
Characterizing Performance of
Applications on BlueGene/Q

Paul F BAUMEISTER b Hans BOETTIGER a Thorsten HATER b,1

Michael KNOBLOCH b Thilo MAURER a Andrea NOBILE b Dirk PLEITER b

Nicolas VANDENBERGEN b

a IBM Deutschland Research & Development GmbH, Germany
b JSC, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Abstract. Recently the latest generation of Blue Gene machines became
available. In this paper we introduce general metrics to characterize

the performance of applications and apply it to a diverse set of appli-

cations running on Blue Gene/Q. The applications range from regular,
floating-point bound to irregular event-simulator like types. We argue

that the proposed metrics are suitable to characterize the performance
for a larger set of computational science applications running on today’s

massively-parallel systems. They therefore do not only allow to assess

usability of the Blue Gene/Q architecture for the considered (types of)
applications. They also provide more general information on applica-

tion requirements and valuable input for evaluating the usability of var-

ious architectural features, i.e. information, which is needed for future
co-design efforts aiming for exascale performance.

Keywords. Performance characterization, parallel algorithms, Blue Gene

Introduction

With the introduction of the Blue Gene/Q architecture the available concurrency
has been significantly increased at various levels compared to the predecessor ar-
chitecture. Most notably, a multi-core processor with up to 64 threads of execu-
tion has been introduced. Additionally, the width of the SIMD unit has been dou-
bled to four double precision numbers. To understand how well relevant scientific
applications can be mapped to this new architecture we developed an extensive
set of performance characterization metrics.

The process of implementing applications can be modeled as a two-step pro-
cedure. First, a formal solution of the problem is chosen and mapped onto a set
of computational tasks. Second, for each computational task a particular imple-
mentation is derived, which is then compiled into computer code for a specific
architecture. For the analysis, we will typically focus on those tasks, which form a
performance critical region, i.e. kernels. We distinguish between metrics primarily

1Corresponding author: t.hater@fz-juelich.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35009517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


related to computation, communication and synchronization. In the framework

of this paper we will however only present results for the computation metrics.

Additionally, task metrics and implementation metrics are differentiated. The

former category includes any metric, which only depends on the definition of the

computational tasks and possibly a (simple) machine model. It has to be derived

from a theoretical analysis of the task, i.e. cannot be measured. A typical example

is the mandatory information flow between processor and external memory. On

the other hand, an implementation metric is defined depending on both hardware

architecture as well as on system software (e.g. compilers) and possibly the input

data. Such a metric is typically obtained by direct measurement, for example via

performance counters. An example for a computation-implementation metric is

the fraction of instructions dealing with floating-point arithmetic.

An implementation metric is either deterministic or stochastic. The former

refers to metrics that are reproducible for given input data and executable, like

the number of load-store instructions. For stochastic metrics the measured values

may change for each run due to the non-deterministic behaviour of the hardware.

A typical example is the number of loaded cache lines.

For all considered applications quasi-realistic problems were identified in co-

operation with the developers. Major contributions to runtime due to communi-

cation are briefly discussed where important. In general, we tuned the number of

processes per node and number threads per process to a local optimum.

1. BlueGene/Q Architecture

The BG/Q compute chip [1] combines 16 cores running at 1.6 GHz in a single

package together with a network unit and memory controllers. The aggregated

peak performance is 204.6 GFlop/s. The bandwidth to main memory has a max-

imum of 42.7 GB/s of which 80 % are achievable for an even mix of reads and

writes. An additional core is provided for OS purposes, but inaccessible to the pro-

grammer. This system-on-a-chip design allows for high energy efficiency and very

low OS jitter. Each core is equipped with an L1 cache of 16 kB and all cores share

a 32 MB L2 cache. The L2 cache is versioned to support transactional memory

operations and speculative execution of threads. Each core comprises a prefetch

unit, which supports different types of prefetching, e.g. stream prefetching.

Each of the compute cores supports four-way simultaneous multi-threading

(SMT). There are two instruction pipelines per core, one in the execution unit

XU and one in the auxiliary execution unit AXU. The latter is connected to

a separate register file and offers a 4-way SIMD floating-point pipeline with a

throughput of four double-precision multiply-add operations per clock cycle. In

each clock cycle two instructions from different threads can be issued to any of

the pipelines, i.e. at least two threads are required to keep both pipelines filled.



2. Applications

We chose a set of three applications developed at Forschungszentrum Jülich, based
on their prior investment in the Blue Gene/P platform and scalability. Addition-
ally, diversity of application performance signatures was a major motivation.

KKRnano: An application from solid state physics based on density func-
tional theory (DFT) [2]. The application is implemented in Fortran and hybrid-
parallelized using MPI and OpenMP. It features a ’traditional HPC program’
structure in the sense that it operates on large, regular arrays of floating point
numbers. MPI parallelization is based on a regular domain decomposition.

The central operation is the iterative solution of the sparse linear system
arising from the KKR approach, which is implemented by the quasi-minimal
residual (QMR) method [9,10,11]. We expect this application to be bound by
floating point performance and thus benefit heavily from vectorization and multi-
threading. This is supported by the high arithmetic intensity found in the later
analysis.

PEPC: Second, we analyse PEPC, a mesh-free parallel tree-code for computa-
tion of long-range Coulomb or gravitational forces in N-body particle systems [3]
in the framework of the Barnes-Hut algorithm [12]. This application is used for
simulations in different fields, in particular plasma physics. In this Fortran based
code both MPI and Pthreads are used for parallelization.

Despite depending on floating-point performance, PEPC differs from KKR-
nano in so far as it uses trees of particles instead of large regular arrays. The
irregular memory access poses challenges for multi-threading and vectorization.

NEST: The final application is a graph-based discrete event simulation for neu-
ral networks [4]. Compared to the first two candidates it is radically different in
many ways. It is written in C++ and parallelized with MPI and OpenMP (or
Pthreads). The core of NEST is an interpreter for a custom language for repre-
senting neuronal networks. Depending on the problem set or program, the per-
formance characteristics may differ strongly. Due to the nature of the problem,
we expect minimal reliance on floating-point capabilities and a large fraction of
integer operations and branches.

Although NEST is available as Open Source Software, we are using an internal
preview version, tuned for large scale HPC systems.

3. Metrics

We present a compact subset of the metrics we use to characterize the perfor-
mance of computational science applications. As noted earlier we restrict ourself
to computation metrics for this paper. For a more extensive set of metrics see [5].
While we applied our metrics to the Blue Gene/Q architecture, most can easily
be applied to other architectures as well.

The task metrics are shown in the upper part of Table 1. Here we assume a
very simple node model, namely a processing unit attached to an arbitrarily sized
main memory. We furthermore assume the processing unit to offer a sufficiently



Metric (Task) Description

IF-mem-cpu Information flow from (off-chip) between memory and processing unit

NO-FP Number of floating-point operations

AI Arithmetic intensity = NO-FP / IF-mem-cpu

Metric (Implementation) Description

IM-fpa Fraction of floating-point arithmetic instructions

IM-vfpa Fraction of vector floating-point arithmetic instructions

IM-ia Fraction of fixed-point arithmetic instructions

IM-ldst Fraction of load-store instructions

IM-br Fraction of branching instructions

ρfp Useful floating-point operations vs. operations performed in hardware

ρld,st Number of loaded vs. stored Bytes

ρint,fp Number of loaded plus stored Bytes for integers vs. floats

tWC Wall-clock time [cycles]

Cx,XU, Cx,AXU Instruction throughput per execution pipeline [instr/cycle]

Cfp Floating-point operation throughput [Flop/cycle]

Cmem Memory interface throughput [Byte/cycle]

ρL1d Number of hits in L1 data cache vs. cacheable data load operations

ρpre Number of hits in prefetch buffer vs. cacheable data load operations

ρL2 Number of hits in L2 data cache vs. cacheable data load operations

Table 1. Task and implementation-computation metrics.

large cache such that only mandatory cache misses occur, i.e. data re-use is max-
imized. The implementation metrics are listed in the lower part of Table 1. All
metrics can be measured on Blue Gene/Q using a simple (proprietary) software
interface to the performance counters. The data is aggregated over a single node
(unless stated otherwise).

As of today, most computational science applications that need HPC com-
pute resources require the execution of a large number of floating-point opera-
tions. The arithmetic intensity (AI) puts the number of floating-point operations
(NO-FP) in relation to the minimum amount of data, which needs to be trans-
ferred between processor and external memory (IF-mem-cpu). The latter is nat-
ural as memory access became the dominant performance factor for many codes.
Depending on whether the arithmetic intensity is large or small, the achieved
floating-point operation throughput Cfp or the memory bandwidth Cmem are pri-
mary performance indicators. It is, however, important to look at the numera-
tor (NO-FP) and denominator (IF-mem-cpu) separately to assess how close the
actual implementation is to this idealized case. These can be compared to the
product of throughput and wall-clock time tWC.

To understand the instruction throughput it can be enlightening to consider
the instruction mix. It allows to assess how well the different execution pipelines
can be filled. On Blue Gene/Q all floating-point instructions are executed by
the AXU pipeline, while all others are issued to the XU pipeline. Depending on
whether the number of instructions to be scheduled to any of the pipelines is sig-
nificantly larger, the overall performance depends on the corresponding instruc-



tion throughput metric Cx,i (i=XU, AXU; Cx,i ≤ 1). Cx,i ≈ 1 for all i indicates
the processor’s micro-architecture being well balanced for a given application.

To put the actual number of instructions, e.g. floating-point instructions, in
relation to the number of operations, e.g. the task metric number of floating-point
operations (NO-FP), we have to analyse how well the application can be mapped
to the given instruction set architecture (ISA). A floating-point instruction dis-
patched to the AXU pipeline can result in up to 8 floating-point operations. The
parameter ρfp measures the number of useful versus the maximum number of
floating-point operations that could have been performed using the same number
of instructions. ρfp may be small because the SIMD unit is not exploited by the
application, e.g. due to data alignment restrictions. In this case the fraction of
vector floating-point instructions (IM-vfpa) would be significantly smaller than
the fraction of floating-point instructions (IM-fpa).

To characterize the memory access patterns generated by the application we
consider the ratio of the number of Bytes loaded to stored, ρld,st, as well as the
ratio of loads and stores of fixed-point to floating-point numbers, ρint,fp. A ratio
of ρld,st > 1 indicates that the application maps well on a processor architecture
where read and write performance are different. In case of Blue Gene/Q processor
the maximum aggregate bandwidth provided by the crossbar switch connecting
the L2 cache slices and the cores is asymmetric: The aggregate maximum read and
write bandwidth from and to the L2 cache is 409.6 and 153.6 GByte/s, respectively
[1]. For floating-point intensive applications ρint,fp might be expected to be small.
However, indirect memory access due to complex data structures may result in a
large number of integer load operations, thus leading to large ρint,fp and additional
pressure on the memory subsystem.

To analyze the use of the memory hierarchy we do not only consider the
usual cache miss rates, ρL1d and ρL2, but also the efficiency of the stream pre-
fetcher. For this purpose we monitor the number of hits in the pre-fetcher buffer
normalized by the total number of cacheable loads ρpre.

4. KKRnano

KKRnano is the application most accessible to static compiler optimization. We
present the analysis of a test-case consisting of 512 atoms of a Nickel-Palladium
alloy, which can be considered as a small but still typical use case. We used 32
nodes at 16 processes per node and four OpenMP threads per process. At these
node counts KKRnano exhibits good strong scaling properties for the test-case
at hand. Weak scaling extends to much larger node counts.

Kernels We identify two kernels, each contributing around 10% of the total
runtime for the given test-case. We work at a level of logically distinct tasks, i.e.
functional units with a single call-path.

The first kernel, sprszmm, performs a sparse matrix-vector product Λij · γj ,
where Λij , γi ∈Mn×n(C) and in each of the M rows N elements of Λ are non-zero.
This operation is the central part to the iterative QMR solver.

The second kernel is the core of a block circulant pre-conditioner called by the
QMR solver. Since both kernels are exhibiting the same central characteristics,
we focus on the former.



KKRnano (16/4) PEPC (4/16) NEST (4/16)

Metric sprszmm treewalk update

IF-mem-cpu [Bytes] 2.5 · 1011 > 2.0 · 1012 −
NO-FP 1.0 · 1012 > 3.1 · 1012 0

AI 4 1.6 0

IM-fpa 0 0.04 0.08

IM-vfpa 0.34 0.02 0

IM-ia 0.05 0.14 0.13

IM-ldst 0.37 0.31 0.46

IM-br 0.06 0.05 0.12

ρfp 0.98 0.38 0.14

ρld,st 2.41 1.92 2.12

ρint,fp 0.23 0.98 3.26

tWC 2.99 · 1010 2.9 · 108 1.95 · 1011

Cx,XU 0.51 0.19 0.63

Cx,AXU 0.25 0.03 0.03

Cfp 31.7 5.5 1.6

Cmem 9.5 0.13 3.4

ρL1d 0.79 0.94 0.94

ρpre 0.15 0 0

ρL2 0.05 0.06 0.06

Table 2. Task and implementation metrics results using 32 Blue Gene/Q nodes. The optimal

process to thread ratio for the used test-case is given as
(

NMPI
Nnode

/ Nthr
NMPI

)
.

Task metrics Working from the definition of sprszmm we compute the task met-
rics. Independent of the concrete implementation, the minimum number of Bytes
we have to move from main memory to processor is the aggregated size of the
operands Λ and γ: 16NMn2+16Mn2 Bytes. To store the result, we have to write
16Mn2 Bytes back to memory. Actually computing this result requires 8MNn3

operations on floating-point numbers in the limit of large matrices. The param-
eters N , M and n depend on the number of atoms, the considered interaction
range and the cut-off of the potential expansion. In the implementation consid-
ered here the task has been changed in order to make use of the zgemm library
routine. This results in additional 16MNn2 Bytes to be loaded and stored and
therefore significantly lower arithmetic intensity.

Implementation metrics Table 2 gives an overview of the measured runtime met-
rics. The kernel is dominated by complex, double-precision linear algebra, as seen
in the relation of IM-ia to IM-(v)fpa. The floating-point instructions are almost
exclusively in the vectorized form, as the compiler is able to unroll most loops.
This is due to the fact that in the current version of the code every iteration count
is known at compile-time. The number of measured floating-point operations is
very close to the task metric NO-FP that was computed in the limit of large ma-
trices. Branches and integer operations account for about 10% of the instructions.
This overhead is caused by address computations and loop management. The rate
of instructions issued per cycle per core is around 0.75. Due to the amount of



memory accesses the load on the XU pipeline is much higher than for the AXU
pipeline.

The prefetcher and first level cache cover around 93% of the memory accesses.
Due to the sparseness of the matrices and their memory layout it is to be expected
that stream prefetching is inefficient. This is consistent with the observed low hit
rate ρpre. The total amount of data transferred across the memory interface is
only about 10% higher than expected.

Communication Collective reduction and gather operations involving all pro-
cesses are the dominating communication patterns. For the test-case they account
for about 20 % of the execution time, split between Allgather 73%, Allreduce 16%
and Broadcast 11%. This number looks larger than it is, since KKRnano is not
homogeneously parallelised and these timings include waiting times for threads,
which are not part of the current computation. Note that this is inherent to the
problem and not a flaw of the implementation.

5. PEPC

As indicated above, the irregular memory access in PEPC is a major issue of the
optimization. Most time is spent in the graph traversal organizing the branches
and leafs of the octree according to the multipole acceptance criteria. As a test-
case we use an input set with 250,000 particles randomly distributed with a ho-
mogeneous density as inital positions running three time steps on 32 nodes with
4 MPI processes each. Per process 16 threads had been started of which one man-
ages all MPI communication while the remaining threads share the computational
task as worker threads.

Kernels The kernel of PEPC considered here is named treewalk and takes
about 88 % of the total runtime with the given test input decks. It incorporates
the floating-point intensive subroutine forcecalc with 27 % and performs integer
operations, indexing and pointer chasing during the other 61 %. The task metrics
have been evaluated for forcecalc only, while the implementations metrics refer
to treewalk including forcecalc.

Task metrics The subkernel forcecalc performs about 244 (useful) double pre-
cision floating-point operations and loads about 160 Bytes each time it is called.
The graph tasks hardly perform any floating-point operations. The number of
(integer) loads in this part of the application is difficult to predict since several
structures such as the translation of keys to addresses involve inverse searches,
pointer chasing and list lookups.

Implementation metrics PEPC achieves a relatively low instruction throughput
as Cx,XU and Cx,AXU are small. This indicates a large number of stall cycles, de-
spite the low branch count, and as we can see from the IM-vfpa metric, effectively
no vectorization. Most instructions are integer loads and stores we can see from
IM-ldst and ρint,fp. The number of cacheable loads exhibits a hit rate in L1 of
94 %. Performance counters show the ratio of L2 hits over misses to be close to
300. Also the high ratio of IM-ldst over Cmem shows that the tree walk is largely
memory latency bound.



Communication As the node count increases, an increasing amount of runtime is
due to collective communication, while point-to-point communication decreases,
intersecting near 32 to 64 nodes. The largest amount of time is spent within the
buffered send and the matching receives, however, the total time spent in MPI
routines is small compared to the kernel execution times for these (small) system
sizes. Only the communicator threads performs a busy wait in MPI Iprobe polling
for the worker threads to finish.

6. NEST

The core of NEST’s algorithm is the distributed update of neuron states. Every
MPI process collects the outgoing neural spikes over a finite time interval ∆t
and communicates them to the respective addressees using MPI. Each incoming
spike is then used to alter the respondent’s state. The concrete nature of the
alteration depends on type and state of the respective neuron. Event transport
and generation are modeled as a stochastic process.

The nature of the problem is basically a look-up and update in a distributed
graph. Depending on the neuron type(s) the update may involve floating-point
computations, but not in significant amounts. Since we need to look-up neuron
types and state as well as the synapses – the graphs edges – the load is balanced
different from for example KKRnano.

The performance counter data was gathered using 32 nodes with 4 MPI pro-
cesses per node and 16 OpenMP threads per process. As performance of NEST is
typically maximized by filling as much memory as possible, additional threads are
favored over MPI processes in production runs as it helps to reduce the memory
footprint. We decided to emulate this behaviour, although the problem size at
hand does not require it.

Kernels The core part of NEST is the update method, which dispatches incom-
ing events to their local receivers. Dispatch is handled dynamically depending
on the types of the transporting synapse, the event and the receiving neuron.
In order to complete the delivery, NEST has to determine these types, which is
done by leveraging virtual method dispatch of the C++ runtime. Additionally,
the containers aggregating the respective instances have to be traversed. After
the event has been routed to its recipient, the state of the corresponding neuron
is updated.

From this, we can expect the dominant characteristics to be integer opera-
tions for indexing and address calculations and conditional branches, both from
container iteration and virtual function dispatch.

Task metrics The task we are considering involves almost no floating-point op-
erations, so the corresponding estimates – including AI – are approximately zero.
Due to the stochastic nature of the simulation, as timings and numbers of events
are random, we can give also no a priori estimate of the data movement.

In general, this makes it almost impossible to derive reliable task metrics.
However, we roughly estimated the instruction mix to be distributed as 20%
branches, 30% fixed point arithmetic and 50% load/store operations from the
source code.



Implementation metrics From the definition of the update kernel we expect
strong reliance on the memory capabilities of the architecture and as most opera-
tions involve indirection and indexing, mainly the memory (load) latency. This is
reflected in the high amount of memory operations in the instruction mix. Indi-
rection and indexing show mainly in the high amount of integer operations. Our
prediction for the instruction mix on the source code level exhibits a reasonable
fit with the measured values.

We find good coverage by the first level data cache of around 94%. However
the prefetching mechanisms are unable to handle the irregular traversals of the
data structures, there are simply no streams to exploit. There are also no repeating
access patterns, which would allow to use the list prefetcher.

The XU pipeline executes by far the most of the instructions, i.e. the applica-
tion would likely benefit from multiple scalar pipelines. Obviously, the architec-
ture provides more floating-point operation performance than is needed for this
application, as at most 10% of the instructions are floating-point related. More
complicated neuron models may, however, lead to a somewhat higher floating-
point operations intensity.

7. Related work

In this paper we consider a set of metrics, which reflect on the one hand the ap-
plication dependent performance signatures and on the other hand the hardware
characteristics of the architecture on which the application is executed. The fo-
cus therefore differs from a set of papers where a performance characterization is
suggested largely independent of the architecture, e.g., in order to classify parallel
applications. We follow, however, one such attempt of application classification,
[6], to classify the proposed metrics. Also the Apex project [7] aims for a perfor-
mance characterization independent of particular hardware architectures. There
the assumption is made that performance behaviour can be characterized by a
small set of architecture independent performance factors. We did not restrict us
to architecture independent performance metrics in order to assess the usability
of architectural features, like SIMD units or memory prefetch engines. We con-
sider it however instructive to relate architecture independent task metrics and
implementations metrics to assess whether the architecture is balanced for a given
application and to quantify limiting factors. The authors of the roofline model
[8], e.g., proposed to determine an operational density to derive upper bounds for
the performance for a given memory bandwidth.

8. Summary and Conclusions

In this paper we have presented a subset of metrics we defined in order to charac-
terize the performance of applications on a given architecture. Here we focussed
on Blue Gene/Q, the latest generation of massively-parallel HPC architectures
from IBM, which scales to dozens of petaflops. We applied our performance char-
acterization methodology to a set of three increasingly irregular scientific applica-



tions. All of them are in the need for petascale computing performance and had
been optimized for this architecture.

For most of the applications kernels considered floating-point operations are
not dominating. As a result the high performance of the SIMD unit could not
be exploited for these applications. These could possibly benefit from additional
scalar processing pipelines as the instruction throughput for the scalar pipeline
(Cx,XU) was found to be much higher than for the SIMD pipeline (Cx,AXU). The
instruction mix was typically dominated by load and store operations.

We observed efficient use of the upper levels of the memory hierarchy, which
is partially due to the relatively large L2 cache, that allows to reduce the pressure
on the interface to the external memory. Only one of the applications considered
here, KKRnano, could exploit the memory prefetching capabilities.

By applying (a selected subset of) our performance metrics to different ap-
plications running on Blue Gene/Q we obtain both information on the applica-
tion’s performance signatures as well as on the hardware characteristics of the
considered architecture and on the usability of architectural features.

Acknowledgements

This work has been performed in the framework of the “Exascale Innovation Cen-
tre” which is partially supported by the state of Nordrhein-Westfalen. We would
like to thank other members of the EIC and the developers of the applications
discussed in this paper for their support, in particular: J. Eppler, W. Homberg,
L. Arnold, R. Zeller.

† IBM and Blue Gene are trademarks of IBM in USA and/or other countries.

References

[1] IBM Blue Gene team, “Design of the IBM Blue Gene/Q compute chip,” IBM Journal of

Research and Development 57 (2013), 1:1-1:13.
[2] R. Zeller, “Linear scaling for metallic systems by the Korringa-Kohn-Rostoker multiple-

Scattering method,” Challenges and Advances in Comp. Chemistry and Physics 13, 2011.

[3] M. Winkel et al., “A massively parallel, multi-disciplinary BarnesHut tree code for
extreme-scale N-body simulations,” Comp. Phys. Comm. 183 (2012) 880.

[4] M.-O. Gewaltig, M. Diesmann, “NEST (NEural Simulation Tool),” Scholarpedia Vol. 2,
No. 4 (2007).

[5] P. F. Baumeister et al., “Analysis of scientific applications on Blue Gene/Q,” TR (2013).
[6] A. S. van Amesfoort et al. Sips, “Metrics to characterize parallel applications,” 2010.
[7] E. Strohmaier, H. Shan, “Architecture independent performance characterization and

benchmarking for scientific applications,” in: Intl. Symp. on Modeling, Analysis and Sim-

ulation of Computer and Telecommunication Systems (2004).
[8] S. Williams, A. Watermann, D. Patterson, “Roofline: an insightful visual performance

model for multicore architectures,” Comm. ACM, Vol. 52, No. 4 (2009).
[9] W. Kohn and N. Rostoker, “Solution of the Schrödinger equation in periodic lattices with

an application to metallic lithium,” Physical Review, Vol. 94, No. 5 (1954)

[10] J. Korringa, “On the calculation of the energy of a Bloch wave in a metal” Physica, Vol. 13,

No. 6 (1947)
[11] R. Freund and N. Nachtigal, “QMR: a quasi-minimal residual method for‘ non-Hermitian

linear systems,” Numerische Mathematik, Vol. 60, No. 1 (1991)
[12] J. Barnes and P. Hut, “A hierarchical O(NlogN) force-calculation algorithm,” Nature 1991


