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One-Sentence Summary: 49 

MUCI10 decorates glucomannan synthesized by CSLA2 to produce a highly branched polymer 50 
that defines the distribution of pectin and the structure of cellulose in Arabidopsis mucilage.  51 
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 89 

ABSTRACT 90 

Plants invest a lot of their resources into the production of an extracellular matrix built of 91 

polysaccharides. While the composition of the cell wall is relatively well characterized, the 92 

functions of the individual polymers and the enzymes that catalyze their biosynthesis remain 93 

poorly understood. We exploited the Arabidopsis thaliana seed coat epidermis (SCE) to study 94 

cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in 95 

pectin, at a precise stage of development. A co-expression search for MUCILAGE-RELATED 96 

(MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10, a 97 

member of the GT34 family, is closely related to a fenugreek enzyme that has in vitro 98 

galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants 99 

demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than 100 

unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CSLA2, with 101 

galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the 102 

GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. 103 

We propose that GGM scaffolds control mucilage architecture along with cellulosic rays, and 104 

show that Arabidopsis SCE cells represent an excellent model to study the synthesis and 105 

function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may 106 

reveal additional genes involved in GGM synthesis. Since GGM is the most abundant 107 

hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may 108 

facilitate improvements in the production of valuable commodities from softwoods. 109 
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 120 

INTRODUCTION 121 

The plant cell wall is the key determinant of plant growth (Cosgrove, 2005), and 122 

represents the most abundant source of biopolymers on the planet (Pauly and Keegstra, 2010). 123 

Consequently, plants invest a lot of their resources into the production of this extracellular 124 

structure. Thus it is not surprising that around 15% of Arabidopsis thaliana (Arabidopsis) genes 125 

are likely dedicated to the biosynthesis and modification of cell wall polymers (Carpita et al., 126 

2001). Plant walls consist mainly of polysaccharides (cellulose, hemicellulose, and pectin), but 127 

also contain lignin and glycoproteins. While the biochemical structure of each wall component 128 

has been relatively well characterized, the molecular players involved in their biogenesis remain 129 

poorly understood (Keegstra, 2010). The functions of the individual polymers, and how they are 130 

assembled into a three-dimensional matrix are also largely unknown (Burton et al., 2010; Burton 131 

and Fincher, 2012). 132 

Significant breakthroughs in cell wall research have been achieved through examination 133 

of specialized plant tissues that contain elevated levels of a single polysaccharide (Pauly and 134 

Keegstra, 2010). Some species, particularly legumes, accumulate large amounts of the 135 

hemicellulose galactomannan during secondary wall thickening of the seed (Srivastava and 136 

Kapoor, 2005). Analysis of the developing fenugreek (Trigonella foenumgraecum) endosperm 137 

led to purification of a GALACTOMANNAN GALACTOSYLTRANSFERASE (TfGMGT), the first 138 

glycosyltransferase (GT) whose activity in plant cell wall synthesis was demonstrated in vitro 139 

(Scheller and Ulvskov, 2010). TfGMGT catalyzes the decoration of mannan chains with single 140 

α-1,6-galactosyl residues (Edwards et al., 1999). A similar approach in guar (Cyamopsis 141 

tetragonoloba) seeds revealed that the β-1,4-linked mannan backbone is synthesized by a 142 

member of the CELLULOSE SYNTHASE-LIKE A (CSLA) protein family (Dhugga et al., 2004).  143 

Galactomannan functions as storage polymer in the endosperm of the aforementioned 144 

seeds, analogous to starch in cereal grains (Dhugga et al., 2004), but it also has important 145 

rheological properties in the cell wall that have been exploited to produce valuable stabilizers 146 

and gelling agents for human consumption (Srivastava and Kapoor, 2005). The mannose (Man) 147 

to galactose (Gal) ratio is essential for the application of galactomannan gums in the food 148 

industry (Edwards et al., 1992). This is because unsubstituted mannan chains can interact via 149 

hydrogen bonds to produce crystalline microfibrils similar to cellulose (Millane and Hendrixson, 150 

1994). Indeed, some algae that lack cellulose employ mannan fibrils as a structural material 151 

(Preston, 1968). The addition of Gal branches to the “smooth”, ribbon-like mannan chains 152 
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creates “hairy” regions that limit self-association and promote gelation (Dea et al., 1977). All 153 

mannans are likely synthesized as highly substituted polymers that are trimmed in the cell wall 154 

(Scheller and Ulvskov, 2010).  155 

Generally, polysaccharides containing backbones of β-1,4-linked Man units can be 156 

classified as heteromannan (HM). Galactoglucomannan (GGM) is the main hemicellulose in  157 

gymnosperm secondary walls and, in contrast to galactomannan, has a backbone that contains 158 

both glucose (Glc) and Man units (Pauly et al., 2013). HM is detected in most Arabidopsis cell 159 

types (Handford et al., 2003), and facilitates embryogenesis (Goubet et al., 2009), germination 160 

(Rodríguez-Gacio et al., 2012), tip growth (Bernal et al., 2008), and vascular development 161 

(Benová-Kákosová et al., 2006; Yin et al., 2011). In the last ten years, in vitro mannan synthase 162 

activity has been demonstrated for recombinant CSLA proteins from many land plants (Liepman 163 

et al., 2005; Suzuki et al., 2006; Liepman et al., 2007; Gille et al., 2011; Wang et al., 2012a). HM 164 

synthesis may also involve CELLULOSE SYNTHASE-LIKE D (CSLD) enzymes and MANNAN 165 

SYNTHESIS-RELATED (MSR) accessory proteins (Yin et al., 2011; Wang et al., 2012b), but 166 

their precise roles in relation to the CSLAs have not been established. Arabidopsis CSLA2, like 167 

most other isoforms, can use both GDP-Man and GDP-Glc as substrates in vitro (Liepman et 168 

al., 2005; Liepman et al., 2007), and is responsible for stem glucomannan synthesis in vivo 169 

along with CSLA3 and CSLA7 (Goubet et al., 2009). CSLA2 also participates in the synthesis of 170 

glucomannan present in mucilage produced by seed coat epidermal (SCE) cells (Yu et al., 171 

2014). 172 

Arabidopsis SCE cells represent an excellent genetic model to study the synthesis, polar 173 

secretion and modification of polysaccharides, since these processes dominate a precise stage 174 

of seed coat development but are not essential for seed viability in lab conditions (Haughn and 175 

Western, 2012; North et al., 2014; Voiniciuc et al., 2015). Hydration of mature seeds in water 176 

releases a large gelatinous capsule, rich in the pectic polymer rhamnogalacturonan I (RG I), 177 

which can be easily stained or extracted (Macquet et al., 2007). Biochemical and cytological 178 

experiments indicate that Arabidopsis seed mucilage is more than just pectin and, in addition to 179 

cellulose, is likely to contain glycoproteins and at least two hemicellulosic polymers (Voiniciuc et 180 

al., 2015). There is mounting evidence that, despite their low abundance, these components 181 

play critical functions in seed mucilage architecture. The structure of homogalacturonan (HG), 182 

the major pectin in primary cell walls, but a minor mucilage component, appears to be a key 183 

determinant of gelling properties and mucilage extrusion (Rautengarten et al., 2008; Saez-184 

Aguayo et al., 2013; Voiniciuc et al., 2013). Mucilage attachment to seeds is maintained by the 185 

SOS5 glycoprotein and cellulose synthesized by multiple CELLULOSE SYNTHASE (CESA) 186 
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isoforms (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011; Griffiths et al., 187 

2014; Griffiths et al., 2015). From more than 35 genes that are reported to affect Arabidopsis 188 

seed mucilage properties (Voiniciuc et al., 2015), only CSLA2, CESA3, CESA5, GAUT11 189 

(Caffall et al., 2009), and GATL5 (Kong et al., 2013), are predicted to encode GTs. This 190 

highlights that despite many detailed studies about mucilage production in SCE cells, the 191 

synthesis of its components remains poorly understood.  192 

To address this issue, we conducted a reverse genetic search for MUCILAGE-193 

RELATED (MUCI) genes that may be required for polysaccharide biosynthesis. One of these, 194 

MUCI10, encodes a member of the Carbohydrate Active Enzymes (CAZy) family GT34 195 

(Lombard et al., 2014), which includes at least two enzymatic activities and seven Arabidopsis 196 

proteins (Keegstra and Cavalier, 2010). Five of them function as xyloglucan xylosyltransferases 197 

(XXT1 to XXT5) in vivo and/or in vitro (Faik et al., 2002; Cavalier et al., 2008; Vuttipongchaikij et 198 

al., 2012). MUCI10/GT7 (At2g22900) and its paralog GT6 (At4g37690) do not function as XXTs 199 

(Vuttipongchaikij et al., 2012), and are more closely related to the TfGMGT enzyme (Faik et al., 200 

2002; Keegstra and Cavalier, 2010). MUCI10, also called GALACTOSYLTRANSFERASE-201 

LIKE6 (GTL6), served as a Golgi marker in multiple proteomic studies of Arabidopsis callus 202 

cultures (Dunkley et al., 2004; Dunkley et al., 2006; Nikolovski et al., 2012; Nikolovski et al., 203 

2014). Nevertheless, the role of TfGMGT orthologs in Arabidopsis remained unknown. We show 204 

that MUCI10 is responsible for the extensive galactosylation of glucomannan in mucilage, and 205 

influences glucomannan backbone synthesis, cellulose structure, and the distribution of pectin. 206 

 207 

RESULTS 208 

A MUCILAGE-RELATED Screen Yields a TfGMGT Ortholog 209 

We used eight known mucilage genes (MUM4/RHM2, MUM2/BGAL6, SBT1.7/ARA12, 210 

PMEI6, FLY1, BXL1, GL2, GATL5), whose seed coat transcript levels are up-regulated during 211 

mucilage production (Voiniciuc et al., 2015), as baits in three distinct co-expression tools: 212 

GeneCAT, GeneMANIA, and ATTED-II (Mutwil et al., 2008; Warde-Farley et al., 2010; 213 

Obayashi et al., 2014). We manually prioritized a total of 600 MUCI gene predictions based on 214 

three criteria: putative protein function, seed coat expression profile, and the availability of 215 

insertion mutants. By screening more than 100 muci mutants for altered ruthenium red (RR) 216 

mucilage staining, we identified multiple new genes required for polysaccharide synthesis. This 217 

study focuses on MUCI10 and further results of the screen will be described elsewhere. 218 
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Both GeneCAT and GeneMANIA predicted that MUCI10 is involved in mucilage 219 

polysaccharide production (Mutwil et al., 2008; Warde-Farley et al., 2010). Indeed, Arabidopsis 220 

microarray datasets indicate that MUCI10 is closely linked to several known mucilage genes, 221 

particularly CSLA2 (Fig. 1A). During seed development, MUCI10 is specifically expressed in the 222 

seed coat, at the linear cotyledon and mature green embryo stages (Supplemental Fig. S1A; 223 

Winter et al., 2007; Belmonte et al., 2013). We validated this microarray data using RT-PCR 224 

(Fig. 1C), and qRT-PCR (Fig. 1D) analyses of MUCI10 transcription in developing siliques. 225 

MUCI10 expression increased from the heart to the linear cotyledon stage (Fig 1, C and D), and 226 

peaked at the mature green embryo stage (Fig. 1D). MUCI10 transcripts are 6.2x more 227 

abundant in wild-type seed coats at 7 days post-anthesis (DPA; Supplemental Fig. S1B), 228 

compared to the ap2 mutant, which does not produce mucilage (Dean et al., 2011). Similarly, 229 

MUCI10 was expressed five-fold lower in the knat7-1 mutant (Fig. 1E), which is defective in a 230 

transcription factor that was predicted to promote hemicellulose synthesis in seed mucilage 231 

(Voiniciuc et al., 2015). In contrast to its paralog, GT6 does not classify as a MUCI gene since it 232 

has 1.8x higher expression in ap2 than in the wild type (Supplemental Fig. S1C; Dean et al., 233 

2011).  234 

To investigate if MUCI10 and GT6 are involved in mucilage biosynthesis, we isolated four 235 

muci10 and two gt6 homozygous insertion mutants (Fig. 1B). The muci10-1 and muci10-2 236 

alleles were shown to be transcriptional knockouts (Fig. 1, C and D). Since we detected 237 

increased GT6 transcript levels in muci10-2 siliques compared to the wild type (Fig. 1C), we 238 

generated a muci10 gt6 double mutant to explore functional redundancy. The muci10-2 gt6-1 239 

double mutant only had traces of GT6 transcript similar to the gt6-1 single mutant, not the 240 

elevated levels detected in the muci10-2 single mutant (Fig. 1C).  241 

 242 

Distinct muci10 and csla2 Chemical Defects Lead to Equally Compact Mucilage 243 

The seeds of four independent muci10 alleles were surrounded by smaller mucilage layers 244 

than the wild type (Fig. 2). Using Fiji (Schindelin et al., 2012), we developed a simple method 245 

that enables the high-throughput quantification of seed and mucilage dimensions (Supplemental 246 

Fig. S2). Four muci10 alleles and the csla2-3 mutant, which has dense mucilage (Yu et al., 247 

2014), displayed approximately 30% smaller mucilage capsules than the wild type (Fig. 2Q). 248 

Two gt6 alleles showed normal mucilage dimensions, and the muci10-2 gt6-1 double mutant 249 

resembled the muci10-2 single mutant (Fig. 2). In contrast to their mucilage defects, all mutants 250 

had seed areas similar to the wild type (Supplemental Table S1), except for a 6% increase in 251 
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gt6-1 (t-test, P < 0.05). The equally compact mucilage capsules of muci10 and csla2 suggested 252 

that they may have similar chemical defects.  253 

In mucilage extracted from these two mutants by vigorously shaking seeds in water 254 

(Voiniciuc et al., 2015), only three minor sugars (representing 2.5% of mucilage) were 255 

significantly altered from the wild type (Table 1). The muci10-2 and csla2-3 mutants had equal 256 

reductions in Gal, but contained distinct Glc and Man levels (Fig. 2R). The csla2-3 mutant had 257 

~80% less Man than wild-type mucilage (Table 1), while the muci10-1, muci10-2 and muci10-3 258 

alleles only had ~50% less Man (Table 1, Supplemental Tables S2 and S3). Given their 259 

identical staining and biochemical defects, the first two muci10 lines were used interchangeably 260 

for further experiments. The changes in Gal, Glc and Man content were proportional for each 261 

mutant (Fig. 2R). The csla2-3 mutant lacked around 1.0 nmol of each of these three sugars per 262 

mg seed, while muci10-2 showed reductions of 0.9 nmol Gal, 0.7 nmol Glc and 0.7 nmol Man.  263 

 264 

Unlike MUCI10, GT6 Does Not Affect Seed Mucilage Composition 265 

Unlike muci10 mutants, gt6-1 and gt6-2 did not contain reduced Gal, Glc, or Man content in 266 

total mucilage (Table 1, Fig. 2R), or non-adherent mucilage extracts (Supplemental Table S3). 267 

To test if GT6 function can compensate partially for MUCI10 function, we examined the 268 

biochemical composition of the muci10-2 gt6-1 double mutant.  The double mutant had a similar 269 

composition to the muci10-2 mutant (Fig. 2R, Table 1). This indicates that GT6 is not 270 

indispensable for the synthesis of mucilage polysaccharides.  271 

 272 

MUCI10 Is Necessary For Galactoglucomannan (GGM) Synthesis   273 

To further investigate MUCI10 function, we analyzed the glycosyl linkages of total mucilage 274 

extracts (Table 2), and used these results to calculate the composition of polysaccharides (Fig. 275 

3A). While most polymers had wild-type levels, the muci10-1 mucilage contained 38% less HM 276 

(t-test, P < 0.05). Unsubstituted glucomannan is the only known HM component of mucilage (Yu 277 

et al., 2014), although some of the available linkage data suggests the presence of GGM 278 

(Voiniciuc et al., 2015). Lower HM content in muci10-1 mucilage resulted from reductions in t-279 

Gal, 4-Glc, 4-Man, and 4,6-Man (t-test, P < 0.05), with 81% less t-Gal as the most severe defect 280 

(Table 2, Fig. 3B). The loss of t-Gal correlated with a five-fold decrease in the ratio of branched 281 

4,6-Man to unbranched 4-Man (Fig. 3B). This indicates that MUCI10 is required for the 282 

decoration of glucomannan with t-Gal side chains. Wild-type mucilage contained two branched 283 

2,4-Man residues for every unbranched 4-Man unit (Table 2), suggesting that GGM rather than 284 
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unbranched glucomannan is the most abundant Man-containing polymer in mucilage. This 285 

model was also supported by an enzyme-linked immunosorbent assay (ELISA) of total mucilage 286 

extracts using LM22 (Fig. 3C), a monoclonal antibody that only effectively binds HM polymers 287 

without Gal side chains (Marcus et al., 2010). Relative to wild-type mucilage, muci10-1 288 

contained significantly more non-galactosylated HM, while csla2-3 contained significantly fewer 289 

LM22 epitopes (Fig. 3C). These results indicate that mucilage contains GGM, whose backbone 290 

is synthesized by CSLA2 and decorated by MUCI10, a putative α-1,6-galactosyltransferase (Fig. 291 

3D). The presence of MUCI10 and/or galactosylation is also required for normal glucomannan 292 

backbone synthesis since muci10 mutants had 30-50% lower Glc and Man levels than wild-type 293 

(Fig. 2R, Fig 3B). While GGM is primarily decorated with single α-1,6-Gal residues, muci10-1 294 

mucilage had significant reductions in both t-Gal and 2-Gal linkages (Fig. 3B). One out of every 295 

six 2,4-Man units might be substituted with β-1-2-Gal-α-1-6-Gal (Fig. 3D), a disaccharide found 296 

in GGM secreted by suspension-cultured tobacco cells (Eda et al., 1985; Sims et al., 1997). 297 

 298 

MUCI10 is Essential for the Distribution of HM in Adherent Mucilage 299 

To corroborate the biochemical changes detected in csla2 and muci10 mucilage extracts, 300 

we immunolabeled whole seeds with two monoclonal antibodies. INRA-RU1 binds unbranched 301 

RG I chains (Ralet et al., 2010), while LM21 binds effectively to all HM polymers, regardless of 302 

their degree of substitution (Marcus et al., 2010). Wild-type and mutant mucilage showed a 303 

similar INRA-RU1 labeling (Fig. 4, A to F), consistent with normal pectin synthesis. Mucilage 304 

LM21 signals could only be observed with a sensitive hybrid detector (Fig. 4, G and J), likely 305 

because GGM represents at most 2.5 % of wild-type mucilage (Table 1). LM21 labeled wild-type 306 

mucilage from the basal surface of columellae to the outer edge of the adherent mucilage 307 

capsule (Fig. 4G). However, LM21 signals were absent from ray-like regions above the 308 

columellae of wild-type (Fig. 4J), and gt6-1 seeds (Supplemental Fig. S3). Strikingly, no LM21 309 

signals were detected in the mucilage capsules of csla2-3, muci10-2 (Fig. 3), and muci10-2 gt6-310 

1 (Supplemental Fig. 3). Since these mutants contained 50-80% lower amounts of GGM sugars 311 

(Fig. 2R), LM21 epitopes might be reduced below the detection threshold.   312 

 313 

GGM Is Required for the Synthesis and Distribution Cellulose in Mucilage 314 

As our muci10-1 linkage data suggested a 45% decrease in cellulose (t-test, P = 0.065; Fig. 315 

3A), which can be tightly associated with GGM (Eronen et al., 2011), we examined the structure 316 

of cellulose in mucilage using multiple probes and techniques. Pontamine Fast Scarlet 4B (S4B) 317 

is a cellulose-specific fluorescent dye (Anderson et al., 2010), and stained ray-like structures in 318 
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wild-type mucilage (Fig. 5 and Supplemental Fig. S4; Harpaz-Saad et al., 2011; Mendu et al., 319 

2011; Griffiths et al., 2014). The csla2-3 and muci10-2 mucilage capsules showed decreased 320 

S4B fluorescence compared to wild-type, as well as a more compact cellulose distribution (Fig. 321 

5), consistent with RR staining defects (Fig. 2). Surprisingly, these defects appeared to be as 322 

severe as in the cesa5-1 cellulose mutant (Supplemental Fig. S4). Similar to S4B, muci10-1 and 323 

csla2-3 mucilage showed reduced staining with calcofluor, a β-glycan fluorescent dye (Fig. 6).  324 

 Despite decreased S4B and calcofluor staining, the mucilage capsules of GGM mutants 325 

were more readily labeled by CBM3a (Fig. 6, Supplemental Fig. S5), a carbohydrate binding 326 

module that recognizes crystalline cellulose (Blake et al., 2006; Dagel et al., 2011). CBM3a 327 

epitopes were diffuse in wild-type mucilage, but formed cap-like structures that topped csla2-3 328 

and muci10-1 calcofluor-stained rays (Fig. 6, F and I). In contrast to the CBM3a labeling, the 329 

birefringence of crystalline cellulose in mucilage agreed with the S4B and calcofluor staining. 330 

Birefringent rays were equally reduced in three muci10 alleles and csla2-3 compared to the wild 331 

type (Fig. 7, A to E), but were entirely absent in the cesa5-1 mutant (Fig. 7F), as previously 332 

reported (Sullivan et al., 2011). Consistent with the birefringence results, the seeds of GGM 333 

mutants contained intermediate amounts of crystalline cellulose compared to the wild type and 334 

cesa5-1 (Fig. 7I). Therefore, MUCI10 and CSLA2 are not only required for the synthesis of 335 

GGM in seed coat epidermal cells, but also maintain the structure of cellulose in mucilage. 336 

 337 

Cellulose and GGM Are Both Required for Mucilage Attachment to Seeds 338 

Reduced cellulose synthesis in cesa5 mutants causes severe mucilage detachment from 339 

seeds (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011). The muci10-2 340 

mutant had more non-adherent mucilage than the wild type, but significantly less than cesa5-1 341 

(Fig. 7J). Polymers containing Man were particularly easy to detach from muci10-2. Since 342 

muci10-2 had wild-type levels of total mucilage sugars (Table 1), and only an 8% overall 343 

reduction in their adherence, its 25% smaller RR-stained capsule may also result from 344 

increased compactness of adherent polysaccharides (Fig. 2Q). 345 

Previously, csla2-1 mucilage capsules were easily digested by an endo-β-1,4-glucanase 346 

from Aspergillus niger (Yu et al., 2014). A 90 min treatment with a similar β-glucanase, purified 347 

from Trichoderma longibrachiatum, fully detached csla2-3 and muci10-1 adherent mucilage, but 348 

had minor effects on the wild type (Supplemental Fig. S6). The muci10-1 seeds had clear 349 

mucilage detachment after only a 50 min β-glucanase digestion (Fig. 8), showing that cell wall 350 

architecture was weakened by the loss of GGM, and that β-Glc linkages maintain mucilage 351 
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adherence. While β-Glc linkages are typically derived from cellulose, they also form GGM along 352 

with α-Gal and β-Man linkages (Fig. 3D).  353 

To test if GGM itself mediates adherence, we digested mucilage with α-Galactosidase 354 

and/or β-Mannanase, two Aspergillus niger enzymes that exhibit synergistic degradation of 355 

galactomannan (Manzanares et al., 1998). Compared to the buffer control, single enzyme 356 

treatments slightly enlarged the mucilage capsules and obscured the RR staining differences 357 

between wild-type and muci10-1 (Fig. 8). Counterstaining revealed that the cellulosic dye S4B 358 

could not penetrate RR-stained adherent mucilage capsules (Fig. 9, A to C). Strikingly, wild-type 359 

and muci10-1 seeds digested with both α-Galactosidase and β-Mannanase were surrounded by 360 

S4B-stained cellulosic rays (Fig. 9 D to I), but no RR-stained pectin (Fig. 8, M and N). The 361 

digested muci10-1 seeds had reduced S4B fluorescence compared to the wild type (Fig. 9, E 362 

and H), similar to muci10-2 intact mucilage capsules (Fig. 5, Supplemental Fig. S4). The 363 

digested seeds also displayed disk-like structures visible with transmitted light and stained by 364 

S4B (Fig. 9, D to I), resembling the detached primary cell walls of the fly1 mutant (Voiniciuc et 365 

al., 2013). These results suggest that polymers containing α-Gal and β-Man linkages, namely 366 

GGM, are required for the adherence of pectin to Arabidopsis seeds. 367 

 368 

MUCI10 Controls Mucilage Density Independently of Calcium Cross-Links  369 

Dextran molecules labeled with fluorescein isothiocyanate (FITC) can be used to examine 370 

mucilage porosity (Willats et al., 2001). While 4 kDa and 20 kDa FITC-Dextrans reached the 371 

seed surface, 40 kDa molecules were excluded from thin rays in the wild type, and absent from 372 

wide mucilage columns in muci10-1 and muci10-2 (Supplemental Fig. S7). Accordingly, 70 kDa 373 

FITC-Dextrans were largely absent from muci10 and csla2-3 mucilage, but only partially 374 

excluded from rays in the wild type (Fig. 10, A to D). In cesa5-1, which retains cellulosic rays 375 

despite reduced adherent mucilage (Supplemental Fig. S4), 70 kDa molecules reached the 376 

seed surface (Fig. 10F). Therefore, muci10 mutants not only had an increase in mucilage 377 

detachment but also had a denser mucilage capsule formed by the adherent polysaccharides.  378 

Since the compactness of csla2-1 was suggested to result from increased calcium cross-379 

links in mucilage (Yu et al., 2014), we investigated how calcium ions affect muci10 staining 380 

defects (Fig. 10, G to L), by treating seeds with CaCl2 and ethylenediaminetetraacetic acid 381 

(EDTA), a divalent cation chelator. CaCl2 treatment prevents mucilage extrusion from mutants 382 

that can form more HG cross-links (Voiniciuc et al., 2013), but did not impair muci10 mucilage 383 

release (Fig. 10K). EDTA rescues mucilage defects caused by increased calcium cross-links 384 

(Rautengarten et al., 2008; Saez-Aguayo et al., 2013; Voiniciuc et al., 2013), but did not expand 385 
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the muci10 mucilage capsule (Fig. 10L) to the wild-type level (Fig. 10I). Since muci10 mucilage 386 

was more compact than wild-type regardless of the presence of calcium, the denser mucilage is 387 

most likely the direct result of decreases in GGM, rather than increased HG cross-links.  388 

 389 

The muci10 Mutant Only Shows Major Defects in Seed Mucilage Architecture 390 

To explore if the function of MUCI10 extends beyond the mucilage of SCE cells, and to 391 

elucidate the role of GT6, we examined their mutant phenotypes in other cell walls. The dry 392 

seed surface morphology of all the mutants examined, including muci10 gt6, was similar to the 393 

wild type with scanning electron microscopy (SEM; Supplemental Fig. S8). No clear differences 394 

in SCE cell shape or size were detected. Since GT6 may be expressed in sub-epidermal seed 395 

coat layers (Supplemental Fig. S1C), we analyzed the distribution of HM epitopes labeled by 396 

LM21 in cryo-sections of muci10-2, gt6-1, and muci10-2 gt6-1 mature seeds (Supplemental Fig. 397 

S9). Similar to the whole mount immunolabeling of adherent mucilage (Fig. 4, and Supplemental 398 

Fig. 3), LM21 epitopes surrounded wild-type and gt6-1 columellae (Supplemental Fig. S9). The 399 

analysis of cryo-sectioned seeds did not reveal any clear defects in other cell walls of the seed, 400 

suggesting that MUCI10 specifically affects GGM synthesis in SCE cells. Accordingly, muci10 401 

and gt6 single and double mutants were morphologically similar to wild-type plants throughout 402 

development. While CSLA2 and related isoforms are required for the synthesis of HM in stems 403 

(Goubet et al., 2009), MUCI10 and GT6 did not affect the cell wall composition of this tissue 404 

(Supplemental Fig. S10), consistent with unbranched glucomannan representing the main HM 405 

in Arabidopsis stems (Goubet et al., 2009).  406 

 407 

MUCI10-sYFP Proteins Are Sensitive to Brefeldin A and Co-Localize with ST-RFP 408 

MUCI10 tagged with sYFP, a yellow super fluorescent protein (Kremers et al., 2006), 409 

localized to small punctae in Arabidopsis cells, while the sYFP tag alone was diffused in the 410 

cytosol (Fig. 11, A and B).  The small punctae of both MUCI10-sYFP and Wave22Y, a Golgi 411 

marker (Geldner et al., 2009), aggregated into large compartments (Fig. 11, C to F), after cells 412 

were treated with Brefeldin A (BFA), an inhibitor of secretion (Nebenführ et al., 2002). In 413 

addition, MUCI10-sYFP proteins co-localized with the Golgi marker ST-RFP (Teh and Moore, 414 

2007), when stably expressed in Arabidopsis leaf epidermal cells (Fig. 11, G to I). These results 415 

are consistent with MUCI10/GTL6 serving as a Golgi marker in multiple proteomic studies 416 

(Dunkley et al., 2004; Dunkley et al., 2006; Nikolovski et al., 2012; Nikolovski et al., 2014). 417 

 418 

The Degree of Galactosylation Is Critical for GGM Synthesis and Mucilage Properties  419 
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We isolated four independent muci10-1 35S:MUCI10-sYFP T1 plants, which displayed small 420 

fluorescent punctae (Fig. 11). Analysis of total mucilage extracts from the resulting seeds 421 

showed that the MUCI10-sYFP proteins could at least partially complement the reduced GGM 422 

sugar content of muci10-1, unlike the 35S:sYFP control (Fig. 12A). While, all four muci10-1 423 

complemented lines had fully rescued levels of Glc and Man, only line #1 had a degree of 424 

galactosylation that was close to the wild-type mucilage.  The other three lines had intermediate 425 

Gal levels (Fig. 12A), and displayed equally compact mucilage capsules to the muci10-1 and 426 

muci10-1 35S-sYFP seeds (Fig. 12J).  Interestingly, line #1 had large RR-stained mucilage 427 

capsules, similar in size to the wild type (Fig. 12, B to J). This complemented line also 428 

resembled the wild type after enzymatic digestion (Fig. 8), and in the 70 kDa FITC-Dextran 429 

experiment (Fig. 10).  Since line #1 only differed from the other T1 lines by its high Gal content, 430 

the precise degree of GGM substitution may be essential for mucilage properties. 431 

 432 

MUCI10 Is Required for the Extensive Decoration of Glucomannan Synthesized by CSLA2 433 

To validate that MUCI10 functions downstream of CSLA2 in the synthesis of GGM (Fig. 3D), 434 

we isolated a muci10-1 csla2-3 homozygous double mutant. This double mutant resembled the 435 

csla2-3 single mutant in our analysis of RR staining (Fig. 12E), mucilage area (Fig. 12J), 436 

cellulose birefringence (Fig. 7H), and CBM3a labeling (Fig. 6, J to L; Supplemental Fig. S5, J to 437 

L). Furthermore, the 35S:MUCI10-sYFP transgene could not complement csla2-3 (Fig. 12I), 438 

consistent with the csla2-3 mutation being epistatic to muci10-1 (Fig. 3D). Although MUCI10 439 

and its paralog likely function as α-1,6-galactosyltransferases, we could not confirm this activity 440 

in vitro.  GST-tagged soluble MUCI10 and GT6 proteins purified from Escherichia coli were 441 

unable to add Gal to available mannan or glucomannan substrates (Supplemental Fig. S11). 442 

Similarly, Nicotiana benthamiana microsomes containing full-length MUCI10 proteins tagged 443 

with YFP did not show any incorporation of [14C]Gal into mannohexaose relative to controls.  444 

 445 

CSLA2 and MUCI10 Might Not Be Sufficient for GGM Synthesis  446 

Via an independent screen, we identified multiple natural accessions with mucilage defects 447 

similar to the muci10 and csla2 T-DNA mutants. Lm-2 (Le Mans, France), Ri-0 (Richmond, 448 

British Columbia, Canada), and Lc-0 (Loch Ness, Scotland, United Kingdom) lacked the HM 449 

epitopes recognized by LM21 in Col-0 wild-type mucilage (Supplemental Fig. S3), but had 450 

normal dry seed surface morphology (Supplemental Fig. S8). According to the Arabidopsis 1001 451 

Genomes project (http://signal.salk.edu/atg1001/3.0/gebrowser.php; Cao et al., 2011), these 452 
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natural accessions do not have unique mutations in the CSLA2 or MUCI10 coding regions. This 453 

could indicate additional genes required for HM synthesis are mutated in the natural accessions. 454 

 455 

DISCUSSION 456 

Although Arabidopsis seed mucilage has been exploited for more than a decade to study 457 

cell wall production, only a few enzymes directly required for polysaccharide synthesis in SCE 458 

cells have been identified so far (Voiniciuc et al., 2015). To tackle this problem, we conducted a 459 

reverse genetic screen for MUCI genes that has predicted many glycosyltransferases. Using 460 

eight gene baits in multiple co-expression tools, we generated a more comprehensive set of 461 

candidate genes for cell wall biosynthesis than previous approaches that used only one or two 462 

baits (Vasilevski et al., 2012; Ben-Tov et al., 2015). MUCI10, the first of these genes to be 463 

characterized in detail, encodes a putative α-1,6-galactosyltransferase related to the fenugreek 464 

TfGMGT enzyme that decorates mannan chains with t-Gal residues (Edwards et al., 1999). As 465 

suggested by the public microarray data and qRT-PCR analysis (Fig. 1, D and E), MUCI10 is 466 

required for mucilage synthesis during seed coat development. MUCI10 facilitates the extensive 467 

galactosylation of glucomannan in mucilage, a role consistent with a functional paralog of 468 

TfGMGT. GT6, the closest paralog of MUCI10, is also expressed in seeds but its transcriptional 469 

profile is not consistent with mucilage production (Supplemental Fig. S1). Indeed, gt6 mutants 470 

and a muci10 gt6 double mutant indicate that GT6 is not critical for mucilage structure.  471 

 472 

MUCI10 Enables the Synthesis of Highly Galactosylated Glucomannan in Mucilage 473 

Mutations in MUCI10 primarily disrupted HM synthesis in mucilage (Fig. 3A; Fig 4). Our 474 

detailed characterization of muci10 mutants and re-analysis of csla2-3 revealed that GGM 475 

represents at least 80% of Man-containing polymers in Arabidopsis seed mucilage. The initial 476 

study of csla2 mucilage focused exclusively on glucomannan (Yu et al., 2014), and most likely 477 

underestimated the abundance of HM in mucilage and its degree of branching. In our linkage 478 

analysis (Table 2), wild-type mucilage contained two branched 2,4-Man residues for every 479 

unbranched 4-Man unit, consistent with the presence of highly branched GGM rather than 480 

unbranched glucomannan. While four independent muci10 insertion mutants and csla2-3 481 

displayed equally compact mucilage capsules compared to wild-type seeds (Fig. 2Q), 482 

biochemical analysis revealed distinct underlying defects (Fig. 2R). Consistent with CSLA2 483 

synthesizing the backbone of GGM (Fig. 3D), its absence resulted in a significant loss of Gal, 484 

Glc and Man residues in mucilage, almost in a 1:1:1 molar ratio (Table 1). In contrast, muci10 485 
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mutants had a unique biochemical defect, with significantly greater reductions of Gal compared 486 

to Glc and Man (Fig. 2R). The muci10-1 knockout mutant had 81% less t-Gal, a five-fold lower 487 

ratio of branched 4,6-Man to unbranched 4-Man (Fig. 3B, Table 2), and a four-fold increase in 488 

LM22 epitopes (Fig. 3C) relative to the wild type.  Since the LM22 antibody only effectively binds 489 

non-galactosylated HM (Marcus et al., 2010), wild-type mucilage contained highly branched HM, 490 

while muci10 mutants had an exceptionally low degree of HM galactosylation.  491 

Our phenotypic analysis of muci10-1 35S:MUCI10-sYFP lines indicates that the degree of 492 

galactosylation is of paramount importance for the functions of GGM in mucilage (Fig. 12). The 493 

addition of some Gal side chains and/or the presence of MUCI10 in a protein complex appear to 494 

be essential for the normal synthesis of the GGM backbone by CSLA2, since muci10 mutants 495 

have lower Glc and Man levels (Fig. 2R, Fig 3B). Indeed, all HM polymers are likely synthesized 496 

in a highly galactosylated form in the Golgi (Scheller and Ulvskov, 2010). An intermediate Gal 497 

level in three independent transformants was sufficient to rescue the GGM backbone sugars to 498 

wild-type level, but was not high enough to rescue the compact mucilage defect (Fig. 12). The 499 

muci10 csla2 double mutant supports the model proposed in Fig. 3D, since it resembled the 500 

csla2 single mutant in our analysis of pectin (Fig. 12), and cellulose structure (Fig. 6, Fig. 7). 501 

Furthermore, the 35S:MUCI10-sYFP transgene could not complement the csla2 mutant (Fig. 502 

12), consistent with MUCI10 functioning downstream of CSLA2 in the synthesis of GGM. 503 

 504 

MUCI10 Is Critical for the Organization of Seed Mucilage Polysaccharides 505 

The loss of highly substituted GGM in muci10 is associated with smaller mucilage capsules. 506 

This phenotype is best explained by the partial detachment of certain polysaccharides, and an 507 

increased density of the polymers that remain attached to the seed. Since Man-containing 508 

polymers were particularly easy to detach from muci10 (Fig. 7J), HM with a low degree of 509 

galactosylation might be less adherent, and could explain the lack of LM21 epitopes in muci10 510 

and csla2 adherent mucilage capsules (Fig. 4). The 8% increased detachment of muci10 511 

mucilage only partially explains the ~30% smaller capsules. FITC-Dextran experiments indicate 512 

molecules above 20 kDa are preferentially excluded from muci10 and csla2-3 mucilage capsule, 513 

consistent with increased density of the adherent polysaccharides (Supplemental Fig. S7, Fig. 514 

10). Although the denser csla2 mucilage was proposed to result from increased calcium cross-515 

links (Yu et al., 2014), muci10 capsules were more compact than wild-type, regardless of the 516 

presence or absence of calcium ions (Fig. 10). 517 

Our analysis of single and double mutants shows that GGM synthesized by CSLA2 and 518 

MUCI10 maintains the structure of cellulose in seed mucilage. GGM mutants had decreased 519 
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calcofluor and S4B staining of cellulose, reduced birefringence and less crystalline cellulose in 520 

seeds (Fig. 5, Fig. 6, Fig. 7), but were usually less severe than the cesa5-1 mutant. CBM3a 521 

labelled cap-like structures around muci10-1 and csla2-3 single and double mutants seed, as 522 

previously reported (Yu et al., 2014). As discussed in a recent review (Voiniciuc et al., 2015), 523 

CBM3a specificity and/or accessibility is puzzling. The cesa5 (this study; Sullivan et al., 2011), 524 

csla2 (this study; Yu et al., 2014), and muci10 (this study) mucilage had increased CBM3a 525 

labeling, despite clear decreases in cellulose content via other probes and techniques.  526 

 527 

GGM Scaffolds and Cellulosic Rays Maintain the Architecture of Mucilage  528 

Two distinct structures, which partially overlap, are likely to control mucilage architecture. 529 

SCE cells release cellulosic rays that extend above columellae and anchor mucilage polymers 530 

to the seed (Fig. 5 and Supplemental Fig. S4; Harpaz-Saad et al., 2011; Mendu et al., 2011; 531 

Sullivan et al., 2011; Griffiths et al., 2014; Griffiths et al., 2015). We propose that a GGM 532 

scaffold surrounds the cellulosic rays in the mucilage capsule (Fig. 4J), and controls the spacing 533 

of mucilage polymers. GGM can form tight associations with cellulose (Eronen et al., 2011), 534 

while its Gal side chains can generate “hairy” regions that promote gelation (Dea et al., 1977). 535 

While the cellulosic ray is indispensable for adherence, highly branched GGM scaffolds 536 

primarily control mucilage density. Reduced galactosylation may cause the GGM scaffolds to 537 

flatten and the surrounding polymers to either detach from the seed, or to be more tightly 538 

packed in the adherent mucilage capsule.  539 

Consistent with this model, muci10 and csla2 had compromised mucilage architecture and 540 

were more susceptible to β-glucanase digestion than the wild type (Fig. 8, Supplemental Fig. 541 

S6). β-Glc linkages, primarily from cellulose, are essential for the adherence of mucilage 542 

polysaccharides. Using Aspergillus niger α-Galactosidase and β-Mannanase, which 543 

synergistically degrade galactomannan (Manzanares et al., 1998), we demonstrated that 544 

polymers containing α-Gal and β-Man linkages, mainly GGM, are also required for the 545 

adherence of pectin, but not cellulose, to the seed (Fig. 8, Fig. 9). This further supports the role 546 

of GGM as a scaffold that maintains the distribution of pectic polysaccharides. 547 

 548 

MUCI10 Is Essential, but Not Sufficient for GGM Synthesis 549 

CSLA2 and MUCI10 are Golgi-localized proteins (Fig. 11, Nikolovski et al., 2014; Yu et al., 550 

2014), and are likely the key enzymes required for GGM synthesis in the Golgi apparatus. 551 

Although we did not detect in vitro galactosyltransferase activity for MUCI10 recombinant 552 

proteins purified from E. coli or expressed in N. benthamiana microsomes, only a few plant 553 
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glycosyltransferases have been biochemically characterized through direct assays. Such 554 

enzymes are typically highly unstable membrane-bound proteins (Brown et al., 2012). However, 555 

MUCI10-sYFP could fully complement the biochemical defects and altered properties of the 556 

muci10-1 mutant. Consistent with MUCI10 substituting glucomannan synthesized by CSLA2, 557 

the MUCI10-sYFP protein could not rescue the csla2 mucilage defects.  558 

The lack of MUCI10 in vitro activity may indicate that GGM synthesis requires a protein 559 

complex. The synthesis of xyloglucan, another hemicellulose, requires homo- and hetero-560 

complexes of CSLC4, a β-1-4-glucan synthase (Cocuron et al., 2007), and XXT proteins (Chou 561 

et al., 2012; Chou et al., 2014). Since CSLA2 and MUCI10 are members of the same CAZy GT 562 

families as CSLC4 and XXT, respectively, future studies should investigate if similar protein-563 

protein interactions facilitate GGM synthesis. Indeed, two proteins (MSR1 and MSR2) were 564 

already proposed to promote glucomannan synthesis by stabilizing CSLA enzymes (Wang et 565 

al., 2012b). An alternative possibility is that MUCI10 requires glucomannan acceptors, in 566 

contrast to the fenugreek TfGMGT enzyme that uses pure manno-oligosaccharides with a 567 

length of at least five units (Edwards et al., 1999). This could not be fully tested due to the 568 

limited availability of glucomannan acceptor substrates. Although purified GST-MUCI10 proteins 569 

were not active on glucomannan disaccharides and trisaccharides (Supplemental Fig. S8), 570 

these substrates may be too short to function as acceptors. 571 

Our detailed characterization of the role of MUCI10 in SCE cells significantly expands our 572 

knowledge of polysaccharide biosynthesis and demonstrates that wild-type Arabidopsis 573 

mucilage contains highly substituted GGM rather than unbranched glucomannan. This study 574 

highlights that, despite primarily consisting of pectin, Arabidopsis seed mucilage is a valuable 575 

model to study hemicellulose synthesis. We show that MUCI10 is responsible for GGM 576 

branching, which influences the distribution of pectin polymers and the structure of cellulose. 577 

Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, 578 

understanding the biosynthesis of this polymer may facilitate improvements in the production of 579 

valuable commodities from softwoods. Further investigation of Arabidopsis natural variants with 580 

defects similar to muci10 may allow us to identify additional genes involved in HM synthesis. 581 

 582 

MATERIALS AND METHODS 583 

Plant Material 584 

Mutants (muci10-1, SALK_061576; muci10-2, SALK_002556; muci10-3, SALK_133170; 585 

muci10-4, SALK_033930; gt6-1, SALK_134982; gt6-2, SALK_151067) were selected from the 586 

SALK collection (Alonso et al., 2003; http://signal.salk.edu/cgi-bin/tdnaexpress). The cesa5-1 587 
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(SALK_118491; Mendu et al., 2011; Griffiths et al., 2014) and csla2-3 (SALK_149092; Yu et al., 588 

2014) mutants were previously described. The T-DNA lines, Wave22Y (N781656) and ST-RFP 589 

(N799376) seeds were ordered from the Nottingham Arabidopsis Stock Centre 590 

(http://arabidopsis.info). The Lm-2 (31AV), Ri-0 (160AV), and Lc-2 (171AV) accessions were 591 

obtained from the Versailles Arabidopsis Stock Center (http://publiclines.versailles.inra.fr). The 592 

plants were grown as previously described (Voiniciuc et al., 2015), in individual 7x7x8 cm pots, 593 

under constant light (around 170 µE m-2 s-1), temperature (20°C) and relative humidity (60%). 594 

Only the seeds analyzed in Supplemental Tables S2 and S3 were produced in a chamber with a 595 

12/12 h photoperiod. Flowering plants were covered with ARACON tubes (Betatech bvba, 596 

http://www.arasystem.com), to prevent cross fertilization of flowers and seed dispersal. Seeds 597 

were harvested by shaking mature plants into individual brown paper bags.  598 

 599 

Genotyping, RNA Isolation and RT-PCR Analysis 600 

The genotyping, RT-PCR and cloning primers used are listed in Supplemental Table S4. PCR 601 

genotyping was performed using the Touch-and-Go method (Berendzen et al., 2005).  602 

For RNA isolation, silique developmental stages were established along the stem length by 603 

dissecting seeds and analyzing the embryo stage. Counting the first open flower as one, 604 

siliques 13+14 (heart stage), 20+21 (linear cotyledon), and 26+27 (mature green)were 605 

harvested for each genotype. Seed coat microarray data indicates that the heart stage and 606 

linear cotyledon stages are equivalent to 3 and 7 DPA, respectively (Dean et al., 2011; 607 

Belmonte et al., 2013). Whole siliques were immediately placed on dry ice and stored at –80°C. 608 

RNA was isolated using the ZR Plant RNA MiniPrep kit (Zymo Research, Cat# R2024), 609 

according to the manufacturer’s instructions, and included on-column DNase I (Zymo Research, 610 

Cat# E1009) digestion to remove any DNA contaminants. RNA was quantified using a 611 

NanoDrop 1000 (Thermo Fisher Scientific), and 200 ng was used as template for the iScript 612 

cDNA Synthesis Kit (Bio-Rad, Cat# 170-8891). Primers for RT-PCR amplification were designed 613 

using the QuantPrime (http://www.quantprime.de) tool (Arvidsson et al., 2008). RT-PCR 614 

fragments were amplified for 33 cycles with Red-Taq DNA-Polymerase (VWR International, 615 

Cat# 733-2546P). GAPC1 was used as a reference gene (Dean et al., 2007), and DNA was 616 

stained with GelRed (Biotium).UBQ5 served as a reference gene for qRT-PCR (Gutierrez et al., 617 

2008). Amplification efficiencies were determined using a serial dilution of DNA, and the Pfaffl 618 

method was used to calculate fold changes in gene expression relative to the wild-type heart 619 

stage (Pfaffl, 2001; Fraga et al., 2008).  620 

 621 
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Ruthenium Red (RR) Staining 622 

Staining was carried out using cell culture plates with 24 wells (VWR International GmbH, Cat# 623 

734-2325). Around 30 seeds were added to a well pre-filled with 500 µL of water, and imbibed 624 

for 5 min with gentle mixing. After removing the water, seeds were stained with 300 µL of 0.01% 625 

(w/v) ruthenium red (VWR International GmbH, Cat# A3488.0001) for 5 min. The dye was 626 

replaced with 300 µL of water, and each well was imaged with a Leica MZ12 stereomicroscope 627 

equipped with a Leica DFC 295 camera. All images were analyzed and processed using Fiji 628 

(http://fiji.sc/Fiji; Schindelin et al., 2012).  629 

Enzymatic digestion of mucilage capsules was also performed in a 24-well plate format. Dry 630 

seeds were imbibed in 500 µL of 0.1 M sodium acetate buffer pH 4.5, with or without 10 units of 631 

the following enzymes (all from Megazyme):  Trichoderma longibrachiatum endo-1,4-β-D-632 

glucanase (Cat# E-CELTR), Aspergillus niger α-galactosidase (Cat# E-AGLAN), and/or 633 

Aspergillus niger endo-1,4 β -Mannanase (Cat# E-BMANN). Plates were incubated for 50 to 90 634 

min (as specified in the figures) at 125 rpm and 37-40°C. The buffer was then removed, and 635 

each well was rinsed once with 500 µL of water, prior to RR staining.  636 

The effect of calcium cross-links on mucilage dimensions was investigated by hydrating seeds 637 

in 500 µL of water, 50 mM CaCl2 or 50 mM EDTA pH 9.5 for 60 min at 125 rpm in a 24-well 638 

plate. Seeds were rinsed twice with water, and then stained with RR. 639 

 640 

Quantification of Mucilage Area 641 

Image analysis followed ImageJ instructions (http://rsb.info.nih.gov/ij/docs/menus/analyze.html).  642 

Regions of interest were segmented in Fiji using distinct RGB Colour Thresholding (min-max) 643 

parameters: Mucilage+Seed (Red 0-255; Green 0-115; Blue 0-255), Seed (Red 0-120; Green 0-644 

255; Blue 0-255). Areas of the two regions of interest were measured using the Analyze 645 

Particles function (circularity = 0.5 - 1.0), excluding edges and extreme particle sizes, and were 646 

subtracted in Excel to calculate the dimensions of only the RR-stained mucilage capsules.    647 

 648 

Statistical Analyses 649 

The dimensions of mucilage capsules, and their biochemical composition (see detailed methods 650 

below) were normally distributed according the Shapiro-Wilk test (Shapiro and Wilk, 1965), 651 

performed using the Real Statistics Resource Pack (http://www.real-statistics.com) for Microsoft 652 

Excel 2010. Statistically significant changes were identified through the T.TEST function in 653 

Microsoft Excel 2010, using two-tailed distribution and assuming equal variance of two samples.  654 
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The significant changes presented in Supplemental Fig. S1 were identified using data obtained 655 

from the Bio-Analytic Resource (Winter et al., 2007; http://bar.utoronto.ca), and the unpaired t-656 

test on the GraphPad website (http://www.graphpad.com/quickcalcs/ttest1/?Format=SD). 657 

 658 

Total Mucilage Extraction and Monosaccharide Composition 659 

Around 5 mg seeds were precisely weighed in 2 mL Safe-Lock Eppendorf tubes. A serial 660 

dilution of a nine-sugar mixture (fucose, rhamnose, arabinose, galactose, glucose, xylose, 661 

mannose, galacturonic acid, glucuronic acid; all obtained from Sigma-Aldrich) was performed in 662 

2 mL screw-cap tubes. One mL of water, containing 30 µg ribose as an internal standard, was 663 

added to all the samples and standards. Total mucilage was extracted by vigorously shaking the 664 

seed-containing tubes for 15 min at 30 Hz in a Retsch MM400 ball mill using two 24 665 

TissueLyser Adapters (Qiagen, Hilden, Germany). The adapters were then rotated 180 degrees 666 

and mixed for an additional 15 min at 30 Hz.  The seeds were allowed to settle at the bottom of 667 

each tube, and 800 µL of the supernatant was transferred to a screw-cap tube. Samples and 668 

standards were dried under pressurized air at 45°C using a Techne Dri-Block DB 3D heater. 669 

Once dry, 300 µL of 2 N trifluoroacetic acid (TFA) was added to each tube. Tubes were capped 670 

tightly, vortexed, and heated for 90 min at 121°C. The heating blocks and the samples were 671 

then cooled on ice. After brief centrifugation, tubes were uncapped and the TFA was evaporated 672 

under pressurized air at 45 °C. Dried samples and standards were then re-suspended in 400 µL 673 

of water. Monosaccharides were quantified by High-Performance Anion-Exchange 674 

Chromatography with Pulsed Amperometric Detection (HPAEC-PAD), using a Dionex system 675 

equipped with a CarboPac PA20 column and GP50, ED50, and AS50 modules. The column 676 

was operated at a constant flow rate of 0.4 mL/min and was equilibrated with 2 mM NaOH for 677 

10 min before sample injection. Neutral sugars were separated with 2 mM NaOH over the 678 

course of 18 min. Afterwards, 513 mM NaOH was used for 7.5 min to separate uronic acids. 679 

Finally, the column was rinsed with 733 mM NaOH for 4 min. Monosaccharide amounts were 680 

normalized to the internal standard and quantified using standard calibration curves.  681 

 682 

Quantification of Mucilage Detachment 683 

Non-adherent and adherent mucilage fractions were sequentially extracted from 5 mg seeds in 684 

2 mL Safe-Lock Eppendorf tubes. Non-adherent mucilage was detached by mixing seeds in 1 685 

mL of water for 15 min at 125 rpm using an orbital shaker, with 30 µg ribose as an internal 686 

standard. Afterwards, 800 µL of supernatants were transferred to 2 mL screw-cap tubes, dried 687 

and prepared for HPAEC-PAD analysis similar to the total mucilage extracts. 688 
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After rinsing the seeds twice with water, the adherent mucilage was removed by essentially 689 

performing a total mucilage extraction, except that 2-deoxy-D-glucose was used as an internal 690 

standard instead of ribose. The supernatants were transferred to 2 mL screw-cap tubes, dried 691 

and prepared for HPAEC-PAD analysis similar to the total mucilage extracts. Accordingly, the 692 

nine-sugar mixture dilutions were prepared using with 2-deoxy-D-glucose as internal standard. 693 

 694 

Glycosyl Linkage Analysis of Total Mucilage Extracts 695 

Total mucilage was extracted from 60 mg seeds using the ball mill method described above. To 696 

obtain complete extraction, seeds were split into three 2 mL Safe-Lock Eppendorf tubes with 1 697 

mL of water in each.  Supernatants (800 µL) of the extractions were pooled and 400 µL of the 698 

pooled sample was used for HPAEC-PAD monosaccharide analysis. The remaining sample 699 

was acidified by adding 800 µL of 0.1 M sodium acetate buffer, pH 4.6. The reduction of the 700 

uronic acids to their respective 6,6-dideuterio derivatives was carried out as described by 701 

(Gibeaut and Carpita, 1991; Huang et al., 2011). For reduction, 0.1 mg 1-cyclohexyl-3-(2-702 

morpholinyl-4-ethyl) carbodiimide (methyl-p-toluene sulfonate) was added to the samples. After 703 

2 h incubation, 0.1 mg sodium borodeuteride together with 1 mL of cold 2 M imidazole, pH 7.0, 704 

was added and the sample was incubated on ice for another hour. To remove residual sodium 705 

borodeuteride, glacial acid was added drop-wise. After reduction of uronic acids the samples 706 

were extensively dialyzed against water followed by lyophilization, the dry samples were 707 

solubilized in 200 µL of anhydrous DMSO. Methylation was essentially performed as described 708 

by (Gille et al., 2009). For the reaction, an alkaline DMSO solution was prepared using 100 µL 709 

of 50 % (w/w) sodium hydroxide that was washed and sonicated several times with anhydrous 710 

DMSO (5 mL) and finally suspended in 2 mL of anhydrous DMSO. The alkaline DMSO 711 

suspension (200 µL), together with methyl iodide (100 µL), was added to samples. After 3 h 712 

incubation, 2 mL of water was added to quench the reaction. Methylated polysaccharides were 713 

extracted with 2 mL of dichloromethane, hydrolyzed and derivatized to the corresponding alditol 714 

acetates and analyzed by GC-MS as described by (Foster et al., 2010), using sodium 715 

borodeuteride for the reduction. Polysaccharide composition was calculated based on linkage 716 

analysis using a published protocol (Pettolino et al., 2012). 717 

 718 

Monosaccharide Composition of Stem AIR 719 

The bottom 3 cm of the main inflorescence stem from four-week old Arabidopsis plants were 720 

harvested and immediately lyophilized. Dry stems were ground for 10 min at 30 Hz using a ball 721 

mill and steel balls. Afterwards, 1 mL of 70% (v/v) aqueous ethanol was added and the material 722 
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was ground for an additional 10 min at 30 Hz.  The insoluble residue was extracted once with 723 

1:1 (v/v) chloroform:methanol and dried under a stream of air. HPAEC-PAD monosaccharide 724 

analysis of 2 mg of AIR was performed similar to the total mucilage extracts, except that 725 

samples were shaken vigorously in 2 N TFA for 10 min at 20 Hz using a ball mill to fully 726 

disperse the AIR pellets prior to hydrolysis. 727 

 728 

Crystalline Cellulose Observation and Content Determination 729 

Seeds were hydrated in water for 10 min, and examined on a glass slide with polarized light 730 

using a Zeiss Axioplan2 microscope equipped with a Zeiss AxioCam ICc 5 camera. For 731 

crystalline content determination, 5 mg of seeds were milled using steel balls for 90 sec at 30 732 

Hz. Alcohol-insoluble residue (AIR) was isolated by two sequential washes with 1 mL of 70% 733 

(v/v) ethanol, and centrifugation for 3 min at 20000 g. After washing the AIR with 1:1 (v/v) 734 

chloroform:methanol, followed by acetone, the pellet was dried for 5 min at 60°C.  Crystalline 735 

cellulose content was then determined as previously described (Foster et al., 2010), with minor 736 

modifications. The 2 mg of dry AIR was mixed with 1 mL of Updegraff reagent at 30 Hz for 90 737 

sec (Updegraff, 1969), before incubation at 100°C for 30 min. After hydrolysis, the Updegraff-738 

resistant pellet (containing only crystalline cellulose) was rinsed once with water, once with 739 

acetone, dried, and then hydrolyzed using 200 μL of 72% (v/v) sulfuric acid. The amount of 740 

glucose released was quantified using anthrone in a 96-well plate (Foster et al., 2010). 741 

 742 

LM22 ELISA Analysis of Non-Galactosylated HM in Mucilage  743 

The ELISA analysis was performed as described (Pattathil et al., 2010), with minor 744 

modifications. We used bovine serum albumin (BSA) instead of dry milk, and a ready-to-use 745 

3,3’,5,5’-Tetramethylbenzidine (TMB) substrate solution (Sigma-Aldrich, Cat# T4444-100ML). 746 

The 50 μL TMB reaction was stopped by adding 50 μL of 1N sulfuric acid (instead of 0.5N). All 747 

pipetting and wash steps were manually performed. Total mucilage was extracted from 10 mg of 748 

seeds using 1 mL water, and 200 μL aliquots of the supernatant were transferred to a 96-well 749 

plate (Corning, Cat# 3598). Based on our monosaccharide data, these aliquots yield 0.4 μg of 750 

mannose, which should be sufficient to saturate the wells with HM antigens. The LM22 antibody 751 

(PlantProbes, http://www.plantprobes.net) only effectively binds unbranched HM (Marcus et al., 752 

2010).  753 

 754 

Immunolabeling Experiments 755 
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Whole seeds were immunolabeled as previously described (Macquet et al., 2007), using LM21 756 

(PlantProbes) and INRA-RU1 (INRA, Nantes, France) primary antibodies (Marcus et al., 2010; 757 

Ralet et al., 2010). Alexa Fluor 488 (Molecular Probes, Life Technologies) was used as a 758 

secondary antibody. Observations were carried out on a Leica SP5 confocal microscope with 759 

settings fixed for the detection of the same label in different samples. LM21 labeling was 760 

analyzed with a Leica HyD detector (488 nm excitation, 500-550 nm emission). Images were 761 

processed identically in Fiji. 762 

 763 

For crystalline cellulose labeling, seeds were first shaken in water. Unless otherwise stated, all 764 

incubations were performed for 60 min at 200 rpm using an orbital shaker. Seeds were rinsed 765 

twice with water, and mixed with 800 μL of phosphate-buffered saline (PBS) for 30 min. The 766 

buffer was removed, and mucilage was blocked with 100 μL of 5% (w/v) bovine serum albumin 767 

(BSA) in PBS. Seeds were sequentially incubated with 50 μL of His-tagged CBM3a 768 

(PlantProbes), anti-His mouse antibody (Sigma-Aldrich, Cat# SAB4600048), and Alexa Fluor 769 

488 goat-anti-mouse. The primary antibody was diluted 1:10, while the secondary antibodies 770 

were diluted 1:1000 using 1% (w/v) BSA in PBS solution. Five PBS washes were performed 771 

after each of the three incubations. Seeds were counter-stained for 20 min with 2.5 % (w/v) 772 

calcofluor white (Sigma-Aldrich, Cat# F3543), rinsed four times with water, and stored overnight 773 

in PBS at 4°C. Images were acquired on a Leica SP8 confocal microscope using the following 774 

settings: calcofluor (405 nm excitation, 405-452 nm emission), CBM3a signal (488 nm 775 

excitation, 491-570 nm emission). 776 

 777 

For cryo-sectioning, dry seeds were mounted in a mold (Dutscher, Cat# 040664), which was 778 

then completely filled with embedding medium (MM France, NEG50: F/161426), and frozen in 779 

liquid nitrogen. Thick (16-20 µm) sections were cut using a CryoStart NX70 (Thermo Scientific) 780 

at -20°C, and were transferred onto a PolyLysine slide (Menzel Glaser, Thermo Scientific). For 781 

immunolabeling, frozen sections were first treated with 4% (w/v) formaldehyde in PBS for 15 782 

min, then washed three times with PBS (5 min per wash). After blocking with 1% (w/v) milk 783 

protein in PBS for 60 min, sections were labeled with LM21 diluted 1/10 with 1% (w/v) milk 784 

protein in PBS for 120 min. After three PBS washes, sections were labeled with a goat anti-rat 785 

Alexa Fluor 488 (Molecular Probes, Life Technologies) secondary antibody diluted 1/100 with 786 

1% (w/v) milk protein in PBS. Sections were washed three times with PBS, and stained with 787 

either 0.1 mg/mL propidium iodide or 0.5% (w/v) calcofluor white. After a final set of washes, 788 

sections were examined with a Leica SP5 or a Zeiss LSM 710 confocal microscope: calcofluor 789 
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(405 nm excitation, 415-470 nm emission) and Alexa Fluor 488 (488 nm excitation, 500-550 nm 790 

emission). 791 

 792 

Other Histological Techniques 793 

Surface morphology of dry seeds, mounted onto a Peltier cooling stage with adhesive discs 794 

(Deben), was observed with a Hirox SH-1500 tabletop SEM. 795 

Cellulose was stained with 0.01% (w/v) S4B (now sold as Direct Red 23; Sigma-Aldrich, Cat# 796 

212490-50G) in 50 mM NaCl (Anderson et al., 2010; Mendu et al., 2011), and was imaged with 797 

Leica SP5 confocal system (561 nm excitation, 570-660 nm emission). Supplemental Fig. S4 798 

images were acquired using a Leica SP8 confocal system (552 nm excitation, 600-650 nm 799 

emission). 800 

For Fig. 9, RR-stained seeds were rinsed with water and counter-stained with 200 µL of 0.025% 801 

(w/v) S4B in 50 mM NaCl, for 60 min at 125 rpm. After three water washes, seeds were imaged 802 

using a Leica SP8 confocal system (552 nm excitation, 600-650 nm emission). 803 

For FITC-Dextran staining in Supplemental Fig. S4, seeds were imbibed in 1 mL of water in 2 804 

mL Eppendorf tubes, and rotated for 60 min at room temperature. The water was then replaced 805 

with 1 mL of 0.1M citric acid, 0.2M disodium phosphate (CP) pH 5.0 and mixed for an additional 806 

60 min. Seeds were transferred onto an 8-well sticky slide (Ibidi, Cat# 80828), and mixed with 807 

250 µL CP containing 250 µg FITC-Dextran (TdB Consultancy AB) for 60 min in the dark. FITC 808 

(488 nm excitation, 502-542 nm emission) was detected with a Leica SP5 confocal system.  809 

For Fig. 10, seeds were hydrated in 300 µL of 100 mM sodium acetate pH 4.5 for 10 min, and 810 

then stained with 300 µL of 1 mg/mL FITC-Dextran 70 kDa (Sigma-Aldrich, Cat# 46945) for 30 811 

min at 125 rpm in a 24-well plate. Seeds were transferred to glass slides and imaged with a 812 

Leica SP8 confocal system (488 nm excitation, 502-542 nm emission). 813 

 814 

Expression and Analysis of MUCI10-sYFP Subcellular Localization 815 

The 35S:MUCI10-sYFP construct was generated using the ligation independent cloning (LIC) 816 

technique (De Rybel et al., 2011). For cloning, DNA was amplified with Phusion High-Fidelity 817 

DNA Polymerase (New England Biolabs). LIC-compatible pPLV vectors were obtained from the 818 

Nottingham Arabidopsis Stock Centre. We first amplified the sYFP (720 bp) tag from the 819 

pPLV16 vector and inserted it into the BamHI site on the 3’ side of the LIC site in the pPLV25 820 

vector (containing the 35S promoter but no fluorescent tag). The new 35S:LIC-sYFP vector, 821 

named pCV01, was verified by Sanger sequencing. We redesigned the reverse LIC adapter 822 

primer to allow in-frame fusions to sYFP.  823 
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Arabidopsis wild-type genomic DNA was isolated using a commercial kit (GeneON, Cat# 824 

PT050). A MUCI10 fragment (1832 bp) was amplified from the ATG codon until, but excluding 825 

the stop codon. The adapter primers required five three-step amplification cycles with a low 826 

annealing temperature (55°C), followed by 30 cycles of two-step Phusion PCR with an 827 

annealing/extension temperature of 72°C. The MUCI10 amplicon was gel-purified, and the rest 828 

of the LIC procedure was performed as described (De Rybel et al., 2011). The final plasmid was 829 

verified by Sanger sequencing, and transformed into Agrobacterium tumefaciens 830 

GV3101::pMP90::pSOUP cells. Arabidopsis plants were then transformed using a modified 831 

floral spray method (Weigel and Glazebrook, 2006), with an infiltration medium containing 5% 832 

(w/v) sucrose and 0.02% (v/v) Silwet L-77. Basta-resistant T1 seedlings were selected on soil 833 

using a 10 mg/L glufosinate-ammonium (Sigma-Aldrich, Cat# 45520-100MG) spray. 834 

Fluorescence was examined in Arabidopsis seedlings using a Leica SP8 confocal microscope: 835 

sYFP (488 nm excitation, 505-550 emission), intrinsic plant fluorescence (488 nm excitation, 836 

615-705 nm emission), and RFP (552 nm excitation, 590-635 nm emission). To avoid crosstalk 837 

for co-localization analysis, sYFP and RFP signals were sequentially acquired each line scan.  838 

 839 

Cloning of GST protein fusions 840 

The topology of MUCI10 and GT6 proteins was assessed using ARAMEMNON  (Schwacke et 841 

al., 2003). Truncated MUCI10 (1188 bp) and GT6 (1176 bp) sequences (lacking the 5’ region 842 

encoding an N-terminal transmembrane domain) were amplified from cDNA and were inserted 843 

between the NotI and SalI sites in the pGEX-5x-3 vector (GE Healthcare). This generated N-844 

terminal fusions to glutathione S-transferase (GST). Plasmids were propagated in NEB 5-alpha 845 

E. coli (New England Biolabs GmbH), and, after sequence verification, were transformed in 846 

BL21(DE3) E. coli (New England Biolabs GmbH) cells for protein expression. 847 

 848 

GST Fusion Protein Expression and Purification  849 

Protein expression and purification was performed in accordance with the pGEX guide (GE 850 

Healthcare). A 3 mL pre-culture of 2x YTA media, containing ampicillin, was inoculated with 851 

BL21(DE3) E. coli containing the desired plasmid and was incubated overnight at 37°C. The 852 

next day, the pre-culture was added to 100 mL of 2x YTA media, containing ampicillin, and was 853 

incubated for 3 h until the OD600 equaled 0.6. Protein expression was induced using 1 mM 854 

isopropyl β-D-1-thiogalactopyranoside (IPTG; Carl Roth, Cat# 2316.2), for 16 h at 20°C. Cell 855 

pellets, collected using 7100g at 4°C, were suspended in 2500 µL of cold PBS buffer and 856 

disrupted on ice for 60-90 sec using a Vibracell 75186 sonicator (pulse method, 50% intensity). 857 



 

27 
 

Samples were then mixed with 62.5 µL bacterial protease inhibitor (Carl Roth, Cat# 3758.1), 858 

and 125 µL of 20% Triton X-100 on ice for 60 min. The lysate was cleared by spinning at 7100g 859 

for 10 min 4°C. For affinity purification, 2 mL 50% (v/v) glutathione agarose slurry (Thermo 860 

Fisher Scientific Pierce) was added to gravity-flow columns, and rinsed with 10 mL of 50 mM 861 

Tris-HCl, 150 mM NaCl, pH 8.0 equilibration buffer (EB). Lysate, mixed with an equal volume of 862 

EB, was added to the column. After rinsing with 10 mL of EB, GST-tagged proteins were eluted 863 

using 50 mM Tris-HCl, 150 mM NaCl, 10 mM reduced glutathione, pH 8.0. Purified proteins 864 

were quantified using the Qubit Protein Assay (Life Technologies). 865 

 866 

UDP-Glo Assay for Galactosyltransferase Activity 867 

Activity of GST-tagged proteins was quantified using the UDP-Glo Glycosyltransferase Assay 868 

(Promega, Custom Assay CS1681A05) according to the manufacturer’s instructions and the GT 869 

reaction conditions that were successful for the IRX10-L xylan xylosyltransferase (Urbanowicz 870 

et al., 2014). GT reactions (25 µL) containing 50 mM HEPES-NaOH buffer (pH 7.0) and 1.25 µg 871 

purified protein was carried out using 800 µM ultra-pure UDP-Gal (Promega, Cat#V7171) as 872 

donor and 1 mM of an acceptor substrate. The acceptor substrates (all from Megazyme 873 

International Ireland) were: mannotriose (O-MTR), mannotetraose (O-MTE), mannopentaose, 874 

(O-MPE), mannohexaose (O-MHE), cellohexaose (O-CHE), glucomannan disaccharides (O-875 

GMMBI) and trisaccharides (O-GMMTR). Cellohexaose, which XXTs bind to (Vuttipongchaikij et 876 

al., 2012), was included as a negative control. The galactosyltransferase reactions were 877 

incubated for 60 min at 23°C in a 96-well, half-area, white plate (VWR International, Cat# 392-878 

0056). For UDP detection, 25 µL of UDP-Glo detection reagent was added to each reaction and 879 

was incubated for 60 min at 23°C. The luminescence of each well was then measured using a 880 

Synergy H1M Hybrid Reader (BioTek). A serial dilution of UDP standards (Promega) showed a 881 

linear response from 0.01 µM to 12 µM. 882 

 883 

N. benthamiana Microsome Preparation and Galactosyltransferase Assay 884 

For transient expression in N. benthamiana, we created a 35S:MUCI10-YFP construct by 885 

introducing the pDONR MUCI10 clone obtained from the JBEI GT collection (Lao et al., 2014) 886 

into the pEarleyGate101 vector (Earley et al., 2006), using the LR Clonase II reaction according 887 

to the Life Technologies protocol. Constructs were verified by sequencing.  888 

A. tumefaciens GV3101::pMP90 cells carrying the YFP fusion construct or the p19 gene from 889 

tomato bushy stunt virus were grown overnight, pelleted at 4000g (10 min, 15°C), washed and 890 

re-suspended in 10 mM MES, 10 mM MgCl2, 100 μM acetosyringone infiltration buffer, yielding 891 
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a final OD600 value of 0.15. Leaves of three to four-week old N. benthamiana plants grown in a 892 

day/night cycle (16/8 h light/dark, 25/24°C, 60% relative humidity) were co-infiltrated with the 893 

two A. tumefaciens mixtures using a 1 mL syringe. After two additional days of plant growth, 894 

protein expression was verified by monitoring YFP fluorescence with an epifluorescence 895 

microscope. Three days after infiltration, five entire leaves were harvested and microsomes 896 

were extracted (Rennie et al., 2012). Galactosyltransferase activity was determined essentially 897 

as previously described (Liwanag et al., 2012), using 40 µg microsomal protein, 10 nCi UDP-898 

[14C]Gal, and 20 mM mannohexaose per 50 µL reaction.  899 
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FIGURE LEGENDS 1196 

Figure 1. Analysis of the MUCI10 Gene and its Paralog, GT6. 1197 
(A) MUCI10 is co-expressed with known mucilage genes. Microarray data was visualized with 1198 
GeneMANIA using all 14 genes as baits (Warde-Farley et al., 2010). (B) MUCI10 and GT6 1199 
insertions and RT-PCR amplicons (red arrows). Bars = 200 bp. (C) RT-PCR and (D and E) qRT-1200 
PCR analyses of gene expression in siliques. Two wild-type (WT) biological replicates were 1201 
tested at three stages of development (heart, linear cotyledon, mature green), while all mutants 1202 
were examined at the linear cotyledon stage. (D and E) show MUCI10 expression (normalized 1203 
to UBQ5), relative to the first WT in each set. KNAT7 is transcription factor predicted to promote 1204 
hemicellulose biosynthesis in seed mucilage (Voiniciuc et al., 2015). Bars = mean + SD of four 1205 
(D) or three (E) technical replicates. 1206 
 1207 
Figure 2. muci10 and csla2 Have Equally Compact Mucilage But Distinct Chemical Defects.   1208 
Pectin released from wild-type (WT) and mutant seeds was stained with RR. Bars = 200 µm (A 1209 
to D; I to L) or 100 µm (E to H; M to P). (Q) Area of RR-stained mucilage capsules. Bars = mean 1210 
+ SD of five biological replicates (>20 seeds each). (R) Relative composition of total mucilage 1211 
extracts. Bars = mean + SD of five biological replicates. The “a” marks decreases relative to 1212 
WT, while “b” shows significant changes from WT and csla2-3 (t-test, P < 0.05). 1213 
 1214 
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Figure 3. Polysaccharide Structure in Wild-Type and muci10 Total Mucilage Extracts. 1215 
(A) Polysaccharide abundance calculated based on the linkage analysis in Table 2. (B) The 1216 
frequency of Gal and Man linkages is altered in muci10-1 mucilage. (C) Quantification of non-1217 
galactosylated HM, relative to csla2-3 mucilage, using the LM22 antibody (Marcus et al., 2010). 1218 
All bars = mean + SD of three biological replicates, except two for wild type (WT) and muci10-1 1219 
in (C). The “a” marks a significant change from WT (t-test, P < 0.05). (D) Model of GGM in WT 1220 
mucilage, showing likely roles of CSLA2, a glucomannan synthase, and MUCI10, a putative α-1221 
1,6-galactosyltransferase. Mucilage GGM may also contain a rare β-1,2-Gal residue, added by 1222 
an unknown enzyme. 1223 
 1224 
Figure 4. Immunolabeling of Pectin and Heteromannan in Extruded Mucilage. 1225 
INRA-RU1 labeled RG I (A to F), and LM21 labeled HM (G to L). Each panel is an optical 1226 
section through a whole seed (green = antibody, magenta = seed intrinsic fluorescence). 1227 
Asterisks indicate columellae. Bars = 200 µm (A to C; G to I); 50 µm (D to F; J to L) 1228 
 1229 
Figure 5. Mutants With GGM Defects Display Reduced S4B Labeling of Cellulose. 1230 
Cellulose distribution in wild-type, csla2-3 and muci10-2 mucilage extruded from seeds hydrated 1231 
in water. S4B signal intensity was visualized with the Thal look-up table in Fiji (A to F), or as 1232 
magenta (G to I). Bars = 200 µm (A to C); 50 µm (D to F) 1233 
 1234 
Figure 6. Impaired GGM Structure Alters Cellulose and β-Glycans Distribution in Mucilage. 1235 
Mucilage was immunolabeled with CBM3a (yellow), which has high affinity for crystalline 1236 
cellulose. β-glycans were then stained with calcofluor (magenta). Bars = 100 µm. 1237 
 1238 
Figure 7.  MUCI10 Partly Controls Crystalline Cellulose Levels and Mucilage Adherence. 1239 
(A to H) Birefringence (arrows) of crystalline cellulose in mucilage. Bars = 0.5 mm (A to F), or 1240 
0.2 mm (G and H). (I) Seed crystalline cellulose quantified with the Updegraff assay. (J) The 1241 
percent of each mucilage sugar that is non-adherent. Bars = mean + SD of three biological 1242 
replicates (I and J). Letters mark changes from the wild type (t-test, P < 0.05).   1243 
 1244 
Figure 8. β-Glc, α-Gal and β-Man Linkages Are Required for Seed Mucilage Attachment. 1245 
RR staining of pectin after endo-1,4-β-D-glucanase (β-Glc), α-galactosidase (α-Gal) and/or 1246 
endo-1,4 β-mannanase (β-Man) digestions (50 min, 40°C, pH 4.5). The panels on the right 1247 
show that 35S:MUCI10-sYFP (line #1) rescues the sensitivity of muci10-1 to β-Glc digestion. 1248 
Only disks remain around seeds after α-Gal and β-Man double digestion (M to O). Bars = 1 mm. 1249 

Figure 9.  α-Gal and β-Man Linkages Primarily Maintain the Adherence of Pectin, not Cellulose. 1250 
After digestion of α-Gal and β-Man linkages in mucilage, pectin was stained with RR (see Figure 1251 
8), and cellulose was counter-stained with S4B. Asterisks show that S4B cannot penetrate RR-1252 
stained adherent mucilage, and only stained cellulosic rays when pectin was detached. Disks 1253 
visible with light (arrowheads) were labeled by S4B (arrows). Bars = 100 µm. 1254 
 1255 
Figure 10. MUCI10 Controls Mucilage Density Independently of Calcium Cross-Links. 1256 
(A to F) FITC-Dextran 70 kDa molecules (yellow) were excluded from thin rays (arrowheads), or 1257 
wide mucilage columns (arrows), but fully penetrated cesa5-1 mucilage (F). (G to L) The 1258 
muci10-1 seeds released more compact mucilage than wild-type when imbibed in water, CaCl2 1259 
or EDTA for 60 min, before rinsing with water and staining with RR. Bars = 100 µm. 1260 
 1261 
Figure 11. MUCI10-sYFP Punctae Are Sensitive to BFA and Co-Localize with ST-RFP. 1262 
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Fluorescent proteins stably expressed in Arabidopsis leaf (A, B; G to I) or hypocotyl (C to F) 1263 
epidermal cells. Panels show one (A, B; G to I) or three optical slices (C to F; Z-project, max 1264 
intensity method), and intrinsic chloroplast fluorescence (blue). Wave22Y and ST-RFP are Golgi 1265 
markers. Arrows show punctae, and arrowheads mark large Brefeldin A (BFA) compartments. 1266 
Bars = 20 µm (A and B), 50 µm (C to F), or 10 µm (G to I). 1267 
 1268 
Figure 12. MUCI10 Enables Galactosylation of Glucomannan Synthesized by CSLA2. 1269 
(A) YFP-tagged MUCI10 at least partially rescued GGM synthesis in four independent muci10-1 1270 
T1 lines. Only MUCI10 line #1 had Gal content (A), RR staining and mucilage area similar to WT 1271 
(B to J). In (B to J), colours denote plants homozygous for muci10-1 (purple) and/or csla2-3 1272 
(green) mutations. Error bars = SD of three biological or technical (only for #1, #2, and muci10 1273 
csla2) replicates. The “a” marks changes from WT (t-test, P < 0.05). Scale bars = 100 µm. 1274 
 1275 
Supplemental Figure S1. MUCI10 and GT6 Seed Coat eFP Expression Profiles. 1276 
(A) MUCI10 expression during seed development using the eFP Browser and ATH1 microarray 1277 
data (Winter et al., 2007; Belmonte et al., 2013). GT6 lacks an ATH1 probe. (B) and (C) 1278 
Expression at 3, 7, and 11 days post-anthesis (DPA) in dissected seed coats (Dean et al., 1279 
2011). Mucilage is produced in wild-type (WT) at 7 DPA, but not in ap2, which fails to develop 1280 
normal epidermal cells. Red numbers indicate significant fold changes in expression (t-test, P < 1281 
0.05). 1282 
 1283 
Supplemental Figure S2. Overview of Fiji Analysis to Quantify RR-Stained Mucilage.  1284 
(A) Raw image of RR-stained seeds. This is a small section of a 10.25 x 7.69 mm view of an 1285 
entire well of a 24-well plate. Two distinct Colour Thresholding parameters were applied in Fiji to 1286 
select either Mucilage + Seeds (B), or just Seeds (C). Bars = 500 µm. 1287 
 1288 
Supplemental Figure S3. LM21 Labeling of Heteromannan in Extruded Seed Mucilage. 1289 
Single optical sections of whole seeds. Col-0 wild-type (WT) is the reference for all mutants 1290 
shown. Lm-2, Ri-0 and Lc-0 are three natural accessions. WT lacking the primary antibody is 1291 
shown as a negative control. The higher magnification panels correspond to the samples 1292 
directly above. Bars = 200 µm (A to C, G to I, K and L); 50 µm (D to F, J). 1293 
 1294 
Supplemental Figure S4. S4B Labeling of Cellulose Is Reduced in muci10, csla2 and cesa5. 1295 
Single optical sections coloured with the Thal look-up table in Fiji. Calibration bars indicate 1296 
fluorescence signal intensity. Scale bars = 50 µm. 1297 
 1298 
Supplemental Figure S5. CBM3a Labeling of muci10 and csla2 Single and Double Mutants 1299 
Single optical sections of whole seeds. Mucilage was immunolabeled with CBM3a (yellow), 1300 
which has high affinity for crystalline cellulose. β-glycans were then stained with calcofluor 1301 
(magenta). Bars = 100 µm. 1302 
 1303 
Supplemental Figure S6. β-Glucanase Digestion of Extruded Seed Mucilage. 1304 
Seeds were incubated (90 min, 37°C, pH 4.5) with or without 10 units of β-Glucanase (E-1305 
CELTR from Megazyme). After rinsing with water, seeds were stained with RR. Bars = 100 µm. 1306 
 1307 
Supplemental Figure S7. Large FITC-Dextran Molecules Cannot Permeate Mucilage. 1308 
FITC-Dextrans (yellow) of increasing molecular size are excluded from wild-type (WT) rays 1309 
(arrowheads) and muci10 wide mucilage columns (arrows). Bars = 100 µm.  1310 
 1311 
Supplemental Figure S8. GGM Mutants Have Normal Seed Surface Morphology. 1312 



 

39 
 

Epidermal cell morphology at the edge (A to D) or in the center of seeds (E to H). Four natural 1313 
Arabidopsis accessions are shown in (I to P). Bars = 50 µm (A to H; M to P); or 200 µm (I to L). 1314 
 1315 
Supplemental Figure S9. LM21 Immunolabeling of Mature Seed Cryo-Sections. 1316 
Optical slices (Z-project, max intensity method) of cryo-sectioned seeds showing LM21 signal 1317 
(green) and calcofluor or propidium iodide (PI) staining (magenta). Only wild-type and gt6-1 1318 
columellae were labeled with LM21 (arrows). Bars = 100 µm (A to D); 50 µm (E to T). 1319 
 1320 
Supplemental Figure S10. MUCI10 and GT6 Do Not Affect Stem AIR Composition. 1321 
The relative composition of alcohol-insoluble residue (AIR) was isolated from the bottom 3 cm of 1322 
four-week old stems. Bars = mean + SD of eight biological replicates. 1323 
 1324 
Supplemental Figure S11. GST-MUCI10 and GST-GT6 Galactosyltransferase Assays. 1325 
Proteins purified from E. coli were assayed using UDP-Gal (Promega) as a sugar donor and 1326 
seven different oligosaccharide acceptor substrates from Megazyme. The amount of UDP 1327 
released from each reaction was quantified using the UDP-Glo assay (Promega). Bars = mean 1328 
± SD of two technical replicates. A “no enzyme” control is shown for each substrate. 1329 
 1330 
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Table 1. Monosaccharide Composition of Total Mucilage Extracts. 1364 
 1365 
Relative monosaccharide composition (mol %) and total sugars (µg/mg seed) in mucilage 1366 
extracted by vigorous mixing in water. Values represent the mean ± SD of five biological 1367 
replicates per genotype. 1368 
 1369 

 1370 

 1371 

 1372 

 1373 

 1374 

 1375 

 1376 

 1377 

 1378 

 1379 

 1380 

 1381 

 1382 

 1383 

 1384 

 1385 

Wild Type csla2-3 muci10-2 muci10-2 gt6-1 gt6-1 gt6-2 

Rha 44.12 ± 1.56 43.00 ± 1.82 43.33 ± 1.22 43.49 ± 2.24 41.64 ± 0.86 43.89 ± 1.53

Ara 0.93 ± 0.05 1.16 ± 0.10 1.11 ± 0.13 1.19 ± 0.18 0.98 ± 0.05 0.98 ± 0.02

Gal 1.10 ± 0.14 0.65 ± 0.08 0.70 ± 0.11 0.69 ± 0.12 1.08 ± 0.08 1.01 ± 0.06

Glc 0.76 ± 0.13 0.33 ± 0.13 0.47 ± 0.04 0.52 ± 0.08 0.71 ± 0.07 0.69 ± 0.03

Xyl 3.11 ± 0.24 3.22 ± 0.10 3.30 ± 0.29 3.10 ± 0.16 3.15 ± 0.07 3.11 ± 0.15

Man 0.61 ± 0.07 0.13 ± 0.01 0.30 ± 0.01 0.31 ± 0.01 0.59 ± 0.05 0.57 ± 0.03

GalA 49.21 ± 1.38 51.33 ± 1.72 50.62 ± 0.77 50.51 ± 1.70 51.69 ± 0.85 49.58 ± 1.71

Total 39.86 ± 3.24 38.35 ± 1.98 38.42 ± 3.85 43.51 ± 2.11 38.84 ± 1.82 39.58 ± 1.52
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Table 2. Linkage Analysis of Total Mucilage Extracts from Wild-Type and muci10-1 Seeds. 1386 
 1387 
Total mucilage was extracted by vigorous mixing in water. Values represent the relative 1388 
composition (%) of each linkage ± SD of three biological replicates. The “a“ indicates significant 1389 
differences (t-test, P < 0.05) from the wild type. 1390 
 1391 

Linkage Wild Type muci10-1 
Rhamnose     
t-Rha 0.49 ± 0.19 0.31 ± 0.19 
2-Rha 36.81 ± 0.38 36.69 ± 3.30 
2,3-Rha 0.66 ± 0.11 0.86 ± 0.42 
2,4-Rha 0.85 ± 0.24 1.31 ± 1.15 
Arabinose      
t-Ara 0.07 ± 0.03 0.06 ± 0.01 
3-Ara 0.41 ± 0.04 0.74 ± 0.29 
5-Ara 0.19 ± 0.04 0.23 ± 0.03 
Galactose      
t-Gal 0.71 ± 0.09 0.13 ± 0.05 a 
2-Gal 0.11 ± 0.01 0.03 ± 0.02 a 
4-Gal 0.11 ± 0.00 0.11 ± 0.04 
6-Gal 0.21 ± 0.11 0.17 ± 0.07 
2,4-Gal 0.08 ± 0.01 0.08 ± 0.04 
4,6-Gal 0.05 ± 0.03 0.03 ± 0.02 
3,6-Gal 0.29 ± 0.05 0.55 ± 0.39 
Glucose      
t-Glc 0.01 ± 0.01 0.00 ± 0.00 
4-Glc 1.07 ± 0.03 0.73 ± 0.10 a 
3,4-Glc 0.01 ± 0.01 0.02 ± 0.00 
4,6-Glc 0.07 ± 0.01 0.06 ± 0.02 
Xylose        
t-Xyl 0.43 ± 0.05 0.42 ± 0.06 
4-Xyl 1.61 ± 0.11 1.60 ± 0.04 
2,4-Xyl 1.33 ± 0.04 1.45 ± 0.12 
Mannose        
4-Man 0.25 ± 0.01 0.34 ± 0.03 a 
4,6-Man 0.53 ± 0.12 0.14 ± 0.09 a 
Galacturonic Acid   
t-GalA 0.80 ± 0.33 0.56 ± 0.23 
4-GalA 51.39 ± 0.66 50.78 ± 0.57 
2,4-GalA 0.56 ± 0.11 0.73 ± 0.36 
4,6-GalA 1.24 ± 0.16 1.80 ± 1.21 

 1392 
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