
Software Defect Prediction Using Neural Network
Based SMOTE

Rizal Broer Bahaweres1, Fajar Agustian2, Irman Hermadi 3, Arif Imam Suroso4, Yandra Arkeman5

1,3Computer Science Dept. IPB University
1,2Department of Informatics, Syarif Hidayatullah State Islamic University, Jakarta, Indonesia

4School of Business, IPB University, Bogor Indonesia
5Department of Agro-Industrial Tech., IPB University, Bogor, Indonesia

rizalbroer@computer.org, fajar.agustian17@mhs.uinjkt.ac.id, irmanhermadi@apps.ipb.ac.id, Arifimamsuroso@apps.ipb.ac.id,
yandra.arkeman@gmail.com

Abstract—Software defect prediction is a practical approach
to improve the quality and efficiency of time and costs for
software testing by focusing on defect modules. The dataset
of software defect prediction naturally has a class imbalance
problem with very few defective modules compared to non-
defective modules. This situation has a negative impact on the
Neural Network, which can lead to overfitting and poor accuracy.
Synthetic Minority Over-sampling Technique (SMOTE) is one
of the popular techniques that can solve the problem of class
imbalance. However, Neural Network and SMOTE both have
hyperparameters which must be determined by the user before
the modelling process. In this study, we applied the Neural
Networks Based SMOTE, a combination of Neural Network
and SMOTE with each hyperparameter of SMOTE and Neural
Network that are optimized using random search to solve the
class imbalance problem in the six NASA datasets. The results
use a 5*5 cross-validation show that increases Bal by 25.48% and
Recall by 45.99% compared to the original Neural Network. We
also compare the performance of Neural Network-based SMOTE
with ”Traditional” Machine Learning-based SMOTE. The Neural
Network-based SMOTE takes first place in the average rank.

Index Terms—Software Defect Prediction, Class Imbalance,
Synthetic Minority Over-sampling Technique, Neural Network

I. INTRODUCTION

As times evolve, the need for information technology is in-
creasing. As software systems grow quickly they also become
more complicated. Consequently, this increases costs due to
the need for thorough testing processes. A survey indicated
that 23% of this cost was spent on quality assurance and testing
[1]. Software defect prediction provides a method to reduce the
costs of testing. With software prediction, it can predict defect
modules quickly with machine learning methods [2]. Once a
defective module is predicted, it becomes easier to allocate
limited resources by prioritizing specific defective modules for
testing [3]. The purpose of predicting software defects is to
determine which modules will be prioritized before testing, the
next testing process can be done manually or automatically [4].

Previous studies reported, using classification algorithms
such as Neural Network [1] for software defect prediction.
The benefits of applying the Neural Network algorithm are
its capacity to overcome nonlinear data, learn and capture
features from data automatically so that it can produce more

accurate predictions without the feature selection process
[3]. However, the problem that is encountered in software
defect prediction is the existence of a dataset that contains
a class imbalance between the defective module and the non-
defective module [5]. Neural Network that is trained using
a dataset with class imbalance can lead to overfitting and
poor performance [6]. Algorithms will tend to be biassed
towards non-defective module, and in the extreme case, this
will ignore defective module [2]. Another problem with neural
networks is the determination of hyperparameters, such as the
number of hidden layer, Neurons, and Learning Rate before
the training process. Neural Network performance depends on
proper hyperparameter settings [7].

Several studies introduce techniques to overcome class
imbalances. There are algorithmic approaches and data ap-
proaches. In [1] proposed an algorithmic approach method for
class imbalance problems using a cost-sensitive neural net-
work. This method can improve the classification performance,
but the results are not significant. They recommend using a
data approach to solve the class imbalance problem. Research
by [8] undersampled non-defect classes to balance training
data. The use of undersampled results in reduced information
needed by the model for the training process. The alternative is
to use one popular oversampling method, SMOTE (Synthetic
Minority Over Sampling) [9]. SMOTE works by adding a
minority class with randomly created instances [9].

The use of SMOTE for class imbalance problems in soft-
ware defect prediction has been widely used and has been
proven to improve classification performance in several studies
such as [2] [10]. SMOTE has parameter control which can be
optimized, and they did not consider the optimization param-
eter of SMOTE. In [11] shows the advantages of SMOTE
parameter optimization; the method is called SMOTUNED.
SMOTUNED performance outperforms SMOTE significantly.
However, in that study, they did not consider optimizing the
hyperparameter of the classifier.

Based on the explanation above, we propose Neural Net-
work based SMOTE, a combination of Neural Network and
SMOTE with each hyperparameters that are optimized using
random search . We optimized the number of oversampling

Proc. EECSI 2020 - 1-2 October 2020

71



ratios and the number of SMOTE neighbors, then we opti-
mized the number of hidden layers, neurons, Learning Rate,
and Drop-outs of Neural Network. We use bal to optimize,
and recall as our evaluation metrics to compare the proposed
model. We also compare the performance of Neural Network
based SMOTE with ”traditional” machine learning based
SMOTE. We use six Nasa Software project as our dataset.

The research questions in this study are as follows:
1) Can Neural Network based SMOTE improve perfor-

mance of original Neural Network on software defect
prediction?

2) How does the performance of the Neural Network
based SMOTE compare to ”traditional” machine learn-
ing based SMOTE on software defect prediction?

We identify the scope of the problem in this study as:
1) The dataset used is 6 NASA PROMISE and TERA-

PROMISE datasets that are public.
2) The tools used are python-3.7, sci-kit Learn [12], Ten-

sorflow.Keras [13], and imblearn [14].

II. LITERATURE REVIEW

A. Related Search

TABLE I
RELATED SEARCH

Ref Neural
Network SMOTE NASA

Dataset

Hyperpa-
rameter
Optimi-
zation

Method

[3] X
DNN

Regression

[15] X
Ensemble

Oversampling
with Many ML

[5] X
KMFOS

with Many
ML

[10] X X
Ensemble

SMOTE with
Many ML

[2] X X
SMOTE with
Ensemble ML

[16] X X X DNN

[1] X X
Cost-Sensitive

NN

Author X X X X
SMOTE with

NN

Table I describes the research related to the study. It is
evident the studies reviewed apply different approaches to
overcome the problem of class imbalance in software defect
prediction. In some cases, the authors have applied several
types of oversampling technique. The data approach is carried
out by [15] by combining three techniques oversampling, ROS
(Random Oversampling), MWMOTE (Majority Weighted Mi-
nority Oversampling Technique), and Fidos (Fuzzy-Based on
Feature and Instance Recovery using Information decomposi-
tion). in [5], the authors applied Cluster-Based Oversampling
noise filtering (CLNI). in [10], the authors applied SMOTE
with Bagging and Naive Bayes techniques.

In [1], the author has used a cost-sensitive neural network
with ABC algorithm, which can overcome class imbalances
even though the results obtained are not significant. Deep
learning techniques were applied in [3] to get the number of
defect modules with DNN for regression. in [16], the authors
implemented a deep neural network to classify the file level
using static metrics.

From the above research, hyperparameter optimization was
not explored in the imbalance problem of software defect
prediction. We combine SMOTE and Neural Network with
hyperparameter random search optimization.

B. Synthetic Minority Oversampling Technique (SMOTE)

Fig. 1. PC4 SMOTE Distribution

SMOTE is an oversampling method that is often used
to overcome the problem of class imbalance and was first
introduced by Chawla, et al [9]. The SMOTE method used by
Chawla [9] is a different version of SMOTE from the existing
oversampling method. To handle the class imbalance, SMOTE
method adds the amount of data to the free class with synthesis
data (synthetic data). Synthesis data were obtained from k-NN
(k-nearest neighbor).

SMOTE has 2 parameters that can be adjusted - ratio,
and number of neighbors. The ratio parameter is defined as
the number of major and minor classes and The number
of neighbors is the number of closest neighbours to create
syntactic data [14].

There are differences in the processes for producing syn-
thetic data on a numerical and category scale. When using
numerical data calculation, it is based on euclidian distance;

72



whereas for categorical data, the calculation uses mode values.
[9]. In this study, the data used are numerical. Fig 1 is a sample
distribution made by SMOTE. Synthetic instances are shown
in red.

C. Neural Network (NN)

Neural Network is a type of computational approach or
processor / computer model based on the human brain [17].
Neural Networks consist of many simple, connected proces-
sors called neurons [18]. Neural Networks consist of three
layers: 1) the input layer (at least one), 2) hidden, and 3) an
output [1]. The problem with Neural Networks in predicting
software defects is the number of hyperparameters must be
determined before training begins so that it is known that the
performance of Neural Networks generalization depends on
good hyperparameter settings [7].

The hyperparameter of a neural network can be optimized
according to three factors: 1) hidden layer, 2) neurons, 3)
learning rate. There are two techniques for Hyperparameter,
Grid Search and Random Search. When using grid search we
try each possible hyperparameter to optimize. The drawbacks
with this method are the expensive running costs - as well, the
process is time-consuming. An alternative method is a random
search, we attempt random hyperparameter to optimize, that
the result can reach near optimum [19].

D. Recall and Balance (bal)

A good method for overcoming class imbalance in predict-
ing software defects is to classify defective and non- defective
samples accurately. Recall and balance are used as a measure
of performance in evaluating the methods used in [5].

Recall is a comparison of the number of samples that are
predicted to be defective and true positive [5]. The perfor-
mance of the method used is considered to be better when the
recall value is greater.

Recall =
TP

TP + FN
(1)

bal is the balance between recall and pf values. Pf is the
ratio of the number of non-defect samples that are incorrectly
predicted by the number of non-defect samples. The greater
the value of bal, the better the results of the method.

bal = 1−
√
(1−Recall)2 + pf2

√
2

(2)

III. RESEARCH METHODOLOGY

Fig 2 shows the methodology that will be used in this
study. The first stage is collecting NASA datasets. After that,
we applied the normalization process to each dataset. We
divide the data into 5*5 cross-validation training, validation,
and testing data. Training and validation data were used to
search for SMOTE and Neural Network hyperparameters. The
hyperparameter search process uses random search by bal
optimization on the performance results of the neural network
and SMOTE classifications, and hyperparameter optimization
use data validation. Best hyperparameter will be tested using

testing data. The evaluation performance that we will use is
Bal and Recall. More explanation will be discussed in the next
subsection.

Fig. 2. Methodology

A. Dataset

TABLE II
DATASET

Dataset # Minority # Majority Features # Defect Rate (%)
JM1 2103 8777 22 19.33
KC1 326 1783 22 15.46
KC2 107 415 22 20.5
PC1 77 1032 22 6.94
PC3 134 943 38 12.44
PC4 178 1280 38 12.21

In this study, we used the NASA Promise and Tera-Promise
dataset, which is a public dataset. The dataset selected has a
class imbalance between the defective module and the non-
defective module. TABLE II is a list of datasets that will be
used for research. All features in the dataset will be used in
the modelling process.

B. Min-Max Normalization

Data Normalization is a technique commonly used in pre-
processing datasets. In this study, the normalization method
used is min-max normalization [20]. This technique is used
to improve performance and speed up the training process by
changing the distribution scale to 0 and 1. We use min-max
normalization because the distribution of the defect prediction
software dataset is very variant.

C. Cross Validation

In the distribution of datasets, the technique we employ is
5*5 folds cross-validation. We divide one fold for testing data
and the remaining folds for training data. Training data is used
to find the optimal hyperparameter by dividing it into four

73



TABLE III
LIST OF SMOTE PARAMETER

Parameter optimization Range Desc
Neighbors [1,10] Number of neighbors

Ratio [0.8,1]
Number of Ratio between major and
minor instance
after oversampling

TABLE IV
LIST OF NEURAL NETWORK HYPERPARAMETER

Parameter optimization Range Description
Learning Rate [0.001, 0.01] The initial learning rate used

Drop Out [0.1,0.5] The percentage dropping out
units (both hidden and visible)

Neurons [25,100] The number of neurons each
hidden layer

Hidden Layer [1,5] The number of hidden layer

Batch Size [64] Total number of training exam-
ples present in a single batch

Epoch [15]
The total of entire dataset is
passed forward and backward
through the neural network

folds training data for hyperparameter optimization and one
fold for data validation. The best hyperparameter will be tested
by testing data.

We realize that the nature of cross-validation is that all
folds can be training, validation, and testing data. However,
for hyperparameter optimization, we use data that is different
from the testing data, so that there will be no leak, and the
testing data will remain unseen. Each fold will have a different
hyperparameter.

D. SMOTE

After the data is divided into training data and validation
data, train set will be applied SMOTE. Classes containing
defective modules will be made synthetic instances so that
it offsets the majority class, namely classes that contain non-
defective modules. The tools we use are SMOTE imblearn. We
need to emphasize only the training data that will be applied
by SMOTE.

E. Neural Network Architecture

The Neural Network topology that we use is rectangular,
fully connected. The activation function that will be used is
ReLU (rectified linear unit) at the input and hidden layer. At
the output layer, the activation function used is sigmoid with
the aim of binary classification. Realizing that the optimal
hyperparameter depends on the dataset used in the training
data, we use different hyperparameters in each dataset.

F. Hyperparameter Optimization

As explained in the previous sub-section, the optimal neural
network hyperparameter can differ depending on the dataset
as well as the number of ratios and neighbours in SMOTE. We
use the Random Search CV (Cross Validation) [19] to obtain
the optimal hyperparameter. We use Bal as our measurement
on hyperparameter optimization process, where the higher the

true positive rate (recall) and the lower false alarm are, the
higher the performance of the bal. The hyperparameter that
we use is the best in the first fifty iterations.

Fig 3 shows the diagram activity of Hyperparameter Opti-
mization of Neural Network and SMOTE. The Neural Network
Hyperparameter that will be optimized can be seen in Table
IV. We use fixed bath sizes and Epoch, which are 64 and
15, respectively. We apply Dropout on each layer to avoid
overfitting in the training process.

The SMOTE parameter can be seen in Table III. The
parameters we will optimize are the number of neighbors and
the number of ratio.

Fig. 3. Hyperparameter Optimization Neural Network Based SMOTE

G. Predict and Classification Performance

After the model is tested, performance will be calculated
using the balance and recall that have been mentioned in the
literature study. The measurement is used to measure the pre-
diction of software defects in unbalanced datasets. The higher
the balance and recall values, the better the performance of the
model. Recall is used because in predicting software defects,
it is more important to predict modules that are defective and
true than predicting modules that are not defective.

IV. RESULT AND DISCUSSION

We now answer our research questions:

74



Fig. 4. Comparison of Recall Neural Network based SMOTE and Neural
Network

A. Can Neural Network based SMOTE improve performance
of original Neural Network on software defect prediction?

Our test is done by combining the neural network algo-
rithm with the oversampling technique, namely SMOTE. Each
hyperparameter of SMOTE and Neural Network is optimized
using random search. The results are derived from the average
bal and recall on the test set of each fold. each fold is tested
with a different hyperparameter depending on the best hy-
perparameter selected during the hyperparameter optimization
process. Hyperparameter is chosen based on the highest bal.
in addition, we count recall.

These tests can be seen in Fig 4 shows the results of
recall from various datasets. The recall results vary depending
on the dataset. The NN algorithm with SMOTE significantly
increases recall by 45.99%. Based on Fig 4, all datasets that
implemented Neural Network based SMOTE have a higher
recall compared to original Neural Network. Based on the
graph, SMOTE has an influence on the Recall calculation on
the Neural Network.

Fig. 5. Comparison of Bal Neural Network based SMOTE and Neural
Network

TABLE V
LIST OF HYPERPARAMETER EACH ALGORITHM

Algo Hyperparameter optimization
Range Desc

RF Estimators [100,300] The Number of tress
in the forest.

Max Depth [5,10] The maximum depth
of the tree

KNN Leaf Size [1,100] Leaf size passed to
BallTree.

Neighbors [1,10]

DT Max Depth [5,10] The maximum depth
of the tree

LR C [1,10] Inverse of regularization
strength

NB - - -

TABLE VI
COMPARISON OF BAL ON NEURAL NETWORK BASED SMOTE AND

TRADITIONAL MACHINE LEARNING BASED SMOTE

KC1 KC2 JM1 PC1 PC3 PC4 Avg.Rank
NN 70.54 75.42 64.03 71.48 76.69 80.86 2.17
RF 71.51 72.27 64.79 69.5 72.33 83.15 2.33
KNN 69.89 71.8 63.44 77.98 72.07 78.63 3.83
DT 66.52 70.58 65.65 69.12 70.07 80.07 4
LR 69.91 76.06 64.87 67.71 73.29 80.58 2.67
NB 57.68 62.47 44.25 51.92 43.47 75.14 6

Fig 5 shows the results of bal. Just like recall, Neural
Network based SMOTE can improve the performance of
the model, Bal has increased by 25.48%. All datasets are
tested outperform the original neural network without SMOTE.
The higher the balance value, the higher the performance
of a model. Based on the graph, the dataset that has good
performance on the Neural Network is the PC4 dataset which
has a bal of 80.86%. In contrast, JM1 has a lower balance and
recall value below the average compared to other datasets.

In summary, Neural Network based SMOTE can improve
the bal and recall of each dataset significantly.

B. How does the performance of the Neural Network based
SMOTE compare to ”traditional” machine learning based
SMOTE on software defect prediction?

To answer this question, we compared the Neural Network
based SMOTE model with five classification algorithms (Ran-
dom Forest (RF), KNN, Logistic Regression (LR), Decision
Tree (DT), Naive Bayes (NB) which are often used in research
on software defect prediction. We apply the same method as
the neural network process, apply SMOTE to all classification
algorithms, and do hyperparameter optimization on each algo-
rithm with bal optimization. Several hyperparameter options
were adopted from [21]. each hyperparameter can be seen in
Table V

Table VI is the result of bal from each dataset. All algorithm
has applied by SMOTE. The results obtained are very variant;
each algorithm has the best results on different datasets.
Nothing is dominant, only the Random Forest algorithm
that outperforms the two datasets, the other algorithm only
surpasses one dataset each. To overcome these variant results,

75



we calculate the average algorithm ranking for each dataset.
The smaller the average ranking, the better the performance
of the algorithm compared to other algorithms.

Based on the average ranking in each dataset, neural net-
works occupy the first position, then Random Forest, which
has an average ranking that is not much different. The al-
gorithm with the worst results is Naive Bayes, with the last
position. Decision Tree and Logistic Regression show standard
results.

We also count recall as an additional performance evaluation
that can be seen in table VII. The results are very variant
depending on each dataset, and no algorithm that dominates.
We can see Naive Bayes recall on PC3 where the recall
value is higher than other algorithm. However, we can see the
performance of Naive Bayes on bal PC3 is very low, in the
sense of a high false-positive rate. That is one of the reasons
we optimize bal for hyperparameter optimization rather than
recall.

TABLE VII
COMPARISON OF RECALL ON NEURAL NETWORK AND TRADITIONAL

MACHINE LEARNING

KC1 KC2 JM1 PC1 PC3 PC4
NN 73.62 73.85 57.58 70.25 79.77 78.00
RF 68.39 66.23 56.49 59.75 67.86 81.38

KNN 64.09 67.14 60.15 75.33 70.17 79.21
DT 57.66 63.46 63.91 61.00 64.81 76.29
LR 66.56 74.68 58.87 58.50 72.99 79.73
NB 41.08 47.49 21.35 32.58 87.21 70.21

In summary, we can see Neural Network based SMOTE on
Avg. Rank bal occupies the first position. this shows that neural
network based SMOTE can outperform the performance (bal)
of other algorithms.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper proposed a Neural Network based SMOTE
to improve neural network performance on class imbalance
problem of software defect prediction. Each Hyperparameter
of SMOTE and Neural Network are optimized using a ran-
dom search to find the best combination of hyperparameters
SMOTE and Neural Network. Best hyperparameter will be
used for evaluation. The dataset used is six NASA datasets.
Based on the results of the study using 5*5 cross validation,
Neural Network-based SMOTE can increase significantly (bal
by 25.48%, and recall 45.99%) compared to the original Neu-
ral Network without SMOTE. We also implement SMOTE to
other traditional classification algorithms and compare to our
proposed model, Neural Networks based SMOTE is first aver-
age rank on software defect prediction using NASA Dataset.
However, each dataset has a different winning algorithm, and
the differences are not significant.

There are things to consider, the hyperparameter optimiza-
tion used in this study is random search, which allows an
algorithm to not reach an optimal value in the optimization
process.

B. Future Work

For further research, optimization algorithms such as genetic
algorithms and Bayesian optimization can be used to avoid
bias in the results of hyperparameter optimization on software
defect prediction.

REFERENCES

[1] Ö. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive
neural network,” Applied Soft Computing Journal, 2015.

[2] H. Alsawalqah, H. Faris, I. A. B, and L. Alnemer, “Hybrid
SMOTE-Ensemble Approach,” Springer International Publishing, vol. 1,
no. April, 2017.

[3] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software
defect prediction,” Neurocomputing, vol. 385, pp. 100–110, 2020.

[4] R. B. Bahaweres, K. Zawawi, D. Khairani, and N. Hakiem, “Analysis of
Statement Branch and Loop Coverage in Software Testing With Genetic
Algorithm,” no. September, pp. 19–21, 2017.

[5] L. Gong, S. Jiang, and L. Jiang, “Tackling Class Imbalance Problem in
Software Defect Prediction Through Cluster-Based Over-Sampling With
Filtering,” IEEE Access, vol. 7, pp. 145725–145737, 2019.

[6] Q. Fan, Z. Wang, and D. Gao, “One-sided Dynamic Undersampling
No-Propagation Neural Networks for imbalance problem,” Engineering
Applications of Artificial Intelligence, 2016.

[7] R. S. Wahono, N. S. Herman, and S. Ahmad, “Neural network parameter
optimization based on genetic algorithm for software defect prediction,”
Advanced Science Letters, vol. 20, no. 10-12, pp. 1951–1955, 2014.

[8] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of ceiling effects in defect predictors,” in Proceedings -
International Conference on Software Engineering, 2008.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” Journal Of
Artificial Intelligence Research, 2002.

[10] A. Saifudin, S. W. Hendric, B. Soewito, F. L. Gaol, E. Abdurachman,
and Y. Heryadi, “Tackling Imbalanced Class on Cross-Project Defect
Prediction Using Ensemble SMOTE,” IOP Conference Series: Materials
Science and Engineering, vol. 662, no. 6, 2019.

[11] A. Agrawal and T. Menzies, “Is ”better data” better than ”better data
miners”?: On the benefits of tuning SMOTE for defect prediction,” Pro-
ceedings - International Conference on Software Engineering, pp. 1050–
1061, 2018.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[13] F. Chollet, “Keras.” https://github.com/fchollet/keras, 2015.
[14] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A

python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp. 1–
5, 2017.

[15] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, “An Ensemble Oversampling Model for Class Imbalance
Problem in Software Defect Prediction,” IEEE Access, vol. 6, pp. 24184–
24195, 2018.

[16] R. Ferenc, D. Bán, T. Grósz, and T. Gyimóthy, “Deep learning in static,
metric-based bug prediction,” Array, vol. 6, no. February, p. 100021,
2020.

[17] V. Vashisht, M. Lal, and G. S. Sureshchandar, “A Framework for Soft-
ware Defect Prediction Using Neural Networks,” Journal of Software
Engineering and Applications, vol. 8, pp. 384–394, 2015.

[18] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[19] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, 2012.

[20] S. K. Patro and K. K. Sahu, “Normalization: A Preprocessing Stage,”
IARJSET, 2015.

[21] R. Shu, T. Xia, L. Williams, and T. Menzies, “Better Security Bug Report
Classification via Hyperparameter Optimization,” pp. 1–12, 2019.

76


