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Single-qubit operations on singlet-triplet qubits in GaAs double quantum dots have not yet reached the
fidelities required for fault-tolerant quantum information processing. Considering experimentally im-
portant constraints and using measured noise spectra, we numerically minimize the effect of decoherence
(including high-frequency 1=f-like noise) and show, theoretically, that quantum gates with fidelities higher
than 99.9% are achievable. We also present a self-consistent tuning protocol which should allow the
elimination of individual systematic gate errors directly in an experiment.

DOI: 10.1103/PhysRevLett.113.150501 PACS numbers: 03.67.Lx, 03.67.Pp, 73.21.La

One well-established possibility for realizing a qubit
with electron spins in a semiconductor is to use the
ms ¼ 0 spin singlet and triplet states of two electrons as
computational basis states [1]. In contrast to single electron
spins, this encoding allows for all-electrical qubit control.
Very long coherence times of up to 200 μs [2], all aspects of
single-qubit operation (e.g., initialization [3] and single-
shot readout [4]), and a first two-qubit gate [5] have been
demonstrated experimentally for such singlet-triplet (ST)
qubits in GaAs quantum dots. Universal single-qubit control
was also shown [6] but subject to large uncharacterized errors.
Limiting control error rates to ∼10−3 is a crucial requirement
for fault tolerant quantum computing with quantum error
correction (QEC) [7–9]. Estimates based on coherence time
measurements [2,10] indicate that very high gate fidelities
should be possible for GaAs-based two-electron spin qubits.
However, nonlinearities in the electric control and experi-
mental constraints make the direct application of established
control methods such as Rabi driving difficult.
Previous theoretical work has shown how universal con-

trol on the single- and two-qubit level can be achieved in the
face of limited dynamic control range [11]. Additionally,
gating sequences which are insensitive to slow (quasistatic)
control fluctuations have been proposed for this qubit system
[12–15]. While these proposals provide very useful con-
ceptual guidance, a direct implementation will be impeded
by experimental constraints such as finite pulse rise times
and the sampling rate of voltage pulses. Likewise,
decoherence effects caused by charge noise [10] and nuclear
spin fluctuations [16] have a significant effect.
In this Letter, we use numerical pulse optimization to

address systematic inaccuracies and decoherence. Pulse
optimization is common in NMR [17] and is also receiving
increasing attention in quantum information [12,18–24].
In contrast to these previous approaches, our optimiza-
tion is specifically tailored to the ST-qubit system and
includes not only the relevant physical effects, but also
the most important hardware constraints and the effect

of high-frequency 1=f-like noise. We use experimentally
determined parameters and noise spectra [10,16,25] to
compute expected gate fidelities F and find implementa-
tions with no systematic errors and optimized robustness to
both slow and fast noise. With this approach we show that
π-and π=2-gates around orthogonal axes with F exceeding
99.9% can be achieved.
Reaching these high fidelities experimentally is com-

plicated by the difficulty of characterizing experimental
parameters to a sufficient degree of accuracy. Therefore, we
propose a self-consistent calibration routine which itera-
tively tunes pulse sequences using feedback from the
experiment [26]. We benchmark this routine via simula-
tions and show that it allows the elimination of systematic
errors that arise when the numerical pulses are applied
on the experiment. This justifies neglecting less relevant
systematic effects in the pulse optimization.
In the gate-defined quantum dots considered here, the

double quantum dot used to hold the two electrons is formed
from a two-dimensional electron gas by applying voltages
to surface gates on a GaAs=AlGaAs heterostructure. The
potential difference ϵ between the two dots changes the
charge configuration (m, n), where m (n) is the number of
electrons in the left (right) dot (Fig. 1). Computation is
performed in (1,1) using the subspace spanned by the spin
singlet state jSi ¼ ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p ¼ j0i and thems ¼ 0

triplet state jT0i ¼ ðj↑↓i þ j↓↑iÞ= ffiffiffi
2

p ¼ j1i. Thems ¼ �1
(1,1) triplets are Zeeman split by an external magnetic
field of typically more than 100 mT (Fig. 1) [3]. In the
following, we focus only on the computational subspace
since the leakage probability to states with different charge
and spin configurations is lower than 5 × 10−5 for the
presented pulse sequences, verified numerically using a
seven-level Hamiltonian with spin-orbit interaction (see the
Supplemental Material [27]).
Since only jSi can tunnel from (1,1) to (0,2), the spin

state can be read out by spin to charge conversion [3]. The
tunnel coupling also leads to an ϵ-dependent exchange

PRL 113, 150501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

10 OCTOBER 2014

0031-9007=14=113(15)=150501(5) 150501-1 © 2014 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35028298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.113.150501
http://dx.doi.org/10.1103/PhysRevLett.113.150501
http://dx.doi.org/10.1103/PhysRevLett.113.150501
http://dx.doi.org/10.1103/PhysRevLett.113.150501


energy J between jSi and jT0i (Fig. 1). Additionally, each
electron spin couples via the hyperfine interaction to a
different nuclear spin environment in each dot. This
interaction can be described by a magnetic “Overhauser”
field gradient ΔBz between the dots, and creates an energy
difference between j↓↑i and j↑↓i [3]. The Hamiltonian
can then be written in the fjSi; jT0ig basis as H ¼
ðℏJðϵÞ=2Þσz þ ðℏΔBz=2Þσx with Pauli matrices σi and
ΔBz in units of angular frequency.
In typical experiments, arbitrary waveform generators

(AWGs) are used to produce pulses ϵðtÞwhich control JðϵÞ.
Since ΔBz can be set to any desired constant value by
dynamic nuclear polarization [25], it is possible to realize
arbitrary single-qubit target gates Ut [6]. Systematic
deviations from Ut arise mainly from finite rise times of
the voltage pulses and a nonlinear and imperfectly char-
acterized transfer function JðϵÞ. In addition, two sources of
noise lead to significant decoherence. While fluctuations in
ΔBz are much slower than typical gate operation times
(∼10 ns), charge noise affects ϵ also on much shorter time
scales [10,16].
All the above effects are accounted for in our numerical

simulations. We use a phenomenological model J(ϵðtÞ) ¼
J0 exp (ϵðtÞ=ϵ0) determined from fits to experimental
data [10]. The fixed sample rate of AWGs is modeled
with rectangular pulses in ϵ with a fixed sample duration.
This results in amplitude-only control in each of Nseg
pulses ϵj; j ¼ 1;…; Nseg, with bounds ϵmin ≤ ϵ ≤ ϵmax.
Furthermore, we model finite rise times, due to AWG
limitations, the skin effect in coaxial cables, and stray
capacitances, as exponential with a time constant
τrise ∼ 1 ns. In addition, we enforce a waiting period of
4τrise at the end of each gate to give ϵ time to decay to a
predefined baseline ϵmin. This allows for straightforward
concatenation of different gate sequences since transients
from previous gates are minimized. For use in a quantum
processor, it may be convenient for different gates to
have the same duration T, providing the quantum
system with a clock rate as in classical computers.
Likewise, it is attractive to be able to leave the current
qubit state unchanged over one or several clock cycle
periods. This is most easily done by ΔBz rotations withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔB2

z þ JðϵminÞ2
p

T ¼ 2πNΔBz
, where NΔBz

∈ N gives the

number of ΔBz rotations and the exchange splitting is kept
constant at JðϵminÞ ≪ ΔBz.
Taken together, these constraints result in a discrete set of

acceptable values for ΔBz and in pulse shapes JðtÞ as in
Fig. 2. Since the calibration routine discussed below can
remove relatively large systematic errors, it is sufficient to
qualitatively describe the system in the simulations and
correct quantitative inaccuracies by using experimental
feedback.
In simulations, we approximate explicitly time-dependent

Hamiltonians HðJ(ϵðtÞ);ΔBzÞ as piecewise constant. For
appropriate discretization, this simplification incurs negli-
gible errors but makes the calculation of Uðt; t0Þ ¼
T exp ð−ði=ℏÞ R t

t0
Hðt0Þdt0Þ straightforward. We use the

average gate fidelity F [28,29] between Ut and a quantum
process E as an objective function in numerical pulse
optimization. To compute the effect of quasistatic noise,
we sample discretely from a Gaussian distribution; for fast
noise, we use a first-order perturbative approach [30] which
allows for swift evaluation of the infidelity I ¼ 1 − F,
suitable for numerical optimization.
The offset δΔBz from a stabilized ΔBz varies slowly

(≳0.1 s) compared to gate operations with a measured
standard deviation σΔBz

≈ 0.5 mT [16,25]. For low- and
high-frequency charge noise, we use recent measurements
of the standard deviation and spectral noise density, given
as σϵ ¼ 8 μV and SϵðfÞ ¼ 8 × 10−16ðV2=HzÞðHz=fÞ0.7
from 50 kHz to 1 MHz [10]. We conservatively extend
the spectrum as white above 1 MHz until 3 GHz, using
Sϵð1 MHzÞ. Choosing the upper cutoff higher than 3 GHz
does not influence the calculated impact of ϵ noise on
gate performance. A Taylor expansion of JðϵÞ yields
J(ϵðtÞ þ δϵðtÞ) ≈ JðtÞ(1þ δϵðtÞ=ϵ0).

FIG. 2 (color online). (a) π=2x gate with I ¼ 1 − F ¼ 1.5 ×
10−3 (b) π=2y gate with I ¼ 1.6 × 10−3. Rectangular J pulses are
shown in green, black lines show JðtÞ when accounting for finite
rise times, and ΔBz is shown in blue. The corresponding Bloch
sphere trajectories for both pulses are plotted for selected initial
states (green dot).

FIG. 1 (color online). Left: energy diagram of the computa-
tional subspace (black) as a function of ϵ. The transfer function
JðϵÞ is nonlinear and modeled as JðϵÞ ¼ J0 exp ðϵ=ϵ0Þ. Right:
Bloch sphere convention.
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With this setup, it is then possible to calculate I as a
function of Nseg pulses ϵ and stabilized ΔBz, including
decoherence from noise. We numerically search for gate
implementations with minimal I by using the Levenberg-
Marquardt algorithm (LMA), which iteratively minimizes
the Euclidean norm of a vector-valued objective function f
and features fast local convergence. Specifically, we solve
the optimization problem

min
ϵ
j(IΔBz

ðϵÞ; I ϵ;slowðϵÞ; Iϵ;fastðϵÞ;ϕðϵÞnðϵÞ − ϕtnt)j2;
ð1Þ

for fixed NΔBz
and Nseg. We choose the first three vector

components as the infidelity contributions of noise in ΔBz,
slow noise in ϵ and fast noise in ϵ. Additionally, we account
for systematic deviations by adding the three components
of ϕðϵÞnðϵÞ − ϕtnt, where ϕðϵÞ and nðϵÞ describe the
rotation angle and rotation axis of the gate realized in the
current iteration. The subscript t denotes the respective
quantities for the target gate. These terms ensure that
solutions have negligible contributions to I from system-
atic errors, typically on the order of 10−10 or less.
Furthermore, the minimization is subject to the previously
detailed experimental constraints and bounds. In order to
find a global optimum, we repeat the optimization 1000
times with randomly selected starting values. Sequences
with low Nseg are easier to implement experimentally, and
high ΔBz are unattractive because of increased relaxation
during readout [31]. Thus, low Nseg and NΔBz

can cover the
relevant search space.
I of the solutions for π=2x pulses is shown as a function

of Nseg and NΔBz
in Fig. 3(a), where I < 0.7% always. In

the absence of noise, these gates give Ut with insignificant
systematic errors. The results for π=2 pulses around differ-
ent axes orthogonal to the ΔBz axis, and for π pulses, are
qualitatively similar. We will, therefore, limit our discus-
sion to π=2x pulses in the following. The best pulse with
I ¼ 1.1 × 10−3 is found for NΔBz

¼ 3 and Nseg ¼ 30
(Fig. S.7 in the Supplemental Material [27]). The corre-
sponding π=2y gate around the negative y axis is slightly

better with I ¼ 0.9 × 10−3 (Fig. S.8 in [27]). Typically, the
main contribution to the infidelity comes from fast ϵ noise
whose contribution to I is generally larger by a factor of
order unity than the contributions of slow charge and
hyperfine noise. Therefore, the infidelities reported above
improve to 0.4 × 10−3 if the noise model is not extrapolated
as white, but instead, the 1=f0.7 decay is further extended to
the GHz range.
Solutions with lower Nseg have fewer degrees of freedom

but also feature low I. Two π=2 gates around the x axis and
negative y axis with Nseg ¼ 18 and NΔBz

¼ 2 with I <
2 × 10−3 are shown in Fig. 2. These gates are representative
solutions, featuring distinct pulses in J with the rest of the
time spent at the baseline defined by ϵmin. This avoids
excursions to regions of high J with a bigger sensitivity to
charge noise dJ=dϵ ∝ expðϵ=ϵ0Þ. In between two J pulses,
the state vector rotates through approximately 2π.
Furthermore, pulse sequences around orthogonal axes (in
the yz plane) are shifted by approximately π=2 with respect
to each other (see the Supplemental Material [27]).
Therefore, solutions can be interpreted as Rabi oscillations,
which are corrected for experimental constraints, work
without a rotating wave approximation, and honor the
constraint J > 0 by excluding the negative half waves.
It turns out that the solutions are partly decoupled from

quasistatic charge and hyperfine noise. This can be seen
from the first-order derivatives ofUðϵ;ΔBzÞwith respect to
ϵ andΔBz that are about an order of magnitude smaller than
for simple x rotations. Another indicator is the gates’ filter
functions [32–35] which peak at finite frequencies around
100 MHz, similar to dynamical decoupling techniques like
Hahn-echo or the Carr-Purcell-Meiboom-Gill (CPMG)
pulse-sequence.
In an experiment, it is likely that the functional form of

JðϵÞ and pulse edges will deviate from the ones used in the
simulation. This will introduce systematic gate errors and
also change the gates’ sensitivity to noise. In panel (b) of
Fig. 3, we consider only noise-related contributions to I
and show that the noise properties of the gates are largely
retained in spite of such deviations. Iworst denotes the worst
outcome when J0 and ϵ0 or τrise are changed by �20%. For
most gates, Iworst is still below 1%, where simpler gates
with fewer Nseg are usually better. The best result is found
for Nseg¼18;NΔBz

¼2 with Iworst¼5.9×10−3 as opposed
to I ¼ 1.5 × 10−3. Our noise model should, therefore,
reflect the experimental reality sufficiently if one aims
for F ≳ 99%. However, systematic errors will contribute a
few percent to I .
In order to remove these errors, we cannot rely on

simulations, which inherently involve a potentially inac-
curate model, but need to use actual experimental data.
Quantum process tomography [36,37] could be used to
characterize a single gate’s systematic errors but cannot be
applied directly since only one readout axis σz is naturally
available via spin-to-charge conversion [3]. Instead, one

FIG. 3 (color online). Infidelities of π=2x gates. (a) Best
solutions for different number of pure ΔBz rotations and number
of ϵ pulses. (b) Maximum deterioration of the infidelity (only
considering the contributions from noise) for model errors in J0,
ϵ0, and τrise as large as 20%.
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can self-consistently estimate the systematic errors of an
entire set of gates using the bootstrap tomography method
by Dobrovitski et al. [26]. This protocol is attractive not
only because of its simplicity and self-consistency, but also
because it is first-order insensitive to decoherence for short
gate durations. Hence, we propose, simulate, and bench-
mark a self-consistent calibration routine which uses the
bootstrap method for characterization and iterative removal
of systematic gate errors. Our gate set contains both π=2
gates from Fig. 2 (around the x axis and negative y axis)
and we measure σz by projecting onto the ST axis. If the
gate sequences shown in Table I are each applied to the
same initial state jSi, the measurement outcomes Si; i ¼
1;…; 6 of each sequence depend on the gates’ rotation-
angle errors 2ϕ (2χ) and the axis errors ny; nz (vx; vz) of the
π=2x gate (π=2y gate). Perfect gates give Si ¼ 0 and
deviations are to lowest order linear in gate errors.
As before, we use the LMA to iteratively find gates with

Si ¼ 0, i.e., solve minϵ;ϵ0 jSðϵ; ϵ0Þj2, where ϵ and ϵ0 denote
the ϵ pulses of the x and y gates. Since only σz is being
measured, this protocol is invariant if both gates’ rotation
axes are jointly rotated around the z axis. This does not
pose a problem because we are only interested in obtaining
an orthogonal gate set, but one could introduce an addi-
tional measurement axis to circumvent this. However,
solving this minimization problem would not lead to pulses
with high fidelities since the gates’ noise properties are not
taken into account. We, therefore, add the infidelity due to
noise In of each gate to the optimization problem

min
ϵ;ϵ0

j(Sðϵ; ϵ0Þ; wnInðϵÞ; wn
0Inðϵ0Þ )j2; ð2Þ

where wn; wn
0 are heuristically chosen weights which take

into account that the minimum of In is generally different
for both gates.
Measuring In in an experiment is more involved than

measuring Si. Because we have shown before that the noise
properties of the gates with few ϵ pulses are mostly
unaffected even by large model errors, we choose, instead,
to calculate In theoretically in each iteration. Therefore, the
algorithm is expected to remove systematic errors while
largely retaining the gates’ noise properties if J0, ϵ0, and
τrise are known to sufficient accuracy.

We now benchmark the proposed calibration routine
numerically. Randomly introducing systematic errors to
the perfect gates found in the previous optimization (using
the set from Fig. 2), we find that our method converges for
initial infidelities Is as high as 20%, even when noise
from averaging over a finite number (1 × 104) of single
shot measurements is taken into account [Fig. 4(a)]. The
algorithm converges typically within 3 to 18 iterations
where the exact rate depends on Is and Nseg of both gates.
We call the algorithm successfully completed if the
infidelity from systematic errors I sys is smaller than 0.1%
for both gates (see the Supplemental Material [38]), but
it usually reduces I sys down to 10−4. Furthermore, the final
gates are mostly as insensitive to noise as the perfect gates.
As shown in Fig. 4(b), better final results with lower In are
obtained if Is was small. Convergence within 10 iterations
roughly corresponds to 30 min in a current experimental
setup (including measurement time and pulse updates on
typical AWGs), which is realistic for experimental work.
In this Letter, we have shown that high-fidelity single

qubit gates exist for ST qubits in GaAs. Based on
measured noise characteristics we predict that the achiev-
able fidelities are comparable to the thresholds of differ-
ent QEC schemes. In order to eliminate systematic errors
from these gates, we have developed and simulated a
tuning algorithm based on experimental feedback. This
algorithm works robustly in the presence of measurement
noise and retains the gates’ robustness to noise.
The results of this work will be used in the future to tune

up a set of high-fidelity single-qubit gates, providing a
valuable tool for performing accurate dynamical decou-
pling sequences, quantum state and process tomography.
Furthermore, these gates will form the building blocks for
two-qubit operations.

This work was supported by the Alfried Krupp von
Bohlen und Halbach Foundation, DFG Grant No. BL 1197/
2-1 and the Alexander von Humboldt Foundation. We
would like to thank S. Mehl for many useful discussions.

TABLE I. For small systematic gate errors, the measurement
outcome TrðσzUijSihSjU†

i Þ ¼ Si depends linearly on the gates’
axis and rotation angle errors [26].

Sequences Ui Parametrization Si

π=2x −2ϕ ¼ S1
π=2y −2χ ¼ S2
π=2y←π=2x −ny − nz − vx − vz ¼ S3
π=2x←π=2y −ny þ nz − vx þ vz ¼ S4
π=2x←π=2x←π=2x←π=2y ny þ nz þ vx − vz ¼ S5
π=2y←π=2x←π=2x←π=2x ny − nz þ vx þ vz ¼ S6

FIG. 4 (color online). (a) The self-consistent tuning protocol
converges even for bad initial infidelities Is. (b) The infidelity
from noise In of the final calibrated gates (dots) is on average
close to In of the perfect gates (dashed lines), and sometimes
better because small systematic errors are now allowed. The error
bars show the 10th and 90th percentile of the distribution of In
over 100 runs per bin for different starting gates.
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