-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Juelich Shared Electronic Resources

John von Neumann Institute for Computing NIC

Many-Body Correlation Effects in Photoexcited
Semiconductor Heterostructures

Torsten Meier, Christian Sieh, Stefan Weiser,

Matthias Reichelt, Christoph Schlichenmaier,
Sven Siggelkow, Peter Thomas, Stephan W. Koch

published in

NIC Symposium 2001, Proceedings,

Horst Rollnik, Dietrich Wolf (Editor),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 9, ISBN 3-00-009055-X, pp. 315-324, 2002.

© 2002 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume9


https://core.ac.uk/display/35009919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Many-Body Correlation Effects in Photoexcited
Semiconductor Heterostructures

Torsten Meier, Christian Sieh, Stefan Weiser, Matthias Reichelt,
Christoph Schlichenmaier, Sven Siggelkow, Peter Thomas, and Stephan W. Koch

Department of Physics and Material Sciences Center, Philipps University
Renthof 5, 35032 Marburg, Germany
E-mail: {Torsten.Meier, Christian.Sieh, Stefan.Weiser, Matthias.Reichelt,
Christoph.Schlichenmaier, Sven.Siggelkow, Peter.Thomas,
Stephan.W.Koch} @physik.uni-marburg.de

A microscopic many-body theory describing the optical properties of semiconductors and semi-
conductor heterostructures is briefly reviewed. The optical response is described by the Semi-
conductor Bloch Equations, which include many-body effects arising from the Coulomb in-
teraction among the photoexcited carriers. It is demonstrated that, in particular, many-body
correlation contributions beyond the Hartree-Fock level strongly influence the optical response
and thus have to be treated properly. The microscopic theory is able to predict and reproduce
a number of experimentally observable effects. Many of the numerical solutions could only
be obtained by using massively parallel computer programs which were run on the Cray T3E
system in Jiilich.

1 Introduction

To properly describe the optical properties of semiconductors one has to treat the dynamics
of the light field, the material excitations, and their interactions. Since it is known from
classical electrodynamics that the electric field couples to the polarization of a medium,
the description of the material has to include this polarization as a key quantity'.

In dipole approximation, the light-matter interaction is proportional to the scalar prod-
uct of electric field and polarization. For a semiconductor that is excited with optical light
fields the induced polarization of the material is due to interband transitions from the va-
lence to the conduction bands. For the linear optical absorption spectrum of an unexcited
semiconductor, which consists of completely filled valence and empty conduction bands, it
is sufficient to consider only these interband transitions and no further material excitations
are required. Already in the linear spectra the Coulomb interaction leads to characteristic
signatures. These so called excitonic effects are a consequence of the Coulomb attraction
between photoexcited electrons and holes'.

If the semiconductor is not in the ground state before the photoexcitation, or if the
exciting light fields are not in the low-intensity limit, one has to go beyond the linear regime
and additional material quantities are required to consistently compute the nonlinear optical
response. The Coulomb interaction among the optically excited carriers introduces a many-
body problem and thus usually no fully exact treatment of the material response is possible.
During the last decade, however, a number of approximation schemes have been developed
and applied successfully to different excitation regimes'5.

One way to consistently include the Coulomb interaction in a theory for the optical
response of semiconductors is to treat the many-body terms on the level of the Hartree-
Fock approximation. On this level the dynamic material response is described in terms of
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the diagonal and off-diagonal components of the reduced single-particle density matrix.
Whereas the latter terms are given by interband transitions which determine the optical
polarization the former terms are the carrier occupation probabilities in the different bands.
On this level the dynamics of optically induced excitations can be described by coupled
equations of motion for the reduced single-particle density matrix. These are well-known
as the Hartree-Fock Semiconductor Bloch Equations which include Coulombic effects via
bandgap and field renormalization'-2.

In many-particle physics the term correlation energy refers to ground state energy con-
tributions beyond the Hartree-Fock level. Similarly, in semiconductor optics all aspects of
the nonlinear optical semiconductor response that cannot be described on the basis of a
Hartree-Fock treatment are called correlation effects. To theoretically describe such many-
body correlations different schemes have been developed.

The second Born approximation®> includes terms which are of second-order in the
Coulomb interaction and keeps the reduced single-particle density matrix as the dynamic
object. It is applicable to the regime of strong fields and is well suited to describe exciton
saturation and excitation-induced dephasing processes due to a plasma of free carriers’-*-1°.

A number of experimentally observable signatures like transitions from excitons to
bound biexcitons which are made of two attractively interacting electron-hole pairs, can,
however, not be described just on the basis of the reduced single-particle density ma-
trix. One way to treat such processes is to include higher-order, i.e. four- (and more)
particle correlations, in the theoretical analysis and to classify the nonlinear optical re-
sponse in powers of the optical fields'! using the so-called dynamics-controlled truncation
scheme'? 13, Restricting the analysis to a finite order in the interaction with the optical
field closes the many-body hierarchy at a particular level. Since this approach is based on
an expansion in powers of the fields, it is limited to the regime of not too strong fields.
Nevertheless this scheme has been successfully used to analyze various nonlinear optical
experiments performed on semiconductor and semiconductor heterostructures. The results
obtained in this context within our project have been described in some reviews®® !4 and
a number of original publications'>2.

In Sect. 2 we give a brief review of the microscopic theory that is able to describe the
optical response of semiconductors. Some numerical results that are obtained using the
dynamics-controlled truncation scheme, which in particular highlight the role of excitonic
correlations, are presented in Sect. 3. The paper closes with a short summary in Sect. 4.

2 The Semiconductor Bloch Equations

2.1 Hartree-Fock Approximation

The dynamic optical response of the material is described by the macroscopic optical po-
larization P. For ordered systems it is convenient to expand the P into a Bloch basis'

P=>Y" (d") A" +cc, (1)
k,e,h

where d°" is the electron-hole interband dipole matrix element between conduction band e
and valence band h. In terms of electron (aL, ay ) and hole (b,i, br) creation and destruction
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operators the microscopic polarization PZ" and the carrier occupation probabilities e hh

are the diagonal and off-diagonal elements of the reduced single-particle density matrix:

(af ax)  (b—k ax) ke pet
= : @)
(ap ol L o) BT A
The standard many-body Hamiltonian considered in semiconductor optics is'
H = Hy+ He + Hy. 3)
Here,
Hy = Zsia% ay + ZEZ()LC b_y “)
ke k,h
is the single-particle Hamiltonian containing the bandstructure (¢ and £}),
1 / ’ 1 / ’
— T T T
HC = 5 Z ‘/qa,k_’_qa,k,_qa,k/ak‘i’ 5 Z ka-‘rqbk/ bk/bk}
k,k’,q#0,e,e’ k,k’,q#0,h,h’
— Z anLJrqb,j_qbk,ak 5)
k,k’,q#0,e,h
describes the Coulomb interaction among the photoexcited carriers, and
Hy=—E(t) Y (d”abl, + (d)*b_ray) (6)

k,e,h

denotes the dipole interaction with a classical electromagnetic field'.

The Coulomb interaction, Eq. (5), is given by the sum of three terms describing the
repulsion among electrons and holes and the attraction between electrons and holes. V is
the Fourier transform of the Coulomb interaction potential. The light field, Eq. (6), creates
or destroys pairs of electrons and holes. In all equations the operators a; and by, as well as
the corresponding creation operators refer to bands e and h, respectively, and similarly a;c
and b;c belong to e’ and ’.

The Heisenberg equation of motion for P,Sh reads’

6 / ’ / /
ihoPE" = [P H ] = = (e +ef) P+ (d = fid = a0 ) B
—|—ZVqP,§fq Z Vi [<akak/ k+qak,7q> <a£+qak,b s >
q#0 q#0,k’

+ <a2+qbk/+qubl’> - <azbk’+qb2 q I >} » (D

where e = ¢’ and h = h' in the two-band case with only one relevant conduction and
valence band. In the more general multiband configuration the primed superscripts corre-
spond to summations over all the relevant bands.

Besides the coupling of the components of the density matrix among themselves (via
Hy + Hy) Eq. (7) and the corresponding equations for the carrier occupation probabilities
contain terms that couple the two-operator terms to four-operator terms (via H¢). This is
the beginning of the well known many-body hierarchy: If one writes equations of motion
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for the four-operator expectation values, one obtains a coupling to six-operator terms, and
so on. To close the coupled set of equations, one has to truncate this hierarchy at some
level in a self consistent fashion.

The dynamical Hartree-Fock approximation uses a decoupling scheme like

<a£ (J,L,_q Ak—q ak/> >~ <a£ ak> <a£_q ak,q> 5k,k’ , (8)

where no other contribution appears since g # 0. Applying this procedure to all terms one
obtains the well-known Hartree-Fock Semiconductor Bloch Equations. For a two-band
system these are given by

gy — ) — 0] P20 = [1- 1270 - 51 0] ).

d 2
5 k(&) =—7Im (@) (P ()] )
where
Q(t) =d" E(t)+ Y Vicw PEP(t) , (t) = ef = > View fi(t)  (10)
k' #k k' #k

are the renormalized field and transition energy, respectively. These Hartree-Fock or ex-
change renormalizations couple all k-states of the semiconductor and furthermore intro-
duce optical nonlinearities in the Hartree-Fock Semiconductor Bloch Equations. The
renormalization contributions are no small corrections, with the field renormalization
which includes the excitonic effects observable in linear spectra being the leading-order
Coulomb effect. The nonlinearities in the Hartree-Fock Semiconductor Bloch Equations,
Eq. (9), arise due to phase-space filling (terms proportional to the occupation probabili-
ties times the field F f), as well as energy and field renormalization. These nonlinearities
are a consequence of the Fermionic nature of the electrons and holes (Pauli blocking and
Fermionic exchange).

2.2 Dynamics Controlled Truncation

If the analysis of the nonlinear optical response is restricted to a finite order in the interac-
tion with the light field!! the many-body hierarchy of equations of motion closes at a certain
stage'>!3. Such a procedure establishes a systematic truncation scheme of the Coulombic
many-body correlations for purely coherent optical excitation configurations. In the fol-
lowing we present the dynamic equations as obtained in the coherent y (3)-limit'> 1326,

In order to be able to distinguish between the Hartree-Fock and the correlation contri-
butions it is convenient to define the correlation function

Bzflk’e,k}e’,k/” = <a‘}-€blj/a]j//bj‘€///> - <a£bj€/> <ak‘r//bk1;//> - <aj'€bk1;”> <ak1;/bj'€/> (11)

such that the polarization equation in third order can be written as>®
i) i) 9
_P]Sh = _P]Sh|hom+z_P]Sh|inhom,n ) (12)
ot ot = ot
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with

0
ih= B lhom = = (5 + £) A (13)
q

. 6 e e e/ e ’ * e/ ! e ’ e/ * e/ !’
ih e P inhom.1. = (d Sy R — e Py P ]) B, (4
/h/

. 6 e N * o
’Lhapkhlinhomﬁ = - Z V |: (P g Pk-l—q (Pk-l-q) Pk g

q, / h/ )
et () o 123) 23] o

0
hatplsh|inhom,3 = Z V (P
k’,q,e’,h’/

eh e'h Beh’e’h
k k' \k'—q,k—q k+q,k" k' —q,k

neh’e’h peh’e’h
Bt g +a kb~ Bk,k/+q,kzk—q} - (16)

The homogeneous part of Eq. (12) contains the kinetic energies of electrons and holes plus
their Coulomb attraction, i.e. the exciton problem, see Eq. (13). The terms denoted with
the subscript inhom in Eq. (12) are the different inhomogeneous driving terms. The di-
rect coupling to the electromagnetic field is represented by Eq. (14), which includes the
linear optical coupling (d°" F) and the phase-space filling contributions. Further optical
nonlinearities arise in Eq. (12) as a consequence of the many-body Coulomb interaction.
The first-order Coulomb contributions are proportional to VPP* P, see Eq. (15). Those,
together with the phase-space filling terms define the Hartree-Fock limit. The correlation
contributions to the polarization equation, see Eq. (16), consist of four terms of the struc-
ture V P* B, where B is the four-particle correlation function defined in Eq. (11). We thus
see that due to the many-body Coulomb interaction the two-particle electron-hole ampli-
tude is coupled to higher-order correlation functions.

The equation for the B’s can be written as?®
gBeh'e'h _ ﬁ peh’e’h | 4+ = 9 Beh’e’h . (17)
6t k.k! k" kT = 6t k.k' k' k' hom at k,k! k" k" inhom
with
6 eh’e’h e h' e h neh’'e’h
(3 7 gt ettt lhom — — | € Epr Err Epr It Jetrr
hatBkk,k & kt+ e + e tep ) Bow ok (18
o /N4
+ g ‘/q/ [Bk;_’_q/ k;/+q/ k// k;/// Bz]j{_;/,};c/7k//_q/7k///
/
+Behe +Behe B +Behe
k+q/ k/ k// k///+q/ k k/+q/ k//Jrq/ k/// k k/+ql k// kll/fql k k/ k//Jrq/ k///Jrq Pl

6 7l Iy Iy
Zhathhkﬁ]?”,k”’lin}iom = _Vk_k/” (P]S/}}/ — P]Sh) (Pe/h — Pe//h)

+View (P = P (ot - el (19)

Here, the homogeneous part of the equation for B is given by Eq. (18) which contains the
kinetic energies as well as the four attractive and two repulsive interactions between two
electrons and two holes; this defines the biexciton problem. The driving terms in Eq. (17)
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Figure 1. Polarization-dependent differential absorption in optical Stark effect configuration pumping 4.5meV’
below the 1s exciton resonance. The origin of the energy scale coincides with the spectral position of the 1s
exciton (from Ref. [15]).

consist of the Coulomb interaction potential times products of two polarizations, V PP,
see Eq. (19).

3 Numerical Results

On the basis of Eqgs. (12) and (17) and its extensions accounting for multiple valence bands
and higher-order interactions with the field a variety of optical excitation configurations
such as pump-probe or four-wave-mixing experiments have been analyzed. In the follow-
ing we describe three examples where is has been shown that the dynamics of many-body
correlations are of particular importance'> 820,

3.1 Excitonic Optical Stark Effect

A pump-probe experiment is performed using two laser pulses, the pump and the probe.
One then monitors the changes of the absorption of the probe pulse induced by the exci-
tation with the pump. This differential absorption da(w) is proportional to the Fourier-
transform of the pump-induced differential polarization § P(w)'.

Theoretical results for the light-polarization dependent excitonic optical Stark effect,
i.e. the induced spectral changes around the exciton for detuned optical pumping below
the resonance, are displayed in Fig. 1. For co-circularly and for linearly polarized pump
and probe beams one obtains a spectral blue shift of the exciton reflected in the dispersive-
type absorption changes that are positive above and negative below the exciton. This blue
shift is the “classical” result well-known from a simple two-level system that is pumped
spectrally below its resonance frequency and can simply be understood in terms of level
repulsion between the light field and the optical resonance. However, for cross-circularly
polarized pulses (070 ™) the sign of the shift is reversed, i.e. a spectral shift of the exciton
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Figure 2. Polarization-dependent time-resolved four-wave-mixing signals for a disordered semiconductor nano-
structure using pulse delays 7 = 2.5, 4, and 6ps. The disorder strength is much weaker than the exciton binding
energy. For the upper panel many-body correlations are neglected, whereas for the lower panels both disorder
and Coulomb correlations have been considered on a microscopic level (from Ref. [20]).

towards the pump (red shift) is found. The calculated polarization-dependent shifts are in
agreement with experiments performed on semiconductor quantum wells'.

For the case of cross-circularly polarized pump and probe pulses it has been shown that
the signal is solely induced by many-particle correlations, since the Hartree-Fock contri-
butions vanish as long as only heavy-hole and no light-hole transitions are relevant. This
is due to the fact that the two degenerate heavy-hole excitons that can be excited with
oT and o~ polarized light share no common electronic state and are thus uncoupled if
many-particle correlations are not taken into account!> 161923, Whereas the Hartree-Fock
contributions which correspond to a blue shift dominate the signal for all other configura-
tions, for oo~ one selectively probes only the correlation terms which result in the red
shift. The occurrence of this red shift is not directly related to the existence of a bound
biexciton that can be excited with oo~ polarized pulses. Instead, as shown in Ref.!’
the red shift can be identified to be a genuine consequence of the memory character (non
Markovian dynamics) of the many-body correlations dynamics.

3.2 Disorder-Induced Dephasing

A four-wave-mixing experiment is performed using two laser pulses from directions k1
and ko which are temporally delayed by the time delay 7. One then detects the field that is
diffracted in the direction 2ky — k;. For optically thin samples this signal is proportional
t0 | Pax,—k, (t,7)|?, see Ref.!.

In Ref.?° we have presented numerical solutions of the real-space version of Egs. (12)
and (17) including energetic disorder in the valence and conduction bands. The analysis of
disorder effects is important since almost all epitaxy-grown semiconductor heterostructures
contain some type of imperfections. For example, the disorder relevant in two-dimensional
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Figure 3. Polarization-dependent contour plots of the coherent excitation spectroscopy scans for linear parallel
(a) and perpendicular (b) polarized pulses using a logarithmic scale. The origin of the energy scale coincides with
the spectral position of the 1s exciton.

quantum wells may come from rough interfaces or may be due to alloy disorder if the well
material is a ternary compound made of three types of atoms, like in (In,Ga;_,)As. To
include the disorder we average our numerical solutions over individual disorder realiza-
tions until the results converge. This procedure involves a large number of independent
calculations which can be very efficiently performed on parallel computers like the Cray
T3E.

Due to the disorder-induced inhomogeneous broadening, the time-resolved four-wave-
mixing signals for disordered semiconductor nanostructures are emitted as so called photon
echoes'. This means the signal has its maximum not immediately after the excitation, but
that it is peaked at the time delay 7. If correlations are neglected the amplitude of these
echoes is independent of the chosen linear polarizations of the laser pulses and of the time
delay, upper panel of Fig. 1. The independence of the signal amplitude on 7 corresponds
to the absence of so called dephasing processes, which destroy the phase coherence of the
optical polarization.

To be able to describe the experimentally observed polarization dependence of the four-
wave-mixing signals many-body correlations are essential. As shown in the lower panels of
Fig. 2, with correlations the signals are different for X X and XY excitation configurations.
Whereas for X X no obvious dephasing is present, the signal amplitudes are much weaker
for X'Y additionally decrease rapidly with increasing 7. This polarization-dependent decay
can only be properly described when both the disorder and the many-body correlations
are treated adequately. The estimated decay rates are in good qualitative agreement with
experimental results as shown in Ref.?’.

3.3 Coherent Excitation Spectroscopy

Coherent excitation spectroscopy is an example for the so called partially non-degenerate
four-wave-mixing. In coherent excitation spectroscopy pulse k; is temporally long (spec-
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trally narrow), whereas pulse ko is short (spectrally broad). Since the long pulse k;
excites only transitions in a narrow spectral region around its center frequency wj, the
coherent excitation spectroscopy scans obtained from the coherent signal diffracted in
direction 2ks — k; are ideally suited to investigate coherent couplings among different
subsystems and also within disorder broadened lines'8. The coherent excitation spec-
troscopy signal is proportional to the Fourier-transform of the four-wave-mixing polar-
ization | Pox,—k, (w, w1, 7)|? and depends on both the detection and excitation frequencies,
w and wq, respectively.

In Fig. 3 we display the polarization dependence of the coherent excitation spec-
troscopy scans for linearly polarized pulses. As in Fig. 2 the differences between between
X X and XY excitation are solely induced by many-body Coulomb correlations. For X X
excitation, Fig. 3(a), one finds only a single peak which occurs at the position of the exciton
(w = 0) when it is resonantly excited by pulse k; (w1 = 0). For XY, Fig. 3(b), however,
three peaks are present. The two additional peaks occur at w ~ —1.5meV when w; = 0
and at w = 0 when w; ~ —1.5meV. 1.5meV is just the biexciton binding energy as has
been confirmed by additional independently performed calculations. Thus the former one
of the two additional peaks is simply due to the exciton-biexciton transition which shows
up in four-wave-mixing after the exciton has been excited resonantly. The peak obtained
for w; =~ —1.5meV, however, results from a exciton-biexciton transition starting from
an off-resonantly driven exciton transition?’. More detailed investigations of the correla-
tion signatures contained in the coherent excitation spectroscopy scans including multiple
valence bands have recently been performed?’.

4 Summary

A microscopic many-body theory describing the optical and electronic properties of semi-
conductors and semiconductor heterostructures has been briefly reviewed. The main steps
involved in the derivation of the Semiconductor Bloch Equations with many-body corre-
lation contributions beyond the Hartree-Fock level have been discussed. The importance
of these correlations for polarization-dependent pump-probe and four-wave-mixing exper-
iments has been demonstrated by showing numerical results for a few selected examples.
Many of our results, in particular those on the disorder-induced dephasing and the co-
herent excitation spectroscopy, could only be obtained using massively parallel computer
programs which were run on the Cray T3E system in Jiilich. Presently, our grant on this
machine allows us to use 27500 KE (Kontingenteinheiten) per month, which corresponds
to a monthly usage of 10000 hours of computer time on a single processor.
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