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Abstract

Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to
quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the
interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16
and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential
injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete
dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i)
circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases
throughput if screening a multitude of different analyte/ligand combinations.

Citation: Frenzel D, Willbold D (2014) Kinetic Titration Series with Biolayer Interferometry. PLoS ONE 9(9): e106882. doi:10.1371/journal.pone.0106882

Editor: Katerina Kourentzi, University of Houston, United States of America

Received April 13, 2014; Accepted August 3, 2014; Published September 17, 2014

Copyright: � 2014 Frenzel, Willbold. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Data are all contained in the manuscript and
the Supporting Information files.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: D.Willbold@fz-juelich.de

Introduction

Surface plasmon resonance (SPR) is widely used to study

analyte/ligand interactions in real-time [1]. For SPR analysis, one

interactant (‘‘ligand’’) is immobilized onto the sensor surface while

the other interactant (‘‘analyte’’) is passed over this surface by

continuous flow. The standard assay requires complete removal of

the analyte (‘‘regeneration’’) between each measurement cycle to

avoid any residual analyte molecules blocking potential binding

sites on the surface. This procedure is termed ‘‘multi-cycle

kinetics’’ [2], because it consists of several cycles of alternating

analyte injections and surface regeneration steps. The regenera-

tion process often requires conditions that can inactivate the

immobilized ligand irreversibly [3]. To avoid such potentially

detrimental surface regeneration steps, a technique has been

developed that allows several concentrations to be applied within a

single cycle without the requirement of complete surface

regeneration steps following each injection. These so called

‘‘kinetic titration series’’ or ‘‘single cycle kinetics’’ were found to

be virtually as precise as classical ‘‘multi cycle kinetics’’ [4] and can

be used as an alternative option if regeneration is not practical

[5,6]. Later kinetic titration series were adopted by GE with minor

modifications.and renamed as ‘‘single-cycle kinetics’’ (Biacore

manual).

More recently, biolayer interferometry (BLI) has become an

alternative method to SPR. One advantage of BLI is that the

number of sensors can be scaled up easily without making the

system more error-prone or complex. Theoretically, there is no

need to regenerate single sensors, because duplicates of the surface

can be easily created by immobilizing an equal amount of ligand

on additional sensors. However this approach has some disadvan-

tages. It is not possible to achieve identical ligand coatings of

multiple sensors. Such an approach also increases sensor

consumption and it is not guaranteed that each sensor has an

equal performance in later measurements.

We strove to overcome these disadvantages of BLI as compared

with SPR by exploring whether application of a kinetic titration

series in BLI experiments is feasible and accurate.

Materials and Methods

Preparation of protein G B1 (GB1) and scFv IC16
Purification of GB1 was done by standard Immunoglobulin G

(IgG) affinity purification after expression in E. coli with pGEV2-

GB1 [7] (see SI: ‘‘Preparation of protein G B1’’) for details.

Purification of scFv IC16 was done as described in Frenzel et al.
[5].

Immobilization of ligands via amine coupling on (AR2G)
biosensors
The 40 mM GB1 solution in PBS was diluted in 10 mM sodium

acetate buffer pH 4.0 to a final concentration of 20 mM (binding

buffer). The sample sensors were pre-incubated in ddH2O for

10 min, activated in a 1:1 mixture of 0.1 M N-Hydroxysuccini-

mide (NHS)/0.4 M 1-Ethyl-3-(3-dimethylaminopropyl)-carbodii-

mide (EDC) for 800 s and incubated in binding buffer for 900 s.

The reference sensors were activated in the same way, but not

treated with binding buffer. All sensors were blocked with 1 M

ethanolamine for 180 s and stored in ddH2O before further usage.

All steps were performed at 20uC with an agitation speed of

1000 rpm. For method definition and execution, the Data

Acquisition software 7.1.0.92 from ForteBio was used.
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Immobilization of C-terminally biotinylated Aß(1–42) via
amine coupling on Super SA-biosensors
C-terminally biotinylated Ab(1–42) (EUROGENTEC) was

dissolved in 100% HFIP and incubated at RT overnight. The

stock solution was divided in 26.5 mg aliquots. HFIP was removed

by evaporation in a Concentrator 5301 (Eppendorf). Ab was

freshly solubilized in 550 ml sodium phosphate buffer pH 7.4

(10 mM; yielding a 10 mM Ab solution). To separate the

monomers from bigger particles, they were subjected to a density

gradient centrifugation (DGC) as described in Frenzel et al. [5].
After centrifugation, fraction one (140 ml) was used for immobi-

lization of Aß(1–42) monomers via standard streptavidin-biotin-

coupling procedure with Super SA-sensors (ForteBio). It was

planned to immobilize 0.15 nm, 0.25 nm and 0.75 nm of ligand

on eight sensors respectively. Further eight sensors were used as

reference and remained in phosphate buffer. The finally achieved

layer thickness of all sensors is summarized in Tab. 1.

Parallel sensor kinetics of GB1 with biolayer
interferometry
Kinetic titration series were performed in the interaction buffer

(PBS with 0.05% Polysorbat 20). 5 mg/ml IgG (ID: ABIN376828;

Antibodies-Online) was diluted in interaction buffer to 0.5 mM
and further diluted four times with a dilution factor of two. To

measure the interaction between IgG and GB1, the association

and dissociation times were 360 and 600 s, respectively, for every

analyte concentration. In total, five sensors were used to measure

five different analyte concentrations in parallel, while one sensor

was used to measure the buffer reference. Additional six sensors

were used as sensor reference. All steps were performed at 25uC
with an agitation speed of 1000 rpm. Sensorgrams were measured

on an Octet Red96 (ForteBio) and double referenced against the

buffer reference signal and the reference sensor signals using the

Data Analysis software 7.1.0.36 (ForteBio). The double referenced

sensorgrams were exported into the BiaEvaluation 4.1 compatible

‘‘csv’’-format by a python script (see SI: ‘‘Scripts’’). The

sensorgrams obtained with the concentrations: 0.5, 0.25, 0.125,

0.0625 and 0.03125 mM were fitted with the BiaEvaluation

software 4.1 from Biacore using a 1:1 binding model that included

an RI-term.

Parallel sensor kinetics of scFv IC16 with biolayer
interferometry
Kinetic titration series were performed in the interaction buffer

(PBS with 0.5% Polysorbat 20, 0.1% BSA and 10% NSB reducer

from GE Healthcare). 2.4 mM scFv IC16 was diluted four times

with a dilution factor of two. To measure the interaction between

Aß(1–42) and scFv IC16, the association and dissociation times

were 270 and 90 s, respectively, for every analyte concentration.

Further steps are comparable with ‘‘Parallel sensor kinetics of GB1

with biolayer interferometry’’ (Data Analysis software: 8.0.0.35).

The sensorgrams with the concentrations: 0.24, 0.12, 0.06, 0.03

and 0.015 mM were fitted with the BiaEvaluation software 4.1

from Biacore using a 1:1 binding model without RI-term.

Kinetic titration series of GB1 with biolayer
interferometry
Tomeasure the affinitybetween IgGandGB1, the associationand

dissociationphaseswere recorded for 360 and240 s, respectively, for

every analyte concentration (same concentrations as described in:

’’Parallel sensor kinetics ofGB1with biolayer interferometry’’). Four

sensors recorded the kinetic titration series, whereas one sensor

recordedthebufferreferencesignal.Additional fivesensorswereused
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as sensor reference. All steps were performed at 25uC with an

agitation speed of 1000 rpm. The sensorgrams were double

referenced against the buffer reference signal and the empty sensors

by the Data Analysis software 7.1.0.36 (ForteBio). The double

referenced signals of each association and dissociation phase were

combined and exported into a BiaEvaluation 4.1 compatible ‘‘csv’’-

format using a python script (SI: ‘‘Scripts’’). The sensorgrams were

fitted with the BiaEvaluation software 4.1 from Biacore with a 1:1

kinetic titration series model that included an RI-term [4].

Kinetic titration series of scFv IC16 with biolayer
interferometry
To measure the affinity between IgG and GB1, the association

and dissociation phases were recorded for 270 and 90 s,

respectively, for every analyte concentration (same concentrations

as described in ‘‘Parallel sensor kinetics of scFv IC16 with biolayer

interferometry’’). Five sensors recorded the kinetic titration series,

whereas one sensor recorded the buffer reference signal and six

sensors were used as sensor reference. The other steps are

comparable with section ‘‘Kinetic titration series of GB1 with

biolayer interferometry’’ (Data Analysis software: 8.0.0.35). The

sensorgrams with the concentrations: 0.24, 0.12, 0.06, 0.03 and

0.015 mM were fitted with the BiaEvaluation software 4.1 from

Figure 1. Evaluation of (A) kinetic titration series and (B) parallel sensor kinetics with rabbit IgG binding to GB1 in BLI. The
sensorgrams show the interaction of IgG (analyte) with GB1 (ligand). Applied analyte concentrations were: 0.5, 0.25, 0.125, 0.0625 and 0.03125 mM.
The fits are indicated by the red lines, whereas the sensorgrams are shown in black (A) and blue (B). The residuals of the fits are plotted below the
respective sensorgram. All other experiments are shown in File S1.
doi:10.1371/journal.pone.0106882.g001
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Figure 2. Comaprison of kinetic titration series (A–C) and parallel sensor kinetics (D–F) with scFv IC16 binding to Ab(1–42) in BLI.
The sensorgrams show the interaction of scFv IC16 (analyte) with C-terminally biotinylated Aß(1–42) (ligand). The amount of ligand was increased
from 0.13 nm (A, D), 0.41 nm (B, E) and 1.01 nm (C, F). Applied analyte concentrations were: 2.4, 1.2, 0.6, 0.3 and 0.15 mM. The fits are indicated by the
red lines, whereas the sensorgrams are shown in blue. Each kinetic titration series was reproduced five times. The residuals of the fits are plotted
below the respective sensorgram.
doi:10.1371/journal.pone.0106882.g002
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Biacore with a 1:1 kinetic titration series model without RI-term

[4].

Results

Ligand immobilization
In order to compare the practicality and efficiency between

multi cycle kinetics and kinetic titration series using BLI, we used

the well-studied interaction of GB1 with IgG. The reported

dissociation coefficients (KD) of GB1 to the constant (Fc) region of

IgGs are ,0.1 mM (human IgG) and ,0.77 mM (rabbit IgG)

[8,9]. The interaction of the scFv IC16 with Ab(1–42) was used as

an additional example system. ScFvs show in comparison to IgGs

no avidity. The scFv IC16 is directed against the N-terminus of

Ab(1–42) and with SPR, a reliable KD value of 0.76 mM for C-

terminally biotinylated Ab(1–42) monomers was already estimated

[5].

GB1 was immobilized onto AR2G sensors via amine coupling.

We found that at the end of the multiple immobilization

procedures the amount of immobilized protein differed for each

sensor (Tab. 1). The mean and standard deviation was 1.24 nm

and 0.20 nm. Thus, homogeneous immobilization of protein to

the surface was not possible, because the on-rates of the sensors

seem to deviate from each other. We estimated fewer deviations

with Streptavidin-Biotin coupling on ‘‘Super SA’’ sensor tips,

especially at higher layer thicknesses. The sensors with 1.01 nm

ligand had a standard deviation of 0.05 nm, which corresponds to

4.9%, based on the mean (Tab. 1A). However, with declining

amount of ligand, the ratio of standard deviation to immobilized

ligand grew (see Tab. 1B: 4.8% for 0.41 nm, SD: 0.02 nm and

Tab. 1C: 15.4% for 0.13 nm, SD: 0.02 nm).

Binding kinetics with parallel sensor kinetics
Parallel sensor kinetics is thought to be more precise than a

kinetic titration series, because no secondary processes (like

dissociation of previously bound analyte from the surface) impair

the measurements. However, other effects like inhomogeneous

coating and differences in sensitivity of single sensors are expected

to compromise these precision advantages.

To obtain data from parallel sensor kinetics, five sensor pairs

were applied to record the signals received from applying five

different analyte concentrations. One sensor pair was applied to

record the buffer reference signal. Measurements with IgG and

GB1 were fitted globally with RI-term (see: Fig. 1), whereas

measurements with scFv IC16 and Ab(1–42) were fitted without

RI-term (see Fig. 2). The obtained KDs for GB1 were 0.16 mM
and 0.25 mM. The x2 values were 5.0461026 nm2 and

2.3861026 nm2. The term x2 gives a measure for the accuracy

of the fitting [10]. It represents the averaged, squared residual per

data point. In our case, x2 was below the squared sensor noise

(,0.008 nm), which is a quality indicator of a fit. With the scFv-

system, we obtained 0.18 mM/x2: 7.1761025 for 0.15 nm ligand,

0.59 mM/x2: 2.2561024 for 0.41 nm ligand and 0.43 mM/x2:
9.6961024 for 1.01 nm ligand (experiment was reproduced: data

on request). Remarkably the KDs spread and just the best fit (see

Fig. 2: E) is close to the expected affinity range [5].

Binding kinetics with kinetic titration series
Sensorgrams from kinetic titration series were recorded for each

amount of ligand from five (scFv IC16 and Aß1–42) and seven

(IgG and GB1) sensor pairs (one sensor with ligand and one

without) that were each subsequently applied to five different

analyte concentrations within one titration series. Additionally one

sensor pair was applied to record the buffer reference signals. Like
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for parallel sensor kinetics, measurements with GB1 were fitted

with RI-term, whereas measurements with scFv IC16 were fitted

without RI-term. Each sensor pair was fitted separately and each

fit was used to calculate the mean values for the rate constants ka
and kd, as well as the dissociation constant KD. The estimated

mean KD of the interaction of IgG and GB1 was 0.16 mM (7

replicates, standard deviation: 0.08 mM) and the obtained mean x2

was 4.9261026 nm2 (standard deviation: 2.1561026 nm2). By

taking into account the standard deviation, the x2 is virtually

identical to the x2 obtained for parallel sensor kinetics. Compar-

ison of the on-rates (ka), off-rates (kd) and binding constants (KD)

for IgG and GB1 showed that both methods give near identical

values (Tab. 2). Both, the on-rates and the off-rates lie within the

same range of 104 1/Ms and 1023 1/s respectively (Fig. 1).

With the scFv-system we estimated the KDs: 0.54 mM/x2:
3.8761025 for 0.15 nm ligand, 0.64 mM/x2: 6.8061025 for

0.41 nm ligand and 0.71 mM/x2: 2.4461024 for 1.01 nm ligand

(experiment was reproduced with three sensor pairs: data on

request). It is obvious, that for every amount of ligand, the x2-term
is at least several times smaller in comparison to parallel sensor

kinetics (see Fig. 2: A/B/C vs Fig. 2: D/E/F) and all the estimated

KDs (see Tab. 2 and Tab. S1 in File S1) are very close to the value

estimated by SPR [5].

A known problem of using the x2 rating is that this method is

based on averaging. Local deviations can hardly be evaluated with

x2 alone. If one fit with a higher x2 and one with a smaller x2 are
compared with each other, it is possible that the fit with the smaller

x2 has higher local deviations from the sensorgram. In contrast,

the fit with the higher x2 could proceed completely within the

noise pattern. In this example, the fit with the higher x2 could be

the more accurate description of the sensorgram. In our case, the

fit curves of the kinetic titration series are frequently within the

range of the sensor noise, whereas the fit of the parallel sensor

kinetics is outside the noise range at certain time points (Fig. 1A/

Fig. S1 in File S1: t360 s, t960 s, t1560 s, t2160 s, Fig. 1B/Fig. S2 in File

S1: t0–60s and t360–400 s and t2760 s; Fig. 2). This illustrates that the

kinetic titration series can yield more reliable fits, because the

affinity differences of single sensors are omitted since only one

sensor pair is used per interaction study. This is most obvious if the

sensorgrams are fitted without RI-term or local Rmax as a linear

correction mechanism (Fig. 2: A–F and Fig. S3 in File S1).

Discussion

For our example system rabbit IgG and GB1, kinetic titration

series and parallel sensor kinetics provided near identical results

with regard to the on/off-rates as well as the KD values and are in

accord to published data. The mean x2 values (considering all

sensor data of either the kinetic titration series or parallel sensor

kinetics) were nearly identical in both methods. The other example

system, utilizing the interaction of scFv IC16 and Ab(1–42) was
fitted without RI-term. The result was showing a clear advantage

of the kinetic titration series in respect to x2-values the reliability of
the estimated KD at every immobilization level. However, it is not

advisable to rate fits based only on the x2. This is why we consider
local deviations of the fits from the sensorgrams as another marker

for the quality of the fit. With regard to this point, fits of parallel

sensor kinetics have stronger local deviations from the sensorgrams

for each recorded concentration, whereas the kinetic titration

series yielded single fits with a lower degree of local deviations

from the sensorgrams.

We have described possible approaches to design and evaluate a

kinetic titration series with a 1:1 binding model with and without

RI-term using BLI. Implementing more complex binding models

that deal with heterogeneous ligands or bivalent analytes [5]

should be straightforward and allow more sophisticated analyses.

We conclude that kinetic titration series for BLI are able to yield

reliable fits that are at least as precise as parallel sensor kinetics. An

additional advantage of the kinetic titration series is the potential

enhancement of assay throughput and savings of resources by

reduction of sensor consumption per ligand-analyte analysis,

which is especially useful in environments like pharmaceutical

industry were a high throughput is aimed.

Supporting Information

File S1 Supporting files. Figure S1, Repetitions of the
kinetic titration series. A–F) Measurements are indicated in

black and the corresponding fit by a red line. Below each

sensorgram is a plot of the respective fit residuals. Figure S2,
Repetition of the parallel sensor kinetics. The sensorgrams

are indicated by blue lines in different darkness and the

corresponding fits by red lines. Below are the plots of the

respective fit residuals given in the same blue as above. Figure
S3, Comparison of the fitting models without use of the
RI term. A) Fit of parallel sensor kinetics without RI and residual

plots below. B) Fit of kinetic titration series without RI and the

respective residual plot below. Method S1, Preparation of
protein G B1. Table S1, Comprehensive table of all
evaluated fits. F1A/B: Fitting results for the measurements

illustrated in Fig. 1. S1A–S1F/S2/S3: fitting results for the

measurements illustrated in Fig. S1, Fig. S2 and Fig. S3. ka: on-

rate constant, kd: off-rate constant, KD: dissociation constant (kd/

ka), RI1–RI5: baseline drift in nm, X2: chi2 in nm2. Script S1,
Example script (Python) for combining BLI raw data.
This example script illustrates how to combine the raw data (after

export) from the ForteBio software to a unified single cycle kinetic

for import by third party software. Script S2, Residual
calculation of kinetic titration series. Script to calculate a

residual table from the exported fits based on the measurements

after data export in a straight forward way.
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