
Commentary

The limits to leaf and root
plasticity: what is so special about
specific root length?

Expectations

Plants can adjust to their environment at various integration levels:
they may change the relative investment of biomass to leaves, stems
and roots, they can alter the morphology and anatomy of each of
these organs, or they can change the physiological characteristics of
the cells that form these organs. Most likely, they adjust at all three
levels. It would be a major achievement if we understood
quantitatively the functional contribution of each of the adjust-
ments and how they interact with each other. In this issue of New
Phytologist, Freschet et al. (pp. 1247–1260) tackle the relative
importance of acclimation at the level of allocation and morphol-
ogy, and seek to determine how plants respond if they are
challenged with low or high light levels in combination with a low
or high supply of nutrients.

‘Freschet et al. are the first to show this in such an elegant

way, and across so many functionally different species.’

Allocation can be quantified as the fraction of biomass
invested in leaves (LMF, leaf mass fraction), stems (SMF, stem
mass fraction) and roots (RMF, root mass fraction; see Fig. 1 for
explanations). Morphology can be expressed in terms of total leaf
area per unit leaf mass (SLA, specific leaf area), the length of
stem per unit stem mass (SSL, specific stem length) or the total
length of root per unit root mass (SRL, specific root length).
Based on generalized dose–response curves, Poorter et al. (2012)
found that in response to most abiotic environmental variables,
proportional changes in LMF were much smaller than changes in
leaf morphology. This was also true for the plasticity in SMF
relative to variability in stem morphology in response to plant
density. A relatively low plasticity in allocation seems plausible
since most plants always need a minimum amount of leaves,
stems and roots to function properly. Variation in morphology
seems less constrained. Based on these considerations and
observations, Poorter et al. (2012) suggested that plants generally
have more flexibility to alter their morphology than their
biomass allocation.

Observations

Freschet et al. challenged plants with two contrasting environmen-
tal factors: the amount of light supplied to the shoots and the
amount of nutrients supplied to the roots. Following expectations,
plants grown at low light partly responded by increasing leaf area
per unit total plant mass, to some extent by increasing LMF, but
predominantly (~70%) by increasing SLA (Fig. 2a). In this way,
they increased the leaf area per unit plant mass at low light, and
thereby the interception of photons. Interestingly, this was not
mirrored by similar changes belowground when nutrients were
decreased. Although SRL was to some extent enhanced by low
nutrients, the relative stimulation inRMF turned out to be farmore
important than the relative change in SRL in increasing total root
length per unit plant mass (RLR, root length ratio; Fig. 2b).
Freschet et al. are the first to show this in such an elegant way, and
across so many functionally different species. In a range of previous
experiments that only targeted nutrient supply, the relative changes
in SRL were even smaller than in the current experiment (Fig. 2b).
Altogether, these experiments provide a rather consistent picture,
which shows that with nutrient stress the increased allocation to
roots seems more important for the plant to achieve an increase in
root length than the change in root morphology. These results help
us to better understand whole-plant responses to the environment
and the expectation of high plasticity in root morphology can be
dismissed. At the same time, these findings raise a range of
interesting subsequent questions, of which we will discuss four.

Subsequent questions

One of themost intriguing questions raised byFreschet et al.’s work
is why SRL shows so little response to changes in nutrient
availability. Would a high SRL not improve the overall nutrient
uptake rate? An important contrast between leaves and roots is that
the latter are not ‘simply’ the terminal parts attached to stems and
branches and their task is not only to take up nutrients and water.
The root system is a continuously expanding organ. Moreover, it
also has to provide anchorage and transport, which requires a
certain amount of support and transport tissue. To better
understand root functioning, we therefore have to conceptually
separate the parts of the roots that serve those different functions
(Eissenstat et al., 2000). Overall low nutrient levels have been
observed to have a positive effect on the SRL of the finest roots,
which are responsible for resource acquisition (Ostonen et al.,
2007). However, locally present nutrient-rich soil patches will
increase the number and extension rate of fine lateral roots, which
has a positive effect on overall SRL, be it that those laterals have a 2–
3-times greater diameter than laterals in low-nutrient patches,
which in turn will have a negative effect (Drew et al., 1973). Hence,
as the total root system reflects various tasks and different tissues, we
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may expect the nutrient effect on overall root morphology to be
more modest than that of light on leaf morphology (Fig. 1). Of
additional importance is the aspect of allometry. SLA is somewhat
affected by plant size, but the effect on SRL is generally much
stronger (Ryser & Eek, 2000). The reason for this is because plant
root systems will necessarily expand more in mass than in length to
maintain transport capacity and stability. This is one of the reasons
why separation into coarse and fine roots for trees is common
practice (Pregitzer et al., 1997). Freschet et al. – like most
researchers in this field – harvested their plants at similar ages. As
the plant’s biomass in their experiment differed up to 10-fold in size
between treatments it would be well worth studying the allometry
of the relationship between root mass and length in greater detail.
Even better would be to characterize the overall distribution of SRL
over the whole root system, rather than just study the average SRL
of the plants.

A second question relates to cellular/biochemical aspects. Both
SLA and SRL are composite traits, and depend on organ thickness
and tissue density (Fig. 1; Ryser & Lambers, 1995). For leaves, light
limitation generally leads to a reduction in both thickness anddensity

(Poorter et al., 2009). Similarly, roots generally respond to decreas-
ing nutrient availability by becoming thinner (Zobel et al., 2007),
but in contrast to the effect of light limitation on leaves, available data
suggest that root tissue density increases with decreasing nutrients
(Ryser & Lambers, 1995; Trubat et al., 2012). Consequently, the
response of SRL to lownutrients is far less consistent than that of SLA
to low light (Fig. 1). We would therefore profit from more insight
into the anatomical and biochemical basis of environmentally-
induced variation in root density.

A third issue is that acclimation will act on various aspects of
plant performance simultaneously, with positive effects possibly
counterbalanced by other influences. In shaded leaves, for example,
the increase in SLA will improve the capture of limiting photons,
but may also lead to increased vulnerability to herbivores, the
selected adaptive response being a compromise (Salgado-Luarte &
Gianoli, 2011). By the same token, higher nutrient supply does not
reduce biomass allocation to roots in shrubs in xeric environments,
where a reduced root mass would increase vulnerability to drought
(Trubat et al., 2012). That study also describes how an increase in
SRL at low nutrient availability requires a reduction in leaf area to
ensure hydraulic safety when root hydraulic conductance dimin-
ishes with increasing SRL. It would be interesting to achieve more
insight into these internal trade-offs within the plant. To what
extent the plant benefits from the increased SRL in terms of
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Fig. 2 Box plots indicating the range of responses between (a) low-light and
high-light grown plants and (b) low-nutrient and high-nutrient grown
plants. The red data summarize the values of Freschet et al. (in this issue of
New Phytologist, pp. 1247–1260), the blue ones are a compilation taken
from the literature. The boxes indicate the 25th and 75th percentile of the
distribution, the ‘whiskers’ the 10th and 90th percentile and the lines in the
middle of the box the median value. Numbers indicate the number of
observations on which the boxplots are based. Asterisks indicate significant
deviations from unity: +, 0.05 < P < 0.10; **, P < 0.01; ***, P < 0.001.
(a) Data from: vanHees (1997); Ryser & Eek (2000); Bloor (2003); Curt et al.
(2005). (b) Data from: Boot & den Dubbelden (1990); Boot & Mensink
(1990); Aerts et al. (1992); Elberse & Berendse (1993); Pettersson et al.
(1993); Ryser & Lambers (1995); Schippers & Olff (2000); Nagel et al.
(2001); Sigurdsson et al. (2001); Reich et al. (2003).
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Abbreviation Explanation Definition Units
LMF Leaf mass fraction leaf mass/plant mass g g–1

SMF Stem mass fraction stem mass/plant mass g g–1

RMF Root mass fraction root mass/plant mass g g–1

SLA Specific leaf area leaf area/leaf mass m2 kg–1

SSL Specific stem length stem length/stem mass m g–1

SRL Specific root length root length/root mass m g–1

LD Leaf density leaf mass/leaf volume g ml–1

LT Leaf thickness leaf volume/leaf area ml m–2

LAR Leaf area ratio leaf area/plant mass m2 kg–1

RD Root density root mass/root volume g ml–1

RT Root thickness root volume/root length ml m–1

RLR Root length ratio root length/plant mass m g–1

TDM Total dry mass plant mass g

Fig. 1 Scheme representing the effect of light and nutrient availability on the
various variables discussed in this Commentary. +, �, indicate positive and
negative effects, respectively. In the case of the actorswithmore effects, the
strongest effect is indicated with ++. Red lines indicate differences between
roots and leaves, which potentially cause different responses of SLA and SRL
to resource availability: responses of the components of SLA act in a
synergistic manner, while those of SRL are antagonistic. Nutrient and size
effects onRMFandRTwill be influencedbydifferential responses of fine and
coarse roots. For clarity we omitted several effects, including the positive
effect of low light on SRL.
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additional nutrient uptake, and to what extent this differs between
different types of nutrient (nitrogen, phosphorus, potassium), is
also still a matter of debate (Zobel et al., 2007). Similarly, what are
the consequences of these anatomical and biochemical changes for
root longevity?

A fourth question triggered by the results of Freschet et al. and
others relates to the relatively consistent increase of SRL with
decreasing light (Fig. 2a). Is the higher SRL simply a consequence
of low-light plants being smaller, possibly with less secondary
growth (Reich et al., 1998; Curt et al., 2005), or is this a more
complex response? In grasses, for example, it has been shown that
shading increases xylem vessel diameter, possibly to ensure a
sufficient hydraulic conductance of the reduced rootmass to supply
water for the leaves (Wahl et al., 2001).

Outlook

The relative ease by which, for example, low-light responses of
plants can be separated into physiological, morphological and
allocation components can only be dreamt of by root researchers.
Nevertheless, Freschet et al.were able to provide uswith a clear view
of various whole-plant responses and how special SRL was in that
respect. Worthwhile next steps would be to follow up their results
and deepen our insights into why the response of SRL is so modest
as compared to root allocation. To properly understand the
functional consequences of root responses for the uptake of
nutrients and water, the difficult task of separating root mass into
fractions that better correspond to its different functions may be
essential. It is also important to continue experiments with an
integrative whole-plant approach, including size effects and
interacting selective pressures.
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