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h i g h l i g h t s

• The Pauli equation is obtained through logical inference applied to robust experiments on a charged particle.
• The concept of spin appears as an inference resulting from the treatment of two-valued data.
• The same reasoning yields the quantum theoretical description of neutral magnetic particles.
• Logical inference provides a framework to establish a bridge between objective knowledge gathered through

experiments and their description in terms of concepts.
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a b s t r a c t

It is shown that the Pauli equation and the concept of spin naturally
emerge from logical inference applied to experiments on a charged
particle under the conditions that (i) space is homogeneous (ii) the
observed events are logically independent, and (iii) the observed
frequency distributions are robust with respect to small changes
in the conditions under which the experiment is carried out.
The derivation does not take recourse to concepts of quantum
theory and is based on the same principles which have already
been shown to lead to e.g. the Schrödinger equation and the
probability distributions of pairs of particles in the singlet or triplet
state. Application to Stern–Gerlach experiments with chargeless,
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magnetic particles, provides additional support for the thesis that
quantum theory follows from logical inference applied to a well-
defined class of experiments.

© 2015 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In laboratory experiments, one never has complete knowledge about the mechanisms that affect
the outcome of the measurements: there is always uncertainty. In addition, the outcomes of real
experiments are always subject to uncertainties with respect to the conditions under which the
experiments are carried out.

If there are uncertainties about the individual events and uncertainties about the conditions under
which the experiment is carried out, it is often difficult or even impossible to establish relations
between individual events. However, in the case that the frequencies of these events are robust (to be
discussed inmore detail later) itmay still be possible to establish relations, not between the individual
events, but between the frequency distributions of the observed events.

The algebra of logical inference provides a mathematical framework that facilitates rational
reasoning when there is uncertainty [1–5]. A detailed discussion of the foundations of logical
inference, its relation to Boolean logic and the derivation of its rules can be found in the papers [1,4]
and books [2,3,5]. Logical inference is the foundation for powerful tools such as themaximum entropy
method and Bayesian analysis [3,5]. To the best of our knowledge, the first derivation of a non-trivial
theoretical description by this general methodology of scientific reasoning appears in Jaynes’ papers
on the relation between information and (quantum) statistical mechanics [6,7].

A recent paper [8] shows how some of the most basic equations of quantum theory, e.g. the
Schrödinger equation and the probability distributions of pairs of particles in the singlet or triplet state
emerge from the application of logical inference to (the abstraction of) robust experiments, without
taking recourse to concepts of quantum theory. This logical-inference approach yields results that
are unambiguous and independent of the individual subjective judgment. In addition, this approach
provides a rational explanation for the extraordinary descriptive power of quantum theory [8]. As
the introduction of the concept of intrinsic angular momentum, called spin, is a landmark in the
development of quantum theory, it is natural to ask the question under which circumstances this
concept appears in a logical-inference treatment.

A classical review of how the concept of spin has been introduced in quantum theory is given by
van der Waerden [9]. The original motivation to introduce this new concept was the discovery of the
anomalous Zeeman effect and its transition to the normal Zeeman effect with increasing magnetic
field (the so-called Paschen-Back effect). Pauli introduced spin in a very formal way by attributing to
the electron an additional intrinsic magnetic quantum number taking the values±1/2 [10]. Although
the picture of the spin in terms of a ‘‘rotating electron model’’ was quickly and widely accepted, Pauli
was strongly against this picture because of its purely classical-mechanics character. A few years
later he suggested the Pauli equation [11] in which this intrinsic degree of freedom was introduced
by replacing the single-component wavefunction that appears in Schrödinger’s equation by a two-
component wavefunction and ‘‘Pauli matrices’’; the most rigorous way to establish a relation with
the idea of the rotating electron is just a formal observation that these Pauli matrices satisfy the same
commutation relations as the generators of the rotation group in three-dimensional space and that the
two-component wavefunctions (spinors) provide a double-valued representation of this group [9].

Bohm and his followers, in the spirit of their general approach to provide a causal interpretation
of quantum mechanics, tried to construct a purely classical description of spin by analogy with the
hydrodynamics of a rotating liquid [12,13]. Despite the beauty of the mathematical description, the
interpretation of the spin as entity, a field, which is distributed over the whole space is rather exotic
and can hardly be considered as a derivation and justification of the Pauli equation.
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Bohr and Pauli suggested that spin and the relatedmagneticmoment cannot bemeasured in exper-
iments which can be interpreted in terms of classical trajectories (such as Stern–Gerlach experiments
with a free-electron beam), see Ref. [14] and references therein. In an inhomogeneous magnetic field,
spin effects cannot be separated from the effects of the Lorentz force due to the orbital motion of the
charged particle. However, these difficulties are technical rather than conceptual as they do not con-
sider the possibility that there are neutral particles (not subject to the Lorentz force) with magnetic
moments, such as neutrons, for which a Stern–Gerlach experiment is not only possible in principle
but has really been performed [15]. It is clear now that the naive way to demonstrate the ‘‘essentially
non-classical’’ character of the spin degree of freedom was premature.

In this paper, we show how the Pauli equation and the concept of spin naturally emerge from the
logical-inference analysis of experiments on a charged particle. We carefully analyze the additional
assumptions (someof themhaving obvious analogs in Pauli’s analysis of the anomalous Zeemaneffect)
which are required to pass, in a model-free way, to the Pauli equation.

Conceptually, we return to the roots by first introducing ‘‘spin’’ as some intrinsic degree of freedom
characterized by a two-valued number. We will call this two-valued property ‘‘color’’ (e.g. red or
blue) to make clear that we leave no room for (mis)interpretations in terms of models of a rotating
particle and the like. This is in sharp contrast to the interpretation of Refs. [12,13]. Note that such a
generalization of the concept of spin is very important in modern physics. For instance, the idea of
isospin of elementary particles [16] was originally introduced [17] as a way to describe constituents
of atomic nuclei in terms of the same particles (nucleons)with two subspecies (neutrons and protons).
Another example is the pseudospin of the charge carriers in graphene [18] used to indicate that the
carriers belong to sublattice A or B of the honeycomb crystal lattice. In both of these examples, there
is nothing that is rotating!

We further illustrate the power of the approach by an application to Stern–Gerlach experiments
with chargeless, magnetic particles, providing additional support to the idea that quantum theory
directly follows from logical inference applied to a well-defined class of experiments [8].

To head off possible misunderstandings, it is important to mention that the underlying premise of
our approach is that current scientific knowledge derives, through cognitive processes in the human
brain, from the discrete events which are observed in laboratory experiments and from relations
between those events that we, humans, discover. As a direct consequence of this underlying premise,
the validity of the results obtained in our approach does not depend on the assumption that the
observed events are signatures of an underlying objective reality which is mathematical in nature
(for an overview of older and newwork in this direction, see Ref. [19]). We take the point of view that
the aim of physics is to provide a consistent description of relations between certain events that we
perceive (usually with the help of some equipment) with our senses. Some of these relations express
cause followed by an effect and others do not. A derivation of a quantum theoretical description from
logical-inference principles does not prohibit the construction of cause-and-effect mechanisms that,
when analyzed in the same manner as in real experiments, create the impression that the system
behaves according to quantum theory [20–22]. Work in this direction has shown that it is indeed
possible to build simulation models which reproduce, on an event-by-event basis, the results of
interference/entanglement/uncertainty experiments with photons/neutrons [23–27].

The paper is organized as follows. In Section 2we specify themeasurement scenario and introduce
the inference-probability that characterizes the observed detection events (all the elements of logical
inference that are required for the purpose of the present paper are summarized in Appendix A).
Then, we discuss and formalize the notion of a robust experiment. Although these three steps are
similar to the ones taken in the logical-inference derivation of the Schrödinger equation [8], to make
the presentation self-contained, we give a detailed account. The next three subsections address the
problem of including additional knowledge about the motion of the particle in some limiting cases. In
Section 2.8 we collect the results of the previous subsections and derive the Pauli equation. Section 3
shows that the same procedure leads to the quantum theoretical equation that describes the motion
of an uncharged particle in a magnetic field. A discussion of the relation of the logical-inference
derivation of the Pauli equation and earlierwork on the hydrodynamic formulation of quantum theory
is given in Section 4. A summary and discussion of more general aspects of the work presented in this
paper can be found in Section 5.
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2. Logical inference: derivation of the Pauli equation

2.1. Measurement scenario

We consider N repetitions of an experiment on a particle located in 3-dimensional space �.
The experiment consists of sending a signal to the particle at discrete times labeled by the integer
τ = 1, . . . ,M . It is assumed that for each repetition, labeled by n = 1, . . . ,N , the particle is at the
unknown position Xτ ∈ �. As the particle receives the signal, it responds by emitting another signal
which is recorded by an array of detectors. For each signal emitted by a particle the data recorded by
the detector system is used to determine the position jn,τ ∈ V where V denotes the set of voxels with
linear extent [−∆,∆]/2 that cover the 3-dimensional space �. The signal also contains additional
informationwhich is two-valued and encodes, so to speak, the ‘‘color’’ of the particle at the timewhen
it responded to the signal emitted by the source. This color is represented by variables kn,τ = ±1.
The frequency distribution of the (j, k)n,τ ’s changes with the applied electric and magnetic field from
which we may infer that there is some form of interaction between the electromagnetic field and the
particle.

The result of N repetitions of the experiment yields the data set

Υ = {(j, k)n,τ |jn,τ ∈ V; k = ±1; n = 1, . . . ,N; τ = 1, . . . ,M}, (1)

or, denoting the total counts of voxels j and color k at time τ by 0 ≤ cj,k,τ ≤ N , the data set can be
represented as

D =


cj,k,τ

τ = 1, . . . ,M ;


k=±1


j∈[−Ld,Ld]

cj,k,τ = N

. (2)

2.2. Inference-probability of the data produced by the experiment

The first step is to introduce a real number 0 ≤ P(j, k|Xτ , τ , Z) ≤ 1 which represents the
plausibility that we observe a detector click (j, k), conditional on (Xτ , τ , Z). For reasons explained
in Appendix A, P(j, k|Xτ , τ , Z) is called the inference-probability (or i-prob for short) and encodes the
relation between the unknown location Xτ and the location j and color k registered by the detector
system at discrete time τ . Except for the unknown location Xτ , all other experimental conditions are
represented by Z and are assumed to be fixed and identical for all experiments. Note that unlike in
the case of parameter estimation, in the case at hand both P(j, k|Xτ , τ , Z) and the parameters Xτ are
unknown.

We make the following, seemingly reasonable assumptions:
1. Each repetition of the experiment represents an event of which the outcome is logically

independent of any other such event. By application of the product rule (see Appendix A), a direct
consequence of this assumption is that

P(Υ |X1, . . . ,XM ,N, Z) =

M
τ=1

N
n=1

P(jn,τ , kn,τ |Xτ , τ , Z), (3)

and hence

P(D|X1, . . . ,XM ,N, Z) = N!

M
τ=1


j∈V


k=±1

P(j, k|Xτ , τ , Z)cj,k,τ

cj,k,τ !
. (4)

2. It is assumed that it does not matter where the experiment is carried out. This implies that the
i-prob should have the property

P(j, k|Xτ , τ , Z) = P(j + ζ, k|Xτ + ζ, τ , Z), (5)

where ζ is an arbitrary 3-dimensional vector. The relation Eq. (5) expresses the assumption that
space is homogeneous.
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2.3. Condition for reproducibility and robustness

If the frequencies with which the detectors fire vary erratically with {Xτ }, the experiment would
most likely be called ‘‘irreproducible’’. Excluding such experiments, it is desirable that frequency
distributions of the data exhibit some kind of robustness, smoothness with respect to small changes
of the unknown values of {Xτ }. Unless the experimental setup is sufficiently ‘‘robust’’ in the sense just
explained, repeating the run with slightly different values of {Xτ } would often produce results that
are very different from those of other runs and it is common practice to discard such experimental
data. Therefore, a ‘‘good’’ experiment must be a robust experiment.

The robustness with respect to small variations of the conditions under which the experiment
is carried out should be reflected in the expression of the i-prob to observe data sets which yield
reproducible averages and correlations (with the usual statistical fluctuations). The next step therefore
is to determine the expression for P(j, k|Xτ , τ , Z)which is most insensitive to small changes in Xτ . It
is expedient to formulate this problem as an hypothesis test. Let H0 and H1 be the hypothesis that the
same data D is observed for the unknown locations {Xτ } and {Xτ +ετ }, respectively. The evidence Ev
of hypothesis H1, relative to hypothesis H0, is defined by [3,5]

Ev = ln
P(D|Xτ + ετ , τ ,N, Z)

P(D|Xτ , τ ,N, Z)

=


j,k,τ

cj,k,τ ln
P(j, k|Xτ + ετ , τ , Z)

P(j, k|Xτ , τ , Z)
, (6)

where the logarithm serves to facilitate algebraic manipulations. If H1 is more (less) plausible than H0
then Ev > 0 (Ev < 0). In statistics, the r.h.s. of Eq. (6) is known as the log-likelihood function and
used for parameter estimation. In contrast, in the present context, the function Eq. (6) is not used to
estimate Xτ but is a vehicle to express the robustness with respect to the coordinates Xτ .

Writing Eq. (6) as a Taylor series in ε we have

Ev =


j,k,τ

cj,k,τ ln

1 +

ετ · ∇τP(j, k|Xτ , τ , Z)
P(j, k|Xτ , τ , Z)

+
1
2
(ετ · ∇τ )

2P(j, k|Xτ , τ , Z)
P(j, k|Xτ , τ , Z)

+ O(ε3τ )



=


j,k,τ

cj,k,τ


ετ · ∇τP(j, k|Xτ , τ , Z)

P(j, k|Xτ , τ , Z)
−

1
2


ετ · ∇τP(j, k|Xτ , τ , Z)

P(j, k|Xτ , τ , Z)

2

+
1
2
(ετ · ∇τ )

2P(j, k|Xτ , τ , Z)
P(j, k|Xτ , τ , Z)


+ O(ε3

τ ), (7)

where∇τ differentiateswith respect toXτ . Here and in the followingwe assume that ετ is sufficiently
small such that the third and higher order terms in the ε’s can be ignored. According to our criterion
of robustness, the evidence Eq. (7) should change as little as possible as Xτ varies. This can be
accomplished by minimizing, in absolute value, all the coefficients of the polynomial in ετ , for all
allowed ετ and Xτ . The clause ‘‘for all allowed ετ and Xτ ’’ implies that we are dealing here with an
instance of a robust optimization problem [28].

The first and third sum in Eq. (7) vanish identically if we choose cj,k,τ/N = P(j, k|Xτ , τ , Z). Indeed,
we have

j,k,τ
cj,k,τ

(ετ · ∇τ )
αP(j, k|Xτ , τ , Z)

P(j, k|Xτ , τ , Z)
= N


j,k,τ
(ετ · ∇τ )

αP(j, k|Xτ , τ , Z)

= N

τ

(ετ · ∇τ )
α

j,k

P(j, k|Xτ , τ , Z)

= N

τ

(ετ · ∇τ )
α1 = 0, (8)
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for α = 1, 2, . . .. Although this choice is motivated by the desire to eliminate contributions of order
ετ , it follows that our criterion of robustness automatically suggests the intuitively obvious procedure
to assign to P(j, k|Xτ , τ , Z) the value of the observed frequencies of occurrences cj,k,τ/N [3,5].

Dropping irrelevant numerical factors and terms of O(ε3
τ ), the remaining contribution to the

evidence

Ev =


j,k,τ

1
P(j, k|Xτ , τ , Z)

[ε · ∇τP(j, k|Xτ , τ , Z)]2 , (9)

vanishes identically (for all ετ ) if and only if ∇τP(j, k|Xτ , τ , Z) = 0 in which case it is clear that we
can only describe experiments for which the data does not exhibit any dependence on Xτ .

Experiments which produce frequency distributions that do not depend on the conditions
do not increase our knowledge about the relation between the conditions and the observed
data. Therefore, we explicitly exclude such non-informative experiments.

Thus, from now on, we explicitly exclude the class of experiments for which ∇τP(j, k|Xτ , τ , Z)
= 0.

The clause ‘‘for all allowed ετ ’’ can be eliminated using the Cauchy–Schwarz inequality. We have

Ev =


j,k,τ


ετ · ∇τP(j, k|Xτ , τ , Z)

P1/2(j, k|Xτ , τ , Z)

2

≤ ε2 
j,k,τ

1
P(j, k|Xτ , τ , Z)


∇τP(j, k|Xτ , τ , Z)

2
, (10)

whereε2 = maxτ ε2
τ . As the ετ ’s are arbitrary (but small), it follows from Eq. (10) that we find the

robust solution(s) by searching for the global minimum of

IF =


j,k,τ

1
P(j, k|Xτ , τ , Z)


∇τP(j, k|Xτ , τ , Z)

2
, (11)

which is the Fisher information of the measurement scenario described above.

2.4. Continuum limit

Propositions such as ‘‘detector (j, k) has clicked at time τ ’’ are ultimately related to sensory
experience and are therefore discrete in nature. On the other hand, the basic equations of quantum
theory such as the Schrödinger, Pauli and Dirac equations are formulated in continuum space. Taking
the continuum limit of the discrete formulation connects the two modes of description. Here and
in the following, we use the symbols for (partial) derivatives for both the case that the continuum
approximation is meaningful and the case that it is not. In the latter, operator symbols such as ∂/∂t
should be read as the corresponding finite-difference operators.

Assuming that the continuum limit is well-defined, we have V → � and the Fisher information
reads

IF =


dx dt

3
i=1


k=±1

1
P(x, k|X, t, Z)


∂P(x, k|X, t, Z)

∂Xi

2

=


dx dt

3
i=1


k=±1

1
P(x, k|X, t, Z)


∂P(x, k|X, t, Z)

∂xi

2

=


dx dt


k=±1

1
P(x, k|X, t, Z)

[∇P(x, k|X, t, Z)]2 , (12)

where ∇ denotes derivatives with respect to x and we have simplified the notation somewhat by
writing X = Xt . We have changed derivatives with respect to X to derivatives with respect to x by
assuming that (P(x, k|X, t, Z) = P(x+y, k|X+y, t, Z) holds for all y (see assumption 2 in Section 2.2).
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Furthermore, it is understood that integrations are over the domain defined by themeasurement sce-
nario. Technically speaking, after passing to the continuum limit, P(x|X, t, Z) denotes the probability
density, not the probability itself. However, as mentioned above, we write integration and derivation
symbols for both the discrete case and its continuum limit and as there can be no confusion about
which casewe are considering,we use the same symbol for the probability density and the probability.

For later use, it is expedient to write Eq. (12) in a different formwhich separates the data about the
position of the clicks and the associated color k as much as possible. According to the product rule, we
have

P(x, k|X, t, Z) = P(k|x,X, t, Z)P(x|X, t, Z), (13)

which we may, without loss of generality, represent as

P(x, k = +1|X, t, Z) = P(x|X, t, Z) cos2
θ(x,X, t, Z)

2

P(x, k = −1|X, t, Z) = P(x|X, t, Z) sin2 θ(x,X, t, Z)
2

. (14)

Substituting Eq. (14) into Eq. (12) we obtain

IF =


dx dt


1

P(x|X, t, Z)
[∇P(x|X, t, Z)]2 + [∇θ(x,X, t, Z)]2 P(x|X, t, Z)


, (15)

which is the Fisher information for the measurement scenario described earlier. Note that up to this
point, we have not assumed that the particle moves or carries a magnetic moment nor did we assign
any particular meaning to θ(x,X, t, Z).

According to the principle laid out earlier, our task is to search for the global minimum of Eq. (15),
the Fisher information of the measurement scenario described above, thereby excluding the uninfor-
mative class of solutions.

2.5. Including knowledge

It is instructive to first search for the global minimum of Eq. (15) in the case that we do not know
whether the particle moves or not and do not know about the effect of the applied electromagnetic
field on the frequency distribution of the (j, k)n,τ ’s. In this situation, we may discard the time
dependence altogether and search for the non-trivial global minimum of

IF =


dx


1

P(x|X, Z)
[∇P(x|X, Z)]2 + [∇θ(x,X, Z)]2 P(x|X, Z)


. (16)

For pedagogical purposes, we first focus on the case of one spatial dimension and discard the color
dependence, that is we set ∇θ(x,X, Z) = 0 and assume that Ω → [0, L] where [0, L] is the range
covered by the detection system. With the latter assumption P(x|X, Z) = 0 for x ≤ 0 or x ≥ L.

Recalling the assumption that space is homogeneous (see Eq. (5)), we search for solutions of the
form P(x|X, Z) = f (x − X, Z). As f (x − X, Z) ≥ 0, we may substitute P(x|X, Z) = f (x − X, Z) =

ψ2(x − X, Z) in Eq. (16) and we obtain

IF = 4
 L

0
dx


∂ψ(x − X, Z)

∂x

2

. (17)

Recall that the requirement of a global minimum entails thatIF is constant, independent of the
unknown position X of the particle.

The extrema of Eq. (17) are easily found by a standard variational calculation. Introducing the
Lagrange multiplier µ to account for the constraint

 L
0 dxψ2(x − X, Z) =

 L
0 dxP(x|X, Z) = 1, the
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extrema are the solutions of

∂2ψ(x − X, Z)
∂x2

−
µ

4
ψ(x − X, Z) = 0. (18)

Forµ > 0, the solutions of Eq. (18) are hyperbolic functions, a family of solutions that is not compatible
with the constraint P(x|X, Z) = 0 for x = 0, L and can therefore be ruled out. Writing µ = −4ν2, the
general solution of Eq. (18) reads

ψ(x − X, Z) = c1(Z) sin ν(x − X)+ c2(Z) cos ν(x − X)
= [c1(Z) cos νX + c2(Z) sin νX] sin νx − [c1(Z) sin νX − c2(Z) cos νX] cos νx, (19)

where c1(Z) and c2(Z) are integration constants. Imposing the boundary condition ψ(x − X, Z) = 0
for x = 0 we must have c1(Z) sin νX = c2(Z) cos νX . Hence the second term in Eq. (19) vanishes for
all x. In addition, imposing the boundary condition ψ(x − X, Z) = 0 for x = L, we must have either
c1(Z) cos νX + c2(Z) sin νX = 0 in which caseψ(x − X, Z) = 0 for all x or ν = nπ/L for n = 1, 2, . . .
in which case the non-trivial solutions read

ψ(x − X, Z) =


c1(Z) cos

nπX
L

+ c2(Z) sin
nπX
L


sin

nπx
L
, n = 1, 2, . . . . (20)

Using c1(Z) sin νX = c2(Z) cos νX with ν = nπ/Lwe find that

ψ2(x − X, Z) = [c21 (Z)+ c22 (Z)] sin
2 nπx

L
, n = 1, 2, . . . , (21)

and from
 L
0 dxψ2(x − X, Z) = 1 we find that L[c21 (Z)+ c22 (Z)]/2 = 1. Hence

P(x|X, Z) =
2
L
sin2 nπx

L
, n = 1, 2, . . . , (22)

which are nothing but the solutions of the Schrödinger equation of a free particle in a one-dimensional
box [29]. Note that the r.h.s of Eq. (22) does not depend on X . In other words, from the measured data
we cannot infer anything about the unknown position X , in concert with the notion that the particle
is ‘‘free’’. From Eq. (20) it follows thatIF = (2nπ/L)2, independent of X as it should be. Clearly, the
solution for non-trivial global minimum ofIF is given by Eq. (22) with n = 1.

Returning to the case that the frequency distribution of the (j, k)n,τ ’s indicates that the motion
of the particle depends on the applied electric or magnetic field, we can incorporate this additional
knowledge as a constraint on the global minimization problem. In general, the global minimization
problems that we will consider take the form λIF + Λ where λ is a parameter (not a Lagrange
multiplier) that ‘‘weights’’ the uncertainty in the conditions (represented by IF ) relative to the
knowledge represented by the functional

Λ =


dx dt


k=±1

F(x, k, t, Z)P(x, k|X, t, Z), (23)

where F(x, k, t, Z) is a function which encodes the additional knowledge and which does not depend
on the unknown position X.

The assumption that space is homogeneous allows us to replace derivatives with respect to X by
derivatives with respect to x. This helps in searching for the global minimum of λIF + Λ because it
can be found by searching for the extrema of

λIF +Λ =


dx dt


k=±1


λ

P(x, k|X, t, Z)
[∇P(x, k|X, t, Z)]2 + F(x, k, t, Z)P(x, k|X, t, Z)


, (24)

as a functional of the P(x, k|X, t, Z)’s. By the standard variational procedure, the extrema of λIF + Λ

are the solutions of

λ [∇P(x, k|X, t, Z)]2

P2(x, k|X, t, Z)
+ 2λ∇


∇P(x, k|X, t, Z)
P(x, k|X, t, Z)


− F(x, k, t, Z) = 0, k = 1, 2. (25)
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On the other hand, the global minimum of λIF +Λ should not depend on unknown X because if it did,
it was not a global minimum and in addition, the values of λIF +Λwould tell us something about X,
a contradiction to the assumption that X is unknown.

Taking the derivative of Eq. (24) with respect to X (recall X = Xt ) yields

∇t(λIF +Λ) = −


dx dt


k=±1


λ
[∇P(x, k|X, t, Z)]2

P2(x, k|X, t, Z)

+ 2λ∇


∇P(x, k|X, t, Z)
P(x, k|X, t, Z)


− F(x, k, t, Z)


∇tP(x, k|X, t, Z). (26)

Comparing Eqs. (25) and (26) and recalling the constraint ∇τP(j, k|Xτ ,N, Z) ≠ 0 used to eliminate
uninformative solutions, we conclude that the extrema (and therefore also the global minimum) of
Eq. (24) are (is) independent of Xt , as required.

2.6. Motion of the particle

We consider the limiting case that there is no uncertainty on the position of the particle, that is
x = X for all clicks. Then the motion of the particle and the motion of the positions of the detector
clicks map one-to-one, for each repetition of the experiment (by assumption).

From the data x(t)we can compute the vector field U(x, t) defined by

dx
dt

= U(x, t). (27)

In principle, U(x, t) is fully determined by the data obtained by repeating the experiment under
different (initial) conditions. In practice, however, it is unlikely that we have enough data to compute
U(x, t) for all (x, t).

We only consider the case in which the position of the clicks is encoded by its (x, y, z)-coordinates
in an orthogonal frame of reference attached to the observer. Under the usual assumptions of differ-
entiability etc., we can use the Helmholtz-like decomposition of a vector field U(x, t) = ∇S(x, t) −

∇ × W(x, t). We will not use this form but write [30]

U(x, t) = ∇S(x, t)− A(x, t), (28)

where S(x, t) is a scalar function and A(x, t) a vector field. Clearly Eq. (28) has some extra freedom
which we can remove by requiring that A(x, t) = ∇ × W(x, t). This amounts to requiring that
∇ ·A = 0. It is convenient not do this at this stage so we take Eq. (28) and will impose ∇ ·A = 0 later.
As mentioned earlier, if differentiability is an issue we should use the finite-difference form of the ∇

operators.
For convenience, we drop the (x, t) arguments and switch to a component-wise notation in the

few paragraphs that follow. From Eqs. (27) and (28) it directly follows that [30]

d2xi
dt2

=
∂Ui

∂t
+

3
j=1

∂Ui

∂xj
Uj

=
∂2S
∂xi∂t

−
∂Ai

∂t
+

3
j=1


∂2S
∂xi∂xj

−
∂Ai

∂xj

 
∂S
∂xj

− Aj



=
∂

∂xi


∂S
∂t

+
1
2

3
j=1


∂S
∂xj

− Aj

2


+

3
j=1


∂Aj

∂xi
−
∂Ai

∂xj

 
∂S
∂xj

− Aj


−
∂Ai

∂t
, (29)

where i = 1, 2, 3 labels the coordinate of the detector clicks.
Introducing the vector field B = ∇ × A the second term in Eq. (29) can we written as

3
j=1


∂Aj

∂xi
−
∂Ai

∂xj

 
∂S
∂xj

− Aj


=


dx
dt

× B


i
. (30)
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It is important to note that in order to derive Eq. (30), it is essential that the position is represented
by three coordinates. Switching back to the vector notation we have

d2x
dt2

= ∇


∂S
∂t

+
1
2
(∇S − A)2


+

dx
dt

× B −
∂A
∂t
. (31)

Up to now, we have not made any assumption other than that space is three-dimensional. Next
comes a crucial step in the reasoning. Let us hypothesize that there exists a scalar field φ = φ(x, t)
such that

∂S
∂t

+
1
2
(∇S − A)2 = −φ. (32)

Then, upon introducing the vector field E = −∇φ − ∂A/∂t , Eq. (31) becomes

d2x
dt2

= E +
dx
dt

× B. (33)

Although Eq. (33) has the same the structure as the equation of motion of a charged particle in an
electromagnetic field (E, B), our derivation of Eq. (33) is solely based on the elementary observation
that the data yields the vector fieldU(x, t) (see Eq. (28)), some standard vector-field identities and the
hypothesis that there exist a scalar fieldφ such that Eq. (32) holds. No reference to charged particles or
electromagnetic fields enters the derivation. Put differently (and putting aside technicalities related
to differentiability), if there exist a scalar field φ such that Eq. (32) holds, then mathematics alone
dictates that the equation of motion must have the structure Eq. (33), with E and B having no relation
to the electromagnetic field acting on a charged particle. The latter relation is established when the
data shows that there is indeed an effect of electromagnetic field on the motion of the particle, an
effect from which it is inferred that the particle carries charge. This relation can be made explicit by
introducing the symbols m for the mass and q for the charge of the particle and by replacing A by
qA/m (we work with MKS units throughout this paper) and φ by (qφ + u)/m where u represent all
potentials that are not of electromagnetic origin. Then we have

m
d2x
dt2

= −∇u + qE + q
dx
dt

× B, (34)

and upon replacing S by S/m and V = qφ + u

∂S
∂t

+
1
2m

(∇S − qA)2 + V = 0. (35)

Note that we have obtained the Hamilton–Jacobi equation (35) without making any reference to a
Hamiltonian, the action, contact transformations and the like. In essence, Eqs. (28)–(35) follow from
Eq. (27), some mathematical identities and the crucial assumption that there exists a V such that Eq.
(35) holds. Summarizing:

If we can find scalar fields S and V and a vector field A(x, t) such that Eq. (35) holds
for all (x, t) then the clicks of the detectors will carve out a trajectory that is completely
determined by the classical equation of motion Eq. (34) of a particle in a potential and
subject to electromagnetic potentials.

Of course, there is nothing really new in this statement: it is just telling uswhatwe know fromclassical
mechanics but there is a slight twist.

First, given the data x(t) of the detector clicks, this data will not comply with the equations of
classical mechanics unless we can find scalar fields S (the action) and V (the potential) and a vector
fieldA(x, t) (vector potential) such that Eq. (35) holds. Second, in the case of interest to us here, there is
uncertainty on the mapping between the particle position X(t) and the position of the corresponding
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clicks x(t) and there is no reason to expect that Eq. (35) will hold. Instead of requiring that Eq. (35)
holds, we will require that there exists two scalar fields Vk(x, t) for k = ±1 such that

dx dt

k=±1


∂Sk(x, t)
∂t

+
1
2m

(∇Sk(x, t)− qA(x, t))2 + Vk(x, t)

P(x, k|X, t, Z) = 0, (36)

where we regard the particles that respond with k = +1 or k = −1 as two different objects, the
clicks generated by each object being described by its own Hamilton–Jacobi equation with potentials
Vk(x, t).

The next step is to disentangle as much as possible the motion of the positions of the clicks from
their k-values. We introduce Sk(x, t) = S(x, t)− kR(x, t) for k = ±1 and after some rearrangements
we obtain

Λ =


dx dt


k=±1


∂Sk(x, t)
∂t

+
1
2m

(∇Sk(x, t)− qA(x, t))2 + Vk(x, t)

P(x, k|X, t, Z)

=


dx dt


1
2m


(∇S(x, t)− qA(x, t))2 +


∇R(x, t)

2
− 2 cos θ(x,X, t, Z)∇R(x, t) (∇S(x, t)− qA(x, t))]

+


∂S(x, t)
∂t

− cos θ(x,X, t, Z)
∂R(x, t)
∂t


+ V0(x, t)

+ V1(x, t) cos θ(x,X, t, Z)

P(x|X, t, Z), (37)

where V0(x, t) = [V+1(x, t)+ V−1(x, t)]/2, V1(x, t) = [V+1(x, t)− V−1(x, t)]/2 and we made use of
k=±1 kP(x, k|X, t, Z) = cos θ(x,X, t, Z)P(x|X, t, Z). Omitting the terms involving cos θ(x,X, t, Z)

and R(x, t), Eq. (37) reduces to the expression of the averaged Hamilton–Jacobi equation which
entered the derivation of the time-dependent Schrödinger equation [8].

2.7. Including the motion of the magnetic moment

The function cos θ(x,X, t, Z) determines the ratio of k = ±1 clicks and R(x, t) = (S−1(x, t) −

S+1(x, t))/2 is half of the difference between the actions of the k = −1 and k = +1 clicks. We can
relate these two functions to the direction of a classical magnetic moment by imposing the constraint
that when the positions of the clicks (=particle position in this case) do not move, we recover the
classical–mechanical equation of motion of a magnetic moment in a magnetic field, for every x.

In the limit that m → ∞ (corresponding to the situation that the positions of the clicks hardly
change with time) we have

lim
m→∞

Λ =


dx dt


∂S(x, t)
∂t

− cos θ(x,X, t, Z)
∂R(x, t)
∂t


+ V0(x, t)

+ V1(x, t) cos θ(x,X, t, Z)

P(x|X, t, Z). (38)

Without loss of generality, we may assume that V0(x, t) = V0(x, t) + V0(x, t) where V0(x, t)
does not depend on θ(x,X, t, Z) and R(x, t) while V0(x, t) may. Writing V1(x, t) = V0(x, t) +

V1(x, t) cos θ(x,X, t, Z), searching for the extrema of Eq. (38) through variation with respect to
cos θ(x,X, t, Z), R(x, t), S(x, t) and P(x, t) yields

∂R(x, t)
∂t

=
∂V1(x, t)

∂ cos θ(x,X, t, Z)
(39)

∂ cos θ(x,X, t, Z)
∂t

= −
∂V1(x, t)
∂R(x, t)

(40)
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S(x, t)
∂P(x|X, t, Z)

∂t
= 0 (41)

∂S(x, t)
∂t

= cos θ(x,X, t, Z)
∂R(x, t)
∂t

− V0(x, t)− V1(x, t). (42)

From Eq. (41) it follows that P(x|X, t, Z) does not change with time, in concert with the assumption
that the positions of the clicks are stationary. Comparing Eqs. (39) and (40) with Eq. (C.7), it is
clear that we will recover the classical equations of motion of the magnetic moment if (i) we setV1(x, t) = −γm(x, t) ·B(x, t)wherem(x, t) is a unit vector, and (ii) make the symbolic identification
z = cos θ(x,X, t, Z) and ϕ(x, t) = R(x, t)/a where a needs to be introduced to give aϕ(x, t) the
dimension of S(x, t). Substituting the inferred expression forV1(x, t) in Eq. (37) yields

Λ =


dx dt


1
2m


(∇S(x, t)− qA(x, t))2 + a2


∇ϕ(x, t)

2
− 2a cos θ(x,X, t, Z)∇ϕ(x, t) (∇S(x, t)− qA(x, t))


+


∂S(x, t)
∂t

− a cos θ(x,X, t, Z)
∂ϕ(x, t)
∂t


+ V0(x, t)

− aγm(x, t) · B(x, t)

P(x|X, t, Z). (43)

2.8. Derivation of the Pauli equation

We now have all ingredients to derive the Pauli equation from the principle that logical inference
applied to the most robust experiment yields a quantum theoretical description [8]. According to this
principle, we should search for the global minimum of the Fisher information for the experiment,
subject to the condition that when the uncertainty vanishes, we recover the equations of motion of
classical mechanics [8]. Thus, we should search for the global minimum of

F = λIF +Λ, (44)

where IF andΛ are given by Eqs. (15) and (43), respectively.
In Appendix B, it is shown that the quadratic functional Q which yields the Pauli equation is

identical to Eq. (44) if we make the identification V0(x, t) = qφ(x, t), a = h̄/2, γ = q/m and
λ = h̄2 /8m and

Φ(x, t) =


P1/2(x, k = +1|X, t, Z)eiS1(x,t)/h̄

P1/2(x, k = −1|X, t, Z)eiS2(x,t)/h̄


. (45)

This then completes the derivation of the Pauli equation from logical inference principles.

2.9. Discussion

In Section 2.6, we showed how to include the knowledge that in the absence of uncertainty the
particle’smotion is described byNewtonianmechanics. Obviously, this treatment requires the particle
to have a nonzero mass. On the other hand, in our logical inference treatment of the free particle in
Section 2.5, the notion ofmass does not enter in the derivation of Eq. (22) but neither does the concept
of motion. This raises the interesting question how to inject into the logical inference treatment the
notion of moving massless particles with spin. We believe that the analogy with the pseudo-spin in
graphene mentioned in the introduction may provide a fruitful route to explore this issue.

The carbon atoms of ideal single-layer graphene form a hexagonal lattice with the π-band
(originating from pz-orbitals of carbon atoms) well separated from other bands [18]. The electronic
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band structure of graphene has the remarkable feature that in the continuum limit, the low-energy
excitations are described by the two-dimensional Dirac equation for two species of massless fermions
(corresponding to two valleys, K and K ′). The fact that the wave function of each of these two species
is a two-component ‘‘spinor’’ is not related to the intrinsic spin of the electron but is a manifestation
of the two sub-lattice and bipartite structure of the hexagonal lattice [18]. This feature (Dirac-like
spectrum) is present already in the simplest model in which only the nearest-neighbor hopping is
taken into account [31] but, actually, it is robust and follows just from discrete symmetries, namely,
time-reversal and inversion symmetries [18]. A generalization to a 4-dimensional lattice, retaining
the property that the continuum limit yields the Dirac equation, is given in Ref. [32]. This is a nice
illustration of the fact that the model of a rotating electron is not the only way to arrive at the concept
of spin. In our derivation of the Pauli equation, we have to make the additional assumption (based on
experimental observations such as the anomalous Zeeman effect) that the interaction of this intrinsic
degree of freedom with an external magnetic field is described by the standard classical expression
for the energy of a magnetic moment.

The next important step might be the derivation of the Dirac equation. The Creutz model [32]
suggests that we should consider incorporating into the logical inference treatment, the additional
knowledge that one has objects hopping on a lattice instead of particles moving in a space-time
continuum. Recall that up to Section 2.4, the description of the measurement scenario, robustness
etc. is explicitly discrete. In Section 2.4, the continuum limit was taken only because our aim was to
derive the Pauli equation, which is formulated in continuum space-time. Of course, the description
of the motion of the particle in Section 2.6 is entirely within a continuum description but there is
no fundamental obstacle to replace this treatment by a proper treatment of objects hopping on a
lattice. Therefore it seems plausible that the logical inference approach can be extended to describe
massless spin-1/2 particles moving in continuum space-time by considering the continuum limit of
the corresponding lattice model. An in-depth, general treatment of this problem is beyond the scope
of the present paper and we therefore leave this interesting problem for future research.

A comment on the appearance of h̄ is in order. First of all, it should be noted that recent work has
shown that h̄may be eliminated from the basic equations of (low-energy) physics by a re-definition of
the units of mass, time, etc. [33,34]. This is also clear from the way h̄ appears in the identification that
we used to show that the quadratic functional Q which yields the Pauli equation (see Eq. (B.4)) is the
same as Eq. (44). With theMKS units adopted in the present paper, Planck’s constant h̄ enters because
of dimensional reasons (a = h̄/2) and also controls the importance of the term that expresses the
robustness of the experimental procedure (λ = h̄2 /8m). The actual value of λ can only be determined
by laboratory experiments. Note that the logical-inference derivation of the canonical ensemble of
statistical mechanics [6,7] employs the same reasoning to relate the inverse temperature β = 1/kBT
to the average thermal energy.

We end this section by addressing a technicality. Mappings such as Eq. (45) are not one-to-
one. This is clear: we can always add a multiple of 2π h̄ to S1(x, t) or S2(x, t), for instance. In the
hydrodynamic form of the Schrödinger equation [35], the ambiguity that ensues has implications
for the interpretation of the gradient of action as a velocity field [36,37]. As pointed out by Novikov,
similar ambiguities appear in classical mechanics proper if the local equations of motion (Hamilton
equations) are not sufficient to characterize the system completely and the global structure of the
phase space has to be taken into consideration [38]. However, for the present purpose, this ambiguity
has no effect on theminimization of F because Eq. (44) does not change if we add to S1(x, t) or S2(x, t)
a real number which does not depend on (x, t) (as is evident from Eq. (37)) or, equivalently, if we
multiplyΦ(x|X, t, Z) by a global phase factor and add a constant to ϕ(x, t).

3. Stern–Gerlach experiment: neutral magnetic particle

The Stern–Gerlach experiment with silver atoms [39] and neutrons [15] demonstrates that a
magnetic field affects the motion of a neutral particle, suggesting that a minimalist theoretical
description should account for the interaction of themagnetic moment of the particle and the applied
magnetic field. As is clear from the definition of the Pauli Hamiltonian equation (B.2), in the Pauli
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equation themagnetic field is directly linked to the charge q of the particle. Therefore, in this form the
Pauli equation cannot be used to describe themotion of a neutralmagnetic particle in amagnetic field.

In quantum theory, this problem is solved by the ad-hoc introduction of the intrinsic magnetic
moment which is proportional to the spin and by replacing qh̄/2m by the gyromagnetic ratio γ , the
value of which is particle-specific.

In the logical-inference treatment, no such ad-hoc procedure is necessary. We simply set q = 0 in
Eq. (43) and use Eq. (45) to find the equivalent quadratic form. The Hamiltonian that appears in this
quadratic form reads

H = −
h̄2

2m
∇

2
− γσ · B(x, t), (46)

where γ is the gyromagnetic ratiowhich, in general, is not given by q/m. Asmentioned earlier, the ap-
pearance in Eq. (46) of the Pauli-matrices is a direct consequence of logical inference applied to robust
experiments that yield data in the form of the position and one of the two kinds of detector clicks.

4. Relation to earlier work

Readers familiarwith the hydrodynamic formulation of quantum theory [35] and its interpretation
in terms of Bohmian mechanics [40,41] undoubtedly recognize the steps which transform quadratic
functional equation (B.4) yielding the Pauli equation (B.2) and the functional Q given by Eq. (B.27). In
fact, the functional Q has been used as the starting point for the hydrodynamic representation [42]
and a causal interpretation [12,43,44] of the Pauli equation. In this formulation, the two-component
spinor can be given a classical–mechanical interpretation in terms of an assembly of very small rotat-
ing bodies which are distributed continuously in space. Within this interpretation spins of different
bodies interact.

Clearly, the logical-inference treatment does not support this interpretation: the functional equa-
tion (B.27) is the result of analyzing a robust experiment that yields data in the form of (x, k) where
x is a 3-dimensional coordinate and k = ±1 denotes the two-valued ‘‘color’’, together with the re-
quirement that on average and in special cases, the data should comply with the classical–mechanical
motion.

An expression of Eq. (B.27) in which the separation of the contribution of the Fisher information
and the classical–mechanical fields is explicit has been given by Reginatto [45]. This expression is
different from ours. Comparing Eq. (15) with Eq. (6, 7) in Ref. [45], we find that the expressions are
fundamentally different due to the fact that the representation (7), when substituted in (6), does not
yield Eq. (B.27).

5. Conclusion

It is somewhat discomforting that it takes a considerable amount of symbolic manipulations to
derive the Pauli equation from the combination of the measurement scenario, the notion of a robust
experiment and the behavior expected in some limiting cases. Therefore, it may be worthwhile to
recapitulatewhat has been done in simplewords,withoutworrying toomuch about the technicalities.

The first step is to describe the measurement scenario. It is assumed that the object (particle) we
are interested in responds to the signal that we send to probe it. The response of the object triggers
a detection event. In the case at hand, the data representing the detector clicks consist of spatial
coordinates and two-valued ‘‘color’’ indices. We assign an i-prob to the whole data set. To make
progress, it is necessary to make assumptions about the data-collection procedure. We assume that
each time we probe the object, the data produced by the detection system is logically independent
of all other data produced by previous/subsequent probing. With this assumption, together with
the assumption that is does not matter where we carry out the experiment, the notion of a robust
experiment is found to be equivalent to the global minimum of the Fisher information for the
corresponding measurement scenario (see Eq. (15)).

The next step is to bring in the knowledge that in the extreme case that there is no uncertainty
about the outcome of each detection event, we expect to observe data that is compliant with classical,
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Newtonian mechanics both for the motion of a particle as well as for the motion of its magnetic
moment in the case that the particle does not move (see Eq. (43)).

The third step is to find the balance between the uncertainty in the detection events represented by
Eq. (15) and the ‘‘classical mechanics’’ knowledge represented by Eq. (43) by searching for the global
minimum of Eq. (44) for all possible unknown positions of the particle. The result of this calculation
is a fairly complicated non-linear set of equations for the i-prob to observe a click.

The final step is to observe that by transformation equation (45), this non-linear set of equations
and the Pauli equation are equivalent. The latter, being a set of linear equations, ismuch easier to solve
than its non-linear equivalent.

In the logical inference approach, the assumption that each timewe probe the object, the detection
system reports a two-valued ‘‘color’’ index and our requirement that in the extreme case mentioned
earlierwe expect to see themotion of a classicalmagneticmoment automatically leads to the notion of
a ‘‘quantized’’ (i.e. two-valued) intrinsicmagneticmoment. The notion of spin appears as an inference,
forced upon us by the (two-valued) data and our assumptions (which do not make reference to
concepts of quantum theory) that the experiment is robust, etc.

From amore general perspective, it is remarkable that the logic inference approach introduces the
concept of ‘‘spin’’ in a way which is not much different from the way real numbers are introduced.
Indeed, the latter appear as a necessity to provide an answer to questions such as ‘‘what new kind of
number do we have to introduce such that the square of it yields the integer n’’. If n = m2 wherem is
an integer, no new concept has to be introduced but if say n = 2, the answer to the question is given
the symbolic name

√
2.

Similarly, in our logical-inference treatment the concept of spin naturally appears as a result of
describing situations in which there is two-valued data and the requirement that in a limiting case
we recover the classical equation of motion. This concept of spin only exists in our mind, in complete
agreement with the fact that this concept maybe put to very good use whenever there are two-valued
variables thatmay ormaynot relate to (intrinsic) angularmomentum, as in the theory of the electronic
properties of graphene, for example [18].

It will not have escaped the reader that in the logical-inference derivation of the Pauli equation
as well as in earlier work along this line [8,46] there are no postulates regarding ‘‘wavefunctions’’,
‘‘observables’’, ‘‘quantization rules’’, ‘‘quantum measurements’’ [47],‘‘Born’s rule’’, etc. This is a direct
consequence of the basic premise of this approach, namely that current scientific knowledge derives,
through cognitive processes in the human brain, from the discrete events which are observed in
laboratory experiments and from relations between those events that we, humans, discover. These
discrete events are not ‘‘generated’’ according to certain quantum laws: instead these laws appear as
the result of (the best) inference based on data available in the form of discrete events. In essence, for
all the basic but fundamental cases treated so far, themachinery of quantum theory appears as a result
of transforming a set of non-linear equations into a set on linear ones. The wavefunction, spinor, spin,
. . . , are all mathematical concepts, vehicles that render a class of complicated nonlinear minimization
problems into the minimization of quadratic forms. As products of our collective imagination, these
concepts are extraordinarily useful but have no tangible existence, just like numbers themselves. Of
course, it remains to be seen whether the logical-inference approach can be extended to e.g. many-
body and relativistic quantum physics.

In summary: the Pauli equation derives from logical inference applied to robust experiments
in which there is uncertainty about individual detection events which yield information about the
particle position and its two-valued ‘‘color’’. This derivation adds another, new instance to the list
of examples [8,46] for which the logical-inference approach establishes a bridge between objective
knowledge gathered through experiments and their description in terms of concepts.
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Appendix A. The algebra of logical inference

This appendix does not contain any original material but is provided to render the present paper
self-contained.

If we are only concerned about quantifying the truth of a proposition given the truth of another
proposition, it is possible to construct a mathematical framework, an extension of Boolean logic, that
allows us to reason in amannerwhich is unambiguous and independent of the individual, in particular
if there are elements of uncertainty in the description [1–5].

The algebra of logical inference can be derived [2–5] from three so-called ‘‘desiderata’’. The
formulation which follows is taken from Ref. [4].
Desideratum 1. Plausibilities are represented by real numbers. The plausibility that a proposition A is
true conditional on proposition B being true will be denoted by P(A|B).
Desideratum 2. Plausibilities must exhibit agreement with rationality. As more and more evidence
supporting the truth of a proposition becomes available, the plausibility should increase
monotonically and continuously and the plausibility of the negation of the proposition should
decrease monotonically and continuously. Moreover, in the limiting case that proposition A is known
to be either true or false, the plausibility P(A|B) should conform to the rules of deductive reasoning. In
other words, plausibilities must be in qualitative agreement with the patterns of plausible reasoning
uncovered by Pólya [48].
Desideratum 3. All rules relating plausibilities must be consistent. Consistency of rational reasoning
demands that if the rules of logical inference allow a plausibility to be obtained inmore than oneway,
the result should not depend on the particular sequence of operations.

These three desiderata only describe the essential features of the plausibilities and definitely do
not constitute a set of axioms which plausibilities have to satisfy.

It is amost remarkable fact that these three desiderata suffice to uniquely determine the set of rules
bywhich plausibilitiesmaybemanipulated [2–5]. Omitting the derivation, it follows that plausibilities
may be chosen to take numerical values in the range [0, 1] and obey the rules [2–5]:

1. P(A|Z)+P(Ā|Z) = 1where Ā denotes the negation of proposition A and Z is a proposition assumed
to be true.

2. P(AB|Z) = P(A|BZ)P(B|Z) = P(B|AZ)P(A|Z) where the ‘‘product’’ BZ denotes the logical product
(conjunction) of the propositions B and Z , that is the proposition BZ is true if both B and Z are
true. This rule will be referred to as ‘‘product rule’’. It should be mentioned here that it is not
allowed to define a plausibility for a proposition conditional on the conjunction ofmutual exclusive
propositions. Reasoning on the basis of two or more contradictory premises is out of the scope of
the present paper.

3. P(AĀ|Z) = 0 and P(A + Ā|Z) = 1 where the ‘‘sum’’ A + B denotes the logical sum (inclusive
disjunction) of the propositions A and B, that is the proposition A+ B is true if either A or B or both
are true. These two rules show that Boolean algebra is contained in the algebra of plausibilities.

The algebra of logical inference, as defined by the rules (1–3), is the foundation for powerful tools
such as the maximum entropy method and Bayesian analysis [3,5]. The rules (1–3) are unique [3–5].
Any other rule which applies to plausibilities represented by real numbers and is in conflict with rules
(1–3) will be at odds with rational reasoning and consistency, as embodied by the desiderata 1–3.

The rules (1–3) are identical to the rules bywhichwemanipulate probabilities [5,49–51]. However,
the rules (1–3) were not postulated. They were derived from general considerations about rational
reasoning and consistency only. Moreover, concepts such as sample spaces, probability measures etc.,
which are an essential part of the mathematical foundation of probability theory [50,51], play no role
in the derivation of rules (1–3). Perhaps most important in the context of quantum theory is that
in the logical inference approach uncertainty about an event does not imply that this event can be
represented by a random variable as defined in probability theory [51].

There is a significant conceptual difference between ‘‘mathematical probabilities’’ and plausibil-
ities. Mathematical probabilities are elements of an axiomatic framework which complies with the
algebra of logical inference. Plausibilities are elements of a language which also complies with the
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algebra of logical inference and serve to facilitate communication, in an unambiguous and consistent
manner, about phenomena in which there is uncertainty.

The plausibility P(A|B) is an intermediate mental construct that serves to carry out inductive logic,
that is rational reasoning, in amathematicallywell-definedmanner [3]. In general, P(A|B)may express
the degree of believe of an individual that proposition A is true, given that proposition B is true.
However, in the present paper, we explicitly exclude applications of this kind because they do not
comply with our main goal, namely to describe phenomena ‘‘in a manner independent of individual
subjective judgment’’.

To take away this subjective connotation of the word ‘‘plausibility’’, we call P(A|B) the
‘‘inference-probability’’ or ‘‘i-prob’’ for short.

A comment on the notation used throughout this paper is in order. To simplify the presentation,
we make no distinction between an event such as ‘‘detector D has fired’’ and the corresponding
proposition ‘‘D = detector D has fired’’. If we have two detectors, say Dx where x = ±1, we write
P(x|Z) to denote the i-prob of the proposition that detector Dx fires, given that proposition Z is true.
Similarly, the i-prob of the proposition that two detectors Dx and Dy fire, given that proposition Z is
true, is denoted by P(x, y|Z). Obviously, this notation generalizes to more than two propositions.

Appendix B. Pauli equation: quantum theory

In this appendix, we show that the quadratic form, the minimization of which yields the Pauli
equation, is identical to the one derived in Section 2 through logical inference.

The Pauli equation for a particle with massm and charge q can be written as

ih̄
∂

∂t
Φ = HΦ, (B.1)

where

Φ = Φ(x, t) =


Φ1(x, t)
Φ2(x, t)


, (B.2)

is a two-component wavefunction and the Hamiltonian is given by

H =
1
2m

{σ · [−ih̄∇ − qA(x, t)]}2 + qφ(x, t)

=
1
2m

[−ih̄∇ − qA(x, t)]2 + qφ(x, t)−
qh̄
2m

σ · B(x, t), (B.3)

where σ = (σ x, σ y, σ z)T denote the Pauli-spin matrices.
By the standard variational argument, it follows that the Pauli equation is an extremum of the

quadratic form (functional)

Q =


dx dt


ih̄
2


∂ΦĎ

∂t
Φ − ΦĎ ∂Φ

∂t


+

1
2m


+ih̄∇ΦĎ

− qA(x, t)ΦĎ


×


−ih̄∇Φ − qA(x, t)Φ


+ qφ(x, t)ΦĎΦ −

qh̄
2m

ΦĎσ · B(x, t)Φ

, (B.4)

with respect to variations in ΦĎ. We want to know how Eq. (B.4) looks like when we substitute the
polar representation

Φ =


P1(x, t)eiS1(x,t)/h̄
P2(x, t)eiS2(x,t)/h̄


, (B.5)

for both components of the spinor. We have

∂Φk(x, t)
∂t

=


1

2Pk(x, t)
∂Pk(x, t)
∂t

+
i
h̄
∂Sk(x, t)
∂t

 
Pk(x, t)eiSk(x,t)/h̄, (B.6)
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for k = 1, 2 and

ΦĎ ∂Φ

∂t
=

2
k=1


1

2Pk(x, t)
∂Pk(x, t)
∂t

+
i
h̄
∂Sk(x, t)
∂t


Pk, (B.7)

from which it directly follows that

ih̄
2


∂ΦĎ

∂t
Φ − ΦĎ ∂Φ

∂t


=
∂S1(x, t)
∂t

P1(x, t)+
∂S2(x, t)
∂t

P2(x, t). (B.8)

Likewise we have

− ih̄


∇Φk −
iq
h̄
A(x, t)Φk


= −ih̄


1

2Pk(x, t)
∇Pk(x, t)+

i
h̄
∇Sk(x, t)−

iq
h̄
A(x, t)


×


Pk(x, t)eiSk(x,t)/h̄, (B.9)

and

h̄2

2m


∇ΦĎ

+
iq
h̄
A(x, t)ΦĎ

 
∇Φ −

iq
h̄
A(x, t)Φ



=
h̄2

2m

2
k=1


1

4P2
k (x, t)


∇Pk(x, t)

2
+

1
h̄2


∇Sk(x, t)− qA(x, t)

2
Pk(x, t). (B.10)

Furthermore, it follows that

φ(x, t)ΦĎΦ = φ(x, t) [P1(x, t)+ P2(x, t)] , (B.11)

ΦĎσ xΦ = 2

P1(x, t)P2(x, t) cos

S2(x, t)− S1(x, t)
h̄

, (B.12)

ΦĎσ yΦ = 2

P1(x, t)P2(x, t) sin

S2(x, t)− S1(x, t)
h̄

, (B.13)

ΦĎσ zΦ = P1(x, t)− P2(x, t). (B.14)

Thus, we have all the expressions to write Eq. (B.4) in terms of P1(x, t), P2(x, t), S1(x, t), and S2(x, t).
Without loss of generality and without assigning a particular meaning to the new symbols yet, we

write

P1(x, t) = P(x, t) cos2
θ(x, t)

2

P2(x, t) = P(x, t) sin2 θ(x, t)
2

. (B.15)

Then we have
2

k=1

1
4Pk(x, t)

(∇Pk(x, t))2

=
1
4


1

P1(x, t)


∇P(x, t) cos2

θ(x, t)
2

− P(x, t) cos
θ(x, t)

2
sin

θ(x, t)
2

∇θ(x, t)
2

+
1

P2(x, t)


∇P(x, t) sin2 θ(x, t)

2
+ P(x, t) cos

θ(x, t)
2

sin
θ(x, t)

2
∇θ(x, t)

2


=
1
4


1

P(x, t)

∇P(x, t)

2
+ P(x, t) [∇θ(x, t)]2


. (B.16)
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Similarly,

φ(x, t)ΦĎΦ = φ(x, t)P(x, t), (B.17)

ΦĎσ xΦ = P(x, t) sin θ(x, t) cos
S2(x, t)− S1(x, t)

h̄
, (B.18)

ΦĎσ yΦ = P(x, t) sin θ(x, t) sin
S2(x, t)− S1(x, t)

h̄
, (B.19)

ΦĎσ zΦ = P(x, t) cos θ(x, t). (B.20)

Next, we introduce

S1(x, t) = S(x, t)−
h̄ϕ(x, t)

2
,

S2(x, t) = S(x, t)+
h̄ϕ(x, t)

2
, (B.21)

and obtain

ih̄
2


∂ΦĎ

∂t
Φ − ΦĎ ∂Φ

∂t


=

∂S(x, t)
∂t

[P1(x, t)+ P2(x, t)] −
h̄
2
∂ϕ(x, t)
∂t

[P1(x, t)− P2(x, t)]

=


∂S(x, t)
∂t

−
h̄
2
cos θ(x, t)

∂ϕ(x, t)
∂t


P(x, t), (B.22)

2
k=1


∇Sk(x, t)− qA(x, t)

2

Pk(x, t)

= P(x, t)
2

k=1

1 − (−1)k cos θ(x, t)
2


∇S(x, t)− qA(x, t)+

(−h̄)k

2
∇ϕ(x, t)

2

=


∇S(x, t)− qA(x, t)

2
+

h̄2

4


∇ϕ(x, t)

2
P(x, t)

− h̄ cos θ(x, t)∇ϕ(x, t)

∇S(x, t)− qA(x, t)


P(x, t), (B.23)

ΦĎσ xΦ = P(x, t) sin θ(x, t) cosϕ(x, t), (B.24)

ΦĎσ yΦ = P(x, t) sin θ(x, t) sinϕ(x, t), (B.25)

ΦĎσ zΦ = P(x, t) cos θ(x, t). (B.26)

Collecting all terms we find

Q =


dx dt


h̄2

8m


1

P(x, t)
[∇P(x, t)]2 + [∇θ(x, t)]2 P(x, t)


+


∂S(x, t)
∂t

−
h̄
2
cos θ(x, t)

∂ϕ(x, t)
∂t


P(x, t)

+
1
2m


∇S(x, t)− qA(x, t)

2
+

h̄2

4
[∇ϕ(x, t)]2

− h̄ cos θ(x, t)∇ϕ(x, t)

∇S(x, t)− qA(x, t)


P(x, t)

+ qφ(x, t)P(x, t)−
qh̄
2m


Bx sin θ(x, t) cosϕ(x, t)

+ By sin θ(x, t) sinϕ(x, t)+ Bz cos θ(x, t)

P(x, t)


. (B.27)
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Appendix C. Classical mechanics of a magnetic moment

For completeness, we collect some well-known facts about the classical–mechanical description
of the rotational motion of amagnetic momentM = M(t) = (Mx,My,Mz)

T which does not move and
interacts with a magnetic field B = B(t) = (Bx, By, Bz)

T [44]. The motion of the magnetic moment is
completely determined by the torque equation

dM
dt

= γM × B, (C.1)

where γ is the gyromagnetic ratio. In terms of components we have

dMx

dt
= γ (MyBz − MzBy)

dMy

dt
= γ (MzBx − MxBz)

dMz

dt
= γ (MxBy − MyBx). (C.2)

The total magnetic moment M0 = (M2
x + M2

y + M2
z )

1/2 is constant in time. Therefore we can write
M = M0mwhere

m = (cosϕ sin θ, sinϕ sin θ, cos θ)T , (C.3)

is a unit vector and (θ, ϕ) are its spherical coordinates. The equations of motion of these coordinates
read

dϕ
dt

=
d arctan(my/mx)

dt

=
γ

m2
x + m2

y


mx

dmy

dt
− my

dmx

dt



= γ


−Bz +

mz

m2
x + m2

y
(mxBx + myBy)



= γ


−Bz +

z
√
1 − z2

(Bx cosϕ + By sinϕ)

, (C.4)

where z = cos θ and
dz
dt

= γ (mxBy − myBx)

= γ


1 − z2(−Bx sinϕ + By cosϕ)

. (C.5)

If we define a Hamiltonian HM by

HM = −γ

Bx sin θ cosϕ + By sin θ sinϕ + Bz cos θ


= −γ


zBz +


1 − z2(Bx cosϕ + By sinϕ)


, (C.6)

it follows that
dϕ
dt

= +
∂HM

∂z
dz
dt

= −
∂HM

∂ϕ
. (C.7)

From Eq. (C.7), it follows that the pair (ϕ, z) are conjugate variables.
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Finally, it is easy to check that the equations of motion Eq. (C.7) follow by searching for the
extremum of the functional

M =


dt


−z

dϕ
dt

+ HM


. (C.8)
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