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Abstract Algorithms for inversion of seismic prestack
AVO data into lithology-fluid classes in a vertical profile
are evaluated. The inversion is defined in a Bayesian set-
ting where the prior model for the lithology-fluid classes
is a Markov chain, and the likelihood model relates seis-
mic data and elastic material properties to these classes.
The likelihood model is approximated such that the pos-
terior model can be calculated recursively using the ex-
tremely efficient forward-backward algorithm. The im-
pact of the approximation in the likelihood model is eval-
uated empirically by comparing results from the approx-
imate approach with results generated from the exact
posterior model. The exact posterior is assessed by sam-
pling using a sophisticated Markov chain Monte Carlo
simulation algorithm. The simulation algorithm is iter-
ative, and it requires considerable computer resources.
Seven realistic evaluation models are defined, from which
synthetic seismic data are generated. Using identical seis-
mic data, the approximate marginal posterior is calcu-
lated and the exact marginal posterior is assessed. It is
concluded that the approximate likelihood model pre-
serves 50% to 90% of the information content in the
exact likelihood model.

Key words Seismic inversion – Lithology-fluid predic-
tion – Empirical evaluation – Bayesian model – Forward-
backward algorithm

1 Introduction

Inversion of seismic AVO data into lithology-fluid (LF)
characteristics in a petroleum reservoir is important both
for exploration and production. In a Bayesian setting,
prior information about the LF characteristics can be
combined with rock physics and seismic likelihood mod-
els linking the seismic data to these characteristics. The
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posterior model contains the complete solution in the
Bayesian setting. For Bayesian LF inversion approaches,
see Eidsvik et al. [5], Avseth et al. [2], Larsen et al. [8],
Hammer and Tjelmeland [7], González et al. [6], Buland
et al. [3], Ulvmoen and Omre [10] and Ulvmoen et al.
[11]. In the current study, we focus on the approaches in
Larsen et al. [8] and Hammer and Tjelmeland [7].

In Larsen et al. [8], the prior for the LF classes is de-
fined by a Markov chain model upward through a vertical
profile. The likelihood model is defined by a rock physics
term relating the LF classes to elastic material proper-
ties, and a seismic forward term relating these properties
to seismic AVO data. The likelihood model is approxi-
mated such that the posterior follows a Markov chain
model. With the approximate posterior on this Markov
chain form, it can be calculated exactly using the re-
cursive forward-backward algorithm which is extremely
computer efficient. The speed of the algorithm is impor-
tant especially if the methodology is extended into 3D,
see Ulvmoen and Omre [10] and Ulvmoen et al. [11]. The
impact of the approximation in the likelihood model on
the results is unknown.

In Hammer and Tjelmeland [7], the seismic inversion
is defined using the same prior and likelihood models
as in Larsen et al. [8]. The inversion is, however, solved
using the exact posterior model without any approxima-
tion. Direct sampling from the posterior model is infea-
sible; hence a sophisticated Markov chain Monte Carlo
(McMC) algorithm is defined where changes for all the
model variables are proposed in each location. The pos-
terior is assessed by sampling which requires consider-
able computer resources. The McMC algorithm is itera-
tive and it converges in the limit. The convergence rate
is such that the simulation algorithm is feasible but still
computer demanding.

The objective of the study is to evaluate the approx-
imation within the likelihood model in Larsen et al. [8].
This is done empirically by comparing inversion results
from the methodology in Larsen et al. [8] with results
from the methodology in Hammer and Tjelmeland [7]
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using identical seismic data. By comparing results from
the approximate posterior with results from the exact
posterior, the impact of the approximation can be eval-
uated.

2 Stochastic model

The LF characteristics along a vertical profile through
a reservoir target zone are of primary interest in the
study. The LF characteristic in location t is denoted by
πt, and it can take one of the L classes πt ∈ {π1, . . . , πL}.
The complete set of LF characteristics in the profile is
denoted by π = {π1, . . . , πT } with T defining the profile
length. The inversion is of seismic prestack AVO data
into LF characteristics. We denote these seismic data
along the vertical profile by d, and they contain seismic
samples for a set of n reflection angles θ = (θ1, . . . , θn).

The term p(·) is used as a generic term for prob-
ability. In particular, p(πt) denotes the probability of
the various LF classes πt ∈ {π1, . . . , πL}, and p(π) is
the multivariate probability of the complete set of LF
classes. Moreover, p(π|d) denotes the conditional prob-
ability of π given d.

The inversion is defined in a Bayesian setting where
the complete solution is the posterior probabilistic model
defined by

p(π|d) = const × p(π) p(d|π) (1)

with p(π) being the prior model for the LF classes and
p(d|π) the likelihood model relating the seismic data to
these classes. The normalizing constant is usually diffi-
cult to calculate directly.

2.1 Prior model

The prior model for the LF characteristics is defined as
a stationary Markov chain model upward through the
vertical profile. The Markov chain model is defined by
an upward transition matrix P and the marginal prob-
abilities p(π1), with the elements in P being the transi-
tion probabilities p(πt|πt−1) for all combinations of LF
classes. As the Markov chain model is stationary, the
conditional elements p(πt|πt−1) are independent of the
location t; hence the marginal probabilities p(πt) are
identical in each location. These marginals can then be
calculated from P, which fully specifies the stationary
Markov chain model. The Markov chain model is writ-
ten

p(π) =
∏

t

p(πt|πt−1) (2)

with p(π1) = p(π1|π0) for notational convenience in the
rest of the paper.

2.2 Likelihood model

In order to link the LF classes to the seismic data, a set
of three elastic material properties is introduced. These
properties are P-wave velocity (vp), S-wave velocity (vs)
and density (ρ). Let mt represent the log-transform of
the three elastic material properties in location t, and
let the complete set in the vertical profile be denoted by
m. The likelihood model is defined as the integral over
m like in Larsen et al. [8]

p(d|π) =

∫

p(d|m) p(m|π) dm (3)

where p(d|m) is a seismic likelihood model and p(m|π)
is a rock physics likelihood model. The integral is over all
configurations of the three elastic variables, which may
be computer demanding to calculate.

The seismic data are defined by the convolution model
like in Buland and Omre [4] given by

d = WADm + e (4)

where W is a block diagonal convolution matrix con-
taining one wavelet for each reflection angle in θ, A is a
matrix of angle-dependent weak contrast Aki-Richards
coefficients, see Aki and Richards [1], D is a differential
matrix giving the contrasts in m, and e is an error term.
We define e as a mixture of wavelet colored and white
noise defined by the relation

e = We1 + e2 (5)

with e1 and e2 being Gaussian white noise given by

ei ∼ N (0, σ2

i I); i = 1, 2 (6)

where I is the identity matrix. It follows from the rela-
tions above that the seismic likelihood model is Gauss-
linear given by

[d|m] ∼ p(d|m) = N (WADm, σ2

1WW′ + σ2

2I) (7)

because the noise in e is Gaussian.
The rock physics likelihood model is factorized as

p(m|π) =
∏

t

p(mt|πt), (8)

and the marginals p(mt|πt) are assigned Gaussian dis-
tributions

[mt|πt] ∼ N (µ
mt|πt

, Σ
mt|πt

) (9)

with the expectation vector µ
mt|πt

and covariance ma-
trix Σ

mt|πt
assumed to be known. In Larsen et al. [8]

the rock physics likelihood model is defined locationwise
using an empirical relation between mt and πt. This em-
pirical relation leads to more general rock physics like-
lihood models, such that well observations can be used
directly without imposing a Gaussian distribution. The
inversion approach in Hammer and Tjelmeland [7] does,
however, demand the rock physics likelihood model to
be Gaussian. In order to compare the two approaches,
we consider a Gaussian distribution in this study.
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2.3 Posterior model

The posterior model is fully defined by the prior and
likelihood models defined above, and given by

p(π|d) = const×
∏

t

p(πt|πt−1)

×

∫

p(d|m)
∏

t

p(mt|πt) dm.
(10)

As both the seismic and rock physics likelihood models
are assigned Gaussian distributions, the integral over m

is analytically obtainable. The normalizing constant can
not, however, be calculated directly as it is defined as
the sum over all configurations of the LF classes.

3 Assessment of posterior model

The posterior model is fully defined in Expression (10).
It contains a high-dimensional integral and a normal-
izing constant which may be difficult to calculate. In
Larsen et al. [8], an approximation of the seismic like-
lihood model is defined. Using this approximation, the
dimension of the integral is reduced, and the resulting
posterior is a non-stationary Markov chain model. With
the posterior being a Markov chain model, it can be cal-
culated extremely fast using the forward-backward algo-
rithm where the posterior model including the normal-
izing constant is calculated recursively.

In Hammer and Tjelmeland [7] no approximation is
made, and samples from the posterior model are gener-
ated using a computer demanding McMC algorithm. In
the simulation algorithm, direct calculation of the nor-
malizing constant is avoided. The algorithm is iterative,
and it converges in the limit. The two approaches are
discussed below.

3.1 Assessment of approximate posterior model

The seismic convolution model is given as d = WADm+
e in Expression (4). In Larsen et al. [8], the elastic ma-
terial properties in m are approximated by a Gaussian
distribution p∗(m) given by

m ∼ p∗(m) = N (µ
m

, Σm) (11)

where µ
m

and Σm can be calculated as the first two
moments of

p(m) =
∑

π

p(π) p(m|π). (12)

The resulting posterior

p∗(m|d) = const × p∗(m) p(d|m) (13)

is then Gaussian with expectation vector and covariance
matrix analytically obtainable as the seismic likelihood

p(d|m) is Gauss-linear, see Expression (7). The seismic
likelihood model is rewritten as the ratio of the Gaussian
posterior and prior models, then approximated by the
product

p̃(d|m) = const ×
∏

t

p∗(mt|d)

p∗(mt)
, (14)

see Larsen et al. [8]. In the approximation, the spatial
dependencies within p∗(m|d) and p∗(m) are removed
such that the corresponding covariance matrices in the
marginals are 3 × 3 block diagonal containing only the
intervariable dependencies. Note, however, that all the
spatial dependencies are included in the calculation of
p∗(m|d) prior to the approximation such that this pos-
terior is calculated given the full profile of seismic data.
The exact posterior model is given in Expression (10),
and the corresponding approximate posterior model is
now on product form

p̃(π|d) = const ×
∏

t

p(πt|πt−1)

×

∫

p∗(mt|d)

p∗(mt)
p(mt|πt) dmt

(15)

with the integral being of dimension three which is nu-
merically tractable. Further, as the rock physics likeli-
hood p(mt|πt) is assigned a Gaussian distribution, these
integrals can be calculated analytically. The approxi-
mate posterior now follows a Markov chain model; hence
the marginal approximate posterior probabilities p̃(πt|d)
can be calculated recursively using the forward-backward
algorithm, see e.g. Scott [9]. Further, the locationwise
most probable LF profile is given as the LF class in each
location with highest marginal probability. A thorough
description of the recursive forward-backward algorithm
is given in Larsen et al. [8].

3.2 Assessment of exact posterior model

The exact solution to the inversion problem is the poste-
rior model in Expression (10). In Hammer and Tjelme-
land [7], McMC simulation is used to generate samples
from the posterior model; hence direct calculation of the
normalizing constant is omitted. Brute force McMC as-
sessment is not feasible due to the complexity of the
posterior model. The McMC simulation algorithm is im-
plemented by introducing an auxiliary variable z defined
by

z = ADm + e1 (16)

such that the convolution model for the seismic data in
Expression (4) is rewritten

d = Wz + e2. (17)

By introducing z, the relations above obtain Gauss-linear
distributions given by

[z|m] ∼ p(z|m) = N (ADm, σ2

1I) (18)
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and

[d|z] ∼ p(d|z) = N (Wz, σ2

2I) (19)

where I is the identity matrix.
The posterior is redefined by introducing the integral

over z

p(π|d) = const ×
∏

t

p(πt|πt−1)

×

∫ (∫

p(d|z) p(z|m) dz

)

∏

t

p(mt|πt) dm

(20)

with all prior and likelihood models defined above. To
simulate from the posterior, an McMC algorithm con-
sisting of two steps in each iteration is defined. Firstly,
a Gibbs step is used to update m and z jointly condi-
tioned on π and d. This first step is done efficiently be-
cause the resulting distribution is Gaussian. Secondly, a
Metropolis-Hastings step is used. In this step, new values
for π and m are proposed from a proposal distribution
q(π,m|z) which is an approximation of the correspond-
ing conditional distribution p(π,m|z). This conditional
distribution can not be calculated directly. The proposed
values are accepted with a Metropolis-Hastings accep-
tance probability such that the simulated classes π are
realizations from the exact posterior p(π|d) after con-
vergence. The McMC algorithm converges relatively fast
and mixes well; hence the results are reliable. The algo-
rithm is, however, still computer demanding compared
to the approximate approach. The marginal posterior
probabilities p(πt|d) are estimated by sampling based in-
ference by counting the number of each of the LF classes
in each location after convergence of the McMC simula-
tion algorithm. We term this the exact posterior p(π|d)
is spite of the McMC error. The locationwise most prob-
able LF profile is further obtained by choosing the LF
class in each location with most frequent occurrences. A
thorough description of the simulation algorithm is given
in Hammer and Tjelmeland [7].

4 Empirical evaluation

We evaluate the approximation in the likelihood model
empirically by defining seven realistic evaluation models
from which we generate synthetic seismic data. Using
the synthetic data, we calculate the approximate poste-
rior p̃(π|d) and assess the exact posterior p(π|d). The
approximation is then evaluated by a set of evaluation
criteria.

4.1 Evaluation models

The evaluation models are selected such that they span
a set of realistic earth models. The transition matrix
defining the Markov chain prior model is defined on the

basis of general reservoir experience, see Larsen et al.
[8], the rock physics models are chosen such that the
variability corresponds with theory, see Avseth et al. [2],
and the observation errors are chosen such that realistic
signal-to-noise ratios are obtained.

We consider test cases of length T = 100. To compen-
sate for this relatively short profile length, we generate
ten independent data sets for each of the seven models.
We consider the four LF classes gas-saturated sandstone,
oil-saturated sandstone, brine-saturated sandstone and
shale, such that πt ∈ {SG, SO, SB, SH}. The upward
transition probabilities between these classes in the prior
Markov chain model is defined by the transition matrix

P =









0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284
0.0201 0.0202 0.1006 0.8591









with rows and columns corresponding to SG, SO, SB and
SH, respectively. The corresponding marginal probabili-
ties are p(π1) = (0.2419, 0.1552, 0.3830, 0.2199). The ele-
ments with zero probability in the transition matrix cor-
respond to impossible upward transitions ensuring that
SB not can be directly above SG nor SO, and that SO
not can be directly above SG. We term this model a
geological prior model. We also evaluate the influence
of the geological prior on the results, and introduce a
non-informative prior model with transition matrix

P =









0.91 0.03 0.03 0.03
0.03 0.91 0.03 0.03
0.03 0.03 0.91 0.03
0.03 0.03 0.03 0.91









and marginal distribution p(π1) = (0.25, 0.25, 0.25, 0.25).
This model is termed a uniform prior model.

The rock physics likelihood model p(mt|πt) is a func-
tion of log(vp), log(vs) and log(ρ). The expectation vec-
tors and covariance matrices for these are

µ
mt|SG = (8.0522, 7.4922, 7.6880)

µ
mt|SO = (8.0707, 7.4716, 7.7295)

µ
mt|SB = (8.1211, 7.4668, 7.7460)

µ
mt|SH = (8.1664, 7.5464, 7.8456)

Σ
mt|SG = 10−3 ×





0.9610 0.8879 0.1162
0.8879 1.0699 0.1032
0.1162 0.1032 0.1352





Σ
mt|SO = 10−3 ×





0.7279 0.7796 0.0930
0.7796 1.0513 0.0858
0.0930 0.0858 0.0804





Σ
mt|SB = 10−3 ×





0.4688 0.6440 0.0783
0.6440 1.0631 0.0819
0.0783 0.0819 0.0637





Σ
mt|SH = 10−3 ×





1.8981 2.9115 0.6157
2.9115 4.6322 0.9438
0.6157 0.9438 0.2286







Bayesian lithology–fluid inversion - algorithm efficiency 5

with rows and columns corresponding to log(vp), log(vs)
and log(ρ), respectively. Figure 1 contains 500 indepen-
dent samples of vp, vs and ρ generated from p(mt|πt).
The pattern corresponds with rock physics theory, see
e.g. Avseth et al. [2]. The rock physics model with the
parametrization above is termed medium variability. We
evaluate the impact of the rock physics variability on the
inversion results by using one rock physics model with
small variability and one with large variability. For the
first case the covariance matrices above are divided by
two, and for the latter the covariance matrices are mul-
tiplied by two.
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Fig. 1 Independent realizations of vp, vs and ρ simulated
from the rock physics likelihood model p(mt|πt) with SG, SO,
SB and SH colored red, green, blue and black, respectively

The seismic data are defined by the convolution model
d = WADm + e, see Expression (4). The data contain
seismic samples for a set of reflection angles, and we con-
sider the five angles θ = (0, 10, 20, 30, 40). To construct
W, we use a Ricker wavelet with frequency φ = 0.11 Hz
and length 21, see Figure 2, for all the reflection angles.

The observation error is given by the relation e =
We1 + e2, see Expression (5). We let σ2 = 0.01σ1 for all
noise levels, such that the colored part is most influential.

Noise level

No: Small: Medium: Large:
NN NS NM NL

SN 4.2 SN 2.2 SN 1.3 SN 0.53

R
o
ck

p
h
y
si
cs

va
ri
a
b
il
it
y

Small:
VS - - VS -

Medium:
VM NN NS BC NL

Large:
VL - - VL -

Table 1 Evaluation models used in empirical study

We evaluate the impact of observation error on the
model, and consider noise levels chosen such that a wide
range of signal-to-noise (SN) ratios are obtained. The
SN ratios are calculated as the ratio of the variance in
the signal divided by the variance in the noise; hence low

values indicate a large noise component while high values
indicate a small noise component. We let the noise term
contain the variance in m in addition to the variance in
e, and the signal contain the seismic convolution without
variance in m nor e.

By varying the SN ratios and the variability in the
rock physics model, we obtain the six models described
in Table 1. For all these models, the geological prior
model is used. For the uniform prior we only evaluate the
base case model, BC, which is the model with medium
variability in the rock physics model and SN 1.3.
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Fig. 2 Ricker wavelet with frequency φ = 0.11 Hz and length
21

4.2 Evaluation criteria

Focus of the study is on the approximation in the likeli-
hood model. We have defined seven realistic evaluation
models, from which we generate synthetic seismic data.
Using these data, we calculate the approximate marginal
posterior p̃(πt|d) and assess the exact marginal posterior
p(πt|d), then evaluate the approximation using criteria
defined below.

We generate ten independent reference profiles πR

from the prior model for each of the seven evaluation
models. Synthetic seismic data are then generated for
each reference profile.

It should be kept in mind that focus is on the quality
of the approximation of the exact likelihood model. The
information content about the reference LF profile in
the exact posterior will vary in the different evaluation
models. The ability of the approximate model to reflect
information content in the exact posterior is much more
important than the ability to reproduce the reference
profile.

For one of the reference profiles in each evaluation
model, the marginal posterior, a set of realizations and
the locationwise most probable LF prediction are dis-
played using both inversion approaches. The marginal
posteriors provide the basis for the prediction and are
associated with the prediction uncertainty. If the approx-
imation is perfect the approximate and exact marginal
posteriors have identical shape, and in perfect inversion
the marginal probabilities have value one for the refer-
ence class and zero for the other classes in each location.
The realizations represent the variability in the posteri-
ors. Ideally, the variability in the realizations from the
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approximate and exact approaches is identical. The lo-
cationwise most probable LF prediction is the LF profile
with highest marginal posterior probability in each lo-
cation. If the approximation is perfect the locationwise
most probable LF predictions are identical for the two
approaches, and in perfect inversion the most probable
LF predictions are identical to the reference profile.

We define a confusion rate matrix C = [ci,j ] with
elements

ci,j =

∑T

t=1
p̃(πt = j|d) I(πR

t = i)
∑T

t=1
p(πt = j|d) I(πR

t = i)
(21)

where I(A) is an indication function taking value 1 if
A is true and 0 otherwise, and where i and j indicate
the different LF classes in πt ∈ {SG, SO, SB, SH}. Row
i in the matrix contains the ratio of the approximate
and the exact posterior probabilities summed over the
locations where i is the true class in the reference profile
πR. Note that p(π|d) is the exact solution; hence the
elements give the relative deviation of the approximate
model from this exact solution. If the approximation is
perfect, the numerator and denominator are equal in all
elements of the confusion rate matrix such that the ap-
proximate posterior captures all the information in the
exact posterior. In perfect inversion, the numerator and
denominator are both equal to one on the diagonal and
zero in the rest of the matrix.

The probability of correct classification is denoted δ

and defined by

δp =
1

T

T
∑

t=1

p(πt = πR
t |d). (22)

This probability calculated from the the exact poste-
rior p(π|d), the approximate posterior p̃(π|d) and the
prior p(π) is denoted by δp, δp̃ and δπ, respectively. If
the approximation is perfect, δ calculated from the two
posterior approaches are equal, and in perfect inversion
they are equal to one. The probability of correct classi-
fication from the prior model, δπ, contains the marginal
prior probabilities weighted by the number of each of the
LF classes in the reference πR. Ideally, δp and δp̃ should
be much larger than δπ.

The approximation is within the likelihood model;
hence the amount of information in the exact likelihood
captured by the approximation is of interest. The proba-
bility of correct classification coming from the likelihood
model only is calculated by the difference δp − δπ. Then,
by the ratio

∆ =
δp̃ − δπ

δp − δπ

(23)

the amount of this probability in the exact likelihood
captured by the approximate likelihood is given. If the
approximation is good, the numerator is equal to the
denominator; hence the ratio equals one.

4.3 Results with discussion

Figures 3 to 9 contain marginal posteriors, 200 inde-
pendent realizations and locationwise most probable LF
predictions from the exact and approximate approach for
each of the seven evaluation models. For each model, one
of the ten reference realizations is shown. The marginal
posteriors for the approximate and exact approaches tend
to have similar shapes, often with probabilities close to
one for the reference class, and probabilities close to zero
for the rest of the classes. The probabilities in the ap-
proximate posterior p̃(π|d) are often smoother between
the layers than the exact posterior p(π|d), making the
transitions more non-distinct. Most of the uncertainty
is between the layers in both approaches. In the ap-
proximation in the likelihood model, the spatial corre-
lations between the elastic material properties are ig-
nored; hence the realizations from the approximate ap-
proach are expected to have more variability than the
ones from the exact approach. This is verified in all the
realizations. For both posterior approaches, the amount
of variability increases with increasing noise levels. The
most probable LF predictions from the two approaches
often look similar, but the ones from the approximate
model are more heterogeneous than the ones from the
exact model. The predicted profiles generated from the
exact posterior tend to look more like the true LF profile
than the ones from the approximate posterior.

Table 2 contains the confusion rate matrix for each
of the evaluation models, calculated based on the ten
independent reference realizations for each model. The
diagonal elements contain the probability of correct pre-
diction for each of the LF classes; hence these are of par-
ticular interest. The numerator is mostly smaller than
the denominator in the diagonal elements such that the
probability of correct classification is higher in the ex-
act than the approximate posterior. Note, however, that
this often shifts in the diagonal elements for SG. The
exact posterior is the optimal solution in the Bayesian
approach; hence ratios larger than one does not mean
that the approximate approach is better than the ex-
act one. What is important is how much the numera-
tor and denominator deviate from each other. For all
models with geological prior, SO is the diagonal class
with largest deviation between numerator and denom-
inator. Note, however, that SO has smallest marginal
prior probability in the geological prior. In the approxi-
mate approach, regression towards the dominant classes
is therefore more common than in the exact approach.
Note also that this is not so in the model with uniform
prior, where each class has equal marginal probability
and the numerator and denominator are almost equal
for SO.

Table 3 contains the probabilities of correct classifi-
cation, δp, δp̃ and δπ, for the exact posterior, the approx-
imate posterior and the prior, respectively. The proba-
bilities are calculated for each of the seven models, with
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BC

SG SO SB SH

SG 0.8178/0.6696 0.0843/0.3078 0.0819/0.0191 0.0160/0.0034
SO 0.4841/0.3525 0.3632/0.5585 0.1334/0.0867 0.0193/0.0023
SB 0.0962/0.0067 0.2295/0.0733 0.5749/0.8830 0.0994/0.0371
SH 0.0153/0.0006 0.0153/0.0055 0.0537/0.0409 0.9157/0.9530

NN

SG SO SB SH

SB 0.9978/0.9939 0.0021/0.0061 0.0001/0.0000 0.0000/0.0000
SO 0.5673/0.0046 0.3802/0.9898 0.0498/0.0055 0.0026/0.0000
SB 0.0009/0.0000 0.0282/0.0001 0.9671/0.9996 0.0038/0.0003
SH 0.0006/0.0000 0.0060/0.0002 0.0392/0.0031 0.9541/0.9966

NS

SG SO SB SH

SG 0.5592/0.8655 0.4087/0.1342 0.0213/0.0001 0.0109/0.0002
SO 0.2861/0.1939 0.3824/0.8020 0.3213/0.0032 0.0103/0.0009
SB 0.0055/0.0151 0.1171/0.1216 0.7687/0.8172 0.1087/0.0461
SH 0.0024/0.0063 0.0111/0.0085 0.0702/0.0229 0.9162/0.9622

NL

SG SO SB SH

SG 0.6961/0.6545 0.1306/0.2355 0.1471/0.1073 0.0262/0.0027
SO 0.4594/0.2646 0.2811/0.3525 0.2094/0.3668 0.0501/0.0161
SB 0.0703/0.0489 0.0686/0.1245 0.6977/0.7472 0.1634/0.0793
SH 0.0656/0.0147 0.0232/0.0171 0.1871/0.1400 0.7241/0.8282

VS

SG SO SB SH

SG 0.7137/0.7722 0.0812/0.1987 0.1839/0.0283 0.0212/0.0008
SO 0.3689/0.1910 0.1506/0.4881 0.3865/0.3031 0.0939/0.0178
SB 0.0715/0.0059 0.3228/0.0702 0.5046/0.8960 0.1011/0.0279
SH 0.0137/0.0012 0.0331/0.0072 0.1974/0.0654 0.7558/0.9261

VL

SG SO SB SH

SG 0.8730/0.8641 0.0673/0.1143 0.0290/0.0147 0.0306/0.0069
SO 0.3780/0.1365 0.5027/0.7423 0.0981/0.1098 0.0212/0.0113
SB 0.0249/0.0007 0.1976/0.0350 0.6543/0.9221 0.1232/0.0421
SH 0.0209/0.0011 0.0509/0.0061 0.1774/0.0691 0.7508/0.9237

BC, uniform prior

SG SO SB SH

SG 0.5719/0.7204 0.2990/0.2569 0.1060/0.0223 0.0231/0.0005
SO 0.1268/0.3404 0.5347/0.5730 0.2803/0.0858 0.0582/0.0008
SB 0.0849/0.0349 0.2386/0.1383 0.5421/0.7976 0.1344/0.0292
SH 0.0258/0.0009 0.0788/0.0129 0.1228/0.1818 0.7726/0.8044

Table 2 Confusion rate matrix with approximate (numerator) and exact (denominator) posterior probabilities for each of
the seven evaluation models

each δ calculated based on the ten reference realizations.
We see that the probability of correct classification al-
ways is larger in the exact than in the approximate pos-
terior. The final column in Table 3 contains ∆, being the
relative loss in classification probability by using the ap-
proximate likelihood model. The ratio has lowest value
for the model with small variability in the rock physics
model; hence the amount of information in the true like-
lihood captured by the approximation is lowest in this
model. This is also the model where δp̃ has lowest value
indicating that this is the most difficult model for the ap-
proximate approach. Note that the noise level in e has to
be large in this model in order to obtain SN1.3. The con-
sequences of the approximation are also, however, large
for the model with large variability in the rock physics

model. We see from this that the consequences of the
approximation are large in both models where the vari-
ability in the rock physics model has been altered. In the
model with uniform prior both approaches are relatively
poor, and the approximate model captures most of the
information in the exact approach. The zero elements in
the geological prior puts constraints on the model, which
generally makes the classification an easier problem than
with a uniform prior. The consequences of the approxi-
mation are smallest in the model with lowest SN ratio.
This is also the model where the exact approach has low-
est probability of correct classification. The approximate
approach does not, however, have especially low proba-
bility of correct classification in this model; hence the
ratio ∆ has highest value here. Overall, the approximate
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likelihood model preserves between 50% and 90% of the
information content in the exact likelihood model.

δp δp̃ δπ ∆

BC 0.7846 0.6647 0.2673 0.7681
NN 0.9963 0.8744 0.2765 0.8307
NS 0.8573 0.6842 0.2781 0.7010
NL 0.7029 0.6631 0.3012 0.9010
VS 0.7937 0.5343 0.2719 0.5029
VL 0.8771 0.6675 0.2829 0.6473

BC, uniform prior 0.7168 0.5975 0.2500 0.7444

Table 3 Probability of correct classification, δp, δp̃ and δπ,
for exact posterior, approximate posterior and prior, respec-
tively; and relative loss in classification probability by using
the approximate likelihood model, ∆, for each of the seven
evaluation models

5 Closing remarks

The approximation within the likelihood model in Larsen
et al. [8] is evaluated in an empirical study by comparing
inversion results from the methodology in Larsen et al.
[8] with results from the exact approach in Hammer and
Tjelmeland [7]. Seven realistic evaluation models are de-
fined, from which synthetic seismic data are generated.
Using identical seismic data, the approximate marginal
posterior is calculated and the exact marginal posterior
is assessed.

The shapes of the marginal approximate and exact
posteriors are similar for all evaluation models; hence the
approximation appears reliable. The variability in the re-
alizations from the approximate approach is larger than
the variability in the corresponding realizations from the
exact approach due to the approximation in the likeli-
hood model, where spatial correlations between the elas-
tic material properties are ignored. For both approxi-
mate and exact approaches, the amount of variability
increases with increasing noise levels. Regression towards
the dominant class is more common in the approximate
than the exact approach. The probability of correct clas-
sification is larger for the exact than the approximate
approach in all the evaluation models, and the conse-
quences of the approximation is largest for the models
where the variability in the rock physics model has been
altered.

The main result of the study is that the approxi-
mate likelihood preserves between 50% and 90% of the
information content in the exact likelihood model. The
approximate approach therefore appears as reliable for
realistic LF inversions, although the exact posterior pro-
vides somewhat better results.

It takes more than thousand times more computing
time to generate results from the McMC simulation al-
gorithm than from the recursive forward-backward al-
gorithm. Extension of the McMC simulation algorithm
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Fig. 3 Evaluation model BC: Seismic data d and reference
LF profile πR with SG, SO, SB and SH colored red, green,
blue and black, respectively; marginal posterior, 200 inde-
pendent realizations and locationwise most probable LF pre-
diction from exact posterior model p(π|d); and marginal ap-
proximate posterior, 200 independent realizations and loca-
tionwise most probable LF prediction from approximate pos-
terior model p̃(π|d)
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Fig. 4 Evaluation model NN: See caption in Figure 3

into large 3D target zones will not be feasible due to
the computer demanding algorithm. The approximate
methodology in Larsen et al. [8] is possible to extend
to 3D where an iterative simulation algorithm must be
used to assess the posterior. The algorithm is, however,
iterative only in 2D as the third dimension is calculated
recursively by the forward-backward algorithm, see Ul-
vmoen and Omre [10].
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Fig. 7 Evaluation model VS: See caption in Figure 3
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