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Aachen, Germany

Abstract

In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity
of around 10–16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the
electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed
onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In
rd10, oscillations occur at a frequency of 3–7 Hz, raising the question whether oscillations have the same origin in the two
mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to
understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10
retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were
abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were
modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary,
although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the
overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1
and rd10 retina.
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Introduction

Retinitis pigmentosa (RP) is a genetically heterogeneous disease

that leads to photoreceptor death associated with constriction of

the visual field and, ultimately, blindness. A common reason for

RP in humans is a mutation in the gene encoding the b-subunit of
the rod phosphodiesterase (PDE). Similar mutations also exist in

mouse, providing suitable animal models to investigate the course

of retinal degeneration as well as therapeutic approaches.

Mouse models of retinal degeneration are indispensable tools to

explore the mechanisms of degeneration as well as experimental

therapies for the currently not treatable human RP. The most

commonly used mouse model for RP is the rd1 mouse [1–3]. In

retinae of rd1 mice, pronounced degeneration of photoreceptors

starts around postnatal day 8 (P8). By three weeks of age, rods are

completely lost [4,5]. Cones also degenerate, albeit at a slower

pace. Photoreceptor death leads to a total loss of the outer part of

the retina, while the inner retinal part encompassing bipolar cells,

horizontal cells, amacrine cells, and ganglion cells persists.

However, recently evidence has accumulated that the death of

photoreceptors leads to secondary remodelling of neurons in the

inner retina. Remodelling includes loss or sprouting of neuronal

processes, cell migration and reactive gliosis [6–9]. The fast

degeneration in rd1 mice is a major drawback of the model. Rod

degeneration starts while the retina is still in the process of

differentiation. Pathological processes observed in rd1 retinae

could, therefore, result from degeneration, a disturbed differenti-

ation, or a mixture of both.

An alternative to rd1 is the rd10 mouse. These animals display a

mutation in the same gene; however, the onset of photoreceptor

degeneration is delayed. In rd10 mice, rods start to degenerate

after P16. By this time, all retinal layers and cell types as well as

synaptic connections have been established and the major phase of

retinal differentiation is over. Maximal cell death occurs between

P21 and P25. By P60, only cones have survived. Hence, rd10 mice

mimic the disease process in human RP more accurately than rd1

mice [10,11].

Currently, there is no treatment for RP. However, the persistent

inner retina provides a target for therapies. One possibility is

driving retinal activity via electrical stimulation by neural

prostheses or optical stimulation using ectopically expressed light

sensitive proteins. In these attempts to restore vision, success

crucially depends on the functional integrity of the remaining

retinal ganglion cells and their ability to reliably transmit visual

signals to the brain. In both rd1 and rd10, spontaneous rhythmic

electrical activity was observed in both ganglion cell spiking and in

local field potentials recorded using multi electrode arrays (MEAs).

The origin of this rhythmic electrical activity is not entirely clear.

In rd1 retinae, there is evidence that cone bipolar cells and AII

amacrine cells may be involved [12]. However, while in rd1

rhythmic activity displays frequencies in the range of 10–16 Hz, in
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rd10 frequencies are lower [13–17]. Moreover, as the degeneration

process differs between rd1 and rd10, rhythmic activity might have

different origins in both retinal models. It is important to

understand the mechanisms and the properties of the rhythmic

electrical activity as it may degrade the signal to noise ratio and

may reduce the clarity of information transmission from eye to the

brain. In the present study, we investigated the properties of

rhythmic activity in rd10 retinae using a pharmacological

approach.

Results

Immunohistochemistry
The degeneration of the outer retina, the changes in retinal

thickness, and the retinal remodeling occurring in rd10 mice have

been analyzed by several groups using immunohistochemical

stainings of vertical sections of different postnatal stages [10,11].

Our immunohistochemical analysis in principle confirmed these

recently published data. Although we carefully analyzed various

postnatal stages (P6, P14, P20, P25, P32, P45, P60, and 6 months)

using a variety of antibodies, only few stainings are shown in Fig. 1.

In many instances we visualized proteins whose expression level

differs strongly between different cell types or between different

compartments of one cell, e.g. processes and soma. In order to

visualize degeneration induced changes in the delicate and weakly

labeled processes, sometimes saturation of the strongly stained

structures (e.g. somata) had to be accepted. However, for each

staining identical settings were chosen for wild type retina and rd10

retina.

As published by others [10,11] we observed an ongoing

reduction in the number of photoreceptor cell layers in the

ONL during maturation of the rd10 retina (data not shown). While

up to 12 rows are typical for an adult wild type retina and can still

be found in rd10 mice at postnatal stage 20, only up to 3 rows are

detectable at P25. At P32, only one to two rows of somata in the

ONL remained. In adult wild type retina, the antibody against

red/green opsin stains numerous cone outer segments in the OS

(Fig. 1A). In rd10 retina (B) the morphology of these outer

segments is clearly aberrant (arrowhead) and their number is

considerably reduced.

In rd10 retina at P32, the remaining photoreceptors are still

highly immunoreactive for recoverin (D), similar as in wild type

retina (C). In mouse retina, the antibody against recoverin also

labels type 2 cone bipolar cells, albeit much weaker than

photoreceptors [18]. As described earlier, the inner retinal cell

types seem to be less affected in rd10 mice than the outer retinal

cells [10,11]. At P32, we found intact type 2 cone bipolar cells that

stratify in the correct sublamina of the IPL. At later stages

however, somata were sometimes displaced and dendrites were

missing (data not shown).

Compared to adult wild type mouse retina (E), rod bipolar cells

of rd10 mice stained with the antibody against PKCa (F) showed

no obvious alteration in their somata, axons, and terminal systems.

However, due to the ongoing degeneration of rod photoreceptors,

rod bipolar cells revealed a clear reduction of their dendrites. At

P32, most of the rods are already degenerated [11] and the loss of

most of the rod bipolar cell dendrites in the OPL becomes obvious

(compare inserts in E and F, arrowhead in E). Furthermore, some

of the rod bipolar somata were located to an aberrant position

between ONL and OPL (F, arrowhead).

In wild type, the antibody against mGluR6 stained two

morphologically distinct structures. By double labeling with

antibodies against PKCa (data not shown but see references) the

cloud of fine puncta spreading from the OPL into the first row of

somata in the ONL can be identified as dendritic tips of rod

bipolar cells (punctate staining in G, arrowhead) [19,20]. By

double labeling with peanut agglutinin (data not shown) the

mGluR6 positive dendritic tips of cone bipolar cells invaginating

the cone pedicles can be identified [20]. As the dendritic tips are

densely packed, at this magnification puncta merge into a flat

continuously stained structure (arrow, G). In rd10 P32 retinae,

most of the punctate staining originating from rod bipolar

dendritic tips had disappeared while mGluR6 at cone pedicles

could still be observed. Moreover, mGluR6 staining had spread

over the somata and axonal compartments of ON-bipolar cells

(H).

Antibodies against calbindin stain the only horizontal cell type

present in the mouse retina [21]. The somata of horizontal cells

are located in the outermost row of the INL close to the OPL.

While Gargini and co-workers [11] reported only slight changes in

horizontal cells in rd10, more pronounced changes were described

by Phillips and co-workers [10]. We, therefore, looked at changes

in horizontal cells in more detail. At P32 we sometimes observed

abnormally formed and misplaced horizontal cells in rd10 retinae.

In the example shown in Fig. 1J, the somata of some horizontal

cells were shifted towards the middle of the INL (arrowhead).

Compared to wild type (I, inset) the CabP-positive processes in the

OPL were clearly reduced at P32 (J, inset) as most of the

photoreceptors had disappeared at this stage. At later stages,

sprouting of ectopic processes was regularly found in horizontal

cells (Fig. 1K), confirming the report of Phillips et al. [10]. The

much weaker stained CabP-positive amacrine cells in the INL and

displaced amacrine cells in the GCL were found in wild type as

well as in rd10 retina. This was also true for the three fine layers in

the IPL which are formed by the stratification of ON- and OFF-

cholinergic and nitric oxide synthase-positive amacrine cells [22].

Thus, the general architecture of the inner retina, especially the

IPL, barely seems to be changed at P32, but may be affected at

later stages (Fig. 1K).

Retinae of rd10 Mice Display Spontaneous Rhythmic
Activity
We recorded spontaneous electrical activity from isolated rd10

retinae of adult animals (P30– P360) using multi-electrode arrays.

Fig. 2A shows a typical recording from one electrode displaying

two different signal components (age of animal 12 months). First,

fast voltage changes reflect extracellularly recorded action

potentials of retinal ganglion cells that can be isolated using

appropriate filter settings (Fig. 2B, high pass filter setting 300 Hz).

In the lower frequency range (Fig. 2C, low pass filter setting

50 Hz) voltage modulations can be observed also known as slow

wave components [15]. These local field potentials (LFPs) reflect

changes in the extracellular ion composition that accompany

neuronal activity. Oscillations in the LFPs were observed regularly

in rd10 retinae, but were never recorded from wt retinae under

these experimental conditions (data not shown).

Ganglion cell spiking patterns could vary from cell to cell. In

many instances, rhythmic ganglion cell spiking was observed. The

recording in Fig. 2A - C displays spikes from at least two ganglion

cells. The spikes with large amplitudes were fired in very short

bursts that were phase locked to the minima of LFPs, while the

spikes with smaller amplitude were more evenly distributed

(Fig. 2B, filtered data). As displayed in Fig. 2D - F from another

recording (age of animal 9 months), spikes could also appear phase

locked to other phases of LFPs. In this example, spikes were not

fired as short bursts but rather in groups of 3–4 spikes during the

positive-going or flat component of the LFP.

Intrinsic Neuronal Oscillations in rd10 Retina
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Electrical activity recorded from rd10 retinae differs strongly

from that found in wt retinae, but is reminiscent of the electrical

activity observed in rd1 retinae. However, peaks in the LFPs occur

at different frequencies. While in rd1, frequencies of 10–16 Hz

were observed [14,16,23], we and others [16] mostly found basic

frequencies of 3–4 Hz in rd10. In some cases, we also observed

frequencies of 5–6 Hz in rd10 retinae (see Fig. S1). In most

instances, Fourier analysis revealed peaks with second or even

Figure 1. Comparison of confocal images of immunohistochemically stained vertical sections through the retinae of wild type mice
(wt) and rd10mice. Stainings against red/green opsin (A, B), recoverin (C, D), PKCa (E, F), mGluR6 (G, H), and calbindin (I, J, K). With the exception of
K, stainings of rd10 retina are displayed at postnatal day 32 (P32). In contrast to wt (A) staining for red/green opsin in rd10 was found in very few
shortened outer segments (B, arrowhead) and somata of degenerating cone photoreceptors. The expression of recoverin in remaining
photoreceptors and in type 2 cone bipolar cells of rd10 (D) seemed to be unaffected compared to wt (C). In wt (E) rod bipolar cells were labeled with
antibodies against PKCa (arrowhead indicates dendritic processes). In rd10 (F) nearly all rod bipolar cell dendrites were lost at P32. Some PKCa-
positive somata were displaced towards the outer retina (F, arrowhead). In wt (G) mGluR6 immunoreactivity was found as individual puncta (rod
bipolar cell dendritic tips, arrowhead) and as condensed puncta at cone pedicles (cone ON-bipolar cell contacts, arrow). In rd10, only cone ON-bipolar
cell contacts were detectable at P32 (H, arrowhead). In comparison to wt (I), horizontal cells in rd10 retina extend much fewer fine dendrites (compare
I and J, insets). Some horizontal cell bodies become displaced during degeneration (J, arrowhead). Ectopic processes of horizontal cells can be
pronounced at later stages of degeneration (K, postnatal month 6). OS, outer segments; IS, inner segments; ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, nerve fibre layer. Scale bars 25 mm for overviews and
10 mm for insets.
doi:10.1371/journal.pone.0099075.g001
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higher harmonics (Fig. S1). For this study, LFPs were recorded

from retinae of a total of 33 animals. Detailed results are provided

in Table S1. In 9 animals aged 1 or 3 months, frequencies around

6 Hz were observed. In 24 animals aged from 4–12 months,

frequencies around 4 Hz were observed. In our pharmacological

experiments animal age was between 3 and 12 months. This

means, that all rods and with few exceptions also cones had

disappeared and remodelling as shown in Fig. 1 had taken place.

Spontaneous rhythmic activity has been reported for rd1 and

rd10 by several studies. However, it is important to point out that

oscillations are not always present. LFPs recorded in rd10 retinae

varied considerably from retina to retina, from electrode to

electrode within one retina and even within one electrode over

time. Fig. 3A shows a recording from 60 electrodes in one retina

(age of animal 9.5 months). The distance between the electrodes

was 100 mm. In several electrodes spikes were readily recorded,

but no oscillations were observed (e.g. single asterisk). In most

electrodes, however, strong oscillations could be recorded.

Interestingly, the principal shape of the LFPs recorded at the

different electrodes was very similar. Moreover, from upper to

lower electrodes the phase of the LFPs seemed to be shifted. We

marked the corresponding minima in the LFPs for electrodes 43 to

46 by a red line and for electrodes 72 to 77 by a green line. The

two lines show the same slope. A simple way to interpret this phase

shift is that the rhythmic activity is triggered at one site of the

retina and then travels as a wave along the retina. By dividing the

electrode distance by the time delay between the local minima at

different electrodes we calculated the propagation velocity for the

wave as 3.3 mm/s. This is slower than the velocity of wave

propagation determined for rd1 by Menzler and Zeck [17]. This

could either reflect a difference between rd1 and rd10 retinae, or

could depend on different recording conditions (experiments in

our study were performed at room temperature, in the other study

at 33–36uC).
LFPs recorded at one electrode could vary over time. Fig. 3B -

D show recordings of electrode 83 (marked by two asterisks in

Fig. 3A) taken 5, 30, or 60 min after the start of the experiment. In

Fig. 3E the frequency of the oscillation obtained from the

recording at this electrode was plotted over time for about one

hour. Throughout the experiment, the retina was continuously

superfused with oxygenized Ames solution without pharmacolog-

ical agents at a constant rate. Oscillations were clearly visible for

about 20 min (B, E), then vanished for about 30 min (C, E) and

finally came back with a similar shape and frequency as observed

during the first part of the experiment (D, E). These changes in the

recording were not due to changes in the contact between

electrodes and the retina, as ganglion cell spikes were recorded

with the same amplitude at this electrode throughout the

experiment. In summary, the results shown in Fig. 3 indicate that

rhythmic electrical activity is not necessarily continuously gener-

ated but may depend on yet unknown physiological parameters.

Rhythmic Electrical Activity Depends on Glutamatergic
Input
The differences in the frequencies observed in LFPs from rd1

and rd10 retinae could indicate that the mechanisms underlying

the rhythmic activity differ in the two animal models. While the

origin of the rhythmic activity in rd1 has not been identified

unequivocally, certain evidence suggests that bipolar cells and

Figure 2. Rhythmic activity is observed in MEA recordings from rd10 retina (A – C, and D – F). (A) Typical unfiltered recording of neural
activity from a rd10 retina (age 12 months). (B) Spontaneous spiking activity obtained after high-pass filtering (300 Hz cut off frequency). Large
amplitude spikes occurred in rhythmic bursts with interburst intervals of ,200 ms. Short amplitude spikes (from a different cell) were fired more
regularly. (C) Local field potentials (LFPs) obtained after low pass filtering (50 Hz cut off frequency). Oscillations with a frequency of around 5 Hz were
observed. (D) Unfiltered recording from another rd10 retina (age 9 months). (E) High-pass filtered recording with spike firing during the positive-
going or flat part of the LFP. (F) Low pass filtered recording.
doi:10.1371/journal.pone.0099075.g002
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amacrine cells may be involved. First, rhythmic changes in

membrane potential were recorded from AII amacrine cells and

from ON-cone bipolar cells in rd1 mouse retina [14]. Second,

oscillations as well as rhythmic spiking of ganglion cells were

blocked by application of a mixture of the blockers for AMPA/

kainate receptors and NMDA receptors CNQX and AP5

[12,14,15,17], indicating that glutamatergic excitation most

probably from cone bipolar cells is involved in the generation of

rhythmic activity. Finally, blockers of the two inhibitory transmit-

ters glycine and GABA used by the vast majority of amacrine cells

seemed to modulate rather than abolish rhythmic electrical activity

[15,17]. In the following, we tested whether pharmacological

Figure 3. Spontaneous rhythmic electrical activity in rd10 mouse retina can change. (A) Activity recorded simultaneously from 60
electrodes in an 8x8 matrix (age of animal: 9.5 months). Oscillations were observed in the majority of channels along with spiking activity. Some
channels showed no oscillations (e.g. indicated by single asterisk). The phase of the oscillation seemed to be shifted from upper rows to lower rows of
electrodes as indicated by red and green lines. (B–E) Recording of electrode 83 (E83, marked by two asterisks in A) obtained over time. Oscillations
were visible during the first 22 min (B), vanished for the next 30 min, while spiking activity remained (C), and finally came back with similar frequency
and shape (D) as before. (E) Frequency plotted vs time.
doi:10.1371/journal.pone.0099075.g003

Intrinsic Neuronal Oscillations in rd10 Retina

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e99075



modulation of rhythmic electrical activity in rd10mice would differ

from that observed in rd1.

Superfusion of the retina with a mixture of CNQX and DL-AP5

abolished LFPs in rd10 retinae in a reversible way (Fig. 4; age of

animal 9 months). The recording in Fig. 4A shows rhythmic

activity observed in the LFPs as well as spikes originating from two

different cells. These spikes could be readily separated by

conventional spike sorting algorithms (Fig. 4B). The spikes with

the large amplitude were phase locked to the minima observed in

LFPs, while the spikes with smaller amplitude were not. Upon

application of CNQX/DL-AP5, oscillations in the LFPs were

abolished (similar results were observed using CPP instead of DL-

AP5, data not shown). Interestingly, the large amplitude spikes

were also abolished while the small amplitude spikes remained. In

a total of 9 experiments, we always observed that phase locked

spikes vanished during application of CNQX/DL-AP5. In

comparison to control recordings, remaining spike activity was

on average reduced by 25%. Similar results were obtained in a

total of 9 retinal pieces from 3 animals aged 7–9 months.

Rhythmic Electrical Activity is Shaped by Inhibitory Input
Application of the glycine receptor blocker strychnine or the

GABAA receptor blocker bicuculline alone hardly affected the

spiking activity or the LFPs in rd10 retinae (data not shown).

However, co-application of both blockers strongly changed the

LFP pattern. The amplitude of the oscillation was on average

increased 2–4 fold (total of 15 retinal pieces from 10 animals aged

from 6.5–10 months). Sometimes the oscillatory signal saturated

the amplifier of our MEA system. The frequency under control

conditions (4.1460.58 Hz) was dramatically reduced to values of

0.9560.3 Hz. The effect was reversible upon washout of the

blockers (Fig. 5A – C; age of animal 10 months).

Apart from glycine receptors and GABAA receptors, GABAB

and GABAC receptors are also involved in synaptic inhibition in

the retina [24–27]. Therefore, in a second set of experiments, we

blocked all four inhibitory receptor types by a mixture of

strychnine, bicuculline, CGP 54626, and TPMPA (Fig. 6; age of

animal 12 months). Upon application of this cocktail, dramatic

changes in the local field potentials occurred. The amplitude of the

oscillation increased to values that partially saturated the amplifier

(Fig. 6C). The frequency of the oscillation was reduced to values

between 0.2 and 1 Hz. These effects were reversible upon washout

(total of 9 retinal pieces from 8 animals aged 9–12 months). In wt

retinae, this cocktail of blockers did not induce spontaneous

rhythmic activity as observed in rd10 retinae (data not shown).

Blockade of glutamate receptors abolished the effect of the

inhibitory blockers (Fig. 7; age of animal 9 months). The large

fluctuations in the baseline observed during the inhibitory cocktail

(Fig. 7B) were nearly absent during application of glutamate

receptor blockers (Fig. 7C; 4 retinal pieces from 4 animals aged 9–

12 months).

L-APB is an agonist at mGluR6, the metabotropic glutamate

receptor present on both rod and cone ON-bipolar cells. L-APB

hyperpolarizes ON-bipolar cells by starting a G-Protein dependent

pathway that leads to the closure of cation channels, most likely

TRPM1 [28–35]. If cone ON-bipolar cells are involved in the

generation of rhythmic electrical activity, one might postulate that

L-APB affects LFPs. Application of L-APB did not yield

unequivocal results. In some cases, the LFP amplitude was slightly

diminished. In most cases, however, L-APB affected neither

amplitude nor frequency of the oscillations in a clear cut way (data

not shown). This is probably due to lower expression of mGluR6

associated with the fact that during retinal remodelling mGluR6

becomes distributed over the somata and axons of bipolar cells

(Fig. 1H) and may not effectively couple to its downstream

signalling cascade [36].

Rhythmic Electrical Activity in rd10 Depends on Gap
Junctions and is Modulated by HCN Channels
AII amacrine cells are electrically coupled to each other and to

cone ON-bipolar cells [37]. Application of the gap junction

blocker MFA totally abolished spontaneous rhythmic activity in

rd1 retina [12,14,17,38]. We observed that this was also true for

rd10 retina (Fig. 8; age of animal 9.5 months; similar results were

found in a total of 9 retinal pieces from 4 animals aged 9–10

months). Moreover, ganglion cell spiking was also totally

abolished. Both effects were reversible upon washout (Fig. 8A –

C). In the retina, all four isoforms of the hyperpolarization-

activated and cyclic nucleotide-gated (HCN) channels that can

function as pacemaker channels are expressed [39–42]. HCN

channels, in particular when expressed in bipolar cells, might

contribute to the rhythmic electrical activity observed in rd1 retina

[12] and rd10 retina. We blocked HCN channels in two ways: by

application of 3 mM Cs+ (6 retinal pieces from 3 animals aged

9.5–10 months) and by application of ZD7288 (4 retinal pieces

from 1 animal aged 9 months; data not shown). Both blockers

affected spontaneous rhythmic activity in the same way: rhythmic

activity persisted but the second harmonic frequency component

disappeared while the basic frequency was reduced (Fig. 9A – C;

age of animal 9.5 months). On average frequencies changed from

4.6560.51 Hz under control conditions to 2.7860.69 Hz during

HCN channel blockage.

Figure 4. Glutamate receptor blockers CNQX and DL-AP5
abolish rhythmic electrical activity. (A) Unfiltered recording of an
rd10 retina displaying oscillations and spontaneous spiking activity (age
9 months). (B) Spike sorting of the recording shown in A. Spikes of two
different amplitudes indicate activity from two ganglion cells. (C)
Application of CNQX and DL-AP5 completely blocked the oscillations
and bursts of large amplitude spikes. Small amplitude spikes remained
unaffected. (D) The effect was reversible upon washout.
doi:10.1371/journal.pone.0099075.g004
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Discussion

In the recent years, many studies have been performed on the

retina of the rd1 mouse, describing in detail the photoreceptor

degeneration, the rewiring that takes place in the inner retina as

well as changes in functional properties of retinal neurons [8,9].

However, as discussed earlier, due to the delayed and slower

degeneration process, rd10 may mimic human RP better than rd1

and, therefore, may be a better model [10,11]. In both rd1 and

rd10 retinae spontaneous rhythmic activity was observed. Rhythms

display frequencies of 10–16 Hz in rd1, but of 3–7 Hz in rd10.

Most attempts to decipher the origin of spontaneous rhythmic

activity were performed in rd1 [12,14,15,17,43]. However, as rd10

is increasingly being used to study the process of retinal

degeneration as well as a model to develop experimental therapies

like stimulation of retinal ganglion cells by implants or by light-

driven channels, it is important to understand the mechanisms

underlying the spontaneous rhythmic activity. We, therefore,

investigated whether the mechanisms suggested to elicit rhythmic

activity in rd1 also apply to rd10. We found, that despite the

differences observed in the frequencies, the origin of rhythmic

electrical activity in rd1 and rd10 seems to be quite similar.

In principle there are several possibilities how rhythmic activity

could be generated. First, excitatory cells like bipolar cells might

display endogenous rhythmic activity. Second, a continuous

Figure 5. Effects of strychnine and bicuculline on rhythmic electrical activity. (A) Control recording (low pass filtered) displaying oscillations
with a main frequency of ,4 Hz (age 10 months). (B) Co-application of strychnine and bicuculline increased the LFP amplitude but reduced the
frequency to ,1 Hz. (C) The effect was fully reversible upon washout.
doi:10.1371/journal.pone.0099075.g005
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Figure 6. Effect of inhibitory blockers on the LFPs. (A) Unfiltered recording showing spontaneous spiking activity and oscillations (age 12
months). (B) A part of the recording from A (indicated by the grey box) at higher time resolution. (C) Co-application of strychnine, bicuculline, CGP
54626, and TPMPA (IB) reduced the frequency to around 0.4 Hz. The amplitude strongly increased, sometimes saturating the amplifier. (D) The effect
was reversible upon washout.
doi:10.1371/journal.pone.0099075.g006

Figure 7. Glutamate receptor blockers abolish baseline fluctuations induced by inhibitory blockers. (A) Control recording (low pass
filtered), showing LFPs with a frequency of ,4 Hz (age 9 months). (B) Upon application of inhibitory blockers (IB = strychnine, bicuculline, TPMPA,
CGP 54626), the LFP frequency was reduced to below 1 Hz. Note the change in the amplitude scale. (C) Application of glutamate receptor blockers
(CNQX and CPP) nearly abolished baseline fluctuations. (D) Upon washout of all agents typical oscillations of ,3 Hz were observed.
doi:10.1371/journal.pone.0099075.g007
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excitatory drive from bipolar cells could be modulated by

inhibition that arises from rhythmic activity of amacrine cells.

Indeed, spontaneous activity in several types of amacrine cells has

been reported [44,45]. Finally, both mechanisms might contribute

to rhythmic activity. We (Fig. 4) and others found that in both, rd1

and rd10, blockage of ionotropic glutamate receptors abolishes

oscillations, indicating that glutamatergic neurons – most likely

bipolar cells - are a major drive for rhythmic activity [14,15,17]. In

rd10 we found that during blockade of glycinergic receptors and

GABAA receptors oscillations persisted. However, the frequency

was reduced to around 1 Hz while the amplitude of the oscillations

was increased 2–4 fold. Additional blockage of GABAB and

GABAC receptors further reduced the frequency to 0.2–1 Hz and

increased the LFP amplitude. These results indicate that rhythmic

activity in rd10 arises even in the absence of inhibitory input and,

therefore, most likely originates from bipolar cell activity. Yet,

inhibitory mechanisms modulate both frequency and amplitude of

the oscillations. Blockade of ionotropic glutamate receptors

abolishes the effects of inhibitory receptor blockers (Fig. 7). This

might indicate that inhibitory receptor blockade acts presynapti-

cally to the glutamate receptors, and hence on the bipolar cells.

On the other hand, activity of amacrine cells seems to depend

strongly on glutamatergic input [12,14]. In this case, inhibitory

blockers would be without effect if glutamatergic input to

amacrine cells is blocked.

For rd1, results with inhibitory blockers are less consistent.

Menzler and Zeck [17] described an overall reduction in LFP

frequency and an increase in LFP amplitude during application of

bicuculline/strychnine, yet do not present numbers. Strychnine

alone had a stronger effect than bicuculline. However, judging

Figure 8. The gap junction blocker MFA abolishes rhythmic electrical activity. (A) Unfiltered baseline, showing spontaneous activity and
LFPs with a frequency of ,4 Hz (age 9.5 months). (B) Application of MFA blocked all spontaneous activity. (C) The effect was reversible upon
washout.
doi:10.1371/journal.pone.0099075.g008
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from their Supplementary Fig. 2, strychnine barely changed the

LFP frequency. Ye and Goo [15] found that strychnine and

picrotoxin, another blocker of GABAA receptors, either alone or in

combination increased the LFP amplitude 2–3 fold while the

frequency was reduced to values around 4–5 Hz (as judged from

their Fig. 4). This corresponds to a roughly twofold decrease in

frequency in rd1, while in rd10 frequency was reduced 3–5 fold in

the presence of strychnine and bicuculline and even stronger if all

inhibitory receptors were blocked (Fig. 6).

In recordings obtained from bipolar cells and AII amacrine cells

of rd1 retina, spontaneous oscillations in membrane potential were

observed that strongly resembled rhythmic activity recorded using

MEAs [12,14]. The authors suggest that rhythmic activity

originates from the tight interaction between ON-cone bipolar

cells and AII amacrine cells. AII amacrine cells contact ON-cone

bipolar cells via electrical synapses in form of gap junctions [46–

50]. In fact, MFA that was shown to block gap junctions in the

retina [51,52] abolished oscillations in both rd1 [12,14,17] and

rd10 (present study; [38]). Interestingly, ON-bipolar cells express

hyperpolarization-activated and cyclic nucleotide-gated (HCN)

channels [39–42]. In several systems, HCN channels function as

pacemaker channels [53,54] and could, therefore, be the source of

spontaneous rhythmic activity in ON-bipolar cells. However,

blocking HCN channels using either Cs+ or ZD7288 did not

abolish oscillations in the membrane potential of ON-cone bipolar

cells in rd1 retinae [12]. HCN channel blockers reduced the

frequency from 10 Hz to around 6 Hz, but increased the power at

the peak oscillatory frequency by more than 700%. We did not

observe such an increase in power in rd10 retinae. In rd10, Cs+ and

ZD7288 mostly reduced the second peak of the power spectrum

but only slightly changed the frequency of the first peak (Fig. 9).

In summary, despite the differences in the process of

degeneration and the different frequencies of spontaneous

rhythmic activity in rd1 and rd10, we only found small differences

in the pharmacological modulation of rhythmic activity in both

models. This indicates that the cellular origin of the spontaneous

activity may be quite similar in rd1 and rd10. Could the difference

in frequencies between rd1 and rd10 be attributed to different

genetic backgrounds? We found that in rd10 the frequency

observed in LFP oscillation is modulated by a variety of ion

channels, amongst them HCN channels, glycine receptors, and

GABA receptors. Differences in the expression level of any of these

channels between mice of different backgrounds might, therefore,

affect the frequency of the oscillations. Our animals carried the

rd10 mutation in a C57BL/6 background. Trenholm and

colleagues recorded oscillations in the membrane potential of

AII amacrine cells and ON-cone bipolar cells in retinal slices from

animals carrying the rd1 mutation in the same background. They

found frequencies of around 15 Hz (see e.g. their Fig. 1) [12].

These values are very different from those obtained in the present

study for rd10, but consistent with data obtained by the same

authors from animals carrying the rd1 mutation in a different

genetic background and with previous reports on rd1 retinae using

MEA recordings [13–16,55].

We (Fig. 3) and others provided evidence that rhythmic

electrical activity might spread across the retina in form of a

wave [17]. This is reminiscent of waves of retinal activity observed

during the early postnatal period before eye opening (e.g. [56,57])

and of the propagation of electrical excitation in the heart. It is not

entirely clear why spontaneous activity originating at one spot in

the retina should dominate oscillations over a larger retinal area,

but once generated the pacemaker wave could easily spread across

the retina through the gap junctional network between the AII

amacrine cells [37]. Further studies will have to identify the

mechanism underlying the generation of such waves and will have

to address the question why robust spontaneous activity disappears

entirely for longer time and comes back (Fig. 3).

Why does spontaneous rhythmical activity originate at all in the

retina of rd1 and rd10 mice? Spontaneous rhythmic activity could

result from substantial remodelling and rewiring processes

described in retinal tissue upon photoreceptor degeneration. Such

processes could transform the retina into a self-signalling neuronal

network [6–10,58]. Moreover, several lines of evidence suggest

that changes of the functional properties of bipolar cells occur at

early stages of degeneration when photoreceptors are still present

and long before substantial remodelling has taken place. These

changes include the aberrant expression of ionotropic glutamate

receptors and the loss of expression or reduced activation of

metabotropic glutamate receptors on ON-bipolar cells as well as

the increase of GABA mediated currents [3,6,24,36,59,60]. Such

changes could explain why oscillations can be observed in rd10

mice at postnatal week 2, when photoreceptors are still present

and no remodelling has occurred [61]. On the other hand, there is

evidence that rhythmic activity in the retina does not depend on

complex rewiring processes or degeneration-induced changes of

bipolar cell physiology. Trenholm et al. [12] reported that in wild

type retina, blockage of photoreceptor input by application of

NBQX and APB induces membrane oscillations in both ON-cone

bipolar cells and AII amacrine cells similar to those observed in rd1

retina. This would suggest that the lack of photoreceptor input is

sufficient to trigger oscillations in the retina. Clearly, while over

the last years we have gained considerable insight into the process

of retinal degeneration, several important issues still need

clarification in further studies.

Materials and Methods

Animals
Wildtype animals of the strain C57BL/6 were obtained from

Charles River. Rd10 mice were bred locally from breeding pairs

obtained from Jackson (strain name: B6.CXB1-Pde6brd10/J). In this

line the rd10 mutation was backcrossed onto the C57BL/6J

background for 5 generations before intercrossing to homozygos-

ity. All animals were kept on a 12 h light/dark cycle with food and

water ad libitum. All experiments were performed in accordance

with the German Law for the Protection of Animals and after

approval was obtained by the regulatory authorities, the For-

schungszentrum Jülich and the Landesamt für Natur, Umwelt und

Verbraucherschutz of the land North-Rhine Westfalia.

Immunohistochemistry
For immunohistochemistry, animals were deeply anesthetized

with isoflurane and killed by decapitation. The eyes were

enucleated and opened by an encircling cut at the limbus. The

retinae in the eyecup were immersion-fixed for 30 min in 4%

paraformaldehyde (PA) in 0.1 M phosphate buffer (PB; pH 7.4) at

room temperature and washed in PB several times. Tissue was

incubated in 10% sucrose in PB for 1 h, followed by 30% sucrose

in PB overnight. The retina was flat embedded and frozen in

optimal cutting temperature (OCT) compound (NEG-50, Richard

Allen Scientific, Thermo Fisher Scientific, Germany). Vertical

sections (i.e. perpendicular to the retinal layers, 20 mm thick) were

cut on a cryostat (HM 560 CryoStar; MICROM; Walldorf;

Germany) and collected on Superfrost Plus slides (Menzel,

Braunschweig, Germany). Sections were pre-treated with blocking

solution (5% Chemiblocker (Chemicon, Hofheim, Germany),

0.5% Triton-X100, 0.05% NaN3 in PB) for 1 hour, followed by

incubation with primary antibodies over night, diluted in the same
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solution. Sections were washed in PB and incubated in secondary

antibodies diluted in 5% Chemiblocker, 0.5% Triton-X100 in PB

for 1 h, washed in PB and coverslipped with Aqua Polymount

(Polysciences, Eppelheim, Germany). Sections were examined with

a confocal laser scanning microscope (Leica TCS SP5, Leica

Microsystems, Heidelberg, Germany) with 63x/1.4 oil immersion

lenses. Images were processed and printed with Adobe Photoshop.

Primary antibodies included AB5585 (anti-recoverin polyclonal

antibody, raised in rabbit, 1:2000, Chemicon, Germany); AB5405

(anti-opsin red/green, raised in rabbit, 1:800, Chemicon, Ger-

many); PKCa (anti-protein kinase Ca, raised in rabbit, 1:4000;

Santa Cruz Biotechnology, Inc.); mGluR6 (anti-GRM6, raised in

rabbit, 1:1000, Sigma, Germany); CabP (anti-calbindin 28k, raised

in mouse, 1:1000, Sigma, Germany). Secondary antibodies

included donkey anti-rabbit Cy2 (1:400, Dianova, Germany),

donkey anti-rabbit Cy3 (1:500, Dianova, Germany), goat anti-

rabbit A488 (1:500, Invitrogen, Germany), and donkey anti-mouse

Cy3 (1:100, Dianova, Germany).

Multi-electrode Arrays (MEA) and Data Recording
3D MEAs containing 60 platinum electrodes (conical shape,

diameter: 30 mm or 40 mm) on a glass substrate (Qwane

Biosciences, Lausanne, Switzerland) with 8x8 matrix without

corner electrodes, were used for recording of local field potentials

(LFP) and spiking activities from ganglion cells. Spacing between

electrodes was either 100 mm or 200 mm. Impedances of the

electrodes were 600–900 kV (Ø 30 mm) and 250–450 kV (Ø

40 mm). The MEA60 data acquisition system (MC_Card,

Multichannel system, Reutlingen, Germany) consisted of a RS-

232 interface, an integrated preamplifier and MEA 1060 bandpass

filter (amplification gain: 1200), and a personal computer. The

waveforms were recorded with the sampling frequency rate of

25 kHz/channel. The data were later converted to ASCII files by

Figure 9. HCN channel blocker reduces rhythmic electrical activity. (A) Low pass filtered recording, frequency ,4 Hz (age 9.5 months). (B)
Blocking HCN channels with CsCl abolished the second harmonic peak and slightly reduced the frequency of the first peak. (C) Recovery.
doi:10.1371/journal.pone.0099075.g009
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MC_Data for further analysis with OriginPro8 and by custom

made MATLAB scripts.

Tissue Preparation
Retinae of wild type (adult) and rd 10 (postnatal day 30–12

months) mice were prepared for MEA recordings. Briefly, the

mouse was deeply anesthetized with isoflurane and killed by

decapitation. The eyeballs were enucleated and retinae were

isolated. The retinae were cut into two halves and one half was

mounted with ganglion cells towards the electrode side of the

MEA. MEAs were pre-treated in a plasma cleaner (Diener

Electronic GmbH+Co. KG, Germany) and coated with Poly-D-

lysine hydrobromide (PDL, Sigma, Germany). The retinal

preparation was maintained in carbonate-buffered AMES solu-

tion, bubbled with 95% O2+5% CO2 at a pH of ,7.4. All

pharmacological agents were dissolved in oxygenated AMES

buffer and delivered to the retina by continuous perfusion at a flow

rate of 3 ml/min. All results shown are from experiments

performed at room temperature (RT). Oscillations at RT (4–

6 Hz) were similar to those found in own preliminary experiments

carried out at 32uC (5–7 Hz) and to those reported for rd10 at

32uC (4–7 Hz) [16]. However, in our hands, recordings at RT

showed more stable oscillations and were, therefore, chosen for the

long lasting recordings performed in this study.

Pharmacology
The following pharmacological agents were used to study the

origin of intrinsic neuronal oscillations: L-(+)-2-Amino-4-phospho-

nobutyric acid (L-APB), 100 mM, agonist at mGLUR6; 6-cyano-

2,3-dihydroxy-7-nitro-quinoxaline-2,3-dione disodium (CNQX),

20 mM, AMPA/kainate receptor antagonist; DL-2-Amino-5-

phosphonopentanoic acid (DL-AP5), 50 mM, NMDA receptor

antagonist (D-AP5 is a strong NMDA receptor antagonist, while

L-AP5 has been reported to be a weak agonist at glutamate

receptors; we found no difference in the effect of the mixtures

CNQX/DL-AP5 and CNQX/R-CPP, respectively); 3-((R)-2-

Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (R-CPP),

40 mM, NMDA receptor antagonist; strychnine, 10 mM, glycine

receptor antagonist; bicuculline, 30 mM, GABAA receptor antag-

onist; [S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-hy-

droxypropyl](cyclohexylmethyl) phosphinic acid (CGP 54626),

2 mM, GABAB receptor antagonist; 1,2,5,6-Tetrahydropyridin-4-

yl)methylphosphinic acid (TPMPA), 100 mM, GABAC receptor

antagonist; meclofenamic acid (MFA), 100 mM, gap junction

blocker; cesium chloride (CsCl), 3 mM, HCN channel blocker,

and 4-Ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidi-

nium chloride (ZD7288), 100 mM, HCN channel blocker.

Supporting Information

Figure S1 Different frequencies can be observed in LFP
oscillations in rd10. Unfiltered recordings of different rd 10

retinae (left) with Fast Fourier Transformations (FFT; right). (A)

Main frequency at ,3 Hz with a second harmonic frequency at

,6 Hz (age 12 months). (B) Main frequency at ,5 Hz and second

peak at ,10 Hz (age 8 months).

(TIF)

Table S1 Frequencies observed in LFP oscillations in
rd10. Experiments were performed on a total of 33 animals

ranging from 1–12 months. The group aged 9 months also

includes the animals aged 9.5 months. The frequency of

oscillations was slightly higher in animals between 1 and 3

months. In animals aged 4–12 months, little variation in the

frequency was observed. Frequency is given as mean 6 standard

deviation (SD).
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