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Abstract. Here we report on the high-temperature piezoresistivity of carbon-containing silicon oxycarbide

nanocomposites (C / SiOC). Samples containing 13.5 vol% segregated carbon have been prepared from a

polysilsesquioxane via thermal cross-linking, pyrolysis and subsequent hot-pressing. Their electrical resistance

was assessed as a function of the mechanical load (1–10 MPa) and temperature (1000–1200 ◦C). The piezoresis-

tive behavior of the C / SiOC nanocomposites relies on the presence of dispersed nanocrystalline graphite with

a lateral size ≤ 2 nm and non-crystalline carbon domains, as revealed by Raman spectroscopy. In comparison

to highly ordered carbon (graphene, HOPG), C / SiOC exhibits strongly enhanced k factor values, even upon

operation at temperatures beyond 1000 ◦C. The measured k values of about 80± 20 at the highest temperature

reading (T = 1200 ◦C) reveal that C / SiOC is a primary candidate for high-temperature piezoresistive sensors

with high sensitivity.

1 Introduction

The improvement of combustion processes relies on the ex-

act control of the compression–combustion–exhaust cycles

and thus there is a stringent need for pressure sensors with

high sensitivity, low response time, high bandwidth of re-

sponse and outstanding stability at high temperatures and

aggressive environments. However, commercially available

piezoresistive sensors, which are usually based on semicon-

ductors or polymer composites, are limited by their low ther-

mal stability in air (Kanda and Suzuki, 1991). Recently,

polymer-derived ceramics (PDCs) such as silicon oxycar-

bides (C / SiOC) or silicon carbo(oxy)nitrides (C / SiCN,

C / SiOCN) have been shown to combine piezoresistivity

(Riedel et al., 2010; Zhang et al., 2008, Terauds et al., 2010)

with outstanding temperature and oxidation stability (Riedel

et al., 1995, 1996). Hence, they are promising candidates for

future high-temperature pressure sensors. Concerning their

structural features, PDCs can be described as amorphous and

intrinsically nanoheterogeneous materials. The microstruc-

ture of C / SiOC with high carbon content has been described

as a interpenetrating network of silica and carbon (Papendorf

et al., 2013).

In the following, the results of temperature-dependent in-

vestigations of the k factor and of Raman spectroscopic stud-

ies are presented for a C / SiOC nanocomposite (13.5 vol% C)

as clear experimental evidence for the intimate relationship

between the carbon microstructure and the piezoresistive be-

havior of C / SiOC.

2 Experimental procedure

The polymeric precursor (poly(methylsilsesquioxane), PMS

MK, Wacker AG, Munich, Germany) was cross-linked at

250 ◦C for 2 h, pyrolyzed at 900 ◦C for 2 h under flowing

argon and subsequently ball-milled and sieved to a parti-

cle size < 100 µm. The sieved powder was hot-pressed at

1500 ◦C (30 MPa, Ar atmosphere, dwell 30 min) to obtain

dense C / SiOC monoliths. Raman spectra were recorded

with a Horiba HR800 micro-Raman spectrometer (Horiba

JobinYvon, Bensheim, Germany) equipped with an Ar laser

(514.5 nm). The measurements were performed by using a

grating of 600 g mm−1 and a confocal microscope (magni-

fication 100×NA 0.9 – numerical aperture) with a 100 µm

aperture, giving a resolution of 2–4 µm. The laser power

(20 mW) was attenuated by using neutral density filters; thus,
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Figure 1. Raman spectra of C / SiOC (13.5 vol% C) at 1000 (a) and

1500 ◦C (b). Dashed lines represent the deconvoluted spectra.

the power on the sample was in the range from 6 µW to

2 mW. C / SiOC samples were placed in a cylindrical furnace

allowing for resistivity measurements of up to 1500 ◦C. Af-

ter achieving the desired temperature, the uniaxial load was

applied by a mechanical testing machine (Model 5565, In-

stron Corp., Canton, MA, USA) using alumina rods as ex-

tensions. The resistivities of the loaded and unloaded sam-

ples, respectively, were calculated from the observed voltage

changes and the applied currents.

3 Results and discussion

Piezoresistive materials are commonly classified by their k

factor (gauge factor), which is defined as the change of the

sample resistivity with applied stress:

k =
Y

R0

·
1R

1σ
, (1)

with Y being the Young modulus (Y = 85 GPa for C / SiOC;

Papendorf et al., 2013), R0 the resistivity of the stress-free

sample, 1σ the applied mechanical load and 1R the change

in the resistivity upon applying the mechanical load. As

shown below, C / SiOC containing 13.5 vol% of dispersed

carbon exhibits k values of ≈ 102 in the temperature range

Figure 2. G position and linewidth as a function of sample prepa-

ration temperature.

from 1000 to 1200 ◦C. The k factor decreases with increas-

ing temperature, indicating a direct correlation with activated

electronic transport. The Arrhenius plot provides an activa-

tion energy of ≥ 0.3 eV for k. A similar behavior has been

observed for C / SiOCN nanocomposites containing 8.5 vol%

segregated carbon (Terauds et al., 2010). However, the two

composites differ with respect to the magnitude of k. Rather

high k values (k≈ 103) have been reported for C / SiOCN in

the temperature range 700 < T < 1000 ◦C. We note that the

C / SiOCN composite has a lower carbon content than our

sample and, accordingly, a higher resistivity and a higher

k. In the following we present Raman data of the carbon

phase of C / SiOC and combine them with the piezoresistiv-

ity results to provide evidence that the piezoresistive effect is

linked to the microstructure of the carbon phase, notably its

disordered non-crystalline part.

3.1 Raman spectroscopy

Raman spectroscopy is a powerful method to characterize

the various types of carbon, providing information about

the degree of ordering of the carbon atoms, ranging from

perfectly ordered sp2-bonded carbon to less ordered non-

crystalline carbon (Ferrari and Robertson, 2000; Dresselhaus

et al., 2008; Pimenta et al., 2007). In graphitic materials,

the Raman spectrum is dominated by two strong features:

the G mode at 1581 cm−1 and the D mode at 1350 cm−1.

The G mode involves in-plane bond-stretching of sp2 car-

bon (E2g-symmetry) and is, together with its second har-

monic mode (2-D), the only mode with significant intensity

in graphene (two-dimensional single layer of graphite). Dis-

ordered carbon materials contain additional bands in their

first-order Raman spectrum whose origin is still debated in

literature. For example, the D band has been recently at-

tributed to double resonant Raman scattering, questioning the

assumption that it is strictly related to aromatic rings (Thom-

sen and Reich, 2000; Saito et al., 2001).
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Figure 3. Ratio ID / IG vs. linewidth of G. The dashed line is a

guideline for the eye taken from literature (Schwan et al., 1996).

Increasing graphitization from amorphous carbon to nanocrystalline

graphite (nc-G) and graphite is indicated by the arrow at the top.

Figure 4. Correlation of Raman and piezoresistivity data for

C / SiOC (13.5 vol% C). The dashed area represents literature val-

ues for k and Raman linewidth of highly ordered carbon (HOPG,

graphene).

An often used method to determine the degree of order in

graphitic-like materials is to assess the intensity ratio ID / IG

of the D and G bands. The Raman spectra of C / SiOC sam-

ples prepared at 1000 and 1500 ◦C and rapidly cooled down

to freeze the microstructure are shown in Fig. 1. The spec-

trum for C / SiOC at 1000 ◦C reveals high-intensity D and G

bands, less intense 2-D and D+G bands (the second har-

monics), and weak ν3 and ν1 bands at 1180 and 1520 cm−1.

We assign the latter peaks to polyolefinic chains following

Ferrari and Robertson (2004). With increasing temperature,

the ν1 peak is shifted to lower wave lengths, induced through

chain growth. A comparison of the spectra recorded for the

samples prepared at 1000 and 1500 ◦C indicates a clear ten-

dency of ordering of the segregated carbon with increasing

temperature, as ID / IG decreases. In line with this result, the

linewidth (full width at half maximum, FWHM) of G nar-

rows by ≈ 15 cm−1 and the G position shifts by ≈ 25 cm−1

(Fig. 2). The Raman data suggests that sp2 domains asso-

ciated with the G band are progressively aligned yielding

nanocrystalline graphite. Similarly, the polyolefinic struc-

tures represented by the ν3 and ν1 bands may be integrated

into the aromatic domains by, e.g., a Diels–Alder reaction,

explaining the observed decrease of the ν3 and ν1 bands (see

Fig. 1). However, a non-crystalline part still remains, since

we do not see a substantial change in the intensity of the D

line. Thus, carbon appears to remain dispersed in C / SiOC,

the main change in the microstructure being the progressive

formation of nanocrystalline graphite.

The assignment to nanocrystalline graphite is confirmed

by the observed range of ID / IG values (1.2 < ID / IG < 2.5)

for all samples prepared at 1000–1500 ◦C. According to Fer-

rari and Robertson (2000) the lateral domain size can be de-

rived from ID / IG by the following equation:

λ
ID

IG

= C′(λ) ·L2
a, (2)

yielding domain sizes of 1.5–2.0 nm for C / SiOC

(13.5 vol% C). The Raman data of the graphitization

process of carbon materials (amorphous carbon→ graphite)

has been summarized in literature (Schwan et al., 1996).

Figure 3 presents the comparison of our data with litera-

ture. Evidently, the Raman features of carbon in C / SiOC

correspond to those of the nanocrystalline carbon.

3.2 Piezoresistivity

The Raman data presented above have shown that both crys-

talline and non-crystalline carbon exists in C / SiOC and that

their fractions depend on the preparation conditions. Con-

sidering carbon being primarily responsible for the piezore-

sistive behavior of C / SiOC, a close correlation between the

Raman data and the gauge factor should be observable. We

therefore perform piezoresistive measurements on samples

with the same ID / IG, i.e., samples with the same carbon

microstructure.

Figure 4 summarizes the results of the Raman and piezore-

sistivity measurements. As it can been seen in Fig. 4, the k

factor and the linewidths of D and G follow the same trend,

i.e., both increase with increasing ID / IG. For the sake of

comparison, the Raman linewidths and k factors of HOPG

and graphene available in the literature have been included

(shaded area). HOPG and graphene are extended, highly or-

dered sp2 materials with narrow linewidth and low k val-

ues due to small amounts of defects (grain boundaries dis-

locations, dangling bonds, etc.). C / SiOC is far less ordered.

The non-crystalline carbon content appears to determine the

k factor enhancement. Values of k > 100 mark C / SiOC as a

promising piezoresistive sensor material. Its most important

advantage relies on its very high temperature stability in air

because of the frozen-in microstructure. To our knowledge,
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only very few piezoresistive materials are available for el-

evated temperature (250 < T < 1000 ◦C) (Fraga et al., 2012;

Gregory et al., 2002). Piezoresistive sensors for operations

at temperatures even above 1000 ◦C may be realized with

composites C/SiOX (X=O, N). However, their feasibility as

piezoresistive sensors for the daily use has to be proven by

further work.

4 Conclusions

C / SiOC nanocomposite materials have been investi-

gated by Raman spectroscopy of quenched samples

(1000 < T < 1500 ◦C) and stress-dependent resistivity

measurements (1–10 MPa) in the temperature range of

1000 < T < 1200 ◦C. The observed values of the k factor

(of the order of 102) are significantly higher than those of

well-ordered carbon and decrease with increasing tempera-

ture, indicating a direct correlation with activated electronic

transport (EA ≥ 0.3 eV for k). The comparison of the Raman

and piezoresistivity data reveals that the piezoresistive effect

in C / SiOC (13.5 vol% C) is mainly determined by the

non-crystalline/defective carbon content.
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