Computer Simulation of Chiral Liquid Crystal Phases

Reiner Memmer

published in

NIC Symposium 2001, Proceedings,
Horst Rollnik, Dietrich Wolf (Editor),
John von Neumann Institute for Computing, Jülich,

© 2002 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume9
Computer Simulation of Chiral Liquid Crystal Phases

Reiner Memmer
Fachbereich Chemie
Universität Kaiserslautern, 67663 Kaiserslautern, Germany
E-mail: memmer@rhrk.uni-kl.de

Computer simulations, e.g. the Monte Carlo (MC) and molecular dynamics (MD) method, provide an important tool to aid the understanding of the macroscopic properties of condensed matter systems and of their phase transitions. In the field of liquid crystals, a state of matter with long range orientational order, many applications e.g. in display technology are due to material properties linked to the existence of helical superstructures originating from molecular chirality. Phase diagrams of chiral calamitic liquid crystals were investigated by MC in the canonical (NVT) and the isobaric-isothermal (NpT) ensemble in order to deduce a link between macroscopic and microscopic properties, e.g. the molecular structure, starting with interactions between the molecules. A rich polymorphism of chiral liquid crystal phases was observed in dependence on temperature, pressure and a chirality parameter. In addition to the cholesteric phase, for the first time several blue phases and a phase with characteristics of a twist grain boundary phase have been observed. Recently, the discovery of chiral superstructures in liquid crystal phases of achiral so-called banana-shaped molecules attracted considerable interest. On cooling an isotropic system of banana-shaped molecules, at low temperature a biaxial smectic phase with a local polar arrangement of the steric dipoles arranged in an antiferroelectric-like superstructure could be proven. Additionally, at intermediate temperature a nematic-like phase has been formed whereas hints for a spontaneous achiral symmetry breaking have been determined. The structures of all phases were characterised by order parameters, scalar and pseudoscalar orientational correlation functions, and by visual representations of selected configurations.

1 Introduction

Liquid crystal phases, formed by molecules with a characteristic shape anisotropy, are a state of matter with long range orientational order. Many of their applications e.g. in display technology\(^1\) are due to material properties linked to the existence of helical superstructures originating from the chirality of mesogenic molecules which leads to a variety of chiral liquid crystal phases\(^2\), see Fig. 1 for a typical phase diagram in the temperature-chirality parameter plane. Characteristic for these phases are helical superstructures in the arrangement of the molecules, i.e. the manifestation of suprastructural chirality, basing on a spontaneous twist of the molecular orientation. Well known examples for chiral liquid crystal phases without positional order are the cholesteric phase (N\(^*\)) and the blue phases (BP I, BP II, and BP III), which are formed by chiral calamitic and discotic molecules, in single component systems and induced by chiral dopants dissolved in achiral liquid crystal host phases. There exist also many chiral liquid crystal phases with positional order, where the formation of both a helical superstructure and a layered structure can be realised free of defects, as e.g. in smectic S\(_{C-}\) phases of calamitic molecules or yields frustrated structures, as in the case of the recently discovered twist grain boundary phases (TGB) with a helical arrangement of smectic regions. In spite of the enormous success in the characterisation of new structures of chiral liquid crystal phases, relatively little is known about the connection between the molecular chirality and the suprastructural chirality of the phases, i.e. about

325
Figure 1. Miscibility phase diagram of binary mixtures of the enantiomers of a chiral compound (Fig. from3).

Nematic and smectic phases are formed on cooling the racemate, cholesteric and blue phases appear along a selected isochiral in dependence on temperature as well as along an isotherm in dependence on composition.

the link between chirality at the microscopic and the macroscopic level, as recently pointed out by Lubensky et al.4 The determination of phase diagrams in the temperature-chirality parameter plane and of the phase structures has been subject of many experimental and theoretical investigations already since the discovery of liquid crystals, but in general it is very difficult to make predictions about the chiral liquid crystal phases or even the phase sequence appearing for a selected chiral mesogenic molecule. Recently, new types of liquid crystal phases formed by so-called banana-shaped molecules were discovered which show interesting material properties, e.g. the appearance of ferroelectricity5,6. In these systems of achiral molecules the detected formation of chiral superstructures, i.e. a spontaneous achiral symmetry breaking, is even more remarkable and not yet fully understood. Here, many possible structures are still under discussion for the chiral domains.

Investigations by means of molecular modeling allow to deduce a link between microscopic and macroscopic properties starting with model interactions between the molecules and have been successfully applied in the field of liquid crystals7, but mainly restricted to achiral liquid crystals, e.g. nematic and smectic phases. Recently, a variety of model systems for cholesteric liquid crystal phases have been studied by means of computer simulation, e.g. systems of chiral atropisomeric molecules8 and lattice systems of chiral molecules9. In the following, computer simulation results will be presented for chiral calamitic molecules described by the chiral Gay-Berne fluid10,11, the first model system
where a rich polymorphism of chiral liquid crystal phases could be proven in dependence on temperature, pressure and a chirality parameter. Additionally, a MC study of phase structures of systems composed of model Gay-Berne banana-shaped molecules will be presented12.

2 Chiral Calamitic Molecules

In order to describe chiral calamitic molecules the chiral Gay-Berne uid has been defined as an extension of the Gay-Berne uid, a potential taking into account the molecular anisotropy in both the shape and the attractive forces which has been successfully used to describe achiral calamitic liquid crystals13. An additive chiral interaction term is taken into account in order to include the specific feature of chiral molecules, the energetic discrimination between mirror image arrangements. The total intermolecular interaction energy $U(\hat{u}_i, \hat{u}_j, r_{ij})$ between two chiral molecules i and j with orientations described by unit vectors \hat{u}_i and \hat{u}_j and separated by an intermolecular vector r_{ij} is given by

$$U(\hat{u}_i, \hat{u}_j, r_{ij}) = aU_a(\hat{u}_i, \hat{u}_j, r_{ij}) + cU_c(\hat{u}_i, \hat{u}_j, r_{ij}),$$

(1)

where $U_a(\hat{u}_i, \hat{u}_j, r_{ij})$ denotes the energy of the achiral interaction taken to be the Gay-Berne potential

$$U_a(\hat{u}_i, \hat{u}_j, r_{ij}) = 4\epsilon \left(\frac{\sigma_0}{r_{ij} - \sigma} (\hat{u}_i, \hat{u}_j, r_{ij}) + \sigma_0 \right)^{\frac{12}{7}} - \left(\frac{\sigma_0}{r_{ij} - \sigma} (\hat{u}_i, \hat{u}_j, r_{ij}) + \sigma_0 \right)^{\frac{7}{7}},$$

and $U_c(\hat{u}_i, \hat{u}_j, r_{ij})$ is the energy of the chiral interaction given by

$$U_c(\hat{u}_i, \hat{u}_j, r_{ij}) = 4\epsilon \left(\hat{u}_i \times \hat{u}_j \cdot r_{ij} \right) \left(\hat{u}_i \cdot \hat{u}_j \right).$$

The strengths of the corresponding interaction energies are given in terms of dimensionless scalar and pseudoscalar parameters a and c, respectively, i.e. the latter one, the chirality parameter, changes sign if enantiomers are considered.

In order to investigate the influence of chirality on the structure of liquid crystal phases, the phase diagram in the temperature-chirality parameter plane of the chiral Gay-Berne fluid was studied as a function of the chirality parameter c along an isotherm in the stability range of the nematic phase (N) of the achiral Gay-Berne fluid. Systems of $N=2048$ molecules were investigated under periodic boundary conditions in a cubic box by MC in the canonical ensemble. Discontinuities of thermodynamic quantities, i.e. the energy and the second rank order parameter S^*, allowed the approximate localisation of appearing phase transitions and a first characterisation of the different phases. For low values of c the observed positive values of $S^* \approx 0.8$ indicate a favoured orientation of the long molecular axes \hat{u}_i parallel to a space-fixed axis, the director, a behaviour characteristic for nematic phases (Fig. 2a). The formation of nematic phases is maintained until a threshold value of c is reached. Then, values of $S^* \approx -0.4$ indicate a favoured orientation of the long molecular axes \hat{u}_i perpendicular to a selected space-fixed axis, i.e. a behaviour typical in a cholesteric phase with respect to the helical axis (Fig. 2b). Here, the continuous rotation of the favoured orientation of the long molecular axes along the helical axis is obvious. Finally, for higher values of c values of $S^* \approx 0.0$ are obtained, indicating an isotropic
character of the phase. Here, for many chiral mesogens often blue phases appear in the sequence \(\text{BP I - BP II - BP III} \) both with increasing temperature and chirality parameter (see Fig. 3a for a schematic phase diagram). The essential part in the theories of blue phases are so-called double twist cylinders characterised by a director field as sketched in Fig. 3b. Whereas in the cholesteric phase the twisting occurs only in one direction, i.e. along the helical axis, in a double twist cylinder a helical superstructure exists over a selected distance from the cylinder centre along every axis perpendicular to the cylinder axis. Different arrangements of such double twist cylinders taking into account unavoidable defects and isotropic regions have been considered in the framework of Landau-de Gennes theory. The network of interwoven double twist cylinders in a body-centred cubic structure, consistent with experimental results for BP I, is shown in Fig. 4a,b as elementary cell and in form of the resulting periodic structure. The corresponding characteristic features are obvious in the snapshot shown in Fig. 4c, where in spite of order parameters of zero regions with orientational correlations can be seen, especially if the angle between the long molecular axes and the box face normal is colour coded. There exist regions where the molecules are preferred parallel to the box face normal, whereas the preferred molecular orientation twists along all directions perpendicular to this axis moving away from these regions, i.e. helical superstructures appear but only locally and limited about a selected distance. The chiral Gay-Berne fluid is the first many particle system based on intermolecular interactions where such double twist structures, arranged here according to the structure of BP I, could be proved by computer simulation. At higher chirality parameter there still exist local double twist regions, but these are no longer infinite under the limitations of the system size nor arranged in a lattice. As in the so-called spaghetti model of blue phase III (Fig. 5a) the double twist regions are now worm-like and seem to be randomly oriented (Fig. 5b).

In general, the clear evidence should be emphasised that a chiral interaction potential proportional to the first pseudoscalar term of the expansion in rotational invariants is able
to give the phase sequence nematic, cholesteric and blue phases as characteristic for many chiral mesogenic molecules in dependence on one pseudoscalar chirality parameter.

In canonical MC simulations of chiral liquid crystals generally cholesteric phases with non-equilibrium pitch were formed under periodic boundary conditions, which require that only selected orientations of the helical axis combined with an integral number of half turns of a cholesteric phase are possible in order to commensurate with the periodic images. In
order to study the temperature influence on helical superstructures and to overcome system-size effects the phase diagram was additionally studied in the NpT ensemble. Here, the ability of the simulation box to change the dimensions during the simulation enabled the determination of the equilibrium pitch of cholesteric phases. Under isobaric conditions several phase transitions characterized by phase transition enthalpy, entropy and relative volume change have been identified in dependence on temperature along an isochiral. On heating a cholesteric phase, for the first time a temperature driven phase transition to a blue phase (BP II) could be proven by computer simulation, a characteristic feature of many experimental and theoretical phase diagrams of chiral liquid crystals. The network of interwoven double twist cylinders in a simple cubic structure, consistent with experimental results for BP II, is shown in Fig. 6a,b as elementary cell and in form of the resulting periodic structure. The corresponding characteristic features are obvious in the snapshot shown in Fig. 6c. Additionally, on cooling a cholesteric system a phase with a helical superstructure and smectic layers formed perpendicular to the helical axis has been observed. Shown in Fig. 7a-d are equidistant intersections chosen perpendicular to the helical axis. The molecular orientations are preferred perpendicular to the helical axis. Locally, the molecules have a favored orientation parallel to a common direction. In contrast to the absence of long-range positional order in a cholesteric phase, now additionally a layered structure has been formed along the local director with layer normals spiraling along the helical axis, one of the main characteristics of the molecular arrangement in a twist grain boundary (TGB) phase, shown for comparison in Fig. 7e.

The observed phase sequence TGB-like phase, cholesteric phase, blue phase and isotropic phase obtained in dependence on a scalar parameter, the temperature, corresponds well to the characteristics of many experimentally observed phase diagrams, e.g. the phase behavior of a binary non-racemic mixture of (S) and (R) enantiomers in dependence on temperature (Fig. 1).
Figure 6. Blue phase II (BP II): Theoretical model, characterised by (a) arrangement of double twist cylinders in the unit cell, (b) three-dimensional arrangement, (c) visualisation of a configuration (MC-NpT) of BP II observed in dependence on temperature along an isochoiral.

Figure 7. Characterization of a twist grain boundary phase (TGB): (a-d) Snapshot of the molecular organization in the TGB-like phase of the chiral Gay-Berne fluid visualized by equidistant intersections chosen perpendicular to the helical axis (MC-NpT); (e) molecular arrangement in a TGB A* phase (Fig. from14).
3 Achiral Banana-Shaped Molecules

The phase behaviour of achiral banana-shaped molecules described by model intermolecular interactions based on the Gay-Berne potential was studied by computer simulation. The characteristic molecular structure was considered by joining two calamitic Gay-Berne particles through a bond to form a biaxial molecule of point symmetry group C$_{2v}$ (Fig. 8a) which has a steric dipole along the polar axis intersecting the bending angle. Systems of $N=1024$ rigid banana-shaped molecules with a bending angle of 140° have been studied in dependence on temperature by MC simulations in the NpT ensemble.

On cooling down an isotropic system (Fig. 8b), two phase transitions characterised by transition enthalpy, entropy and relative volume change have been observed. For the first time, at low temperature an untilted smectic phase showing a global phase biaxiality and a spontaneous local polarisation in the layers, i.e. a local polar arrangement of the steric dipoles, with an antiferroelectric-like superstructure could be proven by computer simulation (Fig. 9b). The clear evidence should be emphasised that the spontaneous local polarisation and the antiparallel polarisation of neighbouring smectic layers are due to the anisotropy in shape and attractive interactions of the banana-shaped molecules with a steric dipole only without considering dipole-dipole interactions. Except the in-plane positional order the layered phase shows the characteristic structural features of the C$_{PA}$-phase, as recently observed experimentally for the first time for an achiral banana-shaped molecule having an achiral orthogonal biaxial smectic phase exhibiting antiferroelectric switching behaviour15. Additionally, at intermediate temperature a nematic-like phase has been proved (Fig. 9a), a feature which has been observed in systems of banana-shaped molecules only in exceptional cases. Here, close to the phase transition to the smectic phase hints for a spontaneous achiral symmetry breaking have been determined. A helical superstructure has been formed, with a structure (Fig. 9c) as recently predicted for achiral banana-shaped molecules considering the effects of a negative bend elastic constant with respect to the formation of nematic phases with spatially modulated director by means of a Landau-like model16.
Figure 9. Snapshot of the molecular organisation (a) in the nematic phase and (b) in the biaxial smectic phase with a local polar arrangement of the steric dipoles arranged in an antiferroelectric-like superstructure, (c) theoretical model for nematic phases of banana-shaped molecules with spatially modulated director (Fig. from[16]).

4 Conclusions

Molecular systems of anisotropic molecules have been studied by computer simulation in order to figure out relationships between molecular structure and phase properties focussing especially to the formation of liquid crystal phases with suprastructural chirality. A rich polymorphism of liquid crystal phases was characterised in dependence on temperature, pressure, chirality parameter and molecular structure. A future task is now to extend the study to dynamical properties, especially taking into account the effects of external fields and surfaces.

Acknowledgments

Generous allocation of computer time by the John von Neumann-Institut für Computing, Jülich, where the research project "Computer simulation of chiral liquid crystal phases" has been funded by about 6000 CPU-hours on the CRAY T90 during the period 1996-2001, and the Regionales Hochschulrechenzentrum Kaiserslautern and financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie are gratefully acknowledged.
References

