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Soil moisture is a key variable in hydrology, meteorology and agriculture. It is influenced by many factors,
such as topography, soil properties, vegetation type, management, and meteorological conditions. The
role of these factors in controlling the spatial patterns and temporal dynamics is often not well known.
The aim of the current study is to analyze spatio-temporal soil moisture patterns acquired across a vari-
ety of land use types, on different spatial scales (plot to meso-scale catchment) and with different meth-
ods (point measurements, remote sensing, and modeling). We apply a uniform set of tools to determine
method specific effects, as well as site and scale specific controlling factors. Spatial patterns of soil mois-
ture and their temporal development were analyzed using nine different datasets from the Rur catch-
ment in Western Germany. For all datasets we found negative linear relationships between the
coefficient of variation and the mean soil moisture, indicating lower spatial variability at higher mean soil
moisture. For a forest sub-catchment compared to cropped areas, the offset of this relationship was lar-
ger, with generally larger variability at similar mean soil moisture values. Using a geostatistical analysis
of the soil moisture patterns we identified three groups of datasets with similar values for sill and range
of the theoretical variogram: (i) modeled and measured datasets from the forest sub-catchment (patterns
mainly influenced by soil properties and topography), (ii) remotely sensed datasets from the cropped part
of the Rur catchment (patterns mainly influenced by the land-use structure of the cropped area), and (iii)
modeled datasets from the cropped part of the Rur catchment (patterns mainly influenced by large scale
variability of soil properties). A fractal analysis revealed that all analyzed soil moisture patterns showed a
multifractal behavior, with at least one scale break and generally high fractal dimensions. Corresponding
scale breaks were found between different datasets. The factors causing these scale breaks are consistent
with the findings of the geostatistical analysis. Furthermore, the joined analysis of the different datasets
showed that small differences in soil moisture dynamics, especially at the upper and lower bounds of soil
moisture (at maximum porosity and wilting point of the soils) can have a large influence on the soil mois-
ture patterns and their autocorrelation structure. Depending on the prevalent type of land use and the
time of year, vegetation causes a decrease or an increase of spatial variability in the soil moisture pattern.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Soil moisture is a key variable in hydrology, meteorology and
agriculture. Its spatial patterns and temporal dynamics are
controlled by many factors, such as topography, soil properties,
vegetation type, solar radiation, management, and precipitation
(Famiglietti et al., 1998; Hawley et al., 1983; Hebrard et al.,
2006; Korres et al., 2010; Rodriguez-Iturbe et al., 2006;
Rosenbaum et al., 2012; Svetlitchnyi et al., 2003; Western et al.,
1998, 1999a). Reynolds (1970) distinguished between static (e.g.,
soil texture, topography) and dynamic (e.g., precipitation, vegeta-
tion) factors affecting soil moisture at a given location. Grayson
et al. (1997) attributed controlling factors to two different soil
moisture states. The wet state is not controlled locally and is dom-
inated by non-local lateral fluxes, while the dry state is dominated
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by vertical water fluxes at a given location. Generally, the approach
by Grayson et al. (1997) underlines the importance of temporal
dynamics for the development of soil moisture patterns.

During the last decades, great efforts were undertaken to under-
stand soil moisture dynamics in a spatial context, and to determine
controlling factors and scaling properties (Corradini, 2014). Data-
sets derived on different spatial scales were utilized in the past,
ranging from point measurements at the plot scale to small catch-
ments (e.g. Bogena et al., 2010; Famiglietti et al., 1998; Western
et al., 1998) and from remote sensing based data (e.g. Kim and
Barros, 2002; Koyama et al., 2010; Montzka et al., 2013;
Rodriguez-Iturbe et al., 1995) to modeled soil moisture data (e.g.
Herbst and Diekkruger, 2003; Korres et al., 2013; Manfreda et al.,
2007; Peters-Lidard et al., 2001) at the small scale to meso-scale
catchments.

The results reported for the relationship between soil moisture
variability and mean soil moisture are in part controversial. For the
relationship between mean soil moisture and the coefficient of var-
iation most studies found an increase in spatial variability with
decreasing mean soil moisture (Choi and Jacobs, 2011;
Famiglietti et al., 1999; Hu et al., 2011; Korres et al., 2013;
Koyama et al., 2010). Regarding the relationship between the mean
soil moisture and the standard deviation many studies reported a
convex shape with a peak in variability in the intermediate soil
moisture state (Choi and Jacobs, 2007; Lawrence and Hornberger,
2007; Rosenbaum et al., 2012; Ryu and Famiglietti, 2005), others
found a more linear trend with an increasing variance with
increasing mean soil moisture (Famiglietti et al., 1998; Western
and Grayson, 1998) or no systematic trend (Yoo and Kim, 2004).
Teuling and Troch (2005) showed that both soil properties and
vegetation dynamics can act to either create or destroy spatial var-
iability, depending on whether or not the soil dries below stressed
conditions for transpiration. Rodriguez-Iturbe et al. (1995) and
Manfreda et al. (2007) showed that soil moisture variability not
only depends on mean soil moisture, but also varies with the spa-
tial scale of the analysis.

Autocorrelation length is often used to analyze the spatial struc-
ture of soil moisture patterns. Western et al. (1998) found shorter
autocorrelation lengths on wet days in a small grassland catch-
ment, related to the smaller spatial scale of lateral redistribution,
in contrast to longer autocorrelation lengths on dry dates, con-
nected to the larger scale of evapotranspiration as the dominant
factor. Also Hu et al. (2011) found a negative correlation between
autocorrelation length and mean soil moisture on a 100 m grass-
land transect. At the field scale (mainly on wheat fields) in a
semi-arid climate, Green and Erskine (2004) found spatial struc-
tures of surface soil moisture, but no clear connection of the auto-
correlation length to dry or wet soil moisture conditions. Western
et al. (2004) compared soil moisture autocorrelation lengths and
terrain attributes, indicating the important role of topography at
one site and the variation of soil properties at other sites. For a
catchment with heterogeneous agricultural use, Korres et al.
(2013) found that shorter autocorrelation lengths within the grow-
ing period of different crops are caused by land use patterns, i.e.
varying transpiration rates of different crops. Outside of the grow-
ing period the longer autocorrelation lengths were mainly caused
by large scale patterns of soil properties.

When analyzing different datasets, it is of great importance to
take the influence of varying scales between these datasets into
account. According to Blöschl and Sivapalan (1995) the organiza-
tion of measurements (or model results) can be generally charac-
terized by three types of scales: spacing, extent, and support.
Spacing refers to the distance (or time) between the measure-
ments, extent to the overall coverage of the measurements (in time
or space), and support to the averaging volume or area (or time) of
a single measurement. If the spacing is too large, small scale
variability will not be captured. If the extent is too small, large
scale variability will not be captured and if the support is too large,
variability will be smoothed out (Grayson and Blöschl, 2000). Thus,
ideally the scale of a process equals the scale of a measurement
(equals the scale of a model), respectively.

Better understanding of scale dependent processes is needed (i)
to optimize the efficiency of field investigations (ii) to improve the
resulting interpolation by customizing the sampling scheme
(Burrough, 1983) and (iii) for the transformation of point-scale
measurements and parameterizations to scales required for cli-
mate studies, operational weather forecasting, and large scale
hydrological modeling (Teuling and Troch, 2005).

For the current study we analyzed measured and modeled spa-
tio-temporal soil moisture patterns for the Rur catchment using
different datasets from the plot to the whole catchment scale.
These datasets were acquired using different methods at locations
with diverse land use. The primary aim of this meta-analysis is to
overcome the difficulties in generalizing partly contradictory
results associated with individual studies. Therefore it is intended
(i) to compile a consistent dataset representing soil moisture data
acquired on different scales (plot to meso-scale catchment) and
with different methods (point measurements, remote sensing,
and modeling) and (ii) to analyze the different datasets with one
set of tools which should allow to determine method specific
effects and site and scale specific controlling factors.
2. Materials and methods

2.1. Data sets

All datasets used in this meta-analysis were acquired within the
Rur catchment, which is located at the western border of Germany,
with small parts in Belgium and the Netherlands (Fig. 1). The Rur
catchment is the central investigation area of the Collaborative
Research Center SFB/TR 32 (Vereecken et al., 2010) and part of
the Terrestrial Environmental Observatories (TERENO) infrastruc-
ture (Zacharias et al., 2011). The catchment covers a total area of
2364 km2 and can be subdivided into two major landscape units:
(i) The southern part (approx. 1260 km2) is a low mountain range
with forest and grassland characterized by a rolling topography, a
mean elevation of about 690 m above sea level and a mean annual
precipitation of about 1400 mm. The major soils are Fluvisols,
Gleysols (along the Rur and its tributaries), Eutric Cambisols and
Stagnic Gleysols with a silt loam texture (all soils in FAO soil clas-
sification). (ii) The northern part of the Rur catchment (approx.
1100 km2) is dominated by arable land (46% of the area). The area
is located in the Belgium–Germany loess belt, where crops are
grown on a virtually flat terrain (slopes less than 4�). The main
crops are winter cereals (mainly winter wheat), sugar beet and
maize. The fertile loess plain has a mean elevation of about
100 m above sea level and a mean annual precipitation of about
700 mm. The major soils are Cumulic Anthrosols near the drainage
lines and Haplic Luvisols, both with silt loam textures. Soils with a
loamy sand texture (Fimic Anthrosols and Dystric Cambisols) are
located on the northernmost part of the loess plain. Soils close to
the Rur are Gleysols and Fluvisols with silty loam and loamy sand
textures. A summary of all datasets can be found in Table 1.
2.1.1. Plot scale
A bare soil test plot (50�520900N, 6�270000E) was located 6 km

southeast of the Research Center Jülich, within the Selhausen test
site. It covers an area of 14 by 14 m and is situated in the middle
of a gently sloping agricultural field. The soil type is a Haplic Luv-
isol with a silt loam texture and a relatively high stone fraction of
about 12% in the top soil. In the Selhausen area a mean annual
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precipitation of 690 mm was measured at the meteorological sta-
tion at the Research Center Jülich, with slightly higher monthly
values in June and July. In this dataset, the soil moisture was mea-
sured with a handheld ECH2O probe (Decagon Devices, Pullman,
WA). Following Oliver and Webster (1987) a nested approach, with
a five stage nested design and random locations of the sampling
points, was applied to determine topsoil moisture (<5 cm) between
26 April and 5 June 2007. This approach has the advantage of good
coverage of sampling distances with a relatively small number of
48 sampling points. For further description of the dataset, see
Herbst et al. (2009). This dataset is labeled MeasPlotBare (for
MEASurement, PLOTscale, BARE soil) in the further analyses.
2.1.2. Field and sub-catchment scale
2.1.2.1. Selhausen fields. The intensively used arable land test site
Selhausen covers an area of about 34.3 ha (Fig. 1), where crops
(during our measurement period: sugar beet, wheat, rye, oilseed
radish and fallow) are grown on gentle slopes (0� to 4�). The alti-
tude ranges between 102 and 110 m a.s.l. Main soils types are (gle-
yic) Cambisol and (gleyic) Luvisol with a silt loam texture and a
high amount of coarse material, originating from a former river ter-
race in the eastern part. Surface soil moisture was measured using
a handheld FDR probe (Delta-T Devices Ltd., Cambridge, UK)
between July 2007 and September 2008 on six different fields.
For further description of the dataset see Korres et al. (2010). This
dataset is labeled MeasFieldCrop (for MEASurement, FIELDscale,
CROPs) in the further analyses.
2.1.2.2. Rollesbroich fields. The grassland test site near Rollesbroich
(50�3702500N, 6�18001600E) covers an area of about 20 ha with nine
fields of extensively used grassland (mainly perennial ryegrass
and smooth meadow grass) with slopes from 0� to 10�, while
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altitude ranges from 474 to 518 m a.s.l. Average annual precipita-
tion of 1033 mm was measured at a meteorological station 9 km
west (altitude 505 m) of the test site. Similar to the other test sites,
the precipitation does not show a pronounced seasonality. Domi-
nant soils are (gleyic) Cambisol, Stagnosol and Cambisol–Stagnosol
with a silt loam texture and a high amount of soil organic matter
and high porosity in the topsoil, especially in the lower northern
part. The measurement setup was the same as in the Selhausen
fields dataset, but onnine different fields. Surface soil moisture
was measured using a handheld FDR probe (Delta-T Devices Ltd.,
Cambridge, UK) between June 2007 and September 2008, for more
details see Korres et al. (2010). This dataset is labeled MeasField-
Grass (for MEASurement, FIELDscale, GRASSland) in the following
analyses.

2.1.2.3. Wüstebach SoilNet. The SoilNet dataset is a measured data-
set at the Wüstebach test site, a small sub-catchment with an area
of 27 ha (Fig. 1) within the river Rur catchment (Bogena et al.,
2010). The dominant vegetation type is Norway spruce (90% cover-
age) on a relief with slopes up to 6�. The altitude ranges from 598
to 628 m a.s.l. and the mean annual precipitation is 1220 mm. On
the hillslopes we found ground water distant soil types Cambisols
and Planosol–Cambisols and ground water influenced soil types
near the Wüstebach river (Planosols, Gleysols and Halfbogs) with
a silty clay loam with a medium to very high fraction of coarse
material (Richter, 2008). Soil moisture data was measured in three
depths with a wireless sensor network (SoilNet) using ECH2O
probes (Decagon Devices, Pullman, WA). 74 measurement loca-
tions are arranged in a 60 by 60 m grid to get a sufficient spatial
coverage (Rosenbaum et al., 2012). The remaining 76 locations
are distributed randomly in order to sample the small scale vari-
ability. For our analysis only sensors without large data gaps in
the 2 years of measurements (2010 and 2011) were chosen. We
used instantaneous values measured at noon of every day. For fur-
ther information about the sensor network SoilNet, see Bogena
et al. (2010) and Rosenbaum et al. (2012). This dataset is labeled
MeasSubForest (for MEASurement, SUB catchment scale, FOREST).

2.1.2.4. Wüstebach HydroGeoSphere. The fully coupled surface–sub-
surface flow model HydroGeoSphere (Goderniaux et al., 2009;
Panday and Huyakorn, 2004) was applied to the Wüstebach sub-
catchment. The model was set up to include the influence of the
bedrock and was calibrated using data from the SoilNet dataset
from 2010, therefore the comparative analysis of these two data-
sets refers to the year 2011. The modeled soil layers correspond
to the measurement depths in the SoilNet dataset (Cornelissen
et al., 2014). For further model description, calibration, validation
and parameterization information of the HydroGeoSphere model
for this dataset, see Cornelissen et al. (2014). This dataset is labeled
ModSubForest (for MODdeling, SUB catchment scale, FOREST).

2.1.3. Catchment scale
2.1.3.1. Danubia. The ecohydrological model components of the
DANUBIA simulation system (Barth et al., 2004; Barthel et al.,
2012) were used to generate daily soil moisture maps for cereals,
sugar beet, maize and bare soil in the fertile loess plain. DANUBIA
is a process based model describing the dynamic interaction of var-
ious environmental processes, including water fluxes affected by
dynamic crop growth and agricultural management. For further
information on the Danubia dataset and on parameterization and
validation of the model for the river Rur catchment, see Korres
et al. (2013). This dataset is labeled ModCatchCrop (for MODdeling,
CATCHment scale, CROPs) below.

2.1.3.2. ALOS. The surface soil moisture of the ALOS dataset was
retrieved using a dual-polarization L-band SAR (synthetic aperture
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radar) retrieval algorithm for the three most common land cover
types in the area of the fertile loess plain, i.e. bare soil, sugar beet,
and winter wheat. For this algorithm coherent-on-receive dual
polarimetry mode (FBD) data from the PALSAR radar instrument
on the ALOS satellite platform was used. A biomass and surface
roughness correction of the signal was achieved by applying a dual
polarimetric H/alpha decomposition and using this increased
amount of observables for the correction (Koyama and Schneider,
2014). The computation of the soil moisture was conducted for 8
ALOS overflight dates with an orbit repeat cycle of 46 days
between May 2008 and September 2009. This dataset is labeled
Rs15mCatchCrop (with Rs15m for Remote Sensing with 15 m
spatial resolution, CATCHment scale, CROPs).
2.1.3.3. ENVISAT. For the ENVISAT dataset surface soil moisture was
retrieved using single C-band SAR wide-swath (WS) single look
complex (SLC) data from the ASAR instrument on the ENVISAT
satellite platform. The semi-empirical retrieval algorithm from
Rombach and Mauser (1997) modified by Loew et al. (2006) was
used to correct for vegetation and surface roughness effects. Soil
moisture for pixels of bare soil, cereals and root crops in the fertile
loess plain were computed for 10 dates with an orbit repeat cycle
of 35 days between February and October 2008. For more informa-
tion about the ENVISAT dataset, see Koyama et al. (2010). This
dataset is labeled Rs150mCatchCrop (with Rs150m for Remote
Sensing with 150 m spatial resolution, CATCHment scale, CROPs)
in further analyses.
2.1.3.4. Cosmic-ray. For this study, we also used soil moisture data
from 9 cosmic-ray probes (type CRS1000, HydroInnova LLC, 2009)
installed in the Rur catchment at a height of 1.5 m (Baatz et al.,
2014). All land-use types (forest, crops, grassland, urban, in varying
proportions) are represented by the locations of the cosmic-ray
probes. Among all data sets, cosmic-ray probe measurements are
the only measurements that cover both the northern and the
southern part of the catchment (Fig. 1). The measurement principle
is based on a strong inverse correlation of the measured fast neu-
tron flux with the abundance of hydrogen atoms in the upper soil
layer and thus can be used to determine soil water content (Zreda
et al., 2008). The horizontal footprint of this measurement has an
approximate radius of about 300 m around the cosmic-ray probe
at sea level or somewhat less depending on air density (Desilets
and Zreda, 2013). The sensors were calibrated to obtain daily aver-
aged soil moisture values from May 2012 to July 2013 using the
semi-empirical method of Desilets et al. (2010). Data gaps are
due to malfunction of one or more probes at single dates. For more
information about the locations of the probes and the dataset, see
Baatz et al. (2014) and Bogena et al. (2013). This dataset is labeled
CosmicCatchAll (with COSMIC for cosmic-ray probes, CATCHment
scale, ALL indicating that all land use types are included).
2.2. Statistical analysis

2.2.1. Descriptive statistics
First the datasets were investigated using univariate descriptive

analysis. For each dataset (and soil layer) the spatial mean soil
moisture and soil moisture variability (expressed by the standard
deviation (SD) and the coefficient of variation (CV)) were calcu-
lated. We computed regression equations between the CV and
mean soil moisture using ordinary least squares. The coefficient
of determination R2 was used as a goodness-of-fit measure.
Significance was tested using a p-value of 0.05. All analyses were
conducted with R (R Core Team, 2014).
2.2.2. Geostatistics
The spatial autocorrelation structure was analyzed using a geo-

statistical analysis. The omnidirectional experimental semivari-
ances c of the measured variable Z were calculated as follows:

cðhÞ ¼ 1
2nðhÞ

XnðhÞ
i¼1

½Zi � Ziþh�2 ð1Þ

where n(h) is the number of distant pairs within a given distance
class, Zi is the measured variable at location i and Zi+h is the variable
at locations separated from i by the distances h that fall within the
distance class. The semivariances were calculated using the R
library geoR (Diggle and Ribeiro, 2007). For the datasets with an
extent below 1.2 km (see Table 1) we used a fixed number of eight
equidistant distance classes. For the datasets with an extent above
1.2 km, smaller variogram classes were calculated for short
distances (<3 km), to better represent those distances, where the
largest changes can be expected.

An exponential variogram was fitted to the experimental
semivariances, since this type generally provided the best fits:

cðhÞ ¼ c0 þ c1 1� exp �h
r

� �� �
ð2Þ

where h is the distance class separation distance, co is the nugget
semivariance, c1 is the structural semivariance and r is the distance
parameter defining the spatial extent of the model. The total sill
(co + c1) defines the semivariance at which the variogram flattens
out and is furthermore simply termed as sill. The effective range
(a; the distance at which c equals 95% of the sill) is approximately
three times the parameter r. The range value characterizes the max-
imum distance of autocorrelation. To minimize the effect of nonsta-
tionarity for the fitting of the variogram model we reduced the
maximum range for the model fitting to 300 m for the datasets
MeasSubForest and ModSubForest, to 3 km for the datasets
Rs15mCatchCrop and Rs150mCatchCrop and to 15 km for the Mod-
CatchCrop dataset. It is important to note that the results are appar-
ent semivariances and autocorrelation lengths, which may be
biased by the difference of scale of natural variability and measure-
ment scale in terms of spacing extent and support (Western and
Blöschl, 1999). The apparent autocorrelation lengths always
increase with increasing spacing, extent or support and the appar-
ent variance increases with increasing extent, decreases with
increasing support, and does not change with spacing (Western
and Blöschl, 1999). The analysis of the spatial autocorrelation is lim-
ited to the datasets that are non-sparse in the temporal or spatial
domain. This restriction was made to be able to compute either sta-
ble geostatistical parameters (semivariances, variogram model
parameters) for the spatial patterns or to analyze the development
of the spatial autocorrelation over time. The validity of the com-
puted geostatistical parameters from a sparse dataset in the spatial
domain may then be assessed through the temporal stability of the
parameters. The Cosmic Ray dataset fulfilled the prerequisite to be
non-sparse on the temporal domain, but since only 9 measuring
points are available, geostatistical parameters cannot be computed
and therefore this dataset was also discarded from the autocorrela-
tion analysis. Consequently, only the datasets MeasSubForest, Mod-
SubForest, ModCatchCrop, Rs15mCatchCrop and Rs150mCatchCrop
were used for the geostatistical and the following fractal analysis.

2.2.3. Fractals
In addition, fractal geometry (Mandelbrot, 1977) was used to

describe self-similar patterns of variation using simple parameters
(e.g. fractal dimension). Mandelbrot (1977) introduced the term
fractal to describe any function for which the Hausdorf-Besicovich
dimension (D) exceeds the topological dimension (e.g., 1 for lines
or 2 for areas). For such functions, the Hausdorf-Besicovich



Table 2
Descriptive statistics of the different datasets. Mean values are calculated as the mean
value of all spatial mean values (spatiotemporal mean) within one dataset, standard
deviation (SD) and coefficient of variation (CV) values are calculated as the mean
value of all spatial SD and CV values, respectively.

Label Soil moisture (mean values)

Mean (vol.%) SD (vol.%) CV

MeasPlotBare 15.24 2.77 0.20
MeasFieldCrop 26.15 3.90 0.16
MeasFieldGrass 43.08 4.35 0.10
MeasSubForest L1 41.61 12.55 0.32
MeasSubForest L2 39.56 9.48 0.24
MeasSubForest L3 33.81 9.37 0.28
ModSubForest L1 41.61 8.69 0.22
ModSubForest L2 37.86 7.12 0.20
ModSubForest L3 33.49 5.19 0.16
ModCatchCrop L1 27.66 4.01 0.15
ModCatchCrop L2 25.59 4.53 0.18
Rs15mCatchCrop 24.05 2.11 0.10
Rs150mCatchCrop 31.35 2.68 0.09
CosmicCatchAll 32.72 8.19 0.26
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dimension is commonly termed fractal dimension (Goodchild and
Mark, 1987). The values for the fractal dimensions (D) for spatial
data varies between 2 (topological dimension for areas) and 3.
They provide information about the spatial structure of a dataset.
For example, rough surfaces with a low autocorrelation structure
have high fractal dimensions (D close to 3) and smooth surfaces
with similar values in adjacent areas and a high autocorrelation
structure have low fractal dimensions (D close to 2). The other
important concept in the context of fractals is self-similarity. In a
statistical sense, the concept of self-similarity means that a portion
of an entity looks similar to the whole entity if enlarged or reduced
to the appropriate scale (Gao and Xia, 1996). This means, that a
single fractal dimension applies to all scales of a surface. However,
Sun et al. (2006) stated that in geosciences various natural
processes operate at different scales, leading to varying fractal
dimensions, that are only constant over certain ranges of scales,
separated by distinct scale breaks (Burrough, 1983; Klinkenberg
and Goodchild, 1992; Mark and Aronson, 1984). This concept is
called multi-fractal and can be used to describe nested scales of
variability.

The fractal dimension (D) can be estimated from the slope of a
double logarithmic (log–log) plot of an experimental semivario-
gram (Burrough, 1983; Mark and Aronson, 1984):

D ¼ 3� B=2 ð3Þ

where B is the slope of the regression line. In case of multi-fractal
behavior the regression lines were calculated for the different
segments of the double logarithmic plot. With the segmented
regression method by Muggeo (2003; R library segmented) the
regression lines are fitted and breakpoints are computed, which
provide an objective method to determine the fractal dimension
(D) from the slope of the different regression lines and associated
scale breaks (SB). A maximum of two breakpoints was computed.
3. Results and discussion

The spatial and temporal scales of the different datasets are
very versatile. We analyzed soil moisture datasets with a spatial
extent ranging from 14 m (bare soil plot) up to the whole Rur
watershed (Cosmic Ray sensors at 9 different locations) with a
temporal extent of one or two years. An exception is the bare soil
plot dataset with only 6 weeks (10 dates), which therefore is prone
to biases in the soil moisture conditions. In case of the MeasPlot-
Bare data set, we measured low surface soil moisture values at
the first six dates, leading to a very low overall mean soil moisture
of 15.2 vol.% for the whole dataset (Table 2). In addition, spacing of
the datasets is very different for the various datasets, with values
smaller than 1 m up to several kilometers in the spatial domain
and daily measurements (here sometimes even aggregated to daily
measurements from the original datasets) to measurement inter-
vals of about 40 days in the temporal domain, e.g. due to the orbit
repeat cycle of the satellite overpasses.

The highest mean soil moisture values can be found in datasets
measured at or modeled for elevated areas in the southern hilly part
of the Rur catchment with higher amounts of precipitation (e.g.,
MeasFieldGrass, MeasSubForest, and ModSubForest). The mean
value in these datasets declines with deeper soil layers. This is
caused by the lower porosity in the deeper soil layers. Lower mean
soil moisture values can be found in the datasets for the northern
part of the catchment (e.g., MeasFieldCrop, Rs15mCatchCrop,
Rs150mCatchCrop, ModCatchCrop). Consistently, the strong gradi-
ent in mean soil moisture from north to south is visible in the site
specific mean soil moisture measured at the catchment wide Cosm-
icCatchAll dataset, as indicated by Baatz et al. (2014). The variation
of the mean soil moisture values between the datasets from the
northern part of the catchment are caused by the different soil mois-
ture states at different years of data acquisition and the sparse and
predefined dates of the satellite overpasses.

The highest variability of soil moisture (expressed by the coef-
ficient of variation, CV) can be found in the measured data from
the forest sub catchment (Table 2). This variability with a CV up
to 0.32 is much higher compared to CVs of the arable land and
grassland test sites with values of the CV less than 0.18. This differ-
ence in variability is caused by the influence of the stronger topog-
raphy within the forest catchment with drier upslope areas and
constantly wetter downslope areas influenced by a shallow ground
water table and by the heterogeneity within the forest stand with
lower moisture values around the trees and higher values in the
interspaces between tree stands. Comparable values for forest test
sites (Grant et al., 2004) and grassland test sites (Western et al.,
1999b) can be found in the literature (Zucco et al., 2014). The small
CV values for the remotely sensed surface soil moisture values can
be explained by the larger spatial support of the sensors, measur-
ing a larger area and therefore averaging the small scale variability
over a larger area, compared to the point measurements at the
ground level. It should be mentioned explicitly that the remotely
sensed surface soil moisture values are only available for arable
and grassland sites, but not for forests, since the radar signal does
not penetrate the dense vegetation cover of forest areas. For the
MeasPlotBare dataset the high CV value of 0.2 is caused by the very
low mean soil moisture values. High soil moisture variability is
also found for the CosmicCatchAll dataset (CV = 0.26). This can be
explained by (i) the fact, that these measurements cover both the
drier northern and the wetter southern part of the Rur catchment,
(ii) the small number of measurement sites and (iii) the coverage of
all land use types in varying proportions.

The temporal dynamics of the datasets show a direct impact of
precipitation events on the soil water content which results in an
inverse relationship of mean soil moisture and coefficient of varia-
tion (Fig. 2). With increasing soil moisture, the CV typically
decreases. Except for the period from May to June 2011, a slight
increase in the standard deviation with drying soil moisture condi-
tions in the MeasSubForest dataset can also be seen. The datasets
from the forest catchment (MeasSubForest and ModSubForest)
have a much larger temporal variability which exceeds 25 vol.%
as compared to the ModCatchCrop dataset with about 15 vol.%
(Fig. 2). This is a result of a much larger maximum porosity of
the soils in the forest catchment, causing higher maximum soil
water contents during the winter period. Furthermore, the strong
influence of the soil parameterization (porosity) can be noted,
leading to a distinct upper limit (about 34 vol.% for ModCatchCrop
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Fig. 2. Time series of daily mean soil moisture, daily standard deviation (SD) and the coefficient of variation (CV) of four exemplary datasets. The data gaps in the
CosmicCatchAll time series are due to malfunction of at least one of the measuring devices at that day. The model used to derive the ModSubForest dataset was calibrated
with the data from 2010 of the MeasSubForest dataset.
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and 48 vol.% for ModSubForest) in the modeled soil moisture time
series (Fig. 2).

3.1. Link between soil moisture mean and variability

In our study, we found a negative correlation between mean soil
moisture and soil moisture variability expressed by the coefficient of
variation (CV) in all datasets (Fig. 3). The slopes of the linear regres-
sion between mean soil moisture and the CV varies between�0.015
for the ModCatchCrop L2 dataset and�0.006 for the MeasSubForest
L3 and the Rs15mCatchCrop dataset. The linear regression for Meas-
FieldCrop and the MeasFieldGrass dataset are not significant at the
p = 0.05 level and are therefore discarded in further analyses. Some
authors (Choi and Jacobs, 2007; Hu et al., 2008) use an exponential fit
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(d) MeasSubForest L1
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(f) MeasSubForest L3
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(j) ModCatchCrop L1
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(k) ModCatchCrop L2
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(c) MeasFieldGrass
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(b) MeasFieldCrop
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(a) MeasPlotBare
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(g) ModSubForest L1
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(h) ModSubForest L2
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(i) ModSubForest L3

Fig. 3. Scatterplots of the soil moisture mean and the coefficient of variation for all analyzed datasets and soil layers. A linear and an exponential regression with the
associated R2-values are plotted in green and red. Regressions are significant on the p = 0.05 level with the exceptions of (a) MeasPlotBare and (c) MeasFieldGrass.
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to describe this relationship, because at drier soil moisture states the
relationship deviates strongly from a linear relationship. In our anal-
ysis, the exponential fit results in a significant increase of the R2

value in only a few cases, therefore we used the linear relationships
in our analysis for better comparability.

For the datasets measured in and modeled for the flat agricul-
tural area in the northern part of the catchment (MeasFieldCrop,
ModCatchCrop, Rs15mCatchCrop, Rs150mCatchCrop) we found
no evidence for the influence of lateral water fluxes on the soil
moisture patterns and relatively homogeneous soil properties over
large areas (Korres et al., 2013). Since soil moisture is limited by
the wilting point during very dry periods and by the porosity in
case of saturated conditions, decreasing soil moisture variability
with increasing mean soil moisture is to be expected in datasets
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with homogeneous soil properties. During the vegetation period
we found higher evapotranspiration rates and high spatial variabil-
ity of transpiration for the different crops (mainly cereals, sugar
beet, and maize) in the ModCatchCrop dataset. This is caused by
(i) differences in the growth periods of the different crops, (ii) by
the varying evapotranspiration of the different plants and (iii)
management effects (e.g., planting, harvesting, and fertilization).
This results in a large inter-field variability at the dry soil moisture
state in intensively used agricultural areas. The influence of tran-
spiration is spatially more homogeneous in the forest and the
grassland test sites (MeasFieldGrass, MeasSubForest, ModSubFor-
est). However, generally higher soil moisture values and the influ-
ence of a stronger topography result in lateral flow processes. At
the forest test site, we found higher spatial soil moisture variability
at the dry state compared to the wet state. This is due to the slower
drying rates of the increasingly fine-textured soils in the valley
area with convergent lateral flow and due to groundwater influ-
ence (Rosenbaum et al., 2012). Generally, upslope areas showed
significantly lower mean soil moistures and a larger range of soil
moisture than the groundwater-influenced areas in the valley
(Rosenbaum et al., 2012).

The relationship between mean soil moisture and coefficient of
variation of the different datasets are shown in Fig. 4. For a better
comparability of the slopes only the linear relationships are illus-
trated, even though we found a slightly better fit of an exponential
function for the datasets MeasSubForest L1, MeasSubForest L2,
ModSubForest L1, ModSubForest L2, and Rs15mCatchCrop. The
datasets cover quite different soil moisture ranges. For example,
the radar remote sensing dataset from Rs15mCatchCrop covers
dry soil moistures ranging from 15 vol.% to 31 vol.%, whereas the
MeasSubForest dataset taken in the top layer of the forest sub-
catchment shows high mean soil moisture values ranging from
25 vol.% up to 56 vol.%. The CV values at an average soil moisture
of 30 vol.% varies from about 0.06 for the Rs15mCatchCrop dataset
to 0.44 for the uppermost layer of the measured forest data set
(MeasSubForest). For agriculturally used areas the CV values at
30 vol.% for the different data sets (ModCatchCrop L1, ModCatch-
Crop L2, Rs150mCatchCrop and MeasFieldCrop) converge at about
0.14, while the forested test sites show significantly larger CV val-
ues. In general, the CVs of the modeled dataset ModSubForest are
lower than the measured CVs from the MeasSubForest dataset
for their associated soil layer. In both of these datasets the CV value
decreases with deeper soil layers. This is due to the decreasing
porosity with soil depth (Rosenbaum et al., 2012). In contrast to
the decreasing CV with soil depth in the forest sub catchment,
the variability in the top layer of the ModCatchCrop dataset is
equal to or even slightly lower as compared to the lower soil layer.
This can result from a homogenization of the top soil caused by
agricultural management (e.g., ploughing and harrowing) and from
the shift in periods of high plant water uptake from the root zone
of the different crops. The development of winter wheat is com-
pleted by the end of June or beginning of July, whereas sugar beet
and maize start their growing cycle later in the year and finish
their development with their harvest in September, October or
November (Korres et al., 2013). While the upper soil layers receive
water from precipitation, which has a homogenizing effect on the
soil moisture patterns, percolation to deeper soil layers is greatly
reduced or stopped during the second half of the vegetation period.
Thus, the homogenizing effect of water recharge is missing in dee-
per soil layers during that time. The CosmicCatchAll dataset pro-
vides a special case, because it contains point measurements
from locations with very different soil and land use conditions on
grassland, arable land and forest or mixed proportions of these dif-
ferent land use classes. This data set shows an intermediate CV
value between 0.15 and 0.37 (Fig. 4).

Moreover, our results show that spatial variability of soil mois-
ture not only depends on mean soil moisture, but also varies with
spatial scale (spatial extent and spatial support) of the analysis.
This behavior was also found by Famiglietti et al. (2008),
Manfreda et al. (2007) and Rodriguez-Iturbe et al. (1995). Previ-
ously conducted individual analyses of the different datasets
showed a decrease of spatial variability with (i) decreasing spatial
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extent (in Koyama et al., 2010) and (ii) increasing spatial support
(in Bogena et al., 2010; Korres et al., 2013). However, such a rela-
tionship between our different datasets cannot be found (Fig. 4),
because the effect of different spatial extent and support between
the datasets is often masked and superimposed by the larger actual
variability of the natural processes within the single datasets.
Hence, the observed variability between the datasets (Fig. 4) is
more influenced by the natural processes than the measurement
or modeling scale.

To avoid interdependencies between the two statistical
moments mean and variability we used mainly the CV as a mea-
sure for variability in our analyses. Regarding the relationship
between the standard deviation and mean soil moisture, only the
MeasSubForest L1 and L2 datasets show a convex shape with the
maximum spatial variability in the intermediate soil moisture state
at about 40 vol.%. (Rosenbaum et al., 2012). This follows the
theoretical unimodal shape of the relationship between standard
deviation and mean soil moisture (Vereecken et al., 2007). At wet
conditions, the variability is mainly controlled by hydraulic
conductivity and porosity. During the drying process, the spatial
differences of soil properties lead to an increase of variability at
intermediate moisture conditions. Further drying by evapotranspi-
ration then again leads to a decrease of variability at dry soil mois-
ture conditions (Famiglietti et al., 1998; Pan and Peters-Lidard,
2008; Vereecken et al., 2007). Other datasets showed a positive
linear relationship (MeasPlotBare, MeasFieldGrass, MeasSub
Forest), a negative linear relationship (MeasFieldCrop, ModSub
Forest L1, ModSubForest L2, ModCatchCrop L1, ModCatchCrop L2,
Rs150mCatchCrop) or no significant linear relationship on a
p = 0.05 level (ModSubForest L3, CosmicCatchAll, Rs15mCatch-
Crop). These linear relationships can be interpreted as the drying
or the wetting arm of the convex relationship between standard
deviation and mean soil moisture representing dry to intermediate
soil moisture conditions (positive linear relationship) or intermedi-
ate to wet soil moisture conditions (negative linear relationship).
Only the MeasFieldGrass dataset due to very heterogeneous soil
properties (Korres et al., 2010) and the ModSubForest L1 and L2
datasets, because of not fully simulating the drying arm of the
unimodal relationship (Cornelissen et al., 2014) did not fit in this
interpretation.

3.2. Geostatistical analysis

Experimental semivariances and fitted exponential variograms
from an early date in the year (representing typical wet conditions)
and from a date at the end of the main vegetation period (repre-
senting typical dry conditions) were selected to illustrate the influ-
ence of the vegetation on soil moisture autocorrelation (Fig. 5). As
expected from the standard deviations from Table 2, the datasets
from the forest catchment MeasSubForest and ModSubForest show
the largest sill values with a decreasing sill with decreasing soil
depth. The ModCatchCrop dataset shows generally lower sill
values. The lowest mean sill values were computed from datasets
from radar remote sensing. The explanation of the differences in
the sill values follows the previous discussion on the spatiotempo-
ral SD and CV values.

The range parameter can be used to describe the break between
spatially correlated and uncorrelated values. Hence it provides
information about the spatial organization of soil moisture patterns.
Changes of the range values with time can be assigned to the varying
impact of different processes within a dataset. Differences in the
magnitude of the range values can be assigned to different
dominating processes, parameters or structures. We found mean
variogram ranges for the MeasSubForest dataset of 122, 149 and
254 m for the Layers L1, L2 and L3, respectively. The mean variogram
ranges from ModSubForest (110, 142, 175 m for depths L1, L2 and L3,
respectively) have a similar increasing trend with increasing soil
depths. This is in agreement with the MeasSubForest dataset. In
the ModSubForest dataset the ranges significantly increase in all soil
layers with decreasing mean soil moisture, meaning we computed
larger range values at drier soil moisture conditions. The larger range
values can be explained by a more pronounced spatial organization
at drier conditions, which is caused by effects of elevation with drier
upslope areas and constantly wetter downslope areas influenced by
a shallow ground water table. Under wet conditions, the smaller
range is mainly influenced by the small scale variability in porosity
(Cornelissen et al., 2014). For the ModCatchCrop dataset we found
much larger mean range values (14 km and 11 km, for L1 and L2,
respectively) which show a close similarity to the semivariance of
the soil parameters calculated from the soil map. Thus, the larger
range values (>10 km) are mainly linked to the pattern of the differ-
ent soil types (Korres et al., 2013). In the radar remote sensing data-
sets (Rs15mCatchCrop and Rs150mCatchCrop) for the same region,
we cannot identify the influence of large scale differences in soil
parameters in the variograms (Fig. 5). We found mean range values
of 432 m for the Rs15mCatchCrop and 711 m for the Rs150mCatch-
Crop dataset. These smaller range values are associated with the
land use structure (field size) of that area. The large variability at a
small spatial scale is caused by different agricultural crops on neigh-
boring fields leading to spatially variable evapotranspiration rates,
hence to variable water uptake and soil moisture values. Conversely,
this small scale variability cannot be identified in the range values of
the modeled ModCatchCrop dataset. This indicates that the method
of the surface roughness and biomass correction of the
Rs150mCatchCrop dataset emphasizes the influence of different
crops on the soil moisture patterns stronger than the model. The
influence of the large scale patterns of different soil types can only
be found in the modeled ModCatchCrop dataset but not in the
remote sensing dataset. This underlines the importance of proper
soil parameterization as input data for environmental models and
for proper modeling of soil moisture patterns.

A graphical synopsis of the geostatistical analysis concerning
the range and the sill can be seen in Fig. 6. Sill and range values
of all days of the different datasets are plotted and despite the scat-
tering of the daily data, three bigger clusters can be identified: (i)
modeled and measured datasets from the forest sub-catchment
with large sill values and small range values, (ii) remotely sensed
datasets from the northern part of the Rur catchment with small
to medium sill values and medium range values, and (iii) modeled
dataset from the northern part of the Rur catchment with medium
sill values and large range values.

As the analyses of the temporal evolution of the experimental
semivariances of the different datasets is of great interest, we used
the daily calculated experimental semivariances for the different
distances of each dataset and plotted contour plots with the dis-
tances on the x-axis, the day of the analyzed year (DOY) on the
y-axis and the color-coded semivariances (Fig. 7).

The pattern of the ModSubForest dataset (Fig. 7d and e) showed
a period around DOY 140 with high semivariances, caused by a
period of low precipitation and low mean soil moisture values
(Cornelissen et al., 2014). This can again be explained by elevation
effects as described in the previous section. For the ModSubForest
dataset we computed significant negative correlations between
mean soil moisture and the sill with a large proportion of the
explained variance of these datasets (R2 = 0.79 for L1 and
R2 = 0.78 for L2). This shows the large influence of meteorological
forcing in combination with the spatial distribution of soil param-
eters on the simulated soil moisture patterns.

The temporal behavior of the semivariance pattern of the mea-
surements of the MeasSubForest dataset (Fig. 7a and b) shows
large differences compared to the pattern of the modeled values
from ModSubForest (Fig. 7d and e). The MeasSubForest dataset
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Fig. 5. Experimental semivariances and fitted exponential semivariogram models of the different soil moisture datasets for a typical dry (red) and wet (blue) situation,
respectively. The geostatistical analysis is limited to the datasets that are non-sparse in the temporal or spatial domain. Thus, the datasets MeasPlotBare, MeasFieldCrop,
MeasFieldGrass and CosmicCatchAll were discarded from the analysis.
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shows the highest semivariance values in all soil layers in the sec-
ond half of the year 2011. The reason for the different behavior
between these two datasets in the second half of 2011 can be
attributed to the differences of the mean soil moisture (see
Fig. 2c and d). After very dry soil moisture conditions in June, the
ModSubForest dataset reaches very high soil moisture values near
the maximum porosity after precipitation events between July and
the end of the year. However, the mean soil moisture values for the
MeasSubForest datasets during that time never reached the maxi-
mum porosity, as for example in February 2011 (Fig. 2). The same
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differences are found in the second soil layer (not shown). The
replenishment of soil water content by precipitation to values up
to the maximum porosity in the ModSubForest dataset leads to a
full reset of the soil moisture pattern with smaller sill values,
whereas the soil moisture patterns of the MeasSubForest dataset
with a high spatial variability were only marginally influenced by
precipitation, replenishing only parts of the soil pores and keeping
the overall soil moisture pattern intact. Reasons for that difference
might be errors in the precipitation input into the model, due to
errors in the measurement or the applied correction algorithm or
the simple modeling of the vegetation in ModSubForest. The heter-
ogeneity of transpiration in the model only depends on soil mois-
ture conditions, since the vegetation parameterization is spatially
constant (Cornelissen et al., 2014). This example demonstrates
the importance of (i) the correct model input (e.g., precipitation
from measurements, soil parameters) and (ii) correct modeling of
green water fluxes and runoff for the realistic modeling soil mois-
ture patterns.

In the ModCatchCrop dataset (Fig. 7g and h) we notice two peri-
ods with higher semivariances, one around DOY 150 and another
one around DOY 260. These two periods of higher variability are
caused by the high heterogeneity of transpiration of the different
plants on neighboring fields. The first peak is determined by the
early biomass production and therefore high transpiration of win-
ter cereals in contrast to later biomass production of sugar beet
and maize. The second peak is determined by the discontinued
transpiration caused by harvesting the winter cereals, contrasted
by the high biomass production of sugar beet and maize. Between
these two peaks there is a period of homogeneous transpiration
rates with a diminished transpiration of the drying winter cereals
and increasing transpiration of the growing sugar beet and maize
plants. In this dataset significant negative correlations between
mean soil moisture and the sill were determined, but with a far
lower proportion of the explained variance (R2 = 0.36 for L1 and
R2 = 0.33 for L2), indicating the strong influence of the vegetation
on the soil moisture patterns and less influence of the meteorolog-
ical forcing. Additionally, by comparing the semivariances between
the ModSubForest and the ModCatchCrop dataset at very high soil
moisture conditions near maximum capacity at the beginning and
at the end of the year, the influence of the soil parameterization of
the models on soil moisture patterns can be assessed. Here we
found much larger variability of soil parameters (e.g., porosity, field
capacity) in the forest sub-catchment resulting in higher semivari-
ances, as compared to the more homogeneous loess plain.

3.3. Detection of scale breaks in the autocorrelation structure using
fractals

For the fractal analysis we computed fractal dimensions (D) of the
datasets ModCatchCrop L1, Rs15mCatchCrop and Rs150mCatch-
Crop for the same two days given in Fig. 4. We found multifractal
behavior in all these datasets, showing at least one distinct scale
break of the spatial variability over the analyzed range of scales
(Fig. 8).

For the date 2/1/2009 of the ModCatchCrop dataset (Fig. 8a) we
found a scale break around 17.5 km, with a high D value of 2.86
before the break and a medium D value of 2.5 after the break. At
the beginning of the year the influence of the crops is negligible, so
we can notice the influence of larger spatial variability and lower
autocorrelation within soil types before the scale break and the
influence of a larger spatial organization with a higher autocorrela-
tion between soil types resulting in lower D values for distances after
the scale break (for detailed soil information see Korres et al. (2013)).
On 10/1/2009 (Fig. 8b), in addition to the scale break described
above (SB2 in Fig. 8b), we found a second scale break (SB1) at a much
smaller distance of about 400 m. This is associated with the specific
field sizes in the northern part of the Rur catchment and again the
influence of the vegetation (strongly varying evapotranspiration
rates on neighboring fields). We computed the fractal dimensions
and scale breaks for every day of every dataset. The scale break at
larger distances (SB1 in Fig. 8a and SB2 in Fig. 8b) is stable through-
out the whole year in the ModCatchCrop dataset. The scale break
around 400 m was only observed at times, when the evapotranspi-
ration rates on neighboring fields differ largely. Very similar scale
breaks were found for the deeper soil layer L2 for the ModCatchCrop
dataset (not shown). In the Rs150mCatchCrop dataset (Fig. 8e and f)
we found only a scale break associated with the field sizes. At larger
distances a slight change in the values occurs that might be caused
by different soil types. However, these differences are too small to
be significant and to be captured accurately with our analysis
method. Unfortunately, the soil type scale break cannot be investi-
gated further with the Rs150mCatchCrop dataset, because we have
no data for the winter months with no vegetation influence and soil
water content near saturation. In the Rs15mCatchCrop dataset
(Fig. 8c and d) we also computed the scale break at field size, but
at a slightly shorter distance of 258 and 276 m. The differences in
the distances of the scale break associated to one process or param-
eter can be explained by the varying spatial scale (support) between
the datasets for the scale break between 250 and 600 m. A source of
error of our method is caused by the fitting procedure of the
regression lines on the logarithmic scale, because small changes in
the fitting lead to large differences in the scale break at larger
distances. The most interesting result of the fractal analysis is the
scale break B2 for the Rs15mCatchCrop dataset in Fig. 8c confirming
the scale break found by the analysis on the modeled data from
ModCatchCrop. While the scale break in the ModCatchCrop dataset
might be caused by the soil parameterization using the available soil
map as input, the soil moisture maps from Rs15mCatchCrop are
processed independently from such input data. Hence, the results
of the different datasets for the northern part of the Rur catchment
complement and support each other.

For the MeasPlotBare dataset we were not able to compute a
good and stable fit in the regression analysis, suggesting that a
fractal or multifractal model is not appropriate for this dataset at



Fig. 7. Contour plot of the semivariance values of different datasets with the distance values on the x-axis, the day of year (DOY) on the y-axis and the color-coded
semivariances. The semivariance-surfaces were interpolated using a smoothing spline algorithm (R library mgcv (Wood, 2006)). Only the datasets with daily data were
chosen for the analysis.
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all. For the MeasSubForest dataset we could only find stable D val-
ues at lower distances with an irregular behavior after the scale
break (at around 135 m for L1, 170 m for L2 and 200 m for L3).
Comparable results could be found for the ModSubForest dataset
with scale breaks at around 110 m for L1, 90 m for L2 and 180 m
for L3. This tendency of increasing distances of the scale breaks
with lower soil layers (with the exception of ModSubForest L2)
was also observed for the range values in the semivariance analy-
sis. Again, a larger spatial organization of soil moisture patterns in
deeper soil layers for the forest sub-catchment in both datasets
was observed, supporting the findings of Manfreda et al. (2007).

The overall high D values in our analysis are in good agreement
with other studies which found high fractal dimensions for soil
parameters (Burrough, 1983), having a strong connections to soil
moisture data, but they are not calculated using the variogram
method (Kim and Barros, 2002). Many other studies have
shown differences in the calculated fractal dimensions with
different computational methods (De Jong and Burrough, 1995;
Klinkenberg and Goodchild, 1992). In comparison to other
methods (e.g., isarithm or triangular prism) the variogram method
yields higher fractal dimension estimates in datasets with high
variability (Lam et al., 2002), but this does not influence the
estimation of scale breaks. The variogram method was used in
our analysis, because of its applicability to our datasets, with an
irregular grid of data points or regular grids with missing
values.
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Fig. 8. Log–log plot of the semivariance values of exemplary dates and datasets, regression lines from the segmented regression, the associated fractal dimensions (D),
derived from the slope of the regression segments, separated by the scales breaks (SB, with the indication of the distance in the legend).
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4. Summary and conclusions

We analyzed the spatial patterns of soil moisture and their
temporal development using nine different datasets from
measurement, modeling and radar remote sensing within the Rur
catchment in Western Germany. The datasets capture soil moisture
dynamics on very different spatial and temporal scales (extent,
spacing, support) and on different land use – topography – soil
combinations. The soil moisture variability as well as the relation-
ship of mean soil moisture, soil moisture variability and autocorre-
lation structure of the soil moisture patterns were analyzed.

We found very low mean soil moisture values on a plot scale
dataset on bare soil resulting from very dry soil moisture conditions
at the beginning of the short measurement period (temporal extent)
and only small scale variability of soil parameters. The other
extreme with high mean soil moisture value and high CV values
was found in a small forest sub-catchment caused by higher precip-
itation values and a heterogeneous topography, which is typical for
the mountainous region of the southern part of the Rur catchment.
For grassland, the second major land use in the southern part of the
catchment, we found high mean soil moisture values comparable to
the forest sub catchment, but with much lower SD. The datasets for
the northern part of the Rur catchment showed generally lower
mean soil moisture values caused by lower precipitation rates.
The main reasons for the observed spatial variability in the cropped
area with very flat terrain are the influence of vegetation (temporal
differences of evapotranspiration rates of the different crops), man-
agement (field size, planting dates, harvesting dates) and soil
parameters (porosity, field capacity). Generally, smaller CV values
for remotely sensed surface soil moisture are linked to the larger
spatial support by the sensor, averaging small scale variability.
Nevertheless, the CV values of the 15 m remote sensing dataset
are comparable to the CV values of the 150 m remote sensing
dataset, despite lower mean soil moisture and the smaller spatial
support. This might be ascribed to the non-corresponding measur-
ing dates and to the different processing chains and retrieval
algorithms for the dual polarimetric L-band sensor and the single
polarimetric C-band sensor. The CosmicCatchAll dataset shows high
CV values, despite the largest spatial support of all datasets. This
high spatial variability can be explained by the choice of the
scattered locations of the stations over the drier northern part and
wetter southern part, with the purpose to sample some extreme
conditions of the whole spectrum of land use – topography – soil
combinations within the whole catchment.

For all datasets we found negative correlations between the
coefficient of variation and the mean soil moisture, indicating
lower spatial variability at higher mean soil moisture values. For
the forest sub-catchment compared to the cropped areas, the offset
of this relationship was larger, with generally larger CV values at
comparable mean soil moisture values. Moreover, a decrease of
the spatial variability with decreasing spatial extent and increasing
spatial support could be observed within the different datasets.
Such a relationship between our datasets cannot be found, because
the effect of varying measurement or modeling scale is often
masked and superimposed by the larger true variability of the
natural processes and parameters within the single datasets.

Using the geostatistical analysis of the soil moisture values it
was possible to identify three groups with similar values for sill
and range: (i) modeled and measured datasets from the forest
sub-catchment with large sill values and small range values, (ii)
remotely sensed datasets from the northern part of the Rur catch-
ment with small to medium sill values and medium range values,
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and (iii) modeled datasets from the northern part of the Rur catch-
ment with medium sill values and large range values. The small
range values in (i) are associated with soil and topographic charac-
teristics of the forest sub catchment, medium range values in (ii)
with the land-use structure (field size) of the cropped area and
large range values in (iii) with large scale variability of soil param-
eters between soil types.

All analyzed soil moisture patterns showed a multifractal
behavior (only partial self-similarity over limited ranges of scales),
with at least one scale break and generally high fractal dimensions.
The scale breaks found with the fractal analysis are consistent with
the above-mentioned grouped range values (i), (ii) and (iii) origi-
nating from the geostatistical analysis. The advantage of the fractal
method over the geostatistical method in our analysis was that the
maximum range of the analysis does not have to be cut in order to
remove nonstationarity at longer ranges and to get a good model
fit in the geostatistical analysis. In our datasets, we found stationa-
rity only at some ranges, indicating different sources of spatial var-
iability at different ranges. Including the longer ranges in the
fractal analysis, it was even possible to detect two scale breaks
(associated with land use structure and soil type) within the data-
sets with large spatial extent, instead of one with the geostatistical
analysis. Thus, a multifractal model is seen as an appropriate
approach to capture and describe the nested scales of variation
of soil moisture patterns for the largest part of our datasets.

The joined analysis of the different datasets showed that corre-
sponding scale breaks can be found between different datasets and
therefore these scale breaks are no artefacts from input data (e.g.,
from the soil map in the model studies). Particularly for the forest
sub-catchment, the results suggest that the model underestimated
the small scale complexity of the natural systems and that the
small differences in soil moisture dynamic between the datasets,
especially at the upper and lower bounds of soil moisture (at max-
imum porosity and wilting point in the soils) can have a large influ-
ence on the soil moisture patterns and their autocorrelation
structure. The influence of the vegetation can lead to a decrease
or an increase of spatial variability in the soil moisture pattern,
depending on the prevalent type of land use. At the forest test site
we found a homogenizing effect of the uniform vegetation, con-
trary to the cropped areas, where the shifted periods of maximum
water uptake of the different crops on different fields and the agri-
cultural management (e.g., planting dates, harvesting dates, field
sizes) generated an increase of spatial variability in the soil mois-
ture patterns.
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