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Abstract 

Background: Plant root systems are key drivers of plant function and yield. They are also under-explored targets 
to meet global food and energy demands. Many new technologies have been developed to characterize crop root 
system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the 
genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and 
algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root 
traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analy-
sis methods from images combined with storage solutions linked to metadata. Automated high-throughput pheno-
typing methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas 
similar field-based studies remain predominantly manual low-throughput.

Description: Here, we present an open-source phenomics platform “DIRT”, as a means to integrate scalable super-
computing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables 
researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share 
data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects 
end-users with large-scale compute “commons” enabling the estimation and analysis of root phenotypes from field 
experiments of unprecedented size.

Conclusion: DIRT is an automated high-throughput computing and collaboration platform for field based crop root 
phenomics. The platform is accessible at http://dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastruc-
ture using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a 
high volume central depository and high-throughput RSA trait computation platform for plant scientists working on 
crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits 
from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community 
with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on tech-
nology. All stored and computed data is easily accessible to the public and broader scientific community. We hope 
that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to 
other fields of science.
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Background
Global food demand is projected to double by the year 
2050 [1, 2]. Meeting this increased demand requires sig-
nificant improvements in crop yield and the development 
of crop plants adapted to water-stress [3] and low fertil-
ity soils [4, 5]. Breeding more efficient roots is increas-
ingly recognized as a high-priority target to achieve yield 
improvements [6] because roots are essential for nutrient 
and water uptake [7–9]. Yet, little is known regarding the 
relationship between root system architecture (RSA) and 
crop function with few examples linking root phenotype 
with genotype and phenotypic advantages under given 
field conditions [10–12].

Developing new crop varieties includes both labora-
tory- and field-based studies [13, 14]. Especially field 
studies to characterize RSA of mature field-grown crops 
involve laborious manual tasks  that limit the achievable 
sample size. Extending field-based studies and sample 
sizes is a widely shared goal for future phenotyping sce-
narios [15, 16]. Indeed, phenotyping rather than genotyp-
ing is recognized as the bottleneck limiting advances [17, 
18], given inexpensive next-generation sequencing tech-
nologies that have paved the way for characterizing the 
genotypes of diversity panels of thousands of recombi-
nant inbred lines [19]. In response, a number of national 
and international efforts, including the International 
Plant Phenotyping Network, have established “plant phe-
nomics” centers to quantify plant phenotypes and their 
genetic origin [20].

Similarly, despite some successes, there are relatively 
few publicly available root phenotyping datasets [21]. 
Available large datasets are pre-dominantly derived from 
laboratory-based root phenotyping platforms. Labora-
tory studies benefit from increased levels of control and, 
at least in a few cases, have identified loci with candidate 
genes underlying RSA in early root development [22, 23]. 
However, growth containers used in these studies, filled 
with real or artificial soil [24–27], limit observations spa-
tially and temporally to small or immature root systems 
[28, 29].

Establishing a link between RSA and genotypes 
requires the measurement of root phenotypes [30], often 
derived from automatic analysis of two-dimensional and 
three-dimensional digital images [31–39]. A comprehen-
sive overview of existing software for root image analy-
sis is maintained at the site: http://plant-image-analysis.
org [40]. The scope of this software collection is impres-
sive, in that individual tools provide different degrees of 
computational automation, ranging from manual, semi-
automatic to fully automatic. However, none of these 
provide an integrated platform that can (a) associate root 
images with environmental and phenotypic meta-data, 
(b) provide seamless access to scalable, supercomputing 

resources for non-technical users and (c) share informa-
tion within a collaborative team and the plant science 
community.

In order to address these issues we have developed 
DIRT. The DIRT platform provides a number of major 
functionalities that enable researchers to: (a) manage root 
image collections and metadata; (b) interactively calibrate 
measurement pipelines; (c) compute crop root traits on 
scalable high-throughput compute platforms; and (d) 
analyze the results of computations. Broadly DIRT ena-
bles researchers to process thousands of root images 
through the pipeline with custom parameters and view 
and analyze computed RSA output associated to the raw 
images. Thus, our platform makes high-throughput scal-
able computational platforms available to the researchers 
with no technical expertise.

Utility
DIRT addresses the phenotyping bottleneck within the 
computational plant sciences, by providing a single plat-
form to meet the demands of data access and storage, 
exchange and sharing, and image-based high-throughput 
root phenotyping [41]. The DIRT platform enables users 
to organize and share images as datasets per experiment 
(Fig.  1a), run image processing algorithms on the data-
sets such that computed root trait values can be down-
loaded directly from the user interface (Fig.  1b). Visual 
quality control is implemented as a calibration tool for 
the masking threshold needed to separate the root from 
the background (Fig.  1c) and the possibility to investi-
gate all intermediate image processing steps (Fig.  1d). 
The algorithms deployed on DIRT have been specifically 
designed and tested on two-dimensional images taken of 
root systems in the field. By focusing on crop root traits, 
DIRT also overcomes the time consuming manual meas-
urement processes involved in Shovelomics [42], while 
enabling measurements of manually inaccessible traits 
such as the dominant root tissue angle. Overall, DIRT is 
a unique root phenotyping platform, accessible by every-
body via an interactive web-based interface without the 
need to install software locally on a computer.

The RSA trait computation pipeline available in DIRT is 
fully automated and includes automatic estimation of 78 
traits in total (see Additional file 1: Section S3). Traits are 
categorized into common traits for all root system archi-
tectures, monocot traits, dicot traits and traits for excised 
root samples. We provide a separate, optional threshold 
calibration tool that allows the researcher to select a rep-
resentative image from the marked collection and com-
pute binary image masks using different segmentation 
threshold values. Within this calibration workflow, the 
user selects the most appropriate value by visually check-
ing the image mask.

http://plant-image-analysis.org
http://plant-image-analysis.org
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As a response to community requests, the original 
trait computation pipeline in DIRT was extended. The 
current pipeline includes previously unpublished algo-
rithms to measure traits such as top and bottom angle in 
monocots (see Additional file 1: Section S3). The pipeline 

is best used by following the DIRT imaging protocol to 
process 2D root images. In brief, a washed root is imaged 
against a dark diffuse reflecting background that contains 
a light colored circle with known diameter. Additionally, 
a barcode, QR-code or simple text can be placed above 

Fig. 1 Major DIRT functionalities. a A cowpea root dataset annotated with experiment parameters and location and shared with three other mem-
bers (names were replace with red bars). b The overview of the computed cowpea data set shown in (a). The computation parameters are shown 
along with icons of the image mask. Computed traits and entered image metadata can be downloaded as Excel compatible.csv files. c A user can 
visually choose the best threshold parameter to separate the root from the background. d Each of the images in the computation shown in (b) can 
be assessed in detail. Every image processing step can be followed visually per image and compared to the original image and the computed traits
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the root for automatic identification to be associated with 
trait computations (see Additional file 1: Figure S2). On 
completion of the computation, masked images, com-
puted traits, and corresponding CSV and RSML files [43] 
populate the computation view tab. See Additional files 2 
and 3 for examples of produced CSV and RSML files.

DIRT was designed to enable full data control for 
researchers, whether individually or as part of collabora-
tive teams. As such we realized sharing options, where 
each newly created collection is designated to be private 
by default. The owner of a collection can share data and 
computed results privately with one or many collaborators 
via the platform’s web-interface or publish collections and 
computations publically under a chosen creative commons 
license. Furthermore, DIRT enables different functions 
based on user access rights. The owners of data can edit, 
upload, download and delete images and corresponding 
metadata. Metadata can be associated to whole experiments 
or data sets to document experiment conditions (e.g. FAO 
soil type, GPS location, soil moisture content). The associ-
ation is realized as an upload of a CSV file containing the 
metadata or is entered via a web form directly in the web 
browser. On top of suggested standard experiment param-
eters a dynamic form allows the documentation of non-
standard parameters such as nitrogen content per depth 
level. Similarly, each root image can be annotated manu-
ally or by uploading a pre-formatted CSV file with specific 
metadata (e.g. genotype, dry biomass) and may contain 
RSML files of manual measurements to annotate the image, 
e.g. from RootNav [44] (Additional file 1: Section S6.3.7).

DIRT is hosted publically on the iPlant cyber-infra-
structure [45, 46] leveraging its cloud data storage and 
the Advanced Agave API to communicate with the 
Texas Advanced Computing Center (TACC) for high-
throughput computation of stored root images. It is built 
as a multi-tiered application consisting of a web server, a 
database server, iPlant’s data store, middleware and grid 
computing. The core middleware components are the 
PHP modules interfacing the database, iPlant data store 
and grid-computing environment. DIRT’s web inter-
face is developed using the widely adopted open source 
content management system Drupal (http://drupal.org). 
DIRTs’ graphical interfaces (Fig.  1) are accessible via 
standard web browsers and abstract the organization and 
storage of root images and their metadata in a MySQL 
database and iPlant’s data store from the user. The image-
processing pipeline is developed in Python and runs on 
TACC. The trait computation pipeline is abstracted from 
the computational resources and from the aggregation 
and sharing of images. Hence, it is possible for developers 
to extend DIRT by incorporating new pipelines adapted 
to distinct imaging and experiment conditions (see Addi-
tional file  1: Section S7.3). The DIRT source code and 

installation instructions are available for download from 
the DIRT website (see Additional file 1: Section S7.2) to 
facilitate use of private supercomputing resources for the 
plant science community. As a proof of concept we have 
also released an installation of DIRT at Georgia Tech  
(http://dirt.biology.gatech.edu) that uses Georgia Tech’s 
high performance computing environment; instructions 
for a local installation of DIRT on proprietary computing 
resources are described in Additional file 1: Section S7.3. 
Altogether, DIRT assembles a unique root phenotyping 
platform that is accessible to non-technical users via an 
interactive web-based interface.

Design and implementation
In this section we describe the high-level view of the 
system to give insight into the extensibility and sustain-
ability rationale underlying the platform design. DIRT 
is a multi-tiered online platform developed with the 
Drupal framework [47]. Drupal is an open source con-
tent management system and framework made up of 
a software stack that can be used to build content-rich 
web applications. Figure 2 shows the three tier architec-
ture: the client tier constitutes the user interfaces in web 
browser, the processing tier encompasses the Drupal 
modules and image processing pipeline, and the storage 
tier consists of the database and file systems. Figure  1 
shows a high-level overview of the interfaces available 
to DIRT users. In particular, the functional specifica-
tions of DIRT were defined to meet the demands of field 
root phenotyping:

1. Private and public storage of large root image data 
sets with metadata for each image and data set. In 
doing so, DIRT users don’t have to be concerned 
with the computational and storage needs.

2. The platform supports private virtual collections by 
selecting root images from different physical collec-
tions. Virtual collections have the potential to save 
time and money required for new field experiments, 
by simply combining existing experiments.

3. Up-scaling of RSA trait estimation to supercomput-
ing platforms.

4. The DIRT platform should allow storage of different 
types of image data.

5. The DIRT platform is extensible to incorporate new 
RSA trait computation pipelines.

6. The source code of the DIRT platform is freely avail-
able under open source licenses to the science com-
munity.

To meet the above platforms design specifications, we 
chose the following software stack to develop and build 
the application:

http://drupal.org
http://dirt.biology.gatech.edu
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1. For the RSA trait estimation we chose the pipeline 
developed in Python (see Additional file  1: Section 
S3) and ported it to grid computing infrastructure for 
high-throughput computation.

2. User interfaces, user management, access control, 
data management, application workflow, user task 
scheduling and system’s configuration were imple-
mented as open-source Drupal modules.

3. The public DIRT installation on iPlant interfaces with 
the STAMPEDE high performance computing plat-
form at TACC [48].

4. For scalable storage and public infrastructure we 
chose the data store within iPlant’s cyber-infrastruc-
ture.

5. The communication between DIRT and STAMPEDE 
is realized with the AGAVE API [49] and a secure 
shell connection.

In the following we detail the content, component and 
deployment model of the DIRT system to inform devel-
opers about our extensions to DRUPAL.

Content model
The content model is best described as a class association 
model that defines the storage architecture for contents 
with different attributes (e.g. root images, collections, vir-
tual collections, metadata). A class association diagram in 
the unified modeling language (UML) [50] is a type of static 
structure diagram that describes the structure of a system 
by showing the system’s contents or classes, their attributes, 
operations and relationships. Figure 3 is a class association 
diagram of the DIRT’s contents or classes depicting the major 
attributes or fields of the contents and their relationships.

Within the Drupal framework, each content type has a 
set of common attributes:

Fig. 2 DIRT Architecture. DIRT is programed within the framework of the Drupal content management system and can be configured to interact 
with any high-throughput grid computing environment. The iPlant installation uses the Agave API to communicate with the high-throughput 
computing environment. The Agave API is utilized to transfer images from the iPlant data store to the computing platform and execute the compu-
tation. Metadata is organized in a MySQL database. All customized Drupal modules are open source and provide the functionality for configuration 
and communication with remote high-throughput grid computing platform



Page 6 of 12Das et al. Plant Methods  (2015) 11:51 

  • NID (Node ID): Every node or content in the Drupal 
system has a unique ID assigned, irrespective of the 
content type.

  • Title: Every node or content in the system is required 
to have a title.

  • UID: Every node or content in the system is explicitly 
tied to its creator i.e. the user of the system who cre-
ated it.

  • Status: Every node or content in the system has one 
of the two states, published or unpublished. This fea-
ture assures that content is kept offline, until the con-
tent is valid and complete to be taken online.

  • Created and changed: A timestamp monitor content 
or node changes.

  • VID (version ID): Every node or content in the sys-
tem maintains its version information. If enabled, 

all changes to a content or node is stored and main-
tained.

In addition to Drupal’s common attributes, DIRT con-
tent types require custom attributes to meet the system’s 
requirement specifications. Here we describe these con-
tent types briefly:

  • Calibrated mask images contains attributes to asso-
ciate an image to multiple image masks created dur-
ing the calibration of an original root image and an 
attribute referencing the original root image in the 
system database.

  • Computation references to a marked collection, a 
RSA trait computation pipeline, the pipeline param-
eters and the traits available in a pipeline. Further-

Fig. 3 Content model or class association diagram of DIRT. A class association diagram in UML [50] is a static structure diagram to describe the 
relationship between the contents or classes of a software system including their class attributes. This figure shows the custom contents or classes, 
their attributes and relationship within DIRT. The rectangular boxes represent the content, the text on top portion of the box represents the name of 
the content and the text in lower portion of the box represents important content attributes. The line connecting the boxes denote the content asso-
ciation. The symbols at the end of these lines represent the association type and the text on these lines represents the attributes of the association
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more, Computation contains an attribute to define its 
visibility. A computation also contains a field of type 
file to link to a CSV file containing computed RSA 
trait values of a referred Marked Collection.

  • DIRT Output defines the output produced for each 
raw root image by the RSA trait computation pipe-
line. It contains attributes to refer to a computation 
and original root image. Additionally, the content 
type contains attributes to refer to the image mask of 
the original image, each RSA trait value and the out-
put RSML file.

  • Image processing pipeline has attributes for the pipe-
line parameters and each available trait.

  • License defines attributes for the licenses supported 
by the DIRT platform. The License content type is 
associated to computation and root image collection 
content types.

  • Marked collection has attributes that describe a list 
of root images.

  • Metadata has attributes that refer to a root image col-
lection and a file that links a pre-formatted CSV file.

  • Root refers to an original root image within a root 
image collection. Hence, the attributes hold a ref-
erence to a root image, a root image collection and 
each associated metadata entry.

  • Root image collection has the attributes collection 
visibility, collection, membership, collection license 
and all collection metadata.

Component model
The DIRT platform consists of three major components:

1. Web server component: These are the Drupal com-
ponents including core, community contributed and 
custom DIRT modules that orchestrate the whole 
platform in cohort. The content model described in 
the previous section is designed and implemented 
using these module types.

2. RSA trait computation component: These are the 
Python code used for the trait computation that is 
deployed to both the web server and grid computing 
node to meet the calibration and trait computation 
system specifications respectively.

3. Interface component: These are the shell scripts that 
reside on the web server and grid-computing node to 
interface between DIRT and the grid job scheduler.

In accordance with the Drupal architecture guidelines, 
DIRT is modular and every process in DIRT involves sev-
eral components or modules. In Fig. 4 we show the com-
ponents and their interactions in DIRT for the RSA trait 
computation process. The computation process in DIRT 
involves the user interface component, rules component, 

workflow component, custom DIRT components and 
core components. The processes start whenever a new 
content of type “Computation” is created. The user pro-
vides a computation name, selects a “Marked Collec-
tion” and the RSA trait computation pipeline, provides 
the respective pipeline parameters and selects traits to 
be computed. By clicking the “Save” button in the com-
putation interface the rules engine is notified to trigger 
two DIRT workflows. The first workflow starts the DIRT 
job submission module as background process to run the 
RSA pipeline on the grid-computing environment. The 
background process receives the configuration details of 
the grid job, updates the database system, changes the 
computation status and notifies the user about the com-
putation status via email if the computation is started 
successfully. As a second workflow the background pro-
cess schedules the DIRT job status check module to run 
in background in every 10 min (until job completion or 
termination). When executed the grid is pinged for the 
job status and the job status is checked. If the job is com-
pleted, the computed output is transferred to the web 
server, the database is updated with the computed values, 
DIRT output contents are created and the user is noti-
fied. Each step in these workflows in turn is associated 
with other sub-modules or components located across 
different software nodes of the platform.

Deployment model
The deployment model is the static view of the run-time 
configuration of the processing nodes and all executed 
components. The deployment model defines the distri-
bution of all DIRT components across different physical 
nodes in terms of folder structures an access rights. This 
deployment model is largely automated. Therefore we 
refer for detailed practical information to the Additional 
file 1: Section S7.

Discussion and conclusion
DIRT is designed as a community platform. As such we 
collected 10 public data sets that are available to every 
iPlant user. These initial data sets contain 4894 root 
images of field-grown roots excavated with the shov-
elomics technique. Four of these data sets are published 
on DIRT before the publication of their related projects. 
Furthermore, we expect the content volume to grow rap-
idly through additions from the plant science community. 
This expectation relies on the observed growth of DIRT 
users. At time of publication we counted 31 users from 
14 institutions and we are confident that our users follow 
the open science example of open data, source code and 
documentation sharing. For example, in Figs. 5 and 6 we 
show a typical community contribution, where a public 
maize dataset (Fig. 5) is used to compare and validate the 
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manual Shovelomics traits with automatically computed 
DIRT traits (Fig.  6). In the given maize example, previ-
ously unavailable traits were added to DIRT (Root Top 
Angle, Root Bottom Angle) and subsequently validated 
by the DIRT user community. The data set and its stored 
computation results were shared on the website (http://
dirt.iplantcollaborative.org/content/maize-validation-
set)  along with a reference to the validation presented 
in this paper. Overall, the contributed validation showed 
excellent results by reassuring the known correlations 
of stem diameter (R2 = 0.69, p < 0.0001), median width 
(R2 = 0.88, p < 0.0001) and maximum width (R2 = 0.83, 
p  <  0.0001), as well as establishing new correlations 
for the previously unpublished traits root top angle 
(R2 = 0.87, p < 0.0001) and root bottom angle (R2 = 0.75, 

p  <  0.0001). Details on other public data sets can be 
found in the Additional file 1: Section S5.

From our experience, the simple excavation and imag-
ing protocol enables 2–3 persons to phenotype 500–700 
common bean roots per day in soil with high clay con-
tent. Here, the limiting factor are soil properties such as 
clay content or compactness that impede root excavation, 
while sandy soils allow fast and easy root excavation. 
Until now we did not experience the limits of the com-
puting resources. However, the growing community of 
DIRT users will increase the computational load on the 
computing resources and eventually reveal the limits of 
the current system.

We presented DIRT as an open online platform that 
stores and organizes root image data sets, executes RSA 

Fig. 4 Component diagram showing the components involved in RSA trait computation process on the DIRT platform. In UML [50], a component 
diagram represents the structural relationships between the components that form larger subsystems. A component is considered as an autono-
mous, encapsulated unit within a software system that provides one or more interfaces

(See figure on next page.) 
Fig. 5 Screenshot from the DIRT web-application. The screenshot shows the root collection overview tab for a maize validation data set collected 
at the Ukulima Root Biology Center in South Africa. On the top the main menu is visible that contains all functionality to manage root images, cre-
ate marked collections, run computations and perform the threshold calibration. Individual root images are shown below, along with an informal 
description of the dataset, an accompanied creative commons license and the location of the root excavation

http://dirt.iplantcollaborative.org/content/maize-validation-set
http://dirt.iplantcollaborative.org/content/maize-validation-set
http://dirt.iplantcollaborative.org/content/maize-validation-set
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trait estimations and documents performed computa-
tions on root image data sets. DIRT allows contributions 
from the whole root phenotyping community, including 
users and developers, and enables sharing and documen-
tation of experiments. It is encouraged to submit images 
taken with the DIRT imaging protocol to make use of all 
DIRT features. However, proprietary imaging protocols 
are often supported with limitations. Additionally, our 
efforts to make DIRT an open-source, transparent and 
freely accessible tool will enable further development 
and adaptation of the platform in response to research 
demands of free public data sets [21]. Overall DIRT is 
a unique computational resource that promotes auto-
mated, yet researcher independent, root phenotyping as 
a response to the demands of researchers working under 
field conditions, to discover novel links between root 
morphology and the plant genome.

Availability and requirements
DIRT is freely accessible and usable at http://dirt.
iplantcollaborative.org. In the spirit of open-source 
development, we have hosted DIRT on iPlant’s cyber 
infrastructure, which is open to the public. All source 

code is available on the DIRT GitHub repository (https://
github.com/abucksch/DIRT) and on the DIRT website 
(http://dirt.iplantcollaborative.org/about-us?qt-about_
us_quicktabs=2#qt-about_us_quicktabs). A user manual 
guide is included as part of the Additional file 1.
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Additional file

Additional file 1. Detailed technical information about the DIRT 
platform including a quickstart guide for users and a installation guide 
for developers.

Additional file 2. Example of the DIRT output formating.

Additional file 3. Example of the RSML output provided by the DIRT 
platform.

Fig. 6 Validation of DIRT traits. a root top angle, b root bottom angle, c stem diameter, d median width of the root system and e maximum width 
of the root system for the public maize data set accessible at http://dirt.iplantcollaborative.org/content/maize-validation-set. The data set contains 
99 maize roots
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http://dirt.iplantcollaborative.org
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