, using

e.g., Ω-resolutions as in Example 3.9, we easily see that β3,i = 0 for i 6= c + 4. Since

we have rβ1,c = 0 for a generic sheaf by [22, Cor. 4.4] and the proof of Theorem 3.8,

we get the claim by the definition of δ1. Moreover, in the diameter one case, the

correction number −4homR(F, M) is equal to rβ1,c+4. Hence we get the dimension

formula of Theorem 3.8 from Theorem 4.4 in this case.

(iii) The lower bound of Theorem 4.4 is clearly better that the bound ed(F) pro-

vided δ2 > δ1 + δ3.

Proof By a general theorem of Laudal ([23, Thm. 4.2.4]), which describes the hull of

a local deformation functor, we get that 0ext1
R(F, F)−0ext2

R(F, F) ≤ dim OF , where OF

is the hull of the deformation functor of the graded module F (see Remark 2.6). To

get the inequality of the theorem, it suffices, by Proposition 4.3, to prove dim OF ≤
dim(F) MP3 (c1, c2, c3). Since we will use Corollary 2.3, we replace F by F(v) for v ≫
0 to have the assumptions of Corollary 2.3 satisfied. It is known that the Hilbert

scheme H(d, g) contains a subscheme H := H(d, g)γ that is the representing object

of the subfunctor of flat families of curves with fixed postulation γ. For the local

deformation functors of H(d, g) and H(d, g)γ at a curve (X) the latter corresponds

precisely to the graded deformations of the homogeneous coordinate ring of X ([26]

and recall γ(v) = h0(IX(v)), v ∈ Z, see also [22]). Hence we get

(4.1) dim OH,(X) = dim(X) H(d, g)γ ≤ dim(X) H(d, g).

By Corollary 2.3, dim(F) MP3 (c1, c2, c3) + h0(F) = dim(X) H(d, g) + h0(ωX(−c1 + 4)).

We claim that

(4.2) dim OF + h0(F) = dim OH,(X) + h0(ωX(−c1 + 4)).

This is mostly explained in Remark 2.6. Indeed, the natural forgetful map

p0 : DefF,H0
∗

(σ) → DefF is smooth and has the same fiber as the forgetful map

p : DefF,σ → DefF in Corollary 2.3 by Remark 2.6. In the same way, the corre-

sponding graded variation of q : DefF,σ → HilbX/P3 is smooth by 0Ext2(IX(c1), R) ≃
Ext2(IX(c1),OP3 ) = 0 and its fiber coincides with that of q, due to the isomorphism

0Ext1(IX(c1), R) ≃ Ext1(IX(c1),OP3 ) (see (1.2) and (1.4)) and the arguments of Re-

mark 2.6. This proves the claim and hence we get the inequality of the theorem.

It remains to prove that −4homR(F, M) is the correction number, since the re-

formulation as a kernel is trivial. Let X be the generic curve of a component of

H(d, g) which corresponds to V . Let γ be the postulation of X. Since there is a

smooth open subscheme U ∋ (X) of H(d, g) of curves with postulation γ, we get

H(d, g)γ ∩ U = H(d, g) ∩ U . Hence H(d, g)γ is smooth at (X) and we have equal-

ity in (4.1). By Corollary 2.3 and (4.2), dim OF = dim(F) MP3 (c1, c2, c3) and OF is
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smooth. Hence dim OF = 0ext1
R(F, F) and 0ext2

R(F, F) is the correction number by

Proposition 4.3. Since we have 0Ext2
R(F, F)∨ ≃ −4HomR(F, M) by (1.3) and (1.2), the

proof is complete.

In [22, Lem. 2.2] we proved a result similar to Proposition 4.3 for any curve X with

minimal resolution

(4.3) 0 →
⊕

i

R(−i)β ′

3,i →
⊕

i

R(−i)β ′

2,i →
⊕

i

R(−i)β ′

1,i → IX → 0,

implying that

(4.4) 0ext1
R(IX, IX) − 0ext2

R(IX, IX) = 1 − δ0
I = 4d + δ2

I − δ1
I ,

where δ
j
I =

∑

i(β
′
1,i − β ′

2,i + β ′
3,i) · h j(IX(i)) and d = deg(X). Note that the differ-

ence of the ext-numbers in (4.4) is a lower bound for dim OH(d,g)γ ,(X) ([22, proof of

Thm. 2.6(i)]). As a by-product of (4.1) and the proof above, we get the following.

Theorem 4.6 Let X be a curve in P
3. Then the dimension of H(d, g) at (X) satisfies

dim(X) H(d, g) ≥ 1 − δ0
I = 4d + δ2

I − δ1
I .

Moreover, if X is a generic curve of a generically smooth component V of H(d, g) and

M := H1
∗(IX), then

dim V = 4d + δ2
I − δ1

I + −4homR(IX, M),

where −4HomR(IX, M) is the kernel of the map

⊕

i

H1(IX(i − 4))β ′

1,i →
⊕

i

H1(IX(i − 4))β ′

2,i

induced by (4.3).

Remark 4.7 Let X be any curve in P
3 and let M = H1

∗(IX).

(i) If M = 0, then δ1
I = 0 and we can use [22, Thm. 2.6] to see that the lower

bound of Theorem 4.6 is equal to dim(X) H(d, g). This coincides with [7].

(ii) If diam M = 1, dimk M = r and X is a generic curve, then the lower bound is

equal to 4d + δ2
I + rβ ′

2,c because rβ ′
1,c = 0 for a generic curve by [22, Cor. 4.4].

Moreover, in this case the “correction” number −4homR(IX, M) is equal to

rβ ′
1,c+4. Hence we get

dim V = 4d + δ2
I + r(β ′

2,c + β ′

1,c+4).

This coincides with the dimension formula of [22, Thm. 3.4].

Acknowledgments The main results of this paper were lectured on at the workshop

on “Vector Bundles and Low Codimensional Subvarieties” at Trento, in September

2006. The author thanks the organizers for their hospitality. Moreover, I heartily

thank Prof. O. A. Laudal at Oslo, Prof. S.A. Strømme at Bergen, and Prof. R. M.
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