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Abstract
Desertification is a challenge in north-eastern Brazil (NEB) that needs to be understood to 
develop sustainable land-use strategies. This study analyses regional vegetation dynamics 
in NEB and the compatibility of two NDVI data sets to support future desertification 
assessment studies in the semi-arid Caatinga biome. Vegetation variability and trends in 
NEB are analysed for 1982-2006, based on monthly AVHRR (GIMMS) NDVI data. The 
GIMMS data are compared with MODIS NDVI for the overlapping period 2001-2006. 
Existing statistical methods are applied and existing NDVI analyses in NEB expanded in 
respect to vegetation trend analysis and data set comparison.
Keywords: Normalized Difference Vegetation Index, Cerrado, Atlantic Forest, time series 
decomposition, BFAST, precipitation.

Introduction
Desertification, defined as “land degradation in arid, semiarid, and dry sub-humid areas 
resulting from various factors” [UNCED, 1992], is a serious challenge in north-eastern 
Brazil (NEB). Large areas are susceptible to or already affected by desertification processes 
[MMA, 2007]. Knowledge about desertification processes and underlying causes is needed 
to develop sustainable land-use strategies for the region. This issue motivates studying 
vegetation dynamics in NEB, as vegetation variability and trends represent important 
aspects of the complex desertification concern. Long time-series of satellite data are suitable 
to assess vegetation dynamics on a regional scale. 
Satellite remote sensing data are an established source for monitoring ecosystem dynamics 
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[Coppin et al., 2004]. Vegetation indices (VIs) have demonstrated their usefulness in 
monitoring light-dependent physiological processes such as photosynthesis, as they are 
almost linearly related to the fraction of photosynthetically active radiation (fPAR) absorbed 
by a plant canopy [Glenn et al., 2008]. Normalized Difference Vegetation Index (NDVI) 
data, calculated as a nonlinear combination of red and near infrared (NIR) reflectances 
(NIR - RED)/(NIR + RED), from the National Oceanic and Atmospheric Administration 
(NOAA) Advanced Very High Resolution Radiometer (AVHRR) with global coverage 
and 8 km resolution, have been applied for numerous regional to global vegetation studies 
since they became available in 1981 [Fensholt et al., 2009]. More recent global NDVI data 
sets provide a higher spatial resolution and are considered an improvement compared to 
AVHRR [Fensholt et al., 2009]. This includes data, e.g., from Terra Moderate Resolution 
Imaging Spectroradiometer (MODIS; 250 m to 1 km) [e.g., Huete et al., 2002; Justice et 
al., 2002; Tucker and Yager, 2011] and Système Pour l’Observation de la Terre (SPOT) 
VEGETATION mission (1 km) [e.g., Durpaire et al., 1995]. A combination of the AVHRR 
NDVI time series with those NDVI time series is desirable to combine the advantages of 
AVHRR data (longest time span) with the higher spatial resolution of the more recent data 
sets. Some studies were undertaken to evaluate the general compatibility of AVHRR data 
and MODIS NDVI showing that MODIS in general has higher NDVI values than AVHRR 
[Fensholt and Sandholt, 2005; Brown et al., 2006]. Fensholt et al. [2009] found that annual 
average value trend analysis of AVHRR NDVI from Global Inventory Modelling and 
Mapping Studies (GIMMS) data is consistent with Terra MODIS NDVI for the semi-arid 
Sahelian zone, whereas more humid areas show higher discrepancies.
Different studies have addressed vegetation characteristics in NEB by the application 
of NDVI data. Large-scale studies of entire NEB, based on GIMMS NDVI time series 
[Barbosa et al., 2006; Erasmi et al., 2009], showed a high spatial and temporal (intra- 
and inter-annual) vegetation variability. Both studies indicated that the seasonal NDVI 
oscillation is related to the seasonal distribution of precipitation (wet and dry periods). The 
NDVI follows the rainfall patterns with a displacement of one to two months [Erasmi et al., 
2009]. The highest temporal variability of NDVI as well as the highest correlation of NDVI 
and precipitation is found for the semi-arid region of the Caatinga [Erasmi et al., 2009]. 
A similar behaviour, i.e. a decrease of the ecosystem´s sensitivity to annual precipitation 
with increasing mean annual precipitation, was observed for African savannas [Chamaillé-
Jammes and Fritz, 2009] and several American biomes [Huxman et al., 2004]. 
Studies on vegetation changes (including land degradation issues) in NEB were conducted 
on different spatial scales. Local to small regional scale studies (< 4000 km2) applied, e.g., 
floristic and phytosociological inventories [da Costa et al., 2009], and SPOT images in 
combination with field work [Costa Filho et al., 2008], Landsat Thematic Mapper (TM) 
and Enhanced Thematic Mapper (ETM) imagery [Petta et al., 2005; Almeida-Filho and 
Carvalho, 2010]. Barbosa et al. [2006] analysed vegetation trends for NEB by calculating 
standardized anomalies of monthly NDVI values (regional mean values of all pixels within 
NEB). The authors identified a consistent upward trend in vegetation greenness between 
1984 and 1990 and a reversed trend in the subsequent period from 1991 to 1998. De Jong et 
al. [2012] demonstrated the importance of accounting for trend changes during the analysis 
of long-term vegetation time series. 
In this study, we analysed a 25-year monthly time series (1982-2006) of GIMMS AVHRR 



Schucknecht et al.  Vegetation variability and trends in north-eastern Brazil

42

NDVI data to characterize vegetation dynamics. We calculated the means and coefficients of 
variation of monthly NDVI values as well as different trend estimators on a pixel basis (spatial 
resolution 8 km) and as regional mean values for NEB. Trends were also analysed for monthly 
precipitation data to assess possible relations to vegetation trends. The temporal NDVI and 
precipitation development of four selected regions of interest (ROIs) was studied by applying 
time series decomposition. Monthly NDVI time series of GIMMS AVHRR and MODIS 
vegetation product (MOD13A3) from 2001-2006 were used to evaluate the compatibility of 
both data sets (on a spatial resolution of 8 km). Monthly mean values, coefficient of variation, 
and different trend estimators were calculated and compared. Additionally, a linear regression 
was performed to analyse the correlation coefficient and the determination coefficient. The 
study applies existing statistical methods to deepen existing NDVI analyses for entire NEB in 
respect of the vegetation trend analysis and the data set comparison.

Study area 
North-eastern Brazil (NEB) is located between ~1° to 19° S and ~34° to 49° W and covers 
an area of ~1.6 million km2, showing a large natural diversity with respect to, e.g., climate, 
vegetation, geology, and soil [Matschullat et al., 2012]. NEB is under tropical influence, 
characterized by a hot climate with average temperatures above 18°C in all months [IBGE, 
2002]. Hydrological settings range in extremes from semi-desert environments of the 
“Sertão” in the central eastern part (precipitation < 500 mm year -1, 9-11 dry months) to 
rainwater-rich coastal environments along the Atlantic ocean (~2000 mm year -1, no dry 
months) [IBGE, 2002; CPRM, 2009]. Precipitation shows a seasonal cycle generated by 
the shift of the Inter-tropical Convergence Zone [Nimer, 1989]. Four continental biomes 
cover NEB [IBGE, 2004a] (Fig. 1): 1) The Atlantic Forest (Mata Atlântica) stretches along 
the eastern coast of Brazil - yet only remains of the original Atlantic forest exist today 
[Morellato and Haddad, 2000]. 2) The Caatinga - a xeric scrubland and open thorn forest 
- in the central part of NEB covers substantial parts of NEB. 3) The Cerrado - a tropical 
savanna - is more densely covered than the Caatinga and stretches westward of the Caatinga. 
4) The north-western part of NEB belongs to the Amazon Rainforest, yet large areas of 
the original vegetation have been changed to secondary vegetation and agricultural areas 
[IBGE, 2004b]. Generally, the natural vegetation in NEB has been seriously altered by land 
use changes over the last few decades [Simielli, 2007] and large areas of NEB now show 
anthropogenically influenced vegetation types such as secondary vegetation or agriculture 
(Fig. 6D) [IBGE, 2002].

Data sets and methods
Satellite based vegetation indices data
We used the GIMMS NDVI data product [Tucker et al., 2004], available from the Global 
Land Cover Facility of the University of Maryland (www.landcover.org) to analyse the long-
term (25 years) vegetation variability and vegetation trends in NEB. The NDVI data set was 
derived from imagery, obtained from the AVHRR instrument on board the NOAA satellite 
series 7, 9, 11, 14, 16, and 17. The data was corrected for viewing geometry, calibration, 
volcanic aerosols, and other effects not related to vegetation change [Pinzon et al., 2005; 
Tucker et al., 2005]. The original GIMMS data set provides bi-monthly maximum value 
composites of NDVI from July 1981 to December 2006 with a spatial resolution of 8 km. 
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The global data set was cut to the extent of NEB and the bi-monthly data were aggregated 
to monthly composites by applying the arithmetic mean of each month. A linear temporal 
interpolation was applied to replace “no data” entries. We used full year data, and analysed 
a set of 300 image channels ranging from January 1982 to December 2006.
NDVI time series (2001-2006) from the MODIS on board the Earth Observing System 
Terra platform were used for the comparison of the GIMMS data with a higher spatial 
resolution data set. We analysed the NDVI time series of the MODIS vegetation indices 
product MOD13A3 with a temporal resolution of one month and a spatial resolution of 1 
km [NASA Land Processes Distribute Active Archive Center, 2010]. The MODIS NDVI 
products are “computed from atmospherically corrected bi-directional surface reflectances 
that have been masked for water, clouds, heavy aerosols, and cloud shadows” [NASA Land 
Processes Distribute Active Archive Center, 2012]. For every time step, we mosaicked the 
four tiles covering NEB and cut the resulting images to the extent of NEB. “No data” 
entries were replaced by applying a linear temporal interpolation.

Precipitation data
Gridded monthly precipitation sums from 1982-2006 with a spatial resolution of 0.5° were 
taken from the Land-surface Full Data Product Version 5 [Rudolf and Schneider, 2005; 
Rudolf et al., 2010], provided by the Global Precipitation Climatology Centre (GPCC; 
http://gpcc.dwd.de). The GPCC data set represents a Full Data Reanalysis product, based 
on global weather observations [Schneider et al., 2011]. The data set was cut to the extent 
of NEB and analysed for long-term trends and trend breaks (see below).

Statistical analysis
Basic statistical parameters like mean, standard deviation (SD), and coefficient of variation 
(CV) were calculated on a monthly basis for every pixel over the entire study period (1982-
2006) for the GIMMS data. A binary mask of the study area (excluding pixels with negative 
monthly mean values) was applied to calculate regional mean values and to exclude pixels 
with fill values (e.g., pixels of large water-bodies such as Atlantic ocean pixels) and other 
negative (non-vegetation) pixels (occurring at the transition of larger water bodies and land) 
from the calculation. These regional mean values were calculated for monthly mean NDVI 
and for certain trend parameters (see below). 

Long-term trend calculation
Time series can be decomposed in a trend, seasonal, and remainder component. The applied 
long-term trend estimators are intended to be used with de-seasoned data [Eastman, 2009]. 
Standardised anomalies (Z) of the monthly time series were calculated to remove the 
seasonality from the original time series:

Z x= −( ) [ ]µ σ/ 1

where x is the data value of the respective month, μ is the monthly mean value (i.e., January 
mean, February mean, …), and σ is the monthly standard deviation. The standardised 
anomaly time series was just applied for the long-term trend calculation, not for the general 
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statistics and the trend break analysis. 
Three types of inter-annual trend analysis and one trend significance test were performed for 
the study period 1982-2006 on a pixel basis: linear trend (OLS), median trend (Theil-Sen), 
monotonic trend (Mann-Kendall), and Mann-Kendall significance. 
The calculated linear trend is based on the slope coefficient of an ordinary least square 
regression (OLS slope) between the values of each pixel over time and a perfectly linear series. 
The result gives the rate of change per time step (e.g., for monthly data: rate of change per 
month) [Eastman, 2009]. 
The median trend after Theil-Sen is a robust non-parametric trend operator, recommended for 
the assessment of the rate of change for short or noisy series. The result (TS slope) is often 
identical to the OLS output for long time series. The Theil-Sen operator is determined by 
calculating the slope between every pair-wise combination and then assessing the median. 
The breakdown bound for the median trend is about 29%, meaning the trends expressed in 
the image must have persisted for >29% of the length of the series (in time steps) [Gilbert, 
1987; Eastman, 2009]. 
The monotonic Mann-Kendall trend represents a non-linear trend indicator measuring the degree 
to which a trend is consistently decreasing or increasing. The Mann-Kendall statistic (MK τ) 
is calculated by evaluating all pair-wise combinations of values over time at each pixel and 
counting the number decreasing or increasing with time. The Mann-Kendall statistic is the relative 
frequency of decreases minus the relative frequency of increases and ranges from -1 to 1. 
The Mann-Kendall significance (MK Z) expresses the significance of a Mann-Kendall 
trend, but is also used as a trend test for the Theil-Sen median slope operator. The resulting 
significance image shows Z-scores, expressing certain levels of significance (α): Z = ± 2.576 
refers to α = 0.01, Z = ± 1.960 refers to α = 0.05, and Z = ± 1.645 refers to α = 0.1 [Gilbert, 
1987; Eastman, 2009]. For example, if a certain region expresses a MK Z of +2.576, it means 
that the calculated Mann-Kendall trend is positive and significant at a significance level α of 
0.01. In the following, areas with a MK Z between -1.960 and +1.960 (corresponds to α ≥ 
0.05) are referred to no trend areas.

Calculation of trend breaks
The long-term trend calculations just show the overall trend of the entire study period and give 
no hints, whether different sub-periods with no or opposite trends exist within the study period. 
Therefore, we additionally performed a trend break or trend change analysis. A trend break in 
a time series indicates that the trends change between positive and negative within the analysis 
period [de Jong et al., 2012].
Four regions of interest (ROIs) were selected to show the temporal NDVI variation and 
development for small areas (location of ROI in Fig. 1). The squared ROIs with a spatial extent 
of 7 x 7 pixels (one pixel ~ 8 km x 8 km) were selected on the basis of the NDVI analysis results 
(mean, trend calculation) to meet the following requirements: I) Notable long-term trend and 
II) relative homogeneous mean monthly NDVI values. A summary of this parameters and the 
associated vegetation type [after IBGE, 2004b] for every ROI is given in Table 1. The mean of 
all pixels within a certain ROI was extracted for each time step to create a NDVI time series of 
a ROI. We applied the Breaks For Additive Seasonal and Trend (BFAST) method developed 
by Verbesselt et al. [2010a, b] to detect changes in the seasonal and trend component of the ROI 
times series. BFAST combines time series decomposition into trend, seasonal, and remainder 
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component, and methods for change detection within time series.

Table 1 - Vegetation characteristics of the ROIs used for the BFAST analysis. Mean NDVI, 
CV, and MK Z refer to the GIMMS NDVI time series (1982-2006); given is the mean, min, 
and max of all pixels within the ROI. Simplified vegetation types according to Fig. 6D and 
after IBGE [2002]: Sav = savanna, Ste = steppe-like savanna, Ant = anthropogenically 
influenced regions (secondary vegetation or agriculture).

ROI
Mean NDVI CV [%] of NDVI MK Z Vegetation 

typemin max mean min max mean min max mean

#1 0.43 0.54 0.49 12.5 22.7 18.2 3.71 9.40 6.59 Sav

#2 0.51 0.64 0.56 14.2 29.2 21.4 -6.89 1.16 -3.01
almost all 
Ant, very 
few Sav

#3 0.44 0.62 0.50 18.8 36.3 31.4 0.90 5.76 3.62 about 2/3 
Ste, 1/3 Ant

#4 0.37 0.57 0.45 25.5 43.1 36.4 -7.06 1.47 -3.00 mainly Ant, 
few Ste

The approach is available in the BFAST package for R [R Development Core Team, 
2012] from CRAN (http://cran.r-project.org/web/packages/bfast/index.html). A detailed 
description of the motivation and algorithms is given in the afore-mentioned publications. 
BFAST can be applied to seasonal and non-seasonal time series, requiring only the 
parameterisation of the minimal segment size between potentially detected breaks (h). In 
our analysis we set h to 0.15 in line with Verbesselt et al. [2010a] and de Jong et al. [2012]. 
Additionally, the BFAST method was applied to the monthly precipitation data of the same 
four ROIs as for the NDVI data to compare the trend behaviour of both variables.

Comparison of NDVI data sets
The prerequisite condition to combine NDVI data from different data sets (acquired at 
different time periods) is that they show similar NDVI signals over time. To test this 
assumption for the GIMMS and MODIS data sets, we evaluated monthly NDVI values 
for the overlapping period of 2001-2006. Therefore, the MOD13A3 data was re-sampled 
to the spatial resolution of the GIMMS data set (8 km) by applying a bilinear method. We 
calculated the monthly mean, the coefficient of variation, and different trend estimators 
(see section “Long-term trend calculation”) of both data sets for the period 2001-2006 
and compared the resulting images of both data sets as well as a difference image for the 
monthly mean. Additionally, we performed a linear regression between monthly NDVI data 
of GIMMS and MODIS (with MODIS NDVI as the independent variable), and evaluated 
the coefficient of correlation (r) and the coefficient of determination (r²). 
In terms of a user-based analysis, we want to examine, how good both datasets correlate 
and if certain natural factors influence the compatibility. Therefore, we set the results of 
the data set comparison in relation to vegetation characteristics like mean NDVI and CV, 
and cloud cover (see below). It is not the aim of this work to explain the technical reasons 
(e.g., effects of bidirectional reflectance distribution function, spectral response function, 
physical sensor settings) for differences in both data sets. 
Clouds can obstruct the Earth´s surface and introduce noise to the data. The use of composite 
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data is one possibility to deal with the effects introduced by clouds, but may not always work in 
regions with persistent cloud cover. We calculated the monthly mean of the quality information 
(pixel reliability) of the MODIS data and compared the resulting image with the pattern in the 
correlation image to evaluate the potential influence of clouds (image quality in general) on the 
correlation analysis. The pixel reliability of the MOD13A3 data includes the following classes: 
0 refers to good data, 1 to marginal data, 2 to snow/ice, and 3 to cloudy data. 
General image pre-processing and calculation of basic statistics were done with ENVI 4.7. 
Filtering, de-seasonalization, linear modelling, and trend calculations were performed with 
IDRISI 16.05 Taiga Edition. The maps were created with ESRI® ArcMap™ 9.3.1.

Results and discussion 
Vegetation variability and vegetation trends in NEB
The spatial and temporal variability of the NDVI in NEB was studied in detail by Barbosa 
et al. [2006] for the period 1982-2001 and by Erasmi et al. [2009] for the period 1982-
2006. Therefore, we briefly present an overview on the vegetation variability to support 
the following trend analysis. Mean NDVI (Fig. 1A) and coefficient of variation (CV; Fig. 
1B) indicate high vegetation variability in space and time for NEB. The major biomes of 
the study area - Caatinga, Cerrado, and Atlantic Forest - and partly even certain vegetation 
types (Fig. 6D) are reflected by mean NDVI and CV. The Amazon Rainforest biome in the 
extreme northwest is not clearly distinguishable from the Cerrado. The Caatinga region 
represents the lowest mean NDVI and the highest temporal variation as a consequence 
of the relatively low annual precipitation and the more extended dry periods. NEB is 
characterized by a mean NDVI of 0.52 for the period 1982-2006.
The applied trend estimators (OLS slope, TS slope, MK τ) reveal similar trend patterns and 
a similar amount of areas with negative/positive trend estimator values (Tab. 2) for NEB. 
Therefore, only the Mann-Kendall significance with an indication of trend direction and 
trend significance is shown in the figure (Fig. 1C). Negative (positive) trends of red/near-
infrared vegetation indices are referred as browning (greening) [de Jong et al., 2012], as 
these indices indicate chlorophyll abundance and are therefore related to vegetation amount 
and photosynthetic capacity [Myneni et al., 1995].

Table 2 - Trend analysis results for entire NEB for monthly NDVI time series of GIMMS 
(1982-2006). OSL = ordinary least square, TS = Theil-Sen, MK = Mann-Kendall. 

Trend 
estimator/

significance
Mean

Area with 
negative 

values [%]

Area with 
positive 

values [%]

Area with 
significant negative 

trend [%]

Area with 
significant positive 

trend [%]

OSL slope 0.0006 33.18 66.82 / /

TS slope 0.0005 36.86 63.14 / /

MK τ 0.0299 36.36 63.64 / /

MK Z 0.7716 36.37 63.63 10.44 27.62

About 10% of NEB are affected by significantly negative NDVI trends (α = 0.05) and about 28% 
by positive trends over the 1982-2006 period. Northwestern NEB is dominated by a greening 
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trend. Other adjacent areas with a greening trend are for example located in the southwest and in 
central NEB (southwest of Ceará). Larger areas with a browning trend are among others located in 
the southwest of Rio Grande do Norte and close to the coast in southern Sergipe and northeastern 
Bahia. The overall trend pattern looks quite patchy over NEB (Fig. 1C).

Figure 1 - Monthly NDVI values from GIMMS and monthly precipitation sums for 
1982-2006. A) Monthly mean NDVI; B) coefficient of variation of monthly NDVI; C) 
Mann-Kendall significance of de-seasoned NDVI time series (standardised anomalies): 
Z = ± 2.576 refers to α= 0.01, Z = ± 1.960 refers to α= 0.05, Z = ± 1.645 refers to α= 0. 1; D) 
Mann-Kendall significance of de-seasoned precipitation time series. Black lines indicate 
biome borders after IBGE [2004a]: AmR = Amazon Rainforest; Cer = Cerrado; Caa = 
Caatinga; AtF = Atlantic Forest. Grey lines represent state borders: AL = Alagoas; BA 
= Bahia; CE = Ceará; MA = Maranhão; PB = Paraíba; PE = Pernambuco; PI = Piauí; 
RN = Rio Grande do Norte; SE = Sergipe.
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De Jong et al. [2012] studied global greening and browning trends based on GIMMS NDVI in 
the period 1982-2008 and highlighted the importance to consider trend changes (break points; 
change between greening and browning) in long-term analysis. NDVI trend changes are especially 
relevant for NEB, as NEB was one of the regions with the highest amount of breakpoints (mainly 
two to four), whereby around 60% of the global land area were affected by no or just one trend 
change [de Jong et al., 2012]. The time series analysis of ROIs in this study illustrates exemplarily 
different trend behaviour and trend changes in NEB (Fig. 2). 

Figure 2 - Fitted seasonal, trend, and remainder components for monthly GIMMS 
NDVI time series (1982-2006) of certain ROIs, generated by BFAST approach.  
A) ROI #1, B), ROI #2, C) ROI #3, D) ROI #4.

All four regions show no breaks in the seasonal component. ROI #2 and ROI #4 present 
a continuous browning trend over the entire study period. ROI #1 shows a trend break at 
March 1989, separating two greening periods. ROI #3 is characterised by trend break at 
January 1987, December 1990, and December 1994, separating three greening and two 
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browning periods. The four examples already indicate a variety of different trends and trend 
breaks in NEB. Further analysis about the temporal occurrence of trend breaks in entire 
NEB need to be conducted to verify, if certain breakpoints occur over a larger area and are 
potentially caused by the same trigger. 
Vegetation trends and their changes in NEB may relate to different triggers that could 
change from region to region. Erasmi et al. [2009] showed that vegetation greenness in 
NEB is strongly related to the seasonal precipitation cycle, which is also visible in the 
series of the ROIs (Fig. 3). Therefore, changes in precipitation amount and distribution may 
induce vegetation changes. Precipitation trends in NEB are sensitive to the duration and the 
beginning and end of the evaluated time period. Precipitation trends for the period 1982-
2006 vary across NEB (Fig. 1D); yet no significant trend emerges for most of NEB.

Figure 3 - Time series of monthly GIMMS NDVI (red) and GPCC 
precipitation (blue) data for the selected regions of interest.  
A) ROI #1; B) ROI #2; C) ROI #3; D) ROI #4.
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Figure 4 - Fitted seasonal, trend, and remainder components for 
monthly GPCC precipitation time series of certain ROIs generated by 
BFAST approach. A) ROI #1; B)  ROI #2; C) ROI #3; D) ROI #4.

A larger adjacent area with significant negative precipitation trends is located in north-
eastern Bahia and south-western Sergipe. One example for a larger area with a positive 
precipitation trend stretches from central Paraíba over central Pernambuco to northern 
Alagoas. The comparison of the trend component of NDVI (Fig. 2) and precipitation data 
(Fig. 4) for the selected ROIs, and the visual inspections of Figs. 1C and 1D show that the 
direction or absence of vegetation trends often do not match with the precipitation trend. 
For example, the pixels in the ROIs predominantly show a positive or negative NDVI long-
term trend and mostly no long-term precipitation trend. While ROI #1 and ROI #3 show 
trend breaks in the NDVI data, just ROI #4 shows a trend break in the precipitation data. 
Although the comparison of NDVI and precipitation trends should be further expanded, 
these short considerations suggest that precipitation changes alone do not sufficiently 
explain the vegetation trends.
Land use changes and land degradation are important issues in the study area [Petta et al., 
2005; MMA, 2007; Simielli, 2007; Costa Filho et al., 2008; da Costa et al., 2009; Boori 
and Amaro, 2010] and may lead to abrupt or gradual vegetation changes. However, the 
evaluation of land use changes and land degradation needs further information - especially 
ground truth data - than just coarse and moderate resolution NDVI data.
Strong El Niño-Southern Oscillation (ENSO) events probably also cause trend changes 
in the vegetation, as major droughts in NEB are related to El Niño phases [Rao, 1995; 
Hastenrath, 2006; Haylock et al., 2006]. Not all El Niño phases result in a drought in NEB, 
however [Kane, 1997; Erasmi et al., 2009]. Recently, Rodrigues et al. [2011] showed that 
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the inter-El Niño variability has to be taken into account, when accessing the effects of El 
Niño phases on precipitation in NEB. The authors highlighted that strong and long (weak 
and short) El Niño phases lead to dry (wet) conditions in NEB. The influence of El Nino 
variability on vegetation and trend changes should be analysed in future studies

Comparison of GIMMS and MODIS data set for 2001-2006
GIMMS and MODIS mean monthly NDVI and coefficients of variation show similar spatial 
patterns for NEB and are strongly linked with the major biomes of the study area (Fig. 5). 
MODIS data show predominantly higher mean NDVI values (Fig. 6B). Larger adjacent areas 
with differences (GIMMS - MODIS) of < -0.1 occur in north-western and south-eastern NEB.

Figure 5 - Comparison of monthly NDVI values from GIMMS and MOD13A3 
(resampled to 8 km resolution) for 2001-2006. A) Monthly mean of GIMMS; 
B) monthly CV of GIMMS; C) monthly mean of MODIS; D) monthly CV of 
MODIS. Black lines indicate biome borders after IBGE [2004a]: AmR = Amazon 
Rainforest; Cer = Cerrado; Caa = Caatinga; AtF = Atlantic Forest.
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Figure 6 - Comparison of monthly NDVI values from GIMMS and MOD13A3 (re-sampled 
to 8 km spatial resolution) for 2001-2006. A) Correlation coefficient (r); B) difference of mean 
monthly NDVI: GIMMSmean - MODISmean; C) mean pixel reliability (PR) of monthly MODIS 
NDVI (0 = good data, 1 = marginal data, 2 = snow/ice, 3 = cloudy); D) Simplified vegetation 
types after IBGE [2004b]: For = forest, Sav = savanna, Sav t = savanna transition, Sav/Ste = 
savanna/steppe-like savanna, Ste = steppe-like savanna, Ste t = steppe-like savanna transition, 
Flu = fluviomarine/marine influenced vegetation, Ant = anthropogenically influenced regions 
(secondary vegetation or agriculture). Black lines indicate biome borders after IBGE [2004a]: 
AmR = Amazon Rainforest; Cer = Cerrado; Caa = Caatinga; AtF = Atlantic Forest.

The linear modelling between the GIMMS and the MODIS data sets results in a regional 
mean correlation coefficient of 0.71 for NEB, with strong intra-regional variability (Fig. 
6A). Time series of both data sets for regions with different r values are exemplarily shown 
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for the four ROIs (Fig. 7). The highest correlation (r ≥ 0.8) between GIMMS and MODIS 
NDVI can be found in the central part of NEB, whereas the lowest correlation (r < 0.5) is 
given along the eastern coast, the western part, and in isolated areas of central NEB (Fig. 
6A). There are just a few pixels with negative r values that relate to water or partly wet 
areas and cities. The regional mean coefficient of determination for the entire study area is 
0.56. The GIMMS data explains about 70 to 90% of the variance in the MODIS data in the 
high correlation areas in central NEB, and less than 50% in the low correlation areas.

Figure 7 - Time series comparison of monthly NDVI data from GIMMS (red) and MODIS 
(blue) for the selected regions of interest. A) ROI #1; B) ROI #2; C) ROI #3; D) ROI #4; the 
corresponding correlation coefficient is displayed in the sub-figures.

The correlation between GIMMS and MODIS NDVI data seems to depend on vegetation 
properties like mean NDVI, CV, and hence vegetation type. In general, low r values relate 
to high mean NDVI values and vice versa. For example, low r value regions along the 
eastern coast represent the Atlantic Forest biome, low r value regions in the northwest 
correspond to the Amazon Rainforest and Cerrado biome; the larger isolated low r patch in 
central NEB represents the eastern part of the Diamantina plateau and mountains (Planaltos 
e Serras da Diamantina), and the high r value areas in central NEB roughly display the 
Caatinga biome. One larger exception from the described relationship between mean NDVI 
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and r value is found in south-western NEB. Here, the border between higher and lower 
r values does not mirror the border between the Caatinga and Cerrado biome. Instead, 
the lower r value regions represent the savanna vegetation type and the higher r values 
regions steppe-like savanna (typical for the Caatinga biome), seasonal deciduous forest, 
and transition vegetation (Fig. 6D). The pattern of the coefficient of variation of monthly 
NDVI values resembles the pattern of the correlation coefficient (partly even better than the 
mean NDVI): Regions with CV < 20% match approximately to regions with r < 0.5, and 
regions with higher CV (20-50%) show higher r values (≥ 0.8). Basically, the correlation 
between GIMMS and MODIS NDVI data is higher for vegetation with a high correlation 
coefficient and lower mean NDVI values.

Figure 8 - Comparison of monthly NDVI values from GIMMS (top) and MOD13A3 
(re-sampled to 8 km resolution; bottom) for 2001-2006. A+D) Slope of the linear trend 
calculated by ordinary least squares; B+E) slope of the Theil-Sen estimator; C+F) Mann-
Kendall significance. Black lines indicate biome borders after IBGE [2004a]: AmR = 
Amazon Rainforest; Cer = Cerrado; Caa = Caatinga; AtF = Atlantic Forest.

According to the mean image of pixel reliability of the MODIS data (Fig. 6C), the best 
pixel reliability is found in the central part of NEB. The worst pixel reliability is associated 
with the areas along the east coast and in the northwest, which are characterised by the 
highest precipitation in NEB (Erasmi et al., 2009). The east-coast and northwest areas also 
represent regions with the lowest correlation coefficient. Therefore, one may assume that 
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cloud cover influences the compatibility of both data sets. But the patterns of pixel reliability 
(Fig. 6C) and correlation coefficient (Fig. 6A) in the southwest differ notably. While the pixel 
reliability is very good in the southwest, the correlation coefficient is two-part with low r 
values in the western part of the Cerrado and high values in the eastern part. We conclude 
that pixel reliability (mainly cloud cover) may have a certain influence on the compatibility 
of the data sets, but the more important factors are vegetation characteristics, as their pattern 
(especially CV) fit better to the pattern of the correlation coefficient.
All three trend estimators (OLS slope, TS slope, MK τ) show similar trend pattern for each 
NDVI data set (Fig. 8). The trends of the GIMMS and MODIS data set coincide rather 
well (mean difference of OLS slope of GIMMS - MODIS for entire NEB = 0.0014). Major 
differences are mainly related to north-western NEB, where the GIMMS data indicates 
predominantly no trend (α ≥ 0.05), and MODIS shows a negative trend. Another region with 
notably different trend behaviour is the coastal stripe, ranging from the state of Pernambuco 
via Alagoas to Sergipe. Both, the north-western and the eastern coast receive the highest mean 
precipitation sums in NEB. Similar results were found by Fensholt et al. [2009] for average 
annual trend analysis of GIMMS and MODIS data. They observed a good correspondence 
between the data sets for the semiarid Sahelian zone (200 to 1000 mm annual precipitation) 
and notable differences for regions with > 1000 mm annual precipitation. 
In summary, the comparison between monthly NDVI values of the GIMMS and the MODIS 
data set reveal a varying compatibility of both data sets over NEB and partly confirm results 
of other studies like the predominantly higher NDVI values of the MODIS data [Fensholt 
and Sandholt, 2005; Brown et al., 2006]. Generally, the correlation between GIMMS and 
MODIS NDVI is higher for the lower NDVI regions, which are mainly attributed to the 
Caatinga biome. The trend analysis shows roughly similar pattern for both data sets. 

Conclusions
The present study analysed GIMMS NDVI time series (1982-2006) to characterize long-term 
vegetation variability and trends in NEB. Monthly mean NDVI and monthly CV were used 
to assess the vegetation variability. Three trend estimators and the Mann-Kendall significance 
were calculated to evaluate temporal trends. Another aim of the study was the evaluation of 
the compatibility of GIMMS and MODIS NDVI data to support future data combination 
attempts. Therefore, both data sets were compared for the overlapping period 2001-2006 with 
respect to mean NDVI, CV, and trend behaviour.
Vegetation greenness is highly variable in space and time for NEB. Mean monthly NDVI and 
CV reflect the major biomes of NEB (and partly even vegetation types) with highest values in 
the Atlantic Forest biome along the Atlantic coast and in the Cerrado and Amazon Rainforest 
biome in western NEB. The central part of NEB, representing the Caatinga biome, shows 
the lowest mean NDVI values and the highest coefficient of variation. Besides the seasonal 
variability, NEB is characterized by a high inter-annual variability of vegetation greenness. 
Long-term trend patterns of NDVI values vary notably within the study area. About 10% of 
the NEB area are affected by significant negative trends and about 28% by significant positive 
trends in the period 1982-2006. The overall trend pattern over entire NEB looks patchy with 
some larger adjacent areas of positive trend in the northwest and southwest, and some larger 
adjacent areas of negative trend in the central part and southeast of NEB. The analysis of 
ROIs indicate the occurrence of different browning and greening periods in NEB, which also 
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differ from place to place.
Future land degradation studies need to consider the high vegetation variability and trend 
changes in NEB. We recommend using time series instead of single pictures from some 
years to account for the natural vegetation variability in land degradation studies applying 
vegetation indices to evaluate vegetation changes. It is also important to verify the results 
obtained by NDVI data with ground truth data. Breaks in vegetation trends indicate abrupt 
vegetation changes and should be analysed in detail in future long-term studies.
The comparison between the GIMMS and MODIS NDVI values for the overlapping period 
reveal a strong variability across NEB. Generally, areas with a higher CV (≥ 20%) and a lower 
mean NDVI (e.g., Caatinga) show a good correlation. For areas with a low CV (<20%) and a 
higher mean NDVI (e.g., along the Atlantic coast and along the western border of NEB) the 
GIMMS NDVI data explain less than 50% of the variance of the MODIS NDVI data. 
While the mean NDVI shows partly notable differences between both data sets, the trend 
analysis shows more or less similar patterns. For the GIMMS data, about 35% (5%) of NEB 
were affected by significant positive (negative) trends for the period 2001-2006, and for the 
MODIS, about 35% (13%) of the area were affected by positive (negative) trends. Larger 
trend differences between the two data sets occur in the northwest and along the east coast, 
whereby MODIS shows more negative trends.
Altogether, GIMMS and MODIS NDVI data seem to be more compatible for the dryer 
central part of NEB. Thereby, the trend pattern of both data sets match better than the mean 
NDVI. Future studies with the attempt to combine both data sets (e.g., for data continuity 
and up-scaling reasons) should try to increase the comparability between GIMMS and 
MODIS NDVI data - especially for regions with higher mean NDVI. 
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