
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

The DEEP Project
An alternative approach to heterogeneous cluster-computing in the

many-core era

Norbert Eicker12∗ Thomas Lippert12, Thomas Moschny3, and Estela Suarez1
for the DEEP project

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
2Bergische Universität Wuppertal, Fachbereich C, Gaußstr. 20, D-42119 Wuppertal, Germany

3ParTec Cluster Competence Center GmbH, D-81679 München, Germany

SUMMARY

Homogeneous cluster architectures, which used to dominate high-performance computing (HPC), are
challenged today by heterogeneous approaches utilizing accelerator or co-processor devices. The DEEP
(Dynamical Exascale Entry Platform) project is implementing a novel architecture for High-Performance
Computing, in which a standard HPC Cluster is directly connected to a so-called ”Booster”: a cluster
of many-core processors. By these means heterogeneity is organized differently as in today’s standard
approach, where accelerators are added to each node of the Cluster. In order to adapt application codes
to this Cluster-Booster architecture as seamless as possible, DEEP has developed a complete programming
environment. It integrates the offloading functionality given by the MPI standard with an abstraction layer
based on the task-based OmpSs programming paradigm. This paper presents the DEEP project with an
emphasis on the DEEP programming environment. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Cluster computing, Heterogeneity, Exascale

1. INTRODUCTION

From an architecture point of view cluster computers are dominating High-Performance Computing
(HPC) today†. They leverage the increasing performance of commodity off-the-shelf components
used in general computing in the field of HPC. Additionally, their modular setup allows optimizing
the system configuration for a specific application portfolio. For instance, network topology,
processor generation, and memory capacity can be chosen to fulfill the specific needs of a given
user community. Even more a next generation processor might replace its predecessor without the
need for simultaneously exchanging the interconnect technology, etc.

While multi-Petaflop (1015 floating-point operation per second (FLOPs)) systems are in
production now, the next target in HPC is to achieve Exascale (1018 FLOPs) by the end of the decade.
In face of the new challenges, the question arises whether cluster computers as we know them will
be competitive in the future. The importance of heterogeneous clusters is increasing, as more and

∗Correspondence to: E-mail: n.eicker@fz-juelich.de

Contract/grant sponsor: EC’s Seventh Framework Programme (FP7/2007-2013); contract/grant number: 287530
†On the Top 500 list from November 2014, 86% of the systems are Clusters, against 14% systems with an Massively
Parallel Processing architecture. [1]

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 N. EICKER ET AL.

more systems are populated with graphic cards or many-core co-processors to accelerate parts of the
computation. Attaching one, two or more accelerator devices to each cluster node has become state
of the art today. But making this approach efficient and scalable for HPC is very challenging due to
the latency penalties and bandwidth limitations of the device-to-device communication originating
in the node’s PCIe bus shared by the accelerator and the host processor.

Two of the authors have proposed a novel heterogeneous cluster architecture [2], which aims at
extracting the accelerating many-core processors out of the cluster nodes, creating an autonomous
cluster of accelerators. This so-called ”Booster” is attached to a conventional cluster of multi-core
processors. A first realization of this Cluster-Booster architecture in hardware is currently installed
and put into operation by the EU project DEEP [3]. The DEEP project has also implemented a
corresponding programming environment, which strives for minimizing the effort needed to port
existing MPI applications to the DEEP System.

This paper is organized as follows: Firstly, we motivate the Cluster-Booster architecture in view
of the Exascale challenges and the scalability requirements evolving from them. In section 3 we
give an overview on the DEEP project. The hardware realization of the Cluster-Booster architecture
in the context of DEEP is presented in the next section. The main part of this work is dedicated to
the description of the DEEP programming environment in section 5. It combines a heterogeneous
global MPI [4] with the task-based OmpSs programming paradigm [5]. Finally, we conclude and
give a brief outlook on the remaining work in DEEP.

2. MOTIVATION

The HPC community is currently preparing to move from today’s multi-Petaflop compute systems‡,
to Exascale systems (1018 floating-point operations per second) by the end of the decade.

2.1. Exascale Challenges

Kogge et. al. showed that Exascale systems using updated versions of today’s technology and
concepts would run into severe troubles [6]:

• Power consumption: Projecting 2008’s architectures onto end of the decade’s technology
predicts power requirements of several 100 MW for an Exascale system.

• Resiliency: The ever increasing number of components in HPC systems will continue to grow
in the future. Projections allude to millions of devices in the Exascale era. Since mean time to
failure (MTTF) of single components is not expected to be increased significantly, Exascale
systems would become barely usable with system’s MTTF in the range of hours or even
minutes.

• Memory hierarchies and I/O: The rising gap between the compute performance and
bandwidth of memory and storage will require additional layers in memory hierarchy like
higher-level CPU caches or flash memory.

• Concurrency: With the levels of parallelism growing into the millions, application developers
are challenged even harder to achieve performance. Additionally, as discussed in the next
section, new requirements on the scalability of Exascale applications are introduced.

Altogether, this leads to the conclusion that radically new concepts need to be explored to attain
the ambitious goal of Exascale in the proposed time frame. Obviously, also the concept of cluster
computing has to be revisited. In particular, the core idea of clusters – the utilization of commodity
CPUs – has to be reviewed on competitiveness against more proprietary developments for HPC.

‡Examples are Tianhe-2 at the National Super Computer Center in Guangzhou, Titan at the Oak Ridge National Lab,
IBM Sequoia at LLNL, the K computer at RIKEN, or JSC’s JUQUEEN.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 3

The yardstick in HPC today was set down, on the one hand, by IBM’s efforts leading to
BlueGene/Q and, on the other hand, is challenged by the success of accelerators in the context
of cluster computing. An analysis of results achieved on JSC’s BlueGene/Q system JUQUEEN
creates reasonable doubts whether commodity CPUs will be sufficient in the future. The design
of commodity CPUs is focused on fulfilling their general purpose objectives, what occasionally
comes at the price of limiting the efficiency of their floating-point abilities, a key capability in
HPC. For typical workloads in scientific simulations, both BlueGene technology and GPGPU
accelerators show superior energy efficiency and price vs. performance ratios due to their ability
to very efficiently execute vectorized floating-point operations. In contrast to that, general purpose
CPUs have their advantages in the field of single-thread performance.

Having commodity processors ruled out by this analysis, one has to strive for a new working horse
in HPC. Good candidates are accelerators, which provide an order of magnitude higher floating-
point performance compared to today’s commodity CPUs, at the cost of limited flexibility. Even
though the different incarnations of accelerators are versatile§, they share some features leading
to a superior energy efficiency compared to commodity CPUs. This includes the lack of complex
hardware mechanisms for out-of-order operations and speculative execution. Instead, simultaneous
multi-threading (SMT) is used to keep the execution units busy while waiting for data fetched
from memory. Furthermore, wide vector registers are used for floating-point operations in order to
increase the instruction-level parallelism (ILP). These technologies are leading to more lightweight
cores compared to the ones in today’s general purpose multi-core CPUs.

In fact, 15% of the top 500 systems in the current TOP500 list [1] are already equipped with
accelerator cards – either GPGPUs or many-core co-processors – and the ratio raises to 50%
when looking at the top 10 systems. However, the prevailing architecture of accelerated clusters¶

suffers from severe limitations concerning programmability and balance. The latter is basically
affected by the fact that while the cluster-nodes’ compute performance is significantly enhanced by
accelerators included in the nodes, both network and memory bandwidth basically stay constant. At
the same time programmability suffers from several challenges, especially in the case of GPGPUs:
In order to offload compute-kernels that show the required density of floating-point operations to
the accelerator, their code has to be separated from the communication instructions required to
realize the high level data-exchange in today’s distributed memory architectures. In addition to that,
most often accelerators require to port these kernels to different programming languages, since the
dominating ones in HPC – C and Fortran – are only poorly supported on such devices – if at all.

A good way out of this dilemma would be creating a cluster of accelerators. In this concept,
the node is consisting of an accelerator only – accompanied by some memory and a high-speed
interconnect – skipping the commodity CPU. In particular, programs running on the accelerator
cores shall be capable of initiating communication operations without the support of some
commodity processor. A good example for this concept is the QPACE system [7].

However, this concept has limitations, too. First of all, very few accelerators are capable of acting
autonomously and are flexible enough to efficiently drive a high-speed interconnect. Furthermore,
the gain introduced by the direct connection between the compute element and the interconnect
fabric might be wasted by the fact that accelerators suffer when running general purpose codes.

Thus, a radically new concept is required for cluster systems that shall be competitive at Exascale.
Since it has to benefit from both processor worlds – general purpose multi-core CPU and many-core
accelerators – we strive for a heterogeneous concept.

§Early examples are dedicated devices from ClearSpeed, ranging over processors originally developed for gaming like
the Cell Broadband Engine and the aforementioned GPGPUs, towards newer developments like Intel’s Xeon Phi.
¶We will distinguish between accelerated clusters, i.e. classical clusters comprising of nodes equipped with accelerators,
and clusters of accelerators, i.e. clusters connected to each other in an own entity such as in the Booster concept
introduced by DEEP.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 N. EICKER ET AL.

2.2. Scalability Considerations

Having identified massive parallelism as a prerequisite for Exascale, a brief review of scalability
serves as a good starting point for further discussion. Amdahl showed in his seminal paper [8] that
the scalability of parallel programs is inherently limited by the sequential fraction of an application.

In practice, the effects of Amdahl’s law are attenuated. Typical HPC use cases are better described
by Gustafson’s law [9]. While Amdahl assumed that using larger machines will leave the problem
size untouched, in reality most often the problem is scaled according to the capabilities of the
machine. This means: a computer twice as capable is not used for solving the original problem
in half the time, but to tackle a problem twice as big in the same time or, alternatively, to increase
the detail of a simulation requiring double the amount of operations.

Of course, Gustafson postulates the possibility of implementing the parallel portion of a program
in a scalable way. Unfortunately, there are several caveats leading to the observation that the
scalability of a parallel application might be significantly restricted in reality.

A different viewpoint to the question on how to reach Exascale might be taken by looking at
actual applications and their inherent scalability. Analyzing JSC’s application portfolio today one
finds basically two classes of applications.

1. Highly scalable codes using very regular communication patterns. These are the codes that
are able to exploit JSC’s BlueGene systems.

2. Less scalable but significantly more complex programs. Most often their codes require
complicated communication patterns. Such requirements constrain these applications to
clusters today.

A more detailed view on the second class of applications reveals that several of them present
highly scalable code parts, too. In principle these portions of the their code should also be able to
exploit BlueGene-type of machines. However, in analogy to the serial work in Amdahl’s law, their
overall scalability is limited by the least scalable kernel.

To make things worse, the relative amount of applications of the second category in HPC
application portfolios is expected to increase, since many codes are likely to shift from the first to the
second class on the way from Petascale to Exascale. Two reasons for this are: (i) HPC simulation
codes scaling well on Petascale machines might not do so on future Exascale systems due to the
increasing degrees of parallelism; and (ii) codes get progressively more complex with the addition of
new aspects of a given scientific question, generally limiting their scalability. In addition, problems
completely out of range today due to their complexity might become feasible with the availability
of Exascale systems. Their high degree of complexity makes them likely to belong to the second
category as well.

Taking all this into account, enabling codes of the second category running on highly scalable
systems is crucial for science to benefit from the computing power available at Exascale.

2.3. Cluster-Booster Architecture

The concept of the proposed architecture is sketched in figure 1. It foresees a Cluster element
comprising of nodes (CN) connected by a highly flexible switched network. It is accompanied by a
so-called Booster part built out of Booster nodes (BN). Each BN hosts an accelerator-type processor
capable of autonomously booting and running its own operating system. The BNs are interconnected
by a highly scalable torus network‖ sketched in the figure as a mesh connecting the BNs. Booster
Interfaces (BI) connect the Booster and its network to the Cluster fabric.

As discussed in more detail in [10], the Cluster-Booster architecture allows mapping applications
onto the hardware according to their different scalability levels and provides several advantages:

‖In principle the Cluster-Booster approach doesn’t put any constraints on the Booster network topology. Since the Booster
is claimed to be scalable, its fabric must have a scalable topology like torus, butterfly, etc.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 5

BoosterCluster

CN

CN

CN

BI BN

BI BN

BI BN

BN

BN

BN

BN

BN

BN

switched
fabric

Figure 1. Sketch of the Cluster-Booster architecture.

• The Cluster element allows running complex and less scalable code parts. The limitations
observed when running parallel kernels with complicated communication patterns or very
irregular codes on today’s highly scalable MPP machines are avoided.

• The Booster element is able to run highly scalable code parts in the most energy efficient way.
The limitations of today’s accelerated clusters are avoided by enabling the compute elements
– i.e. the accelerators in the BNs – to do direct communication to remote BNs.

• Accelerators (i.e. BNs) might be assigned to CNs in a dynamical way. The ratio of the amount
of work to be executed by the commodity CPUs and the accelerators is not expected to be fixed
among different applications, or even between different kernels of a single application. The
proposed architecture supports this fact by detaching the accelerators.

• The dynamical assignment of CNs and BNs improves resiliency: faulty BNs do not affect
CNs and vice versa.

• Optimize the overall system usage: while in today’s accelerated clusters applications using
only the host processors block the use of the accelerators for other applications, in a Cluster-
Booster system applications do only block the amount of BNs and CNs that they actively use,
leaving all others free for the rest of applications.

Furthermore, the proposed architecture helps users to employ the high degree of parallelism of
future machines. Today, the type of kernels to be offloaded onto accelerators is very limited due to
their missing ability to efficiently exchange data with other accelerators. In contrast, the Cluster-
Booster architecture allows more complex kernels to be offloaded to the Booster. These highly
scalable code parts might include communication, as long as the corresponding communication
patterns are regular enough not to swamp the Booster interconnect. In this context the Booster
might be seen as a highly scalable system on its own. Thinking of the highly scalable codes that are
able to exploit BlueGene or QPACE today, it should be possible to run many of them on the Booster
alone.

On the other extreme BNs might be assigned to single CNs and used in the same fashion as
in today’s accelerated clusters. Both use cases – and anything in between – are possible without
modification of the hardware concept. They can be implemented by just choosing a specific
configuration on the level of system and application software.

3. DEEP PROJECT

DEEP (Dynamical Exascale Entry Platform) [3] is a three and a half year project partially funded
by the European Commission (EC) through the Seventh Framework Programme. It joins sixteen
partners from eight different European countries including public research centers, universities and

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 N. EICKER ET AL.

industry. With a total budget of more than 18 Me – 8.03 Me coming from the EC – DEEP aims for
a proof of concept of the Cluster-Booster architecture.

DEEP does not only build the first prototype of this architecture, the so-called DEEP System as
discussed in section 4, but has also implemented a complete software stack including programming
environment, libraries and performance analysis tools as presented in section 5. Furthermore, the
usability and performance of the final prototype will be evaluated using six scientific applications,
representative for HPC at Exascale and coming from fields of great relevance for European science,
industry, and society. The application fields and their supporting organizations in DEEP are:

• Brain simulation / Ecole Polytechnique Federale de Lausanne (EPFL)

• Space-weather / Katholieke Universiteit Leuven

• Climate simulation / The Cyprus Research and Educational Foundation (CyI)

• Computational fluid engineering / Centre Europeen de Recherche et de formation Avancee en
calcul scientifique (CERFACS)

• High-Tc superconductivity / Consorzio Interuniversitario CINECA

• Seismic imaging / CGG Veritas

At the time of writing the DEEP project is in project month 38.

4. DEEP SYSTEM HARDWARE

In order to challenge the idea of the Cluster-Booster architecture, DEEP implements the first
hardware realization of the concept. This section gives an overview of the main hardware systems
used in the DEEP project: the Cluster, the Booster Interface and the Booster. In addition to that, we
provide more details on the EXTOLL network. Finally, the so-called ASIC Evaluator is presented,
an alternative realization of the Booster-part of the DEEP system based on an application-specific
integrated circuit (ASIC) implementation of the EXTOLL network.

4.1. Cluster

The DEEP Cluster is a commercially available cluster utilizing Eurotech’s AURORA line [11] of
direct water-cooled blade-servers. It comprises 128 standard servers equipped with two Intel Xeon
E5 2680 processors, each. They are interconnected by a Mellanox InfiniBand ConnectX fabric using
QDR-generation technology.

To achieve a high energy efficiency the Cluster supports, on the one hand, power conversion
in a centralized fashion by distributing only 48 V DC to each node and, on the other hand,
direct water cooling enabling the system to be run with warm water. The CNs are mounted
on aluminum coldplates connected to the chassis’ water circuit through quick disconnects. The
AURORA technology allows for an inlet temperature of the cooling liquid as high as 40◦C. Contact
with outside air through dry coolers is enough to recover this temperature for > 99% of the year.
By this means the amount of energy spent for cooling is minimized. The same cooling technology
is applied in the Booster.

4.2. Booster Interface

As sketched in figure 1, Booster Interface (BI) nodes bridge between the InfiniBand fabric of
the Cluster and the EXTOLL interconnect of the Booster. Their physical realization are Booster
Interface Cards (BICs). Each BI is equipped with an EXTOLL NIC and an InfiniBand HCA. Both
are attached to an PLX PCIe switch allowing for high-bandwidth, low-latency PCIe communication
within the BIC. This feature will be used for an efficient communication channel between CN and
BN as discussed in section 5.1.5.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 7

Figure 2. Booster during installation.

The physical realization of a BI combines a custom designed Booster Interface Card (BIC) with
an Eurotech JUNO board, a full-blown Intel E3-12xx v3 server system in PCIe form factor [12].
The BIC is equipped with an EXTOLL NIC implemented in an Altera Stratix-V FPGA. The
JUNO board’s low-power Intel Xeon E3 CPU of the Haswell generation is used for mapping the
memory of the 16 KNCs orchestrated by each BI into the PCIe address-space. This mapping is a
key requirement to enable remote booting of the KNCs and efficient communication between the
Booster and the Cluster part of the system.

4.3. Booster

An extensive description of the overall design and components of the DEEP Booster has been given
in [13]. In this section we summarize the most important hardware aspects of the Booster and
provide further implementation details of the actual realization.

The DEEP Booster is, as the Cluster, based on Eurotech’s AURORA technology. The Booster
Nodes (BNs) have a very lean design with one Intel Xeon Phi many-core processor and one
EXTOLL NIC only, i.e. without an additional host processor attached∗∗.

Physically, two BNs are integrated into a so-called Booster Node Card (BNC) forming the basic
building block of the DEEP Booster. The first Intel Xeon Phi generation commercially available –
code-named Knights Corner (KNC) – comes in different flavors. For the DEEP Booster, the model
7120X [14] has been chosen. It provides the largest memory capacity (16 GB) available in standard
PCIe form factor. The latter is required for its integration in the Booster Node Card. The EXTOLL
NIC in the BNCs has been implemented on FPGA basis. An Altera Stratix V [15] device has been
chosen for this purpose.

A Booster chassis integrates 16 BNCs together with 2 BIs, providing them with power and
direct water-cooling. In order to support AURORA’s direct water cooling, both BIs and BNCs
are mounted on coldplates connected to the chassis’ water circuit. Each chassis houses a passive
backplane supplying the internal EXTOLL links required for interconnection between the local
BNCs, cable connectors for inter-chassis connectivity, Ethernet and serial lines for management and
finally 48 V DC power. Within one rack copper cables are sufficient for inter-chassis connections.

As of today, a small part of the Booster, containing 32 BNs and 2 BIs, has been deployed. Figure 2
gives an impression of the hardware during installation. The full machine will consist of 384 Booster

∗∗The KNC generation of Intel Xeon Phi processors – in contrast to future generations of this architecture – requires a
host-processor for starting. Therefore, the BNs utilize the BI’s processor for booting. Advanced features of the EXTOLL
network allowing for remote access of KNC’s memory and transparent forwarding of PCIe packets enable us to do so.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 N. EICKER ET AL.

HOST

INTERFACE

NETWORK

INTERFACE

NETWORK

H
o

st
 In

te
rf

ac
e 

(H
T

3 
o

r 
P

C
Ie

)

O
n

 C
h

ip
N

et
w

o
rk

ATU

VELO

Control
& Status

RMA

E
X

T
O

L
L

N
et

w
o

rk
S

w
it

ch

Link-
port

Net-
work-
port

Link-
port

Link-
port

Link-
port

Link-
port

Link-
portSMFU

7th

Link

Net-
work-
port

Net-
work-
port

Net-
work-
port

Figure 3. EXTOLL interconnect: Block diagram of the functional units.

Nodes and 24 BIs. Its maximum compute power is estimated to be about 464 TFlop/s for double
precision operations†† at a total power consumption of less than 150 kW. The total bi-sectional
bandwidth of the Booster Interface – i.e. the bandwidth between the Cluster and Booster part of the
machine – will be 768 Gbit/s.

4.4. EXTOLL

The interconnect implementation of the DEEP Booster uses EXTOLL technology developed at the
University of Heidelberg. Each instance of a network node provides a total of seven links that might
be connected to other instances. Six links are used to form the 3-D torus of the DEEP Booster fabric.
Some of the 7th links will be used to connect the Booster torus with the BIs, and through them to
the Cluster side of the DEEP System.

Within the lifetime of the DEEP project – but independently and outside of it – an ASIC
implementation of EXTOLL has been developed. Initially, it was planned to build the Booster using
this implementation but, unfortunately, delays in the ASIC availability have prevented this. Instead,
the Booster is being built with an FPGA implementation of the EXTOLL protocol.

Compared to the final ASIC implementation, the FPGA provides full functionality with just less
performance. The performance drawbacks include higher latency and limited bandwidth. The latter
is due to a limited number of fast SERDES-links‡‡ of FPGAs compared to an ASIC’s capabilities
in combination with the harder constraints on the number of logic-modules in FPGA confining the
width of internal data-paths. This reduces the FPGA’s link bandwidth to 4× 4 Gbit/s compared to
a target bandwidth of the ASIC of 12× 10 Gbit/s. Latency is mainly affected by the fact that the
FPGA implementation runs at significantly lower clock-speed (150 MHz vs. 750 MHz).

Independently of its flavor – FPGA or ASIC –, the EXTOLL protocol integrates a host interface,
the network interface controller functionality and a router. The overall hardware architecture block
diagram is shown in figure 3. In the Booster Nodes, the EXTOLL NIC is directly connected to the
Intel Xeon Phi coprocessor via a PCIe link. EXTOLL is capable of acting as the PCIe root port in
this case.

††The peak performance for double precision operations of a Each Xeon Phi 7120 is 1208 GFlop/s, with a Thermal
Design Power (TDP) of 300 W.
‡‡Serializer-Deserializer modules multiplexing the wide data paths within the device into few high-speed signals for
outside use

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 9

Figure 4. ASIC evaluator prototype

The NIC portion of EXTOLL offers three different network communication engines, all to be
utilized by the DEEP software stack. The very efficient low-overhead (VELO) unit is responsible
for low-latency, high-message rate, two-sided message-based communication [16]. The remote
memory access (RMA) unit in cooperation with the ATU (address translation unit) implements
one-sided communication primitives like put and get [17]. The shared memory functional unit
(SMFU) implements a PGAS environment, actually a non cache-coherent view onto a global address
space [18]. Within DEEP, the first two units are used to implement a most efficient MPI layer
for the Booster. The SMFU is foreseen to realize the data movement of the bridging functionality
between DEEP Cluster and Booster. Both communication protocols will be discussed in more detail
in section 5. Beyond that, the SMFU is crucial for the ability of the BI’s processor to remotely boot
and control the KNCs.

4.5. ASIC Evaluator

A first version of the EXTOLL ASIC, with limited performance, already exists today. The final
ASIC achieving full performance (12× 10 Gbit/s per link), is expected to be available in Q2 of
2015. To evaluate the use of this high-speed network in a Booster-like system, a small prototype –
the ASIC Evaluator (AE) – is being built in DEEP, too.

The AE will be different from the Booster described in section 4.3 not only in its network
implementation, but also in its overall concepts of physical integration and cooling.

Similar to the DEEP Booster, the Booster Nodes of the ASIC Evaluator (AE-BNs) consist
of a KNC and an EXTOLL NIC, too. However, here the NIC is implemented as an EXTOLL
Tourmalet PCIe card [19] employing the EXTOLL ASIC. This standard PCIe form factor card
is simply attached via standard PCIe connectors to an Intel Xeon Phi 7120D – a denser form factor
implementation of the KNC. The EXTOLL NICs are interconnected to each other via copper cables
that realize the 3-D torus topology of the AE. Groups of 8 KNC and 8 Tourmalet cards share the
same backplane, which is mainly responsible for conducting the PCIe signals between KNC and
NIC and for providing the necessary electrical power to both, KNC and Tourmalet. An AE-Chassis
includes 4 of such dense backplanes, such that each chassis contains a total of 32 AE-nodes. The
AE will consist of 64 KNCs, i.e. two fully populated AE-chassis.

Each AE-chassis is in fact a hermetically closed container, filled with the Novec [20] cooling
liquid produced by 3M. All KNC and Tourmalet cards together with the backplanes and cables are
immersed in this fluid that dissipates the heat produced by this components during operation. This is
achieved by a phase-change of the cooling-agent from liquid to gas. The Novec liquid boils at 49◦C
and the convection generated through the component’s heat and the phase-change assure that the
warmth is transported to the upper part of the chassis basin. A water cooling serpentine is located
here to cool down the Novec cooling agent back below its boiling-point temperature, i.e. to care for

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 N. EICKER ET AL.

ParaStation Cluster MPI ParaStation Booster MPI
Cluster-Booster communication

Application

Less scalable code parts Highly scalable code parts

ParaStation Global MPI

Low-Level InfiniBand® Communication

DEEP Booster

BI BI BN BN BN BN

Intel® Compiler for MIC

OmpSs Compiler

CN CNCN CN

Intel® Compiler for Xeon®

DEEP Cluster

OmpSs Compiler

Low-Level EXTOLL Communication

OmpSs Offload Abstraction

Resource Management

Figure 5. Sketch of the DEEP software architecture.

its condensation. Figure 4 shows an early prototype of the AE cooling concept with a dense form
factor KNC in the front inside the boiling Novec cooling-agent.

The Booster Interface of the ASIC Evaluator (AE-BI) is realized by standard air-cooled Xeon
servers, each equipped with a Tourmalet card and a Mellanox FDR InfiniBand adapter. The latter
will be connected to the QDR InfiniBand fabric of the DEEP Cluster. The role of this Booster
Interface here is fully equivalent to the one in the Booster: remote boot of the KNCs and driving
the communication between the DEEP Cluster and the AE. Four AE-BIs are enough to support the
full 64-KNC ASIC Evaluator, providing 1920 Gbit/sec bi-sectional bandwidth. Since the maximum
compute power of the AE is just about 77 TFLOPs due to the lower number of KNCs included, the
AE is expected to be significantly better balanced.

5. PROGRAMMING THE DEEP SYSTEM

Programming a heterogeneous system like DEEP is a challenging task for developers of HPC
applications. In order to minimize the effort of porting existing applications to the Cluster-Booster
architecture special emphasis was taken within the DEEP project to develop a programming model
that supports the programmers as much as possible.

Figure 5 sketches the overall software architecture of the DEEP System. The heterogeneous
layout of the machine is reflected by the fact that dedicated development and runtime environments
supporting the distinct hardware feature of both parts are provided. While on the Cluster side a
MPI library specifically optimized for the InfiniBand fabric is provided, on the Booster side the
corresponding Booster-MPI supports EXTOLL. The latter will be used by the highly scalable
code parts for intra-Booster communication. The choice of MPI supports the fact that the guiding
applications of the DEEP Project are all based on the MPI programming paradigm.

The Booster Interface introduces constraints especially on the communication latency but also
on bandwidth. For this reason, the DEEP programming model foresees to trench applications at
a boundary involving only less frequent communication with limited data volume. By offloading
highly scalable code parts including intra-Booster communication, collective operations shall for
the most part be restricted to either the Cluster part or the Booster part of the applications.

5.1. MPI Offloading

The actual mechanism used for offloading of the highly scalable code parts to the Booster shall be
as close to existing standards as possible. For this reason we have chosen to employ the dynamic
process model of MPI-2, namely MPI Comm spawn, as the basis of DEEP’s offloading mechanism.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 11

CN

MPI_COMM_WORLD
(A)

CN

CN

CN

CN

comm

BN

BN BN

MPI_COMM_WORLD
(B)

MPI

Cluster

BoosterInter-Communicator

Figure 6. MPI Comm spawn schematics.

This choice provides the mechanism to start a group of new processes within the system that are
capable to use MPI semantics to exchange data among themselves. Beyond that, the MPI standard
also foresees to provide an efficient mechanism for exchanging data with MPI semantics between
both groups of processes, i.e. between Cluster and Booster nodes in our case. Both parts of the
applications – the part residing on the Cluster containing the main() function, and the offloaded
part on the Booster – have their own MPI COMM WORLDs allowing to use full MPI functionality on
either side. To send data back and forth between both groups of processes inter-communicators have
to be used, see figure 6. It is worth to mention that inverse offloading, i.e. starting applications on the
Booster and offloading part of them to the Cluster, is also supported by the actual implementation
of the MPI offloading mechanism.

5.1.1. MPI Comm spawn details MPI Comm spawn is a collective operation performed by a
subset of the processes of an application started on the Cluster. At least the name of the binary
as well as the number of new processes to be started have to be specified in the call. A new inter-
communicator is returned, providing a connection handle to the children. Each child has to call
MPI Init, as usual, and can use its MPI COMM WORLD communicator to exchange data with the
sister processes started within the same call to MPI Comm spawn. In order to grab a handle on the
inter-communicator shared with the parent processes, MPI Get parent has to be called.

The behavior of MPI Comm spawn can be further influenced using the info argument, passing
a dictionary of string-based key-value pairs. The meaning of the keys is largely implementation-
dependent, with some being predefined by the standard. An important key supported in the DEEP
implementation is arch, specifying the node-architecture to be used in order to spawn new
processes. The two obvious choices are cluster and booster.

We will also support the soft key foreseen by the MPI standard. By this means an application
can instruct MPI to determine the number of processes to be created depending on the amount of
resources currently available. This dynamic resource management promises to optimize the overall
resource usage within the DEEP system by providing applications the ability to occupy unused
resources. Of course, a close integration with the batch system is required in order to prevent
applications from “stealing” resources from other applications expected to start soon. A detailed
discussion of the resulting implications on the batch system can be found in [21].

5.1.2. Inter-communicators An inter-communicator, as defined by the MPI standard, contains two
groups of processes and naturally allows point-to-point communication between a member of one
group and a member of the other group.

Starting with MPI-2, collective operations have been extended and defined for inter-
communicators. In the taxonomy of collective operations there are three classes: The first contains
all all-to-one and one-to-all operations: For these, the data transfer is always uni-directional between
the two groups of an inter-communicator. A gather operation e.g. will collect data from all members

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 N. EICKER ET AL.

Hardware

ParaStation PSCOM

Shared MemTCP IB Verbs CBP Extoll

low-level

high-level

Infiniband HCA

IB

Extoll NIC

Extoll

TCP/IP

TCP Sockets

Shared
Memory

IPC

InfiniBand

Verbs

Extoll

RMAVELOSMFU

Figure 7. Architecture of the ParaStation communication library pscom.

of the sending group and pass it to one process of the receiving group. The second class contains
all-to-all operations, which for inter-communicators are split into two phases. In each phase, data is
collected in one group and the result is sent to all members of the other group. Finally, a third class
contains the collective operations which are not allowed on inter-communicators, like MPI Scan.

5.1.3. Global MPI implementation As sketched in figure 5, DEEP’s programming model is based
on MPI for intra-Booster as well as for intra-Cluster communications. Furthermore, the offloading
mechanism uses the dynamic process model defined in MPI-2.

The two MPIs together with the offloading mechanism and Cluster-Booster communication
actually form a global MPI: an MPI implementation that is usable on all node types and allows
for communication within CNs, within BNs, and between the Cluster and the Booster parts of the
system.

DEEP’s global MPI implementation uses ParTec’s ParaStation MPI [22], which in turn is based
on MPIch, and relies on pscom, its own communication library. pscom supports various network
interconnects for inter-node communication and shared memory for intra-node data transfers as
sketched in figure 7. The library is extensible by plug-ins to support several interconnects or
protocols at the same time. Communication is connection-oriented, the actual communication
path to use is chosen automatically at runtime while the connection is established. This happens
independently for each connection with an adjustable priority system to find the best available path
for each combination of processes.

Supporting InfiniBand and thus intra-Cluster communication out of the box, new plugins for
EXTOLL and its VELO and RMA protocols (driving the intra-Booster communication) on the one
hand, and for the so-called Cluster-Booster protocol on the other hand (both described below), have
been developed. This way, the global MPI implementation covers all possible communication paths
within the DEEP architecture.

5.1.4. Intra-Booster communication A key requirement to run highly scalable code parts on the
Booster is a most efficient implementation of the MPI standard for the Booster hardware, i.e. the
KNC multi-core processor and the EXTOLL interconnect. Major effort was invested in order to
achieve this goal. The main obstacles we unveiled had their seeds in performance restrictions in the
KNC processor when using it in a naive way. To give an example, it turned out that in general the
memcpy operation is rather expensive on this platform. Therefore, it becomes crucial to strive for a
zero-copy implementation of the communication operations in the Booster MPI.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 13

0

500

1000

1500

2000

2500

KNC Altera
RMA (Xeon)
Rndv cached
Rndv uncached
RMA

Message-size [byte]

T
hr

o
ug

hp
ut

 [M
B

/s
]

Figure 8. Bandwidth comparison of the Booster MPI against other platforms using similar implementations
of the EXTOLL interconnect.

After early experiments with the combination of KNC and EXTOLL had unveiled the mentioned
problems, it became clear that a zero-copy implementation of the communication layer will become
crucial for the scalability of the Booster part of the DEEP system. Figure 8 show this findings.
Comparing the lines for RMA and RMA (Xeon) it becomes obvious that communication bandwidth
suffers significantly from the poor memcpy performance on KNC while the bandwidth observed on
a standard Xeon platform is basically identical to the low-level hardware capabilities of the FPGA
implementation of the EXTOLL protocol.

Fortunately, EXTOLL provides a low-latency message-based protocol for small data: VELO.
Thus, a combination of VELO and RMA for remote DMA communication is used to implement a
rendezvous based zero-copy protocol for EXTOLL in pscom. While small messages, i.e. messages
smaller than a rendezvous size of 1024 bytes, are sent directly via VELO, the rendezvous for large
messages works as follows:
Sender:

1. Register the data buffer of the message for RMA usage. For the EXTOLL stack this means
to pin down all memory pages containing message data, preventing these pages from being
swapped out to disk or being moved to a different location in physical memory. After that,
map the physical addresses of all affected pages to a consecutive range of EXTOLLs network
logical addresses (NLA).

2. Transmit the metadata of the message together with the NLA of the message data to the
receiving side.

Receiver:

3. Identify the destination buffer of a receive request matching the message metadata.

4. Register the destination buffer for RMA usage (do pinning and assign an NLA).

5. Initiate an RMA get operation from the remote source buffer to the local destination buffer.
The RMA Get will address the source and destination regions with the NLAs from step 1)
and step 4). A completion notification when the RMA is done is requested at the same time.

6. After completion of the RMA operation:

• Notify the application about the new message.

• Unregister the receive buffer.

• Send an acknowledge control message via VELO back to the sender.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 N. EICKER ET AL.

Sender:

7. When receiving the acknowledge message:

• Unregister the send buffer.

• Notify the application about the completed send. It is now safe for the application to
reuse the send buffer.

The resulting bandwidth numbers are marked as “Rndv uncached” in figure 8. Obviously the
result is only partially satisfactory. In fact it turns out that registration and de-registration of data
buffers are expensive operations on KNC, too. Therefore a caching layer for buffer registration
was introduced resulting in the bandwidth numbers annotated as “Rndv cached” in the figure. Still
a significant bandwidth gap compared to the numbers on the Xeon platforms is observed. Further
analysis unveiled that it originates to a PCIe switch that was required in the early evaluation platform
that was used to achieve these numbers. Actually, moving to the final hardware employing a slightly
more capable FPGA to implement the EXTOLL network provides the “KNC Altera” tagged results.
These show for large messages an overall bandwidth near to the physical limits of the utilized
EXTOLL implementation.

The remaining differences to the Xeon platform, i.e. the shift of raising bandwidth towards larger
message sizes, stems from larger latency observed on KNC. While for the RMA protocol on the
Xeon platform the half round-trip time is 4.5 µs, the rendezvous protocol on KNC achieves just
5.8 µs even though we expect reduced latency for the rendezvous. In fact, we reach a half round-
trip time of 2.9 µs for the rendezvous protocol on Xeon. As a result KNC is latency-wise worse
by a factor of two compared to Xeon. This most probably originates from the inferior single thread
performance of KNC due to its in-order architecture in combination with the slower processor clock
compared to Xeon. Therefore, the execution of the critical path of the communication protocol will
take longer on the KNC platform. Nevertheless, as soon as messages are large enough in order to
relieve the protocol from the dominance of management overhead, KNC is doing well on intra-
Booster communication.

5.1.5. Cluster-Booster protocol Since both parts of the DEEP System – Cluster and Booster – will
have their own interconnect adapted to the requirements of the specific application code parts, a
network bridge between both parts is implemented in the Booster Interface, enabling all CNs to
make use of whole partitions of BNs in order to offload highly scalable code parts to the Booster.

For an efficient use of the offloading mechanism a high-throughput, low-overhead network
protocol is crucial. The implementation of this protocol features the SMFU functionality of
the EXTOLL network realizing significant benefits compared to a standard store-and-forward
implementation. A detailed discussion of the design and implementation of this protocol will be
provided in [23].

As sketched in figure 7, the Cluster-Booster protocol is integrated into pscom as a plugin, too. In
fact, this plugin is special, since it does not only provide a new communication layer to pscom but
at the same time makes use by the library itself for connection instantiation.

5.1.6. Resource Management integration In order to be usable for the DEEP architecture, a
resource management system has to be able to handle its heterogeneity, i.e. needs to know about
Cluster and Booster nodes (CNs and BNs). While the resource allocation mechanism for the CNs is
not different from that used on other clusters, modifications are necessary for the additional static
and dynamic allocation of BNs for a parallel job. In general, BNs are allocated exclusively for a
job. In the DEEP system, we use a modified version of Torque [24] together with the Maui job
scheduler [25].

In the static case, BNs are allocated before the job is started and remain reserved until the job is
terminated. Torque has been extended to accept requests for BNs together with CNs. Such a request
can be placed by the user e.g. via a modified version of the qsub command:

qsub -l nodes=cn:cluster+bn:booster <<<"mpiexec -np n <exec>"

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 15

where cn and bn denote the number of Cluster and Booster nodes, respectively. For applications
doing direct offloading n ≤ cn will hold as they are initially started solely on CNs, and can issue
MPI Comm spawn calls to run their highly scalable code parts on the Booster, as described above.
Torque will pass lists of all allocated resources to ParaStation’s process management system.

If inverse offloading is required for a distinct application, this is also supported by the DEEP
resource management. In fact, only the resource request in the qsub command has to be adapted
such that Booster resources appear in front of the Cluster resources. This implies that the Job will
start on the Booster part of the system and can later on spawn additional processes on the Cluster
part of the DEEP system.

DEEP also foresees dynamic resource allocation. This feature is triggered by an application
calling MPI Comm spawn requesting more Booster nodes than previously allocated statically. Per
default the call would fail, as described earlier, but it will be possible to tell the DEEP runtime
that it should try to dynamically allocate more resources by the soft key as discussed above. The
MPI will forward such requests to Torque. However, depending on the current load of the machine
it may block the application until enough Booster nodes are available or an optionally specified
timeout expires and the call finally fails.

5.2. OmpSs offload abstraction

Extending an existing application to make use of the DEEP offloading is cumbersome and error-
prone. Therefore, DEEP has extended the OmpSs [5] data flow programming model developed by
the Barcelona Supercomputing Center to ease application porting to heterogeneous machines like
the DEEP system.

5.2.1. OmpSs task model Based on OpenMP and belonging to the StarSs [26, 27] family, OmpSs
exploits task-level parallelism and supports asynchronicity, heterogeneity and data movement.

OmpSs was originally developed to support programming on standard SMP machines populated
with GPUs, what was becoming an increasing tendency in HPC environments. It allowed including
tasks written in CUDA or OpenCL to execute them on the graphics cards. Nowadays, OmpSs
supports as well other kinds of hybrid architectures such as SMP machines populated with Intel
Xeon Phi. For DEEP, OmpSs has been extended to feature not only both sides of the DEEP System,
but also to support offloading large complex tasks from Cluster to Booster, or vice-versa.

To use OmpSs [28] an application must be taskified. This is done by annotating the code with
OpenMP-like pragmas that indicate data dependencies between the different tasks of the program.
OmpSs pragmas are written in front of a function or piece of code that shall be designated as a task
and typically look as follows:

#pragma omp task input(a[i-1]) inout (a[i]) output(b[i])
function(&a[i-1], &a[i], &b[i]);

where the clauses input, output and inout specify which data is needed and which is produced
by a task. Additionally, a target clause allows the user to specify one or a series of hardware
devices where a given task should be executed, and if data needs to be copied from/to those devices.
Various versions of the tasks can exist to target different architectures.

The OmpSs annotations are interpreted by the OmpSs source-to-source compiler – so-called
Mercurium –, which supports Fortran, C, and C++ languages. For each call to the annotated
functions the compiler generates a call to the OmpSs runtime system – so-called Nanos++ – to
create a new task. The result is compiled by a native compiler and linked with Nanos++.

Each time a new task is created its input and output dependencies are matched against those of the
already existing tasks. Taking these dependencies into account, the runtime decides on the order of
the tasks and whether concurrent execution is allowed, creating a task dependency graph at run-time.
All this information is used to schedule the tasks on the available devices.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 N. EICKER ET AL.

C L U S T E R B O O S T E R

DEEP Runtime

ParaStation Global MPI

Booster MPI

OmpSs Runtime

Cluster MPI

Cluster
Executable

Booster
Executable

OmpSs Compiler

Figure 9. DEEP application workflow: From code to execution.

5.2.2. The DEEP offload In DEEP, the OmpSs programming model runs not only at the node
level, but also as an abstraction of the global MPI as sketched in figure 5. Directly using the
MPI Comm spawn primitive means for the programmer to coordinate and manage two or more
sets of parallel MPI processes, explicitly sending the required data from one side to the other
of the DEEP System. This would make the port of large and complex applications the Cluster-
Booster architecture very cumbersome. For this reason, OmpSs has been extended to implement
the so-called DEEP Offload [29]. It combines the power and flexibility of MPI Comm spawn
with the OmpSs data flow model. The result is an offload mechanism that is similar to the Intel
Offload but also allows offloading MPI kernels, i.e. within the offloaded code part it supports direct
communication between MPI processes running on different Xeon Phis.

The overall workflow conducting from application code to execution on the DEEP System is
sketched in figure 9. Using OmpSs pragmas the application developer labels the highly scalable
parts of its code, which shall run on the Booster. The compiler and the runtime of OmpSs cooperate
to transparently manage all data transfers between the MPI processes running on the Cluster and the
Booster, making use of functions like MPI Comm spawn and MPI Comm send.

It is important to mention that the highly-scalable code parts running on the Booster typically
contain internal MPI operations. These operations are also orchestrated by the OmpSs runtime.
Support is guaranteed for any offloading pattern that can be expressed with the low-level MPI
spawning mechanism.

The DEEP Offload has been implemented and is already validated for large C, C++ and Fortran
applications. Tests on various large production machines have been performed to demonstrate the
scalability of the concept. It will be installed and tested on the DEEP System, allowing for both
static and dynamic allocation of its resources.

6. CONCLUSION AND OUTLOOK

DEEP implements a first incarnation of the heterogeneous Cluster-Booster architecture. It aims for
pursuing the successful concept of cluster computing into the many-core era, carrying the potential

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



THE DEEP PROJECT 17

to reach Exascale. We expect this target to be barely reachable with standard HPC clusters as they
are in use today.

At the time of writing, the DEEP project was in project month 38 and had already achieved
several important milestones: the Cluster part and a 32 node subsection of the Booster part of the
DEEP System are up and running at the Jülich Supercomputing Centre; most of the components
of the ASIC Evaluator have been already constructed and just wait for the availability of the final
EXTOLL ASIC to get the system up and running; the low-level Cluster-Booster Protocol has been
implemented and is being tested on the DEEP System; ParaStation MPI supports EXTOLL and
has been ported to Intel Xeon Phi; OmpSs has been extended to create the DEEP Offload; the
performance analysis tools Scalasca and Extrae/Paraver are running on Xeon Phi, and the latter
already supports the DEEP Offload; the application codes have been analyzed and re-structured to
implement the code division between Cluster and Booster, several of them already including the
OmpSs pragmas, etc.

The remaining time of the project will be used to produce and install the rest of the components
needed to complete the 384 node Booster, to finalize the ASIC Evaluator and install both at JSC.
The software infrastructure as described in this paper is almost final and currently under installation
on the existing small-size DEEP System. Minor bugs and errors are being corrected to arrive at a
fully stable software stack. As soon as this step is ready, the DEEP’s guiding applications will run
on the machine and serve as a yardstick for assessing the Cluster-Booster architecture.

ACKNOWLEDGEMENTS

The authors would like to thank the people and partners involved in the DEEP consortium for their ongoing
engagement and strong commitment towards the project, which led to several of the results described in this
paper. Special gratitude goes to M. Nüssle from University of Heidelberg for helpful discussion on EXTOLL
and V. Beltran of Barcelona Supercomputing Centre for valuable input on OmpSs.

The research leading to these results has been conducted in the frame of the DEEP (Dynamical Exascale
Entry Platform) project, which receives funding from the European Commission’s Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement n◦ 287530.

REFERENCES

1. TOP500 project. TOP500 list. URL http://www.top500.org.
2. Eicker N, Lippert T. An accelerated Cluster-Architecture for the Exascale. PARS ’11, PARS-Mitteilungen, vol. 28,

Gesellschaft für Informatik e.V., Parallel-Algorithmen und Rechnerstrukturen, 2011; 110 – 119.
3. DEEP project. The DEEP project 2011. URL http://www.deep-project.eu.
4. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2 September 4th 2009. Available at: http:

//www.mpi-forum.org (Dec. 2009).
5. Duran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Martorell X, Planas J. OmpSs: A proposal

for programming heterogeneous multi-core architectures. Parallel Processing Letters 2011; 21(02):173–193,
doi:10.1142/S0129626411000151. URL http://www.worldscientific.com/doi/abs/10.1142/
S0129626411000151.

6. Peter Kogge et al. Exascale Computing Study: Technology Challenges in Achieving Exascale Systems 2008. URL
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf.

7. Baier Hea. QPACE: power-efficient parallel architecture based on IBM PowerXCell 8i. Computer Science -
Research and Development 2010; 25(3-4):149–154, doi:10.1007/s00450-010-0122-4. URL http://dx.doi.
org/10.1007/s00450-010-0122-4.

8. Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. Proceedings
of the April 18-20, 1967, spring joint computer conference, AFIPS ’67 (Spring), ACM: New York, NY, USA, 1967;
483–485, doi:10.1145/1465482.1465560. URL http://doi.acm.org/10.1145/1465482.1465560.

9. Gustafson JL. Reevaluating Amdahl’s law. Commun. ACM May 1988; 31(5):532–533, doi:10.1145/42411.42415.
URL http://doi.acm.org/10.1145/42411.42415.

10. Mallon DA, Eicker N, Innocenti ME, Lapenta G, Lippert T, Suarez E. On the scalability of the Clusters-
Booster concept: a critical assessment of the DEEP architecture. Proceedings of the Future HPC Systems: the
Challenges of Power-Constrained Performance, FutureHPC ’12, ACM: New York, NY, USA, 2012; 3:1–3:10, doi:
10.1145/2322156.2322159. URL http://doi.acm.org/10.1145/2322156.2322159.

11. Eurotech SpA. Aurora HPC systems. URL http://www.eurotech.com/en/hpc/hpc+solutions/
aurora+hpc+systems.

12. Eurotech SpA. HiVE JUNO. URL http://www.eurotech.com/en/hpc/hpc+solutions/aurora+
hive+series/Aurora+HiVe.

13. Eicker N, Lippert T, Moschny T, Suarez E. The DEEP project. Pursuing cluster-computing in the many-core era. In
Proceedings of the 42nd International Conference on Parallel Processing Workshops (ICPPW) 2013. Workshop on

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 N. EICKER ET AL.

Heterogeneous and Unconventional Cluster Architectures and Applications (HUCAA), Lyon, France, 2013; 885–
892, doi:10.1109/ICPP.2013.105.

14. Intel Corporation. Intel Xeon Phi 7120 2012. URL http://www.intel.com/content/www/us/en/
processors/xeon/xeon-phi-detail.html.

15. Altera. Stratix V. URL www.altera.com/devices/fpga/stratix-fpgas/stratix-v.
16. Litz H, Fröning H, Nüssle M, Brüning U. VELO: A Novel Communication Engine for Ultra-Low Latency

Message Transfers. Parallel Processing, 2008. ICPP ’08. 37th International Conference on, 2008; 238–245, doi:
10.1109/ICPP.2008.85.

17. Nussle M, Scherer M, Bruning U. A resource optimized remote-memory-access architecture for low-latency
communication. Proceedings of the 2009 International Conference on Parallel Processing, ICPP ’09, IEEE
Computer Society: Washington, DC, USA, 2009; 220–227, doi:10.1109/ICPP.2009.62. URL http://dx.doi.
org/10.1109/ICPP.2009.62.

18. Fröning H, Litz H. Efficient Hardware Support for the Partitioned Global Address Space. 10th Workshop on
Communication Architecture for Clusters (CAC2010), colocated with 24th International Parallel and Distributed
Processing Symposium (IPDPS2010), Atlanta, Georgia, USA, 2012.

19. EXTOLL GmbH. Tourmalet. URL http://www.extoll.de/index.php/productsoverview/
tourmalet.

20. 3M. Novec. URL http://multimedia.3m.com/mws/media/569865O/
3mtm-novectm-649-engineered-fluid.pdf?&fn=Novec649_6003926.pdf.

21. Prabhakaran S, Iqbal M, Rinke S, Windisch C, Wolf F. A batch system with fair scheduling for evolving
applications. Proc. of the 43rd International Conference on Parallel Processing (ICPP), Minneapolis, USA, 2014;
351–360, doi:10.1109/ICPP.2014.44.

22. ParTec GmbH. ParaStationV5 2012. URL http://www.par-tec.com/products/parastationv5.
html.

23. Galonska A, Eicker N, Hauke J, Nüssle M. Bridging the DEEP gap – implementation of an efficient forwarding
protocol in preparation.

24. Adaptive Computing. TORQUE Resource Manager. URL http://www.adaptivecomputing.com/
products/open-source/torque/.

25. Adaptive Computing. Maui. URL http://www.adaptivecomputing.com/products/
open-source/maui/.

26. Ayguadé E, Badia R, Igual F, Labarta J, Mayo R, Quintana-Ortı́ E. An Extension of the StarSs Programming
Model for Platforms with Multiple GPUs. Euro-Par 2009 Parallel Processing, Lecture Notes in Computer
Science, vol. 5704, Sips H, Epema D, Lin HX (eds.). Springer Berlin Heidelberg, 2009; 851–862, doi:10.1007/
978-3-642-03869-3 79. URL http://dx.doi.org/10.1007/978-3-642-03869-3_79.

27. Perez J, Badia R, Labarta J. A dependency-aware task-based programming environment for multi-core architectures.
2008 IEEE International Conference on Cluster Computing, 2008; 142–151, doi:10.1109/CLUSTR.2008.4663765.

28. Pogramming Models @ BSC. The OmpSs Programming Model 2013. URL https://pm.bsc.es/ompss.
29. Labarta J, Beltran V. Deliverable 5.3 of the DEEP project: OmpSs runtime for the DEEP System

feb 2014. URL http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/
Deliverables/deliverable-D5.3.pdf.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe


