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In this contribution, we elaborate a conductivity model for highly doped polycrystalline semiconductors.
The prominent feature of the model is the description of grain-boundary scattering by field emission,
i.e., quantum-mechanical tunneling of electrons through potential barriers at grain boundaries. For
this purpose, we adapt a theory of Stratton [Theory of field emission from semiconductors,
Phys. Rev. 125, 67 (1962)] to double Schottky barriers at grain boundaries. We provide strong evidence
that field emission rather than the predominantly applied thermionic emission is the dominant transport
path across grain boundaries in semiconductors with carrier concentrations exceeding approximately
1019 cm−3. We obtain a comprehensive conductivity model for highly doped polycrystalline semi-
conductors by combining field emission with two intragrain scattering mechanisms, that are ionized-
impurity and electron-phonon scattering. The model is applied to a wide range of literature data in order to
show its applicability and explanatory power. The literature data comprise, in particular, transparent
conductive oxides with a special emphasis on aluminum-doped ZnO.
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I. INTRODUCTION

Transparent conductive oxides (TCOs) are applied in a
wide range of applications such as optoelectronic devices
due to their unique property of possessing electrical
conductivity and transparency in the visible range at the
same time [1–6]. Commonly, TCOs such as aluminum-
doped ZnO (ZnO∶Al), tin-doped indium oxide (In2O3∶Sn),
and fluorine-doped tin oxide (SnO2∶F) are degenerately
doped to assure high conductivity. Since most TCOs are
polycrystalline materials, they are perfect candidates to
study the mechanisms that limit the charge-carrier mobility
in degenerately doped polycrystalline semiconductors.
Understanding these mechanisms is of crucial importance
in order to further increase the conductivity in such
materials.
A mobility-limiting mechanism is scattering of charge

carriers at grain boundaries that so far is predominantly
described by thermionic emission [7–10]. However,
grain-boundary scattering can comprise two further mech-
anisms, namely, field emission, also denoted as quantum-
mechanical tunneling, and thermionic field emission. Both
mechanisms are hardly considered with regard to grain-
boundary scattering. Therefore, this work will elaborate a
quantitative theory for (thermionic) field emission at grain
boundaries based on the work of Stratton [11,12].
The charge-carrier mobility might not be limited by

mechanisms located at grain boundaries only, but also by
scattering processes within the grain. Thus, we combine
grain-boundary scattering with two intragrain scattering

mechanisms, namely, ionized-impurity and electron-
phonon scattering. In this way, we obtain a comprehensive
conductivity model that is applicable to degenerately doped
polycrystalline semiconductors.
This work is organized as follows: In Sec. II, we detail

the theory of scattering mechanisms in highly doped
polycrystalline semiconductors. Most importantly, the
description of field emission at grain boundaries is devel-
oped, and criteria are given that reveal field emission as the
dominant scattering process at grain boundaries. Section III
combines the discussed scattering mechanisms in order to
obtain a complete conductivity model. The conductivity
model is used to fit mobility and conductivity data from the
literature that is given as a function of the carrier concen-
tration or measurement temperature. The obtained fit
parameters are interpreted with regard to their physical
meaning. The proposed conductivity model should be
applicable to degenerately doped polycrystalline semicon-
ductors, in general. Nevertheless, in this contribution, we
focus on the material class of transparent conductive
oxides. Particular emphasis is given to ZnO∶Al, which
is a prominent TCO representative.
Note finally the extensive Appendixes. There, we

critically review the thermionic emission theory, and we
develop the analytical description of thermionic field
emission at grain boundaries.

II. THEORY OF SCATTERING MECHANISMS

The resistivity of polycrystalline semiconductors may be
divided into two contributions: scattering of charge
carriers within the grain ρg and at grain boundaries ρgb.
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Two mechanisms that describe effects within the grain,
ionized-impurity and electron-phonon scattering, are dis-
cussed in the following. Grain-boundary scattering com-
prises three possible mechanisms: thermionic emission,
field emission, and thermionic field emission.
Further scattering mechanisms within the grain such as

dislocation scattering [13–16], neutral impurity scattering
[14,16,17], or scattering due to weakly localized electrons
[18–20] are not considered in the proposed model. Reasons
for the disregard of dislocation and neutral impurity
scattering can be found in Refs. [14,16]. Weak localization
scattering is beyond the scope of this work. However, it
might explain certain features of temperature-dependent
Hall effect measurements such as a decreasing resistivity
with increasing temperature.
The focus of this section is threefold: (i) The theory of

ionized-impurity and electron-phonon scattering is pre-
sented. (ii) We elaborate the mathematical description of
field emission at grain boundaries. (iii) Two criteria are
given that reveal the dominant scattering process at grain
boundaries.

A. Ionized-impurity scattering

Highly doped semiconductors such as TCOs with
high carrier concentrations n exceeding approximately
1019 cm−3 possess a large number of ionized donors.
They can be intrinsic donors such as oxygen vacancies
or extrinsic donors such as aluminum. Ionized donors are
charged. Therefore, they scatter charge carriers. The devel-
opment of the description of ionized-impurity scattering is
illustrated in detail by Ellmer [21]. Here, the theory is
shortly summarized.
Conwell and Weisskopf assume the ionized impurity to

induce a truncated Coulomb potential [22]. However, one
has to take into account the screening of the Coulomb
potential by free charge carriers reducing the Coulomb
potential’s strength and scattering ability. Brooks [23] and
Herring, and Dingle [24] incorporate the screening into the
description of ionized-impurity scattering [25]. The for-
mula for ionized-impurity scattering as derived by Dingle,

μii ¼
3ðϵrϵ0Þ2h3
m�2e3

ZD − ZAK
Z2
D þ Z2

AK
1

Fii
; ð1Þ

contains the screening function Fii, the static dielectric
constant ϵr, the vacuum permittivity ϵ0, and the Planck
constant h. Further parameters are the effective mass m�
and the compensation ratio K ¼ nA=nD of acceptor nA and
donor nD concentrations. ZD and ZA denote the charge of
donors and acceptors, respectively. Note that Eq. (1)
assumes only one type of acceptor and donor charge.
The analytical expression [26] for the screening
function [27],

Fiiðξ0; ξ1Þ ¼
�
1þ 4ξ1

ξ0

�
1 − ξ1

8

��
lnðξ0 þ 1Þ

−
ξ0

ξ0 þ 1
− 2ξ1

�
1 − 5

16
ξ1

�
ð2Þ

with

ξ0 ¼ ð3π2nÞ1=3 ϵrϵ0h
2

e2m� ð3Þ

and

ξ1 ¼ 1 −m�
0

m� ; ð4Þ

accounts for the nonparabolicity of the ZnO conduction
band by the introduction of an n-dependent effective mass

m�ðnÞ ¼ m�
0

�
1þ 2C

ℏ2

m�
0

ð3π2nÞ2=3
�

1=2

: ð5Þ

m�
0 is the effective mass at the minimum of the conduction

band, and C is a nonparabolicity parameter.
The description of ionized-impurity scattering by Eq. (1)

contains three material parameters that are not well known
as they are difficult to measure directly. The mentioned
parameters are the donor and acceptor charge ZD;A, the
compensation ratio K, and the effective mass m�. A
detailed discussion of these material parameters is given
in Appendix A.

B. Electron-phonon scattering

The scattering of electrons by phonons in metals is
described by the Bloch-Grüneisen law [29–31]. The
equation for electron-phonon interaction,

ρph ¼ λtr
4π3m�kB

he2
1

n
Θ
�
T
Θ

�
5

×
Z

Θ=T

0

x5dx
½expðxÞ − 1�½1 − expð−xÞ� ; ð6Þ

contains the electron-phonon coupling constant λtr, the
Debye temperature Θ, the electron charge e, the Boltzmann
constant kB, the Planck constant h, the effective mass m�,
and the carrier concentration n. λtr and Θ are used as fit
parameters to describe temperature-dependent resistivity
measurements. Note the reciprocal dependence of ρph and
n. Assuming constant m�, λtr, and Θ, the resistivity due to
electron-phonon scattering decreases with increasing
carrier concentration. However, the mobility defined by
μph ¼ ðρphneÞ−1 is independent of the carrier concentra-
tion. Figure 1 shows the mobility derived from Eq. (6) as a
function of the measurement temperature for various Θ.
One observes electron-phonon scattering to be relevant
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only for temperatures exceeding 150–200 K. Furthermore,
Fig. 1 shows lower Θ to imply a stronger electron-phonon
scattering and thus a lower mobility.
The Bloch-Grüneisen law has been used to describe

electron-phonon scattering in highly doped TCOs before
[33–35]. We consider the application of the Bloch-
Grüneisen law as a heuristic approach to the description
of electron-phonon scattering. Certainly, the Bloch-
Grüneisen law takes into account neither the TCO’s
specific lattice structure nor the covalent and ionic nature
of the bonds. Yet, we think that its specific design for
degenerate electron systems is a valid argument for its use
in highly doped semiconductors. Instead of the Bloch-
Grüneisen law, some authors explicitly compute the
scattering by optical phonons and by acoustic phonons
interacting through deformation or piezoelectric potentials
[13,32,36–38]. These models should reproduce the physics
of the TCOs more accurately than the Bloch-Grüneisen
law. However, they possess free parameters that need to be
determined in a rather cumbersome manner for each
material, and the models’ adjustment to degenerate semi-
conductors is difficult [38]. To our knowledge, a detailed
comparison between both descriptions of electron-phonon
scattering has not been performed yet, and it is out of the
scope of this work to do so. Certainly, future investigations
should comprise the differences and applicability of both
theories. Until then, we note that both descriptions of
electron-phonon scattering yield a very similar temperature
dependence (see Fig. 1).

C. Grain-boundary scattering

Polycrystalline films are composed of small crystalline
grains separated by grain boundaries. A grain boundary is a
region of disordered atoms between adjacent grains.
Disordered atoms imply incomplete atomic bonding result-
ing in a large number of defects. The defects can trap
electrons. The trapping of electrons induces potential
barriers at the grain boundaries that may scatter mobile
electrons traveling from one grain to another.
The height of the potential barriers at grain boundaries

EB is derived by Seto [7]. Depending on the doping
concentration nD, two different expressions for the barrier
height,

EB ¼ e2L2

8ϵ0ϵr
nD þ EC; LnD < Qt; ð7aÞ

EB ¼ e2Q2
t

8ϵ0ϵr

1

nD
þ EC; LnD > Qt; ð7bÞ

may be computed. Here,Qt denotes the density of occupied
traps per area at grain boundaries, ϵ0 and ϵr are the vacuum
permittivity and the static dielectric constant, respectively,
and L is the lateral grain size. The barrier height as derived
by Seto is measured relative to the conduction-band
minimum. In the following, we strongly rely on
Schottky barrier theory. Since the barrier height in
Schottky theory is given with respect to the Fermi level,
we modified Seto’s barrier height by adding EC to make it
suitable for Schottky theory. In this notation, EC is
measured relative to the Fermi level as well.
Consequently, EC takes a negative value for degenerately
doped semiconductors.
The condition LnD < Qt describes a situation of only

partially filled traps and grains that are completely depleted
of electrons. For LnD > Qt, the traps are completely filled
with electrons and the grains are partially depleted.
Neglecting the n dependence of the Fermi level, one sees
from Eqs. (7a) and (7b) that EB first increases linearly with
nD, reaches a maximum at LnD ¼ Qt, and then decreases
as 1=nD. The highly doped semiconductors investigated in
this work all fulfill the condition LnD ≫ Qt. Then, the
convenient assumption nD ≈ n is justified.
Figure 2 illustrates three possible transport paths across

such potential barriers at grain boundaries: thermionic
emission, thermionic field emission, and field emission
[39]. We show in Sec. III that field emission is the dominant
transport path across grain boundaries in highly doped
polycrystalline films investigated in this contribution. In
anticipation of this result, we focus on field emission in the
following. Nevertheless, since thermionic emission is the
transport path most often used in order to describe grain-
boundary scattering in highly doped semiconductors, a
comprehensive and critical review of this mechanism is
presented in Appendix B. Furthermore, we detail a
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FIG. 1. The mobility is computed as a function of measurement
temperature T using either the Bloch-Grüneisen law (solid lines)
or the theory of acoustical and polar-optical phonon scattering
(dashed line). For the Bloch-Grüneisen law, three different values
of the Debye temperature Θ are evaluated: Θ ¼ 500 K (black
line), Θ ¼ 1000 K (gray line), and Θ ¼ 1500 K (light gray line).
The electron-phonon coupling constant is fixed at λtr ¼ 0.3. For
acoustical and polar-optical phonon scattering, we apply the
theory presented by Look and co-workers [32]. Note that we also
use their parameters: ϵ1 ¼ 3.72ϵ0, Tpo ¼ 837 K, E1 ¼ 3.8 eV,
Ppe ¼ 0.21, and cl ¼ 1.4 × 1011 Nm−2. With regard to the
effective mass m�, we refer to Appendix A.
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description of thermionic field emission in Appendix D. In
a final step, we review criteria that reveal which of the three
transport processes across grain boundaries dominate for a
given material.

1. Field emission

Field emission is the quantum-mechanical tunneling of
electrons through thin potential barriers. Field emission is
considered by several authors to be an important transport
path across grain boundaries in polycrystalline materials
[34,36,40–44]. Therein, if any, expressions of Holm [45] or
Simmons [46] have been used. Holm’s equation predicts
temperature-independent field-emission currents. As
Stratton and Simmons obtain a slightly quadratic depend-
ence of the current on the temperature, Holm’s equation is
not considered further [11,47].
To our knowledge, the only publication that implements

an analytical field-emission model is the one by Garcia-
Cuenca,Morenza, andEsteve [43]. They use the expressions
derived by Simmons to explain temperature-dependent
conductivity measurements of CdS∶In films [46].
However, the Simmons formula takes into account only
the averaged barrier height. It is, in a manner of speaking,
blind for the actual shape of the barrier. Consequently, his
model does not contain thermionic field emission.
In this work, we adapt equations derived by Stratton

[11,12]. Stratton’s equations include the specific barrier
shape and deal explicitly with thermionic field emission.
The field-emission current

JFE ¼ e
4πm�

h3

Z
∞

0

�
½f1ðEÞ − f2ðEÞ�

Z
E

0

PðExÞdEx

�
dE

ð8Þ

is given by the integral of the difference between the two
Fermi Dirac function f1 and f2 at each side of the barrier
multiplied with the integral over the tunneling probability
PðExÞ at the electron’s energy Ex. PðExÞ may be computed
using the WKB approximation [48,49] by

PðExÞ ¼ exp

�
− 2

3

ðEB − ExÞ3=2
E00

ffiffiffiffiffiffi
ϕB

p
�

ð9Þ

with EB and ϕB being the barrier height measured with
respect to the Fermi level and the conduction band,
respectively [50]. E00 is defined as

E00 ¼
2e
α

ffiffiffiffiffiffiffiffiffiffiffi
n

2ϵ0ϵr

r
¼ ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ϵ0ϵrm�

r
; ð10Þ

where α ¼ 2ð2m�Þ1=2=ℏ is a constant. Under the
assumption that predominantly electrons close to the
Fermi level contribute to the current,

PðExÞ ≈ exp f−ðb1 þ c1ϵx þ f1ϵ2xÞg ð11Þ

can be expanded with respect to the variable ϵx ¼ EF − Ex.
The computation of the tunneling coefficients b1, c1, and f1
for double Schottky barriers at grain boundaries may be
found in Appendix C. Here, just the results

b1 ¼ 2
EF

E00

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 þ ~E

p
− ln

	 ffiffiffiffiffiffiffiffiffiffiffiffi
~Eþ 1

p
þ

ffiffiffiffi
~E

p 
i
; ð12Þ

c1 ¼ 2
1

E00

ln
	 ffiffiffiffiffiffiffiffiffiffiffiffi

~Eþ 1
p

þ
ffiffiffiffi
~E

p 

; ð13Þ

f1 ¼ 2
1

4E00EF

ffiffiffiffiffiffiffiffiffiffiffiffi
~E

~Eþ 1

s
ð14Þ

are presented. The parameter ~E is given by

~E ¼ EB − eV
EF

: ð15Þ

Note the difference between the expression of f1 as
presented here and as given by Padovani [51]. A short
discussion regarding this difference can be found in
Appendix C.
The combination of Eqs. (8) and (11) and the evaluation

of b1 and c1 for small applied voltages V yields the J − V
characteristic given by Padovani [51]:

JFE ¼ A� exp ð−b1Þ
ðc1kBÞ2

��
πc1kBT

sin ðπc1kBTÞ
½1 − exp ð−c1eVÞ�

�

− c1eV exp ð−c1EFÞ
�

ð16Þ

FIG. 2. A potential barrier at a grain boundary in degenerate
semiconductors is illustrated. EC and EF denote the energy level
of the conduction band and the Fermi level, respectively. The
Fermi level lies within the conduction band. EB measures the
barrier height from the Fermi level to the top of the barrier.
Electrons can pass the potential barrier by thermionic emission
over the barrier, by thermally activated tunneling (thermionic
field emission) at the energy Em, and by tunneling (field
emission) at the Fermi level.
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with A� ¼ 4πm�ek2B=h
3 being the Richardson constant.

Using the relation

σ ¼ L
dJ
dV

����
V¼0

; ð17Þ

we obtain for the field-emission conductivity σFE in
polycrystalline semiconductors the expression

σFE ¼ eLA�c1
ðc1kBÞ2

exp ð−b1Þ
�

πc1kBT
sin ðπc1kBTÞ

− exp ð−c1EFÞ
�
:

ð18Þ

The same formula is derived by Yu with the exception that
his expression already contains the relation c1 ¼ EB=E00

deduced from Eq. (13) for V ≈ 0 [52]. The variation of
mobility with temperature as derived from Eq. (18) is
shown in Fig. 3. We assume the charge-carrier density to be
constant. The temperature dependence of

σFE ∼
πc1kBT

sin ðπc1kBTÞ
≈ 1þ 1

6
ðπc1kBTÞ2 ð19Þ

is approximately quadratic. For representative values of n,
L, and Qt, this quadratic dependence translates into a
charge-carrier mobility that is almost constant for low
temperatures up to 100 K. Higher temperatures induce a
slight mobility increase. The trap density hardly influences
the general shape of the curve. However, it strongly
determines the overall mobility level.
Note that a potentially nonparabolic conduction band is

considered by the use of n-dependent effective mass m�
[see Eq. (5) in Sec. II A] and Fermi level EF [see Eq. (5) in

Ref. [26]]. However, we do not use Stratton’s extended
theory for nonparabolic energy bands, because he claims it
to be important only if the ratio EB=Eg is large, which it is
not in our cases.
Equation (18) describes tunneling through barriers with a

uniform height. However, fluctuating barriers might be a
better description of the real system [50]. Also, thermionic
emission theory comprises extensions that take into
account fluctuating barriers (see Appendix B). However,
the derivation of an analytical expression for tunneling
through fluctuating barriers needs strong simplifying
assumptions (see Appendix E). These simplifications
predominate the benefits of the more detailed barrier
description. Therefore, Eq. (18) is the expression of choice
for tunneling through potential barriers at grain boundaries.
Of course, a numerical solution for the expression of

field emission through fluctuating barriers would be pos-
sible. However, it is our aim in this work to rely on
analytical expressions.

2. Which process dominates the transport across
grain boundaries?—Criteria

Depending on the doping concentration and temperature,
one of the three transport paths across grain boundaries
dominates. Crowell and Rideout [53] and Stratton [11,12]
have developed criteria revealing the dominant transport
mechanism.
Crowell and Rideout’s criterion is based on the param-

eter kBT=E00. Following Rhoderick and Williams, E00 can
be interpreted as the barrier height, measured relative to the
conduction band, such that an electron at the bottom of
the conduction band and at the edge of the depletion region
has the field-emission probability equal to exp ð−1Þ.
“Therefore the ratio kBT=E00 is a measure of the relative
importance of thermionic emission and tunneling. As a
rough guide, we should expect field emission if kBT≪E00,
thermionic field emission if kBT ≈ E00, and thermionic
emission if kBT ≫ E00” [50].
More exact criteria have been given by Stratton [11,12].

Field emission occurs if the inequality

1 > kBTðc1 þ
ffiffiffiffiffiffiffi
2f1

p
Þ ð20Þ

is fulfilled. If the inequalities

1 < c1kBT ð21Þ

and 1 < bm þ cmðEF − EmÞ þ fmðEF − EmÞ2 ð22Þ

are complied with, the process is described by thermionic
field emission. The criterion for thermionic emission is
given by

1 > bm þ cmðEF − EmÞ þ fmðEF − EmÞ2: ð23Þ
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FIG. 3. The temperature-dependent mobility μ is plotted for
three different trap densities Qt. A constant carrier concentration
of 1 × 1020 cm−3 and a grain size of 40 nm are assumed. The
mobility is almost constant for temperatures up to 100 K and
increases approximately quadratic for higher temperatures. Note
that the trap density influences predominantly the overall level of
the mobility and not so much the general shape of the curve.
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III. APPLICATION AND EVALUATION

The application of the conductivity model developed in
Sec. II is presented below. Mobility and conductivity data
from the literature and our own experiments are inves-
tigated as a function of charge-carrier concentration n and
measurement temperature T. The observed dependencies
are fitted taking into account ionized-impurity, electron-
phonon, and grain-boundary scattering.
The charge transport across potential barriers at grain

boundaries comprises three mechanisms: field emission,
thermionic field emission, and thermionic emission.
Criteria to decide on the dominant transport path are given
in Sec. II C 2. As the highest measurement temperature is
generally 300 K, and as the lowest carrier concentrations
are around 5 × 1019 cm−3, Crowell and Rideout’s criterion

kBT ≈ 25 meV < 88 meV ¼ E00 ð24Þ

suggests field emission to be the dominant transport path
for all investigated samples. This hypothesis is checked and
verified for each fit by evaluating Stratton’s more detailed
criteria with the obtained barrier heights. Thus, for the
highly doped polycrystalline semiconductors under inves-
tigation in this work, it is certain to state the important
result that field emission is the dominant transport path
across grain boundaries.
Altogether, the conductivity model consists of ionized-

impurity scattering (ii), electron-phonon scattering (ph),
and field emission at grain boundaries (FE). The three
scattering mechanisms are combined using Matthiessen’s
rule. It states that the total resistivity

ρtt ¼ ρiiðn;KÞ þ ρphðn; T;Θ; λtrÞ þ ρFEðn; T;Qt; LÞ ð25Þ

is the sum of the resistivities of the individual scattering
mechanisms. Three fit parameters occur: Debye temper-
ature Θ, electron-phonon coupling constant λtr, and grain-
boundary trap density Qt. If not otherwise stated, a
compensation ratio of K ¼ 0% and a grain size of
L ¼ 40 nm [54,55] are assumed. Note that ρph is a function
of n, whereas μph is independent of n (see Sec. II B).

A. Mobility as a function of carrier concentration

Within the presented conductivity model, the mobility μ
depends among others on the carrier concentration n. It is
shown that the model can fit the observed μ-n dependen-
cies. The only fit parameter is the grain-boundary trap
density Qt, because electron-phonon scattering cannot be
extracted from μ-n data. Anticipating results of μ-T fits, one
estimates reasonable values for Θ and λtr to be 1000 K and
0.3, respectively, resulting in an electron-phonon scattering
mobility of 200 cm2=V s. Note that this value is similar to
210 cm2=V s derived by Ellmer [21].

Figure 4 shows the mobility data of ZnO∶Al films
obtained by Berginski et al. [56] and Sommer et al.
[57]. By varying the target doping concentration (TDC)
and deposition temperature, samples with various carrier
concentrations and mobilities are obtained [56].
Additionally, Fig. 4 shows the data of a seed-layer concept
(red asterisk). This concept is based on the utilization of a
thin seed layer with TDC ¼ 2 wt% that improves the
electrical properties, and, in particular, the mobility, of a
subsequently grown bulk layer with TDC ¼ 1 wt%.
Further details about the seed-layer concept can be found
in Ref. [57].
In a first approach, the data are modeled with the

conductivity model assuming a trap density that is i
ndependent of the carrier concentration (dashed lines).
They fit the samples with TDC of 0.2 and 0.5 wt % and
the seed-layer data reasonably well. Layers with TDC of 1
and 2 wt %, however, are not well described. A second
approach is inspired by results in CdS∶In [43] and silicon
[44], where the trap density is found to be dependent on the
carrier concentration. Thus, the trap density Qt is assumed
to be linked to the carrier concentration by the most simple
functional dependence, that is, a linear relationship. The
obtained relation

Qt ¼ QtðnÞ ¼ Qt0 þ Ctn ð26Þ

contains two unknown parameters Qt0 and Ct that are used
to fit the data in Fig. 4 again. Ct is restrictively assumed to
be the same for all TDCs. The fit results, shown as solid
lines in Fig. 4, reproduce the data very well. Only the
seed layer is still described best by the model without an
n-dependent trap density. Hence, the seed-layer approach
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FIG. 4. The mobility is plotted against the carrier concentration
for four different target doping concentrations. The data are
extracted from Ref. [56]. Furthermore, the data of a seed-layer
approach are added [57]. Dashed lines represent the results of the
conductivity model assuming the trap density to be independent
of the carrier concentration. Four different grain-boundary trap
densities are evaluated: Qt ¼ 5, 9, 12, 15 × 1013 cm−2. Solid
lines show the fits under the assumption of a trap density being
dependent on the carrier concentration.
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seems to enable the increase of carrier concentration
without affecting the grain-boundary trap density.
The fit parameters in Table I show an increase of Qt0

with increasing TDC. The dopant aluminum might thus be
an important factor for the traps at the grain boundaries
as also suggested by other authors [58]. A qualitative
explanation for the n-dependent trap density is given in
Sec. III B 2.
Figure 5 shows data that are extracted from Ref. [59].

The reasonable fit is based on the assumption of
n-dependent trap densities at the grain boundaries. It
reproduces both the mobility increase of ZnO (blue
triangles) and the mobility decrease of ZnO∶Al (red circles)
with increasing carrier concentration.
The mobility increase of ZnO is easily explained by the

increasing field emission through grain boundaries at
higher carrier concentrations. The mobility decrease of
ZnO∶Al can be accounted for by two effects: (i) The
effective mass increases with increasing carrier concen-
tration due to the nonparabolic ZnO conduction band.
As a consequence, the mobility as determined by

ionized-impurity scattering decreases. Minami et al.
explain their data in this way. However, Ellmer pointed
out that Minami’s effective mass of m� ¼ 1.04me at
n ¼ 1 × 1021 cm−3 is rather high and possibly problematic
[21]. In our case, a lower effective mass is used. Thus, only a
part of the mobility decrease can be explained, and a further
explanation is needed. (ii) Higher carrier concentrations
need to induce an increasing barrier height at the grain
boundaries to explain the reduction of mobility due to the
field emission of electrons through grain boundaries. This
would be the case if the number of additional traps induced
by the higher carrier concentration is high, i.e., Ct is high.
Such a situation is predicted by the fit in Fig. 5. Hence, the
specific energetic distribution of the traps at grain bounda-
ries in conjunction with the field-emission model might
explain the mobility drop at high carrier concentrations.

B. Mobility as a function of
measurement temperature

Electron-phonon scattering and field emission through
grain boundaries are dependent on temperature. Thus, the
evaluation of the proposed conductivity model has to
comprise the investigation of temperature-dependent con-
ductivity measurements. In total, five different measure-
ment series are analyzed.

1. Fits to literature data

First, indium-doped cadmium sulfide (CdS∶In) films are
discussed, because their conductivity has been interpreted
in terms of a different field-emission model than the one
used here [43]. Most importantly, these films exemplify the
importance of electron-phonon scattering for the interpre-
tation of conductivity data. Furthermore, sputtered ZnO∶Al
and LPCVD-grown ZnO∶B with various carrier concen-
trations are investigated. They underline that different
dopants, grain sizes, and growth methods do not alter
the applicability of the model. At the end, damp-heat-
degraded ZnO∶Al is discussed, because damp-heat
degradation is supposed to predominantly influence grain
boundaries. Therefore, it is an interesting system for the
application of the field-emission model.
Figure 6 shows temperature-dependent conductivity

measurements of CdS∶In films. The data are obtained
from Garcia-Cuenca, Morenza, and Esteve [43]. Garcia-
Cuenca, Morenza, and Esteve propose a conductivity
model comprising field emission through grain boundaries
to interpret their data. The field-emission model is based on
the description of Simmons [46], whereas the model
developed here uses the equations of Stratton [11,12].
Generally, the two models yield similar results, because
both models predict an approximately quadratic temper-
ature dependence. Garcia-Cuenca, Morenza, and Esteve
use the expression σ ¼ σ0ð1þ βT2Þ as a fit function. Fit
parameters are σ0 and β. Both parameters are essentially a

TABLE I. Parameters of fits to data in Fig. 4 according to
Eq. (26).

TDC (wt %) 0.2 0.5 1 2

Qt0 (cm−2) 2.7 × 1013 4.4 × 1013 4.8 × 1013 6.0 × 1013

Ct (cm) 1.5 × 10−7
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FIG. 5. The mobility is shown as a function of the carrier
concentration for intrinsic (blue triangles) and aluminum-doped
(red circles) ZnO. The data are extracted from Ref. [59].
The black solid line represents a fit with the conductivity model
assuming a grain-boundary trap density that is dependent on
the carrier concentration according to Eq. (26). The fit parameters
Qt0 andCt are given in the graph. The fit represents the increasing
mobility for ZnO and the decreasing mobility for ZnO∶Al.
The fit is not a continuous line, because the Fermi level is
situated above the potential barriers at grain boundaries for
1.5 × 1020 cm−3 < n < 3.1 × 1020 cm−3.
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function of the trap density Qt. We reproduce the fits of
Garcia-Cuenca, Morenza, and Esteve (solid lines in Fig. 6)
and obtain excellent results. However, similar to Garcia-
Cuenca, Morenza, and Esteve, we are not able to reproduce
the data such that σ0 and β yield the same Qt. In contrast,
our model combining Stratton’s field-emission theory in
conjunction with additional electron-phonon scattering
yields one unique Qt. Furthermore, the fit curves obtained
by our model cannot be distinguished from the ones using
Garcia-Cuenca’s model. Note that Stratton’s field-emission
model alone does not yield satisfying fits (dashed lines
in Fig. 6).
Garcia-Cuenca, Morenza, and Esteve speculate that Qt

might be temperature dependent. Since this temperature
dependence is not reflected in their model, the ambiguous
Qt values occur. The comparison of our model and the
model of Garcia-Cuenca, Morenza, and Esteve hence
reduces to the question whether Qt is temperature depen-
dent or electron-phonon scattering is significant. Further
down in this paper, we cite data that undoubtedly show
electron-phonon scattering. Since Garcia-Cuenca’s
approach yields ambiguous values for Qt and Stratton’s
field-emission model alone does not yield satisfying fits,
we stress the important result that only the combination of
field emission and electron-phonon scattering leads in most
cases to a satisfying description of temperature-dependent
conductivity data.
Figure 7 shows mobility measurements of sputtered,

polycrystalline ZnO∶Al as a function of the temperature.
The data are obtained by Ellmer and Mientus [60]. The
samples possess different carrier concentrations. Although

the grain size is unknown and thus a representative value
for ZnO∶Al of 40 nm is used, excellent fits are obtained.
Some samples show a slight mobility increase at higher
temperatures, whereas for others a mobility decrease is
observed. In the framework of the proposed conductivity
model, the positive and negative slope correspond to field
emission and electron-phonon scattering, respectively.
Field emission dominates the temperature behavior in
the low-mobility film. In fact, the best fit for this sample
is obtained by neglecting electron-phonon scattering. In
contrast, the two samples with the highest mobility showed
a temperature dependence that is dominated by electron-
phonon scattering. The two other samples possess an
almost constant mobility. Here, the temperature depend-
ence of field emission and electron-phonon scattering
compensate each other.
We state at the beginning of Sec. III that the total

resistivity is obtained by the combination of three scattering
mechanisms: ionized-impurity scattering (ii), electron-pho-
non scattering (ph), and grain-boundary scattering repre-
sented by the field-emission model (FE). Of course, not
only the total resistivity but also the total mobility can be
computed as a combination of the individual scattering
mechanisms.
The three scattering processes are plotted separately in

Fig. 8. Note that similar plots with similar conclusions can
also be derived for the other data. It is clearly illustrated that
the limiting mechanism is field emission through grain
boundaries, because field emission shows the lowest
mobility. The slight temperature dependence of field
emission is hidden in the strongly temperature-dependent
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FIG. 7. The mobility of sputtered polycrystalline ZnO∶Al is
measured as a function of the temperature. Films with various
carrier concentrations are investigated. The data are extracted
from Ellmer and Mientus [60]. Red lines represent fits compris-
ing uncompensated ionized-impurity scattering, electron-phonon
scattering, and field emission through grain boundaries. Fit
parameters are Θ, λtr , and Qt. No information is given by Ellmer
and Mientus about the grain size. Therefore, it is assumed
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electron-phonon scattering. Thus, it seems as if the mobility
is, apart from electron-phonon scattering, temperature
independent, although the slightly temperature-dependent
field emission is limiting the overall mobility.
The above outlined argumentation focusing on grain-

boundary scattering is not unambiguous due to its
assumption of vanishing compensation. A different argu-
mentation could assume grain-boundary scattering to be
negligible. Consequently, the low mobility would be
induced solely by ionized-impurity scattering that is
amplified by compensation. Under this assumption, fits
of most of the temperature-dependent measurements would
also be possible.
Exemplarily, the mobility of the sample with

n ¼ 1.1 × 1020 cm−3 could be limited by ionized-impurity
scattering if a compensation ratio of K ¼ 30% is assumed.
Note that, within our model, K ¼ 30% means that 60% of
the electrons, that have been provided by extrinsic donors,
are absorbed by acceptors. Look et al. determine by SIMS
measurements and positron annihilation spectroscopy a
maximum compensation value of K ¼ 12% in a ZnO∶Ga
film with n ¼ 12.8 × 1020 cm−3. Without having a clear
proof, it is reasonable to suppose the compensation to
increase with increasing dopant concentration. A value of
K ¼ 30% seems under this assumption high. Furthermore,
the positive slope of the sample with n ¼ 1.9 × 1020 cm−3
cannot be explained without an additional scattering
mechanism, because ionized-impurity scattering is temper-
ature independent. This additional mechanism is likely
grain-boundary scattering. Hence, field emission is the
mechanism to apply following the criteria derived in
Sec. II C 2.
The data of Ellmer et al. contain only one sample showing

the upwardly bent mobility curve that is characteristic
for field emission. Temperature-dependent conductivity
measurements extracted from Myong et al. are shown in

Fig. 9. Their data contain more samples with a positive
slope indicating field emission [61]. Both low-conductivity
samples show a positive slope, i.e., increasing condu-
ctivity with increasing temperature. The sample with
n ¼ 9.46 × 1019 cm−3 illustrates nicely both effects, field
emission at grain boundaries and electron-phonon scattering.
A positive slope in the low-temperature range is observed that
corresponds to field emission, and a negative slope in the
high-temperature range is observed that corresponds to
electron-phonon scattering. Evaluating the shares of the three
scatteringmechanisms shows field emission to be the limiting
mechanism in these samples.
Temperature-dependent measurements of damp-heat-

treated ZnO∶Al films are presented by Kim et al. [62].
Their data are shown in Fig. 10. Damp-heat treatment
degrades mobility and carrier concentration of doped ZnO
[63–66]. Agreement exists in the literature that damp-heat
degradation affects predominantly grain boundaries.
Figure 10 shows the temperature dependence to be domi-
nated by electron-phonon scattering, because only down-
wardly bent curves are observed. However, according to the
proposed model, the overall mobility level is defined by
field emission at grain boundaries. Indeed, the expected
results of increased barrier height with increasing
damp-heat time are obtained. The field-emission model
thus agrees with the literature conception of damp-heat
degradation.
Kim et al. use the Seto model to fit their data. Here, we

also apply the Seto model and obtain the dashed line in
Fig. 10. In contrast to Kim et al., we extend the fit to
temperatures below the lowest measurement temperature,
and we do not use an Arrhenius plot. As a result, one
observes clearly that the agreement between the fit and
measurement is poor. Note especially that the Seto fit
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predicts a rather improbable mobility decrease at low
temperatures.
Figure 11 shows the temperature-dependent conductivity

of samples that have been investigated in the framework of
a seed-layer concept. This concept is mentioned in Sec. III
A. Details about the approach can be found in Sommer
et al. [57]. Here, it is important only that the application
of a 40-nm-thin seed layer improves the mobility of the
800-nm-thick total layer significantly. Figure 11(a) reveals
conductivity measurements of samples with (squares) and
without (circles) a seed layer. The measurement temper-
ature is varied from 90 to 330 K. Solid and dashed lines
represent fits using the proposed conductivity model.
The temperature dependence of the sample with a seed

layer is dominated by electron-phonon scattering, although
the overall conductivity level is still determined by grain-
boundary scattering. In contrast, the sample without a seed
layer could be fitted using the field-emission model only.
Thus, the increased conductivity of the seed-layer sample in
comparison to the sample without a seed layer is due to a
significant reduction of grain-boundary scattering.
The sample without a seed layer provides an interesting

feature that is observed when the conductivity is depicted as
a function of the squared measurement temperature. The
field-emission model exhibits a quadratic temperature
dependence. Therefore, one should observe a single
straight line in Fig. 11(b). However, not a single but two
straight lines with different slopes are observed. The fit,
depicted as the red dashed line, is an average of both slopes.
It agrees well with the smaller slope, since the smaller slope
dominates over a wide temperature range. Such measure-
ments showing two straight lines are also reported for
polycrystalline silicon films [44]. The observation is
explained by disorder in the films, i.e., nonuniform barrier
heights and dopant distribution.

2. Analysis of fit parameters

Fit parameters of the investigated measurement series are
evaluated regarding their consistency and their implications
for the trap distribution at grain boundaries.
The field-emission model contains one fit parameter: the

grain-boundary trap densityQt. VariousQt values extracted
from fits of temperature-dependent measurements are
plotted in Fig. 12(a) as a function of carrier concentration
n. One observes that the trap density increases with
increasing carrier concentration. Note again that the Qt
values are obtained from fits of temperature-dependent
measurements. Let us shortly remind you of the fits to μ-n
data. There, satisfying fits can be obtained only under the
assumption of a trap density that depends on the carrier
concentration. A simple linear relation between Qt and n
with the parameters Qt0 and Ct is proposed [see Eq. (26)].
The same linear relationship is used to fit the Qt-n
dependence that is obtained from various temperature-
dependent measurements. The dashed line in Fig. 12(a)
represents this fit. The agreement between the experimental
data and fit is reasonable. Note that the carrier concentration
is given on a logarithmic scale. The values for Qt0 and Ct
obtained from the fit to temperature-dependent measure-
ments are similar to the values obtained by the fitting of μ-n
data (see Table I). Thus, the results of μ-n and μ-T data are
consistent. Both reveal an increasing trap density at the
grain boundaries with increasing carrier concentration.
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FIG. 10. The mobility of ZnO∶Al films is measured at temper-
atures from 100 to 350 K. The investigated films have undergone
damp-heat treatments for various durations. The data are taken
from Ref. [62]. The measurements are fitted with the proposed
conductivity model. The barrier heights deduced from the model
are given in the graph. The dashed line is a fit according to the
Seto model. Kim et al. give a grain size of 75 nm. FIG. 11. Temperature-dependent conductivity measurements:

(a) Samples with (squares) and without a seed layer (circles) are
investigated. Red lines are fits using the conductivity model under
investigation. Note that the sample without a seed layer is fitted
using the field-emission model only. (b) The conductivity of the
sample without a seed layer is plotted over the squared temper-
ature. The red dashed line represents the fit also shown in (a).
However, two different slopes are present in the measurement.
The blue solid line is a guide to the eye for the steeper slope.
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The fits to μ-n data of Berginski et al. show that different
TDCs need different values for Qt0 to fit the μ-n data (see
Fig. 4 and Table I). The increase of TDC might thus induce
more traps. Trap states at grain boundaries might originate
from two different sources. First, grain boundaries can be
viewed as internal interfaces of adjacent grains. Thus,
interface states might exist due to the disturbance of the
regular crystalline order. These interface states are either
intrinsic or extrinsic [67]. Extrinsic interface states might be
induced by, e.g., water vapor. As a result, the conductivity
of ZnO∶Al decreases under damp-heat treatment
[63,66,68,69]. Second, impurities could segregate at grain
boundaries whereby defects occur that trap electrons. A
major impurity in highly doped semiconductors is the
dopant. Therefore, the dopant aluminum is supposed to be a
cause for trap states at grain boundaries in ZnO∶Al [58]. In
our case, Qt0 increases with increasing TDC. This result
suggests that mainly deep traps are affected by the dopant
aluminum [70]. However, it is not a clear verification of the
trap states’ origin. Further insights into the real origin of
trap states might be possible by the use of experiments that
provide resolution on the atomic scale such as atom probe
tomography [71].
The n-dependent trap density may be explained by two

different effects. First, the increase of carrier concentration
could correspond to an increase of impurities, i.e., dopant
atoms, at the grain boundaries. Deposition conditions may
alter the concentration of dopant atoms. For instance, the
increase of deposition temperature leads to an increase of
aluminum concentration in ZnO∶Al due to a favored
reevaporation and resputtering of zinc in comparison to
aluminum [57]. The increasing dopant concentration thus

induces a higher density of trap states and a higher carrier
concentration. Second, the n-dependent trap density might
be caused by the energetic distribution of trap states.
Figure 13 illustrates the hypothesis of trap states being
distributed in energy. Only the trap states with energies
equal to or below the Fermi level are occupied. The
increase of carrier concentration induces a rising Fermi
level. Consequently, trap states that were formerly unoc-
cupied can now be filled with electrons, and the density of
occupied traps is boosted. This hypothesis is supported by
scanning tunneling measurements of ZnO∶Al [72]. They
reveal that trap states are broadly distributed in energy and
that trap states above the Fermi level exist. Note that, in
either scenario, the basis of trap states (∼Qt0) is created by
the dopant and correlates with the TDC.
Figures 12(b) and 12(c) show the barrier height and

width. Both parameters are derived from the occupied trap
density. Note that the obtained barrier heights are one order
of magnitude higher than the ones found in the literature.
This is a direct result of the generally higher trap densities.
Exemplarily, Ellmer andMientus [14] give a maximum trap
density of 3 × 1013 cm−2. The barrier height (with respect
to the Fermi level) varies more strongly than the trap
density. The reason is that, first, the barrier height is
calculated as the difference between the barrier height
relative to the conduction band and the Fermi level and that,
second, the barrier height with respect to the conduction
band is a quadratic function of the trap density [see
Eq. (7b)]. Thus, the quadratically varying minuend, i.e.,
the barrier height with respect to the conduction band,
induces a strong variation of the barrier height relative to
the Fermi level. The barrier height shows no correlation
with the carrier concentration. In contrast, the barrier width
at the Fermi level decreases slightly with increasing carrier
concentration. The reason might be the higher barrier
height measured with respect to the conduction band at
higher carrier concentrations. Consequently, the barrier at
the Fermi level can be narrower, although the barrier height

FIG. 12. (a) The grain-boundary trap density Qt is shown as a
function of the carrier concentration. The dashed line is a fit
according to Eq. (26). The fit parameters Qt0 and Ct are
presented. Note that the CdS∶In films of Garcia-Cuenca,
Morenza, and Esteve are not included into the fit. From Qt,
one can derive the barrier height EB (b) and the barrier width d at
the Fermi level (c).

FIG. 13. Barriers at grain boundaries are created by charged
traps. (a) Trap states at grain boundaries are energetically
distributed. States below EF are occupied and contribute to
the trap density Qt. (b) An increasing carrier concentration n is
accompanied by an increase of the Fermi level. Thus, more traps
can be filled and Qt is raised. (c) If n decreases, the Fermi level
drops and fewer traps are occupied.
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given relative to the Fermi level might be the same.
Generally, no correlation between either the barrier height
or width and mobility is found. Only the combination of
both barrier height and width determines the field-emission
mobility.
Figure 14 depicts the fit parameters of electron-phonon

scattering: electron-phonon coupling constant λtr and
Debye temperature Θ. λtr varies between 0 and 0.6 with
the exception of one ZnO∶B sample and the CdS∶In films,
where values exceeding 0.6 are obtained. The results seem
to be reasonable, because Allen obtains for metals values in
the range of 0.5 [30]. Also, the determined values for Θ of
500 to 1500 K are similar to Allen’s results. Debye
temperatures of single-crystalline ZnO found in the liter-
ature (Θ ¼ 370 [73], 399.5 [74], 420 [75], and 920 K [76])
are similar to our results, although we derive slightly higher
values. Our Θ for nanocrystalline CdS of 1000 K is higher
than the one published by other authors (Θ ¼ 300 K [77]).
On the one hand, the difference between our Θ values and
those published in the literature may reflect the deficiency
of the simple Bloch-Grüneisen model. On the other hand, it
may hint at the strong influence of the polycrystalline
structure on the Debye temperature.
In general, it would be desirable to derive the fit

parameters by an alternative method such as ab initio
calculations in order to get a truly predictive theory.
However, the TCO’s polycrystalline structure, and thus
the quite dominant disorder in these materials, should make
it very challenging to simulate them on an atomistic level.
In addition, the structural and chemical nature of grain
boundaries is far from being known. There are several
experimental and theoretical studies to reveal the atomistic
structure of grain boundaries in ZnO [41,78,79]. However,
they focus on very specific grain boundaries with idealized
geometry. In contrast, the nature of grain boundaries in the
materials studied in this contribution is unknown. Various
tilt angles, intrinsic defects, and foreign atoms like hydro-
gen or the dopant aluminium might form a broad ensemble
of grain boundaries. Therefore, methods such as ab initio

calculations might need strong assumptions with regard to
the atomistic arrangement which would then prevent the
calculation from being truly predictive.

IV. CONCLUSION

To further the understanding of electron-scattering
mechanisms, we propose a conductivity model for highly
doped polycrystalline materials that comprises ionized-
impurity scattering, electron-phonon scattering, and field
emission at grain boundaries. Ionized-impurity scattering,
described by the theory of Brooks, Herring, and Dingle,
and electron-phonon scattering, implemented by the Bloch-
Grüneisen law, are both scattering mechanisms which are
located within the grain. However, besides these well-
known and accepted intragrain scattering mechanisms,
scattering at grain boundaries is considered.
Grain boundaries induce defects that trap electrons,

which results in potential barriers that scatter electrons.
Electrons can pass these potential barriers by three different
mechanisms: thermionic emission, thermionic field emis-
sion, and field emission. Thermionic emission, predomi-
nantly applied in the framework of the Seto model, is
considered by the majority of authors as the dominant
mechanism across potential barriers at grain boundaries.
Field emission, also denoted as quantum-mechanical tun-
neling, and thermionic field emission are neglected in most
cases. The progress made in this work is the adaptation of
Stratton’s analytical (thermionic) field-emission theory for
the application to potential barriers at grain boundaries.
Criteria are presented that clearly identify field emission

as the dominant transport mechanism through potential
barriers at grain boundaries in highly doped semiconduc-
tors. In conjunction with the above outlined intragrain
scattering mechanisms, excellent fits of temperature-
dependent mobility and conductivity measurements are
obtained. Materials under investigation are highly doped
transparent conductive oxides with a special emphasis on
ZnO∶Al. We discover that only the combination of field
emission and electron-phonon scattering leads to a satisfy-
ing description of the data. Also, mobility data, given as a
function of the carrier concentration, are described satis-
factorily. Merely three fit parameters, namely, the density of
occupied traps at grain boundaries, the electron-phonon
coupling constant, and the Debye temperature, have to be
considered. The fit results suggest that the trap density
at grain boundaries increases linearly with the carrier
concentration.
We believe that our results offer perspectives and

possibilities for the interpretation of mobility and conduc-
tivity data not only of TCOs but also of highly doped
polycrystalline semiconductors, in general. The under-
standing of scattering mechanisms that limit the charge-
carrier mobility in degenerately doped polycrystalline
semiconductors is a step to improve the conductivity in
these materials.

FIG. 14. Electron-phonon scattering contains two fit parame-
ters. They are presented in this graph: (a) electron-phonon
coupling constant λtr and (b) Debye temperature Θ.
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APPENDIX A: IONIZED-IMPURITY
SCATTERING—MATERIAL PARAMETERS

Three material parameters are needed for the description
of ionized-impurity scattering by Eq. (1). Here, we
present our assessment of these parameters for ZnO∶Al.
However, the discussion may also serve as a guide for other
materials.

1. Donor and acceptor charge ZD;A

Two main doping mechanisms are discussed in the
literature [21]. The first one is the doping by extrinsic
dopants such as boron, aluminum, or gallium. These
extrinsic dopants possess a charge of ZD ¼ 1. The second
doping mechanism could be intrinsic doping by oxygen
vacancies resulting in ZD ¼ 2. Look et al. show the main
donor to be gallium in their ZnO∶Ga films [32].
Furthermore, they identify Zn vacancies as the main
acceptor, which is supported by theoretical investigations
[80]. Thus, the further assumption in this work is ZD ¼ 1
(extrinsic doping by aluminum) and ZA ¼ 2 (Zn-vacancy
acceptor). Note that this assumption implies, first, the
neglect of ionized-impurity clusters and, second, a maxi-
mum compensation ratio of K ¼ 50%.

2. Compensation ratio K

The compensation ratio’s impact on the mobility is
shown in Fig. 15 for K ¼ 5% and K ¼ 10%. Look et al.
determine compensation ratios between 3% and 12%
for ZnO∶Ga films with carrier concentrations between
7.8 × 1020 and 12.8 × 1020 cm−3 [32,87]. If not otherwise
stated, we assume a compensation ratio of K ¼ 0%.

3. Effective mass m�

The effective mass is controversially discussed in
the literature. Values of m� ¼ 0.28me [68,88,89],
m� ¼ 0.34me [32], m� ¼ 0.5me [42], and m� ¼ 0.6me
[90] may be found. Of course, these constant values
implicitly assume a parabolic conduction band, i.e., the
effective mass is independent of the carrier concentration.
However, a more realistic description takes into account the
nonparabolicity of the conduction band. As a consequence,
the effective mass becomes dependent on the carrier
concentration. This dependence is described by Eq. (5),
which contains two free parameters, m�

0 and C, that
need to be fixed. Figure 15 shows the mobility as a
function of the carrier concentration for three different
parameter sets ofm�

0 and C. The mobility determined solely

by ionized-impurity scattering for K ¼ 0% should be an
upper limit, because all other scattering mechanisms, that
might further decrease the mobility, are neglected. For the
as-grown layers (solid symbols) in Fig. 15, all three
theoretical curves (solid lines) may represent this upper
limit, because the experimental data do not exceed them.
However, the annealed samples and the optically charac-
terized as-grown films show mobility values close to or
even slightly above the curve determined by parameters of
Young and co-workers.
The effect of electron-phonon scattering is eliminated by

measuring the mobility at low temperatures. The value
clearly exceeds the limit computed after Young and co-
workers. Therefore, it is assumed that this parameter set
overestimates the impact of ionized-impurity scattering.
Both the parameter sets of Ruske et al. and Fujiwara and
Kondo seem reasonable. They are obtained by fitting
optical data. Ruske et al. use an extended Drude
model, whereas Fujiwara and Kondo apply the classical
Drude model. The extended Drude model is believed
to be more appropriate for reasons outlined by Sommer
[85]. The parameter set of Ruske et al. yields an
effective mass of 0.35me for a carrier concentration of
5 × 1020 cm−3. This value is close to m� ¼ 0.34me deter-
mined by Look [32].
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FIG. 15. The mobility limited by ionized-impurity scattering is
computed as a function of the carrier concentration using Eq. (1).
Three different parameter sets for the effective mass are evalu-
ated: Ruske et al. [81] (black lines), Fujiwara and Kondo [82] (red
lines), and Young et al. [83] (green lines). The parametersm�

0 and
C are given in the graph. For Ruske et al. and Young et al., the
compensation ration K is varied from 0% (solid lines) to 5%
(dashed lines) and 10% (dotted lines). Here, ZD ¼ 1 and ZA ¼ 2
are assumed. The experimental data are divided into as-grown
layers (upward triangle [59], diamond [56], star [84]), as-grown
layers whose mobility is determined by optical fits (⊕ [85]),
layers annealed under a capping layer and measured at room
temperature (open symbols: square [85], leftward triangle [86],
rightward triangle [81]), and annealed samples measured at low
temperatures to eliminate electron-phonon scattering (⊞ [85]).
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APPENDIX B: REVIEW ON
THERMIONIC EMISSION

The thermionic emission theory across Schottky barriers
is developed following Rhoderick and Williams [50] and
subsequently applied to double Schottky barriers, i.e., grain
boundaries.
The thermionic emission theory assumes the transfer of

electrons over the barrier to be the dominant transport path
across Schottky barriers. The concentration of electrons
with energies larger than the barrier,

~n ¼
Z

∞

EB

DðEÞfðE; T; VÞdE

≈ Nc exp

�
−EB − eV

kBT

�
; ðB1Þ

is determined by the density of states DðEÞ multiplied by
the occupancy represented by the Fermi-Dirac function
fðE; T; VÞ and integrated for energies larger than the
barrier. Using the Boltzmann approximation to the
Fermi-Dirac function, ~n may be expressed by the effective
density of states Nc ¼ 2ð2πm�kBT=h2Þ3=2, the barrier
height EB, and the external applied voltage V. Further
parameters are the electron charge e, the Boltzmann
constant kB, and the temperature T. Note that the Fermi
level is taken to be the reference level at zero energy. The
area density of electrons hitting the barrier per second is
given by ~n v̄ =4. v̄ is the average thermal velocity of
electrons. Assuming a Maxwellian distribution of electron
velocities, v̄ can be computed as v̄ ¼ ð8kBT=πm�Þ1=2. One
further assumes that such electrons incident on the barrier
are not reflected by, e.g., phonons. Moreover, one has to
take into account the electrons flowing from the metal into
the semiconductor. Then, the thermionic current JTE across
a Schottky barrier of height EB is

JTE ¼ ev̄
4
Nc exp ð−EB=kBTÞfexp ðeV=kBTÞ − 1g: ðB2Þ

With the effective density of states Nc and the average
thermal velocity v̄, Eq. (B2) becomes the familiar relation

JTE ¼ A�T2 exp ð−EB=kBTÞfexp ðeV=kBTÞ − 1g ðB3Þ

containing the Richardson constant A� ¼ 4πm�ek2B=h
3.

The neglected effect of reflection at the barrier can be
integrated into the model by modifying the Richardson
constant [9]. The synthesis of thermionic and diffusion
theory yields the relation J ¼ JTE=ð1þ v̄=vDÞ, where vD is
an effective diffusion velocity [91]. If vD ≫ v̄, then
J ≈ JTE, and the thermionic emission theory applies.
Orton shows the thermionic emission theory to be appro-
priate for polycrystalline materials [9,10].

Let us now apply the Schottky barrier theory to double
Schottky barriers, that is, grain boundaries. As a conse-
quence of the generally high number of grain boundaries
within the material, one can assume the voltage drop across
one grain boundary to be small [92]. Then, the grain-
boundary limited conductivity σ of a polycrystalline
material with grain size L can be computed using the
relation

σ ¼ L
2

dJTE
dV

����
V¼0

: ðB4Þ

The factor 1=2 occurs because the voltage drops across two
equal Schottky barriers [10,67]. The grain size L appears
because the conductivity is after Matthiessen’s rule propor-
tional to the reciprocal number of grain boundaries #gb,
i.e., σ ∼ 1=#gb. As the number of grain boundaries equals
furthermore the reciprocal grain size, it follows that
σ ∼ ½1=#gb ¼ 1=ð1=LÞ ¼ L�. Using Eq. (B3) in conjunc-
tion with the just-outlined modifications, the conductivity
of a polycrystalline material is obtained by

σTE ¼ L
eA�

2kB
T exp

�
− EB

kBT

�
: ðB5Þ

Similar expressions are derived by Petritz [8] and Seto [7].
However, Seto uses Eq. (B2) in the form

JTE ¼ ev̄
4
Nc exp ð−EC=kBTÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼n

exp ½−ðEB − ECÞ=kBT�
× fexp ðeV=kBTÞ − 1g; ðB6Þ

where EC is the energy of the conduction band with respect
to the Fermi level. The expression for the carrier concen-
tration n is valid only for nondegenerate semiconductors,
because it is based on Boltzmann statistics. Thus, Seto’s
model must not be applied to degenerate materials. For
degenerate semiconductors, Eq. (B5) is appropriate given
that EB ≫ kBT. The conductivity derived by Seto,

σTE ¼ Ln
e2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πm�kB

p 1ffiffiffiffi
T

p exp ½−ðEB − ECÞ=kBT�; ðB7Þ

and Eq. (B5) differ in their temperature dependence and in
the exponent. Seto gives the barrier height relative to the
conduction band, whereas the Schottky theory measures
the barrier with respect to the Fermi level. Note that, similar
to Eq. (B5), a factor of 1=2 is also appended to Seto’s
equation.
A further assumption of the presented models is the

uniform barrier height. Spatial fluctuations of Schottky
barrier heights are introduced by Werner and Güttler to
explain current-voltage and capacitance-voltage measure-
ments [93]. Werner applies this model to grain boundaries
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to elucidate curved Arrhenius plots as observed for many
polycrystalline materials [94]. Werner assumes the barrier
heights to have a Gaussian distribution PðEBÞ with a
standard deviation ~σB around a mean value ĒB. He includes
the barrier fluctuations into the thermionic emission theory
by performing an integration of the thermionic emission
current described by Eq. (B3) over all potentials EB. The
application of fluctuating barriers to grain boundaries of
polycrystalline materials yields

σTE ¼ L
eA�

2kB
T exp

�
− 1

kBT

�
ĒB − ~σ2B

2kBT

��
: ðB8Þ

The fluctuating barriers induce a reduction of the effective
barrier by ~σ2B=2kBT. This reduction is more pronounced for
lower temperatures, leading to the upwardly bent Arrhenius
curves for high 1=T values. Several authors use the Werner
model to fit data of polycrystalline materials [36,60,95].
However, some authors ignore the temperature dependence
of the prefactor of the exponential function [36,60]. Others
modify the Werner model according to the relation
Nc exp ð−EC=kBTÞ ¼ n, which is valid only for nonde-
generate materials [95]. Nevertheless, such a model is
applied to degenerate materials. We use the barrier heights
derived from these questionable models, because other
values are lacking.
Several authors claim the Seto or Werner model to be

inaccurate for highly doped materials, because they do not
take into account degeneracy [18,34,96,97]. In agreement
with our conclusions, Bruneaux et al. state Eq. (B5) to
apply to a degenerate electron gas and Seto’s equation to a
nondegenerate electron gas [97]. Zhang and Ma cite
Bruneaux et al. but give a slightly different expression
for the mobility in degenerate samples [34]. Explanatory
remarks regarding their modification are not given by
Zhang and Ma. Therefore, the expression used by Zhang
and Ma is problematic as, e.g., pointed out by Liu et al.
[33]. The expression is nevertheless used by other
authors [18].
Kajikawa argues that the Boltzmann approximation is

applicable only when the relation Ec − EF ≫ kBT holds
[96]. Although this argument is certainly true in the case of
the Seto model, it does not apply to Eq. (B5) and, thus, the
Werner model. The criterion for the applicability of
Boltzmann statistics with respect to thermionic emission
at grain boundaries is EB ≫ kBT. Only then are the
approximation in Eq. (B1) and the expression for
the average thermal velocity v̄ valid. Values found in the
literature for EB are 0.3–8 [36], 3 [60], and 6.8–37.7 meV
[95]. Note that these values are obtained with the above-
discussed, modified Werner models that comprise an expo-
nent similar to the Werner model but with modified
prefactors. As these values are mostly lower than kBT ≈
25 meV at room temperature, the criterion EB ≫ kBT is not

fulfilled and the application of the Werner model seems
questionable.
The integration of Fermi-Dirac statistics into a model of

fluctuating grain-boundary barrier heights is presented by
Kajikawa [96]. He evaluates the expression for the con-
ductivity

σTE ¼ e2nhτi
m�

¼
Z

∞

0

�Z
∞

EB

DðE; TÞfðE; TÞτðE; TÞdE
�
PðEBÞdEB

ðB9Þ

with τðE; TÞ ¼ λg=ν being the relaxation time defined as
the fraction of electron mean free path λg and electron
group velocity ν. The inner integral can be solved and gives
the conductivity for uniform barrier heights

σuTE ¼ 4

3
λg

eA�

kB
T

�
EB þ EF

kBT

�
1þ exp

�
EB

kBT

��−1
þ ln

�
1þ exp

�
− EB

kBT

���
: ðB10Þ

For EB ≫ kBT, Eq. (B10) should reproduce Eq. (B5).
However, Eq. (B10) differs from Eq. (B5) by a factor of
8ðEB þ EFÞ=3kBT. Kajikawa’s expression gives hence a
different temperature dependence than the expression
derived by the Schottky barrier theory. The outer integral
of Eq. (B9) has to be evaluated numerically. Kajikawa fits
temperature-dependent conductivity data of various poly-
crystalline semiconductors with the three fitting parameters
mean free path λg, standard deviation, and mean value of
the barrier fluctuations. His model includes specifically the
condition EB ≤ kBT. The price to pay is the lacking
analytical solution in the case of fluctuating barriers.

APPENDIX C: FIELD EMISSION—EVALUATION
OF COEFFICIENTS

The evaluation of the coefficients b1, c1, and f1 needs
the definition of the barrier ϕðxÞ. Using the abrupt depletion
approximation, a simple parabolic expression for the
Schottky barrier potential

ϕðxÞ ¼ aðx − lÞ2

with a ¼ e2n
2ϵ0ϵr

;

l ¼
�
2ϵ0ϵr
e2n

ðEB − eVþ EFÞ
�
1=2

ðC1Þ

can be given. n is the carrier concentration, e is the electron
charge, and ϵ0 and ϵr are the static dielectric constant and
the vacuum permittivity, respectively. l describes the width
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of the depletion zone. It is defined by the barrier height EB,
the Fermi level EF, and the applied voltage V. The abrupt
depletion approximation assumes the carrier density to fall
abruptly from the density in the bulk to a negligible value in
the depletion zone. This simplification might be too drastic
in the degenerate case as also pointed out by Padovani and
Stratton [98]. However, the excellent agreement between
the theory and experiment in the case of metal-
semiconductor contacts supports this simplification [50].
Thus, we assume that an appropriate description of the
barrier potential is, in fact, obtained under the assumption
of the abrupt depletion approximation. Note that, in
contrast to us, Garcia-Cuenca, Morenza, and Esteve are
indeed able to consider the degeneracy for the barrier
potential. Thus, their tunneling model for grain boundaries
is more accurate with respect to the actual shape of the
barrier than ours.
The coefficient b1 is defined as

b1 ¼ α

Z
x2

x1

½ϕðxÞ − EF�1=2dx ðC2Þ

with α ¼ 2ð2m�Þ1=2=ℏ. The condition ϕ ¼ EF yields x1
and x2. Inserting ϕ into Eq. (C2) and performing a
hyperbolic substitution gives

b1 ¼ − αEFffiffiffi
a

p
Z

w2

w1

½sinhðwÞ�2dw

with w1 ¼ 0;

w2 ¼ arccosh

� ffiffiffiffiffiffi
a
EF

r
l

�
: ðC3Þ

Theantiderivativeof this integral is1=2½sinhðwÞcoshðwÞ−w�.
One defines

~E ¼ EB − eV
EF

; ðC4Þ

E00 ¼
2e
α

ffiffiffiffiffiffiffiffiffiffiffi
n

2ϵ0ϵr

r
¼ ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ϵ0ϵrm�

r
ðC5Þ

and obtains

b1 ¼ 2
EF

E00

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 þ ~E

p
− ln

	 ffiffiffiffiffiffiffiffiffiffiffiffi
~Eþ 1

p
þ

ffiffiffiffi
~E

p 
i
: ðC6Þ

As the integral in Eq. (C2) is axially symmetric with respect
to the energy axis, b1 for a double Schottky barrier is just
twice the value of a simple Schottky barrier. Hence, one
finds a factor of 2 in Eq. (C6).
The coefficient c1 is defined as

c1 ¼
1

2
α

Z
x2

x1

½ϕðxÞ − EF�−1=2dx: ðC7Þ

A hyperbolic substitution results in the expression

c1 ¼
α

2
ffiffiffi
a

p
Z

w2

w1

wdw

with w1 ¼ arccosh

� ffiffiffiffiffiffi
a
EF

r
l

�
;

w2 ¼ 0: ðC8Þ

The evaluation of the integral leads to

c1 ¼ 2
1

E00

ln
	 ffiffiffiffiffiffiffiffiffiffiffiffi

~Eþ 1
p

þ
ffiffiffiffi
~E

p 

ðC9Þ

with the factor 2 for a double Schottky barrier.
The coefficient f1 is defined as

f1 ¼
α

4

�
1

x2 − x1

�
1

ϕ0ðx1Þ
− 1

ϕ0ðx2Þ
�Z

x2

x1

½ϕðxÞ−EF�−1=2dx
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{≡f11

−
1

2

Z
x2

x1

½ϕðxÞ−EF�−3=2
�
1− ϕ0ðxÞ

x2 − x1

�
x− x1
ϕ0ðx2Þ

þ x2 − x
ϕ0ðx1Þ

��
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡f12

�
: ðC10Þ

The upper part f11 of Eq. (C10) can be solved easily, as
the integral resembles the one of c1. The result is

f11 ≈
1

4EF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að ~Eþ 1Þ

q ln ð4 ~EÞ: ðC11Þ

Note that the approximation

ln ð
ffiffiffiffiffiffiffiffiffiffiffiffi
~Eþ 1

p
þ

ffiffiffiffi
~E

p
Þ ≈ ln ð4 ~EÞ ðC12Þ

is used. The lower part f12 of Eq. (C10) consists of the
difference between two diverging integrals. Stratton
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circumvents this problem by introducing a special linear
transformation [11]. Here, the obstacle is removed by
solving the expression

f12 ¼
Z

x2

x1

f…g ¼ lim
~x→x2

Z
~x

x1

f…g

¼
ffiffiffiffi
~E

p
− 1

2
ln ð4 ~EÞ

2EF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að ~Eþ 1Þ

q ðC13Þ

with the mathematical software tool Mathematica by
Wolfram Research. The combination of Eqs. (C11) and
(C13) yields

f1 ¼ 2
1

4E00EF

ffiffiffiffiffiffiffiffiffiffiffiffi
~E

~Eþ 1

s

¼ 2
1

4E00EF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB − eV

EB − eVþ EF

s
: ðC14Þ

Again, the factor of 2 marks the difference between a
simple and a double Schottky barrier.
Equation (C14) differs from the expression

f1 ¼ 2
1

4E00EF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB

EB − EF

s
ðC15Þ

given by Padovani [51]. Two reasons favor our result: (i) Let
us assume a Schottky barrier with a highly doped semi-
conductor. In that case, it holds that kBT=E00 ≪ 1. Thus,
field emission should be the dominant transport mechanism.
Furthermore, we assume that EF measured with respect to
the conduction band is large and that EB measured with
respect to the Fermi level is small. In particular, EB < EF
might occur. Using Padovani’s expression, this situation
would imply that f1 is not defined. In consequence, the
inequality 1 > kBTð

ffiffiffiffiffiffiffi
2f1

p þ c1Þ cannot be computed. But
that would be a contradiction, as the inequality relationmust
be fulfilled in the case of field emission. (ii) A situation as
described above occurs if one chooses n ¼ 2 × 1020 cm−3
and Qt ¼ 7 × 1013 cm−2. It yields EF ¼ 459meV and
EB ¼ 206 meV; thus, EB < EF. We solve Eq. (C10)
numerically for the above-given parameters using the scipy

package of Python. We obtain a perfect agreement between
the numerical result and Eq. (C14).
For EB ≫ EF and small applied voltages, Eqs. (C6),

(C9), and (C14) can be simplified, respectively, to

b1 ¼ 2
EB − eV

E00

; ðC16Þ

c1 ¼ 2
1

2E00

ln ð4 ~EÞ; ðC17Þ

f1 ¼ 2
1

4E00EF
: ðC18Þ

These expressions, except for the factor of 2, are given by
Padovani and Stratton for simple Schottky barriers in their
publication [98].

APPENDIX D: THERMIONIC FIELD EMISSION

Thermionic field emission describes the tunneling of
electrons at an energy Em exceeding the Fermi energy EF
but being below the barrier height EB. Em is defined by the
relation

cmkBT ¼ 1; ðD1Þ
and the J-V characteristic for thermionic field emission is
described by [51,98,99]

JTFE ¼ A�T
2πkB

exp
�
EF

kBT
− bm − Em

kBT

��
π

fm

�
1=2

×

�
1 − exp

�
− eV
kBT

��
: ðD2Þ

bm, cm, and fm are the tunneling coefficients derived in
Appendix C. The expressions for the thermionic field
emission coefficients bm, cm, and fm differ from those
of pure field emission b1, c1, and f1 only by the
replacement of the Fermi level EF by the characteristic
energy Em. Note that this not only implies the modification
of the integrand, but also of the integration limits now
defined by ϕðxÞ ¼ Em. Evaluating the coefficients accord-
ing to Appendix C results in

bm ¼ 2
1

E00

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ē − Em

p ffiffiffiffī
E

p − E00Em

2kBT

�
; ðD3Þ

cm ¼ 2
1

E00

ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ē − Em

p ffiffiffiffī
E

pffiffiffiffiffiffi
Em

p
�
; ðD4Þ

fm ¼ 2
1

4E00Em

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Em

~Em þ 1

s
ðD5Þ

≈ 2
cosh2ðE00=2kBTÞ

4E00Ē
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − tanh2ðE00=2kBTÞ
p ðD6Þ

with the parameters

Ē ¼ EB þ EF − eV; ðD7Þ

~Em ¼ EB − eV
Em

; ðD8Þ

Em ¼ Ē
cosh2 ðE00=2kBTÞ

: ðD9Þ
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The expression for Em is deduced by inserting cm into
Eq. (D1). Equation (D1) is also used to derive the term
E00Em=kBT in the expression for bm. Equation (D6) is
obtained from Eq. (D5) by applying the expression for Em
and by evaluating the square-root term in (D5). The
examination of the exponent in Eq. (D2) reveals that

bm − Em

kBT
¼ 2

Ē
E0

; ðD10Þ

where E0 ¼ E00 coth

�
E00

2kBT

�
: ðD11Þ

The thermionic field emission current JTFE can thus be
expressed as

JTFE ¼ A�T
ffiffiffiffiffiffiffiffiffiffi
E00Ē

pffiffiffiffiffiffi
2π

p
kB cosh ðE00=2kBTÞ

½2 − tanh2ðE00=2kBTÞ�1=4

× exp

�
EF

kBT
− 2

EB þ EF

E0

�
exp

�
2
eV
E0

�

×

�
1 − exp

�
− eV
kBT

��
: ðD12Þ

Using Eq. (17), one obtains the conductivity

σTFE ¼ eLA� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E00ðEB þ EFÞ

pffiffiffiffiffiffi
2π

p
k2B cosh ðE00=2kBTÞ

½2 − tanh2ðE00=2kBTÞ�1=4

× exp

�
EF

kBT

�
exp

�
−2EB þ EF

E0

�
: ðD13Þ

Expression (D13) differs from the one derived by Yu [52].
Instead of the term ½2 − tanh2 ðE00=kBTÞ�1=4, Yu’s equation
contains the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth ðE00=kBTÞ

p
. This difference

is a direct consequence of the discrepancy between
Padovani’s expression for f1 and the one derived in this
work (see Appendix C).
Fluctuating barriers can be implemented into the model

of thermionic field emission according to the procedure
proposed by Werner. The procedure is outlined in
Appendix B. As a result, Eq. (D13) is modified by an
additional factor. The conductivity σfTFE comprising fluc-
tuating barriers is thus given by

σfTFE ¼ σTFE × exp

�
~σ2B

2E00

�
: ðD14Þ

Similar to the thermionic emission case, fluctuating barriers
induce a reduction of the barrier height. The reduction is
given by ~σ2B=2E00.

APPENDIX E: FIELD EMISSION
AND FLUCTUATING BARRIERS

Fluctuating barriers are implemented into the tunneling
equations according to the approach by Werner for therm-
ionic emission outlined in Appendix B [93]. The current
density JFE is multiplied with a Gaussian distribution
PðEBÞ resembling the barrier fluctuations. This expression
is then integrated over the barrier energy EB. One obtains
the expression for the conductivity

σfFEðĒB; ~σBÞ ¼ L
d
dV

Z
∞

−∞
JFEðEBÞPðEBÞDEB

¼ L
Z

∞

−∞
dJðEBÞ
dV

PðEBÞDEB

¼
Z

∞

−∞
σFEðEBÞPðEBÞdEB ðE1Þ

by interchanging derivation and integration. σFEðEBÞ is
described by Eq. (18). It is repeated here for completeness:

σFE ¼ eLA�c1
ðc1kBÞ2

exp ð−b1Þ
�

πc1kBT
sin ðπc1kBTÞ

− exp ð−c1EFÞ
�
:

ðE2Þ

The exponential functions as well as their prefactors
contain the integration variable EB. However, the expo-
nential functions are considered for the integration only. In
the prefactors, one defines EB ¼ ĒB. The integrals to solve
are thus Z

∞

−∞
expð−b1|{z}

≡e1

ÞPðEBÞdEB ðE3Þ

and
Z

∞

−∞
expð−b1 − c1EF|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

≡e2

ÞPðEBÞdEB: ðE4Þ

The expressions e1 and e2 have to be simplified in order to
perform the integration, because these expressions contain
the parameters b1 and c1, which are rather complex
functions of the integration variable EB. Fits using the
uniform barrier height model yield values ~E < 1.
Therefore, ~E ≪ 1 is assumed for the approximation of
e1 and e2.
First, the expression

e1 ¼ −b1 ¼ −2 EF

E00

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 þ ~E

p|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≈

ffiffiffi
~E

p
− ln

	 ffiffiffiffiffiffiffiffiffiffiffiffi
~Eþ 1

p
þ

ffiffiffiffi
~E

p 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ð⋆Þ

i

ðE5Þ

is estimated. The term ð⋆Þ can be further simplified:
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ð⋆Þ ¼ ln
n ffiffiffiffiffiffiffiffiffiffiffiffi

~Eþ 1
p

þ
ffiffiffiffi
~E

p o
¼ ln

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	 ffiffiffiffiffiffiffiffiffiffiffiffi
~Eþ 1

p
þ

ffiffiffiffi
~E

p 

2

r o
¼ ln

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Eþ 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 þ ~E

p
þ ~E

q o
≈ ln

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
~E

p
þ 1

q o
¼ 1

2
ln
n
2

ffiffiffiffi
~E

p
þ 1

o
≈
1

2

�
2

ffiffiffiffi
~E

p
− 4 ~E

2

�
¼

ffiffiffiffi
~E

p
− ~E ðE6Þ

by taking the square and the square root in the argument of
the logarithm and using the relation lnðx1=2Þ ¼ 1=2 lnðxÞ.
Furthermore, one can expand the logarithm into a power
series according to the expression ln ðxþ 1Þ ≈ x − x2=2.
The power series converges for jxj < 1. Accordingly, the
boundary condition for Eq. (E6) is ~E < 1=4. Inserting
Eq. (E6) into Eq. (E5), one obtains

e1 ¼ −b1 ¼ −2 EF

E00

h ffiffiffiffi
~E

p
−

ffiffiffiffi
~E

p
þ ~E

i
¼ −2 EF

E00

~E ¼ −2 EB

E00

: ðE7Þ

The relation ~E ¼ EB=EF is used for the last transformation.
Finally, a numerical comparison of the full and approxi-
mated expression for e1 reveals that the best agreement is
achieved by

e1 ¼ −b1 ¼ − EB

2E00

: ðE8Þ

Next, the expression e2 has to be evaluated for ~E ≪ 1. The
approximation is

e2 ¼ − b1 − c1EF

¼ − 2
EF

E00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E2 þ ~E

p
≈ − 2

EF

E00

ffiffiffiffi
~E

p

¼ − 2
EF

E00

ffiffiffiffiffiffi
EB

EF

s
: ðE9Þ

Inserting Eqs. (E8) and (E9) into expressions (E3) and
(E4) yields

Z
∞

−∞
exp

�
− EB

2E00

�
PðEBÞdEB ðE10Þ

and
Z

∞

−∞
exp

�
−2 EF

E00

ffiffiffiffiffiffi
EB

EF

s �
PðEBÞdEB: ðE11Þ

The integrand (E11) is not defined for EB < 0. Therefore,
the integral (E11) cannot be solved. In contrast, integral
(E10) is solvable. One obtains the expressionZ

∞

−∞
exp

�
− EB

2E00

�
PðEBÞdEB

¼ exp

�
− 1

2E00

�
ĒB − ~σ2B

4E00

��
ðE12Þ

with ~σB being the standard deviation around the mean
value ĒB.
The comparison of the first and second summands of

Eq. (E2) reveals the first summand to be roughly one order
of magnitude larger than the second one. Potential fluctua-
tions might thus be neglected in the second term. This
assumption is beneficial, because the second summand
contains the integral that is analytically unsolvable. The
final equation describing tunneling through fluctuating
barriers is thus given by

σfFE ¼ eLA�πT
kB sin ðπc̄1kBTÞ

exp

�
− 1

2E00

�
ĒB − ~σ2B

4E00

��

−
eLA�c̄1
ðc̄1kBÞ2

exp f−b̄1 − c̄1EFg ðE13Þ

in which the parameters

b̄1 ¼ b1ðĒBÞ and c̄1 ¼ c1ðĒBÞ ðE14Þ

are defined.
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