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Abstract 

This article describes the assessment of future wind power utilization for charging 

electric vehicles (EVs) in Germany. The potential wind power production in the model 

years 2020 and 2030 is derived by extrapolating onshore wind power generation and 

offshore wind speeds measured in 2007 and 2010 to the installed onshore and 

offshore wind turbine capacities assumed for 2020 and 2030. The energy 

consumption of an assumed fleet of 1 million EVs in 2020 and 6 million in 2030 is 

assessed using detailed models of electric vehicles, real world driving cycles and car 

usage. 

It is shown that a substantial part of the charging demand of EVs can be met by 

otherwise unused wind power, depending on the amount of conventional power 

required for stabilizing the grid. The utilization of wind power is limited by the 

charging demand of the cars and the bottlenecks in the transmission grid. However, 

the recent grid development plan is designed to remove most of these grid 

bottlenecks. 
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I Introduction 

Electric vehicles (EVs) raise the expectation that they can also be used as storage 

for intermittent electricity production from renewable energies (wind and solar). This 

was mentioned as early as 2002 [Kempton & Letendre, 2002] and also found its way 

into the energy concept of the German Federal Government [BMWi & BMU, 2010]. 

To investigate the effects of a fleet of EVs in Germany, the NET-ELAN project was 

initiated, funded by the German Federal Ministry of Economics and Technology. It 

covers a broad field of topics: 

• Development trends of the electric grid and the power plant pool, 

• development trends of future EV designs and determination of battery 

requirements and energy demand [Waldowski et al., 2010], 

• scenarios of future energy supply and build-up of an EV fleet, 

• assessment of spatial and temporal distributions of EVs connected to the grid 

[Linssen et al., 2011], 

• grid integration of EVs with regard to feasibility, energy demand [Hennings & 

Linssen, 2010], emissions, and cost aspects [Bickert et al., 2011], including 

battery durability [Günther et al., 2010]. 

The project final report is published as a book (in German) [Linssen et al., 2012].  

This article describes the assessment of future wind power availability for charging 

EVs. These assessments also rely on results from the other project parts which are 

not described in detail here.  

We start with the general grid load and wind power production. The energy demand 

and the usage and charging of EVs are determined, and finally the energy balance 

for the scenario years 2020 and 2030 is assessed.  

The potential for wind energy production and usage is first assessed with the 

assumption of unlimited transfer capabilities of the grid. In chapter 0 the grid 

limitations are addressed, the details of which are published separately [Mischinger 

et al., 2012]. 

II Scenario 

This publication aims to assess the effects of a given fleet of EVs rather than 

predicting the probable EV deployment, therefore the build-up of a fleet of EVs is 

postulated. The total number of EVs is assumed to be 1 million in 2020 and 6 million 

in 2030, as aimed at by the German Federal Government [BMU, 2011].  

The assumed development of the energy system is based on the objectives of the 

Energy Concept 2010 of the German Federal Government [BMWi & BMU, 2010], 

supplemented by the nuclear energy phase out decreed in 2011. Given these 
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objectives, the power plant and wind turbine capacities installed in 2020 and 2030 

are derived from calculations with the energy system model IKARUS (described e. g. 

in [Linssen et al., 2012]). The offshore capacities assumed in the NET-ELAN 

scenario are approximately reached if each offshore project for which an application 

was submitted [dena, 2011] will be finished within two years after planned start of 

construction. The wind turbine capacities in the NET-ELAN scenario are shown in 

Table 1. For comparison, Table 1 also shows the capacities in the base scenario in 

the concretisation of the Energy Concept 2010 by [Nagl et al., 2010; Schlesinger et 

al., 2010].  

The dena website also provides the locations of the existing and planned wind parks. 

For each wind park assumed to be in operation in 2020 (2030), the wind speeds 

measured at the nearest of the measuring platforms FINO 1 to 3 [FINO platforms, 

2012] are used to assess the potential wind power production. Table 1 also shows 

the allocation of installed wind park power to the three FINO locations.  

Table 1: Assumed wind turbine capacities in NET-ELAN and Energy Concept 

Scenarios 2010 

 2020 
NET-ELAN [GW] 

2020 Concept 
Scenarios [GW] 

2030 
NET-ELAN [GW] 

2030 Concept 
Scenarios  [GW] 

onshore 29 33.3 45.4 33.7 

offshore 6 7.6 18 12.6 

… near FINO 1 5  15  

… near FINO 2 0.8  2.7  

… near FINO 3 0.2  0.3  

Source: NET-ELAN project,  IEK-STE 2012 

Energy Scenarios for an Energy Concept [Nagl et al., 2010; Schlesinger et al., 2010] 

III General grid load and wind power production 

To calculate the fluctuations of the wind power production, the electricity demand and 

the charging demand of EVs, a time dependent model with at least hourly resolution 

is required.  

To assess the time series of the grid load and electricity generation in 2020 and 

2030, the exact approach is separately assessing the time series of the power 

generation from photovoltaic, wind, other renewables, and power consumption, and 

extrapolating each of them to 2020 and 2030. As some of these values were not 

available, an approximate approach is chosen:  

The assessment is based on data from the years 2007 and 2010, since the year 

2007 is an example of a good wind year (wind index 106 %) and 2010 of a weak 
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wind year (wind index 74 %, source: [Bundesverband WindEnergie, 2012], verified by 

our own calculations with the data from German transmission system operators 

(TSOs)). 

The time series of onshore wind power production for 2007 and 2010 are taken from 

the data supplied by the German TSOs, available from their websites [50Hertz 

Transmission, 2011a; amprion, 2011a; TenneT, 2011a; TransnetBW, 2012b]. The 

offshore wind power production in 2007 and 2010 was neglectable. The time series 

of “vertical grid load” for 2007 and 2010 are taken from the data supplied by the 

German TSOs, available from their websites [50Hertz Transmission, 2011b; amprion, 

2011b; TenneT, 2011b; TransnetBW, 2012a]. The vertical grid load is defined as the 

total power transferred from the transmission grid to distribution grids and 

consumers. Up to 2012 nearly all renewable power sources (including wind farms) 

were connected to distribution grids (110 kV and lower, Table 2, source: our own 

evaluation of [Engel, 2012]), so the vertical grid load is the consumption minus 

production from renewables (minus production from small scale conventional plants). 

By adding the wind power to the vertical grid load, time series are derived which are 

independent from wind power production. Because charging at night is the focus of 

the analysis, photovoltaic production can be neglected. 

Table 2: Sum of installed electric power from renewable sources, by voltage 

level of grid connection, as of Oct. 2012 

 geotherma
l [MW] 

gases 
[MW] 

biomass 
[MW] 

hydro 
[MW] 

wind 
[MW] 

solar 
electric 

[MW] 

Extra High Voltage (220-380 kV) 0 0 22 4 1213 4 

Extra High  / High Voltage 0 4 2 12 229 1 

High Voltage (110 kV) 0 75 279 169 9550 1182 

High Voltage / Medium Voltage 0 24 292 103 4043 258 

Medium Voltage (20 kV) 4 504 4332 1014 14784 7105 

Medium Voltage / Low Voltage 1 13 237 40 84 811 

Low Voltage (230/400 V) 3 24 577 253 198 18223 

Source: Own assessment based on [Engel, 2012] IEK-STE 2012 

The time series of onshore wind power in 2020 and 2030 are extrapolated from the 

2007 (2010) time series by the ratio of installed onshore wind turbine capacity. The 

time series of the offshore wind power in 2020 and 2030 are derived from the time 

series of the wind speed measured in 2007 and 2010 on the offshore measuring 

platforms FINO 1 to 3 [FINO platforms, 2012] in 90 m above sea level (hub height of 
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typical offshore wind turbines) which are available from the FINO database1 [BSH, 

2011]. To each offshore wind park the wind speed of the nearest FINO measuring 

platform is assigned. Table 1 shows how the wind park capacities are assigned to the 

three FINO locations. The electrical power available from the wind turbines is 

calculated from the wind speeds using a typical power curve for offshore wind 

turbines and multiplied by the offshore wind turbine capacity in 2020 and 2030.  

This derivation of the future wind power production in the NET-ELAN project is 

basically similar to the derivation in the dena Grid Study II [dena, 2010]. Although the 

dena Grid Study II uses a more detailed modelling, the duration curve of the wind 

power production modelled in NET-ELAN is in quite good agreement with that in the 

dena Grid Study II (Figure 1).  

Figure 1: Duration curves of offshore wind power in the NET-ELAN project and 

in the dena Grid Study II 

 

Sources: dena Grid Study II [dena, 2010] 

and own calculation from FINO database [BSH, 2011] IEK-STE 2012 

IV Energy demand of electric vehicles 

The specific energy consumptions of the EVs were estimated using detailed 

mathematical models of the cars, performing the Artemis and some measured real-

world driving cycles, including consumption of ancillary systems and losses in the 

battery and the charger. The estimated energy demands for the Artemis driving cycle 

are close to those for the measured real-world driving cycle “commuter” and used for 

                                            
1 The FINO platforms and database are funded by the German Federal Ministry for the Environment, 

Nature Conservation and Nuclear Safety (BMU). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000

P
 /

 P
n

hours

NET-ELAN

dena II



 7

assessing the energy drawn from the grid. Three EV sizes were modelled: mini, 

subcompact, and compact, and three drive train concepts: pure battery vehicles 

(BEV) with a driving range of 120 km, EV with range extender (REEV) with an 

electrical  driving range of 50 km (in charge depleting mode, CDM) and plug-in hybrid 

EV (PHEV) with an electrical driving range of 30 km (CDM). The BEV is limited to a 

daily driving distance of 120 km, the REEV and PHEV cover distances above the 

electrical range by their internal combustion engines (i. e. in charge sustaining 

mode). The energy demands (Table 3) include a decrease over the manufacturing 

year due to technical improvements and the penetration of new vehicles in the fleet. 

Table 3: Shares of EV types and their energy demand 

 compact 
cars, fleet 

share 

subcompact 
cars,  

fleet share 

mini cars, 
fleet share 

all sizes, average energy 
demand  

[kWh / 100 km] 

in 2020 in 2030 

BEV 16.7 % 20 % 10 % 17.7 15.7 

REEV 16.7 % 20 % 0 % 18.0 16.1 

PHEV 16.7 % 0 % 0 % 20.0 17.7 

Source: NET-ELAN project IEK-STE 2012 

The average daily driving distance of the EV was derived from the distribution of daily 

driving distances of privately used passenger cars from the statistical survey “Mobility 

in Germany 2008” [infas & DLR, 2009]. Some investigations make assumptions on 

future EV usage, e. g. [Metz & Doetsch, 2012] assume that only cars with a yearly 

mileage of 12,500 to 20,000 km will be substituted by an EV. However, future EV 

usage is influenced by more than just economic criteria and could be higher or lower 

than today's, so it is here assumed that driving distances of future EVs will be similar 

to today's average cars.  

With these assumptions the total energy demand of 6 million BEVs in 2030 is 

10.7 TWh/a, in contrast to 17 TWh/a in [Metz & Doetsch, 2012], partly because all 

cars are taken into account, including those with lower yearly mileage, partly because 

of the lower energy demand per km. As the REEV and PHEV cover daily distances 

above 30 km or 50 km with their ICE, the fleet energy demand with shares of BEV, 

REEV and PHEV as in Table 3 is lower, about 9.8 TWh/a.  

V Time dependent usage and charging of electric vehicles 

In the project, only home charging is modelled. This was decided for the following 

reasons: 
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Grid interaction is only possible when the EV is parked. Although charging on-the-

road seems technically possible [Shwartz, 2012; Yu et al., 2011], costs are expected 

to be prohibitive.  

A charging connection must be available where the EV is parked.  

The car user must connect the EV to the grid. Also here, wireless (inductive) 

charging is technically possible [BBC News, 2012] but assumed not to be generally 

applied because of high costs. 

The evaluation of the German nationwide survey of driving habits “MiD 2008” [infas & 

DLR, 2009] revealed that 92 % of the daily driving distances can be covered purely 

electrically with a BEV and 75 % with a REEV if the battery is only charged once a 

day, after returning from the last trip of the day. In the case of urban driving profiles 

measured in the project, these shares are 95 % and 88 %. Additional charging during 

the day increases these shares only marginally.  

The survey “MiD 2008” also indicates that the cars are parked at home for the 

majority of time ([Metz & Doetsch, 2012] come to the same conclusion), and that the 

majority of privately used cars have a dedicated parking or garage near the home. 

That allows a private charging connection to be established with low costs, whereas 

public charging stations are costly [Schroeder & Traber, 2012].  

Connecting the EV to the grid is an extra effort for the user, so the user may not be 

willing to do this if it is not required for his own driving requirements. Several 

publications assume that the EV is connected to the grid whenever it is parked 

[Capion, 2009; Ekman, 2011], however the same article [Capion, 2009] admits that 

this is unrealistic. At least the benefit from connecting must justify the effort, therefore 

[Rehtanz & Rolink, 2009] assume that the EV is connected to the grid only if parked 

for longer than 1 hour.  

It is therefore assumed here that the EV is connected to the grid only after returning 

home from the last trip of the day and disconnected just before starting the first trip of 

the next day. For example [Dallinger et al., 2011] make a similar assumption. While 

being connected, charging can either be uncontrolled (“dumb”), which means that 

charging starts as soon as the EV is connected to the grid and ends when the battery 

is fully charged, or it can be controlled in various ways.  

Up to 2020, the charging power at home is assumed to be 3.3 kW which is the 

maximum active power available at a standard 230 V 16 A connection with a power 

factor of 0.9 allowing for the non-sinusoidal current drawn by the charger. In 2030, 

the availability of three-phase charging with 9.9 kW is assumed. In all of the modelled 

car types this charging power is within the design limits of the battery. 

For uncontrolled charging, only a part of the EVs are charging at the same time, 

because they return home at different times, therefore the maximum grid load for 1 
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million EV in 2020 is 700 MW (Figure 2), in contrast to 3300 MW if charging of all 

EVs would start at the same time. But this maximum of the charging load will occur at 

about 6 pm, when at winter time also the other grid loads are at maximum. That can 

cause problems particularly for the distribution grid, described in detail in the final 

report [Linssen et al., 2012]. 

Figure 2: Grid load caused by uncontrolled charging of 1 million EV in 2020 

 

Source: Own calculations based on “Mobility in Germany 2008” [infas & DLR, 2009] 

 IEK-STE 2012 

The simplest mode of controlled charging is shifting the charging into off-peak 

times. The grid load minimum in Germany is between about midnight and 6 am. In 

order to achieve a nearly constant charging load between 0 and 6 am the statistically 
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could be as follows: The 15 % of the EVs having a charging need of 3 hours or more 

start charging at midnight. Charging of each of the 27 % of EVs needing 1.5 to 3 

hours starts at a time so that charging is finished at 6 am. The charging times of the 

58 % of EVs needing less than 1.5 hours are evenly distributed between midnight 

and 4 am. The resulting course of the share of simultaneously charging EVs over 

time is not perfectly even, ranging from 22 % to 31 % (Figure 3), but much better 

than a simultaneous start of all charging (100 %) at midnight.  
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Figure 3: Time shifted charging in 2020 

 

Source: Own calculations based on “Mobility in Germany 2008” [infas & DLR, 2009] 

 IEK-STE 2012 

With a charging power of 9.9 kW (assumed for 2030), all charging times are below 2 

hours and can be suitably distributed between 0 and 6 am, giving a smooth grid load. 

VI Energy balance without grid restrictions 

Because of its statutory priority, all electric power from renewable energies is 
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Figure 4 shows the distribution of potential excess energy from wind power in the 

hours between midnight and 6 am of each night, for the year 2030. In a good wind 

year (solid lines) with 20 GW must-run power, excess energy is available in 70 % of 

the nights, and it meets the daily (Mo–Fr) energy demand of 6 million EVs (dotted 

line) in 50 % of the nights. On the other hand, if no must-run power is required, 

excess energy is available in only 20 % of the nights and meets the EV demand in 

8 % of the nights. The available excess energy is even less for a weak wind year 

(dashed lines). The utilization of wind power is limited by the charging demand of the 

vehicles, i. e. each night only as much wind power can be charged into the batteries 

of the vehicles as was discharged by driving during the past day (dotted line). The 

capability of the vehicles to utilize wind power could be increased if the battery would 

not be fully charged in nights with low wind, but that would mean a decrease of 

available driving range which will probably not be accepted by the vehicle users. 

Figure 4: Distributions of excess electrical energy from wind in 2030 

 

Source: Own calculations based on grid load and onshore wind power data from 

German TSOs  [50Hertz Transmission, 2011a, 2011b; amprion, 2011a, 2011b; 

TenneT, 2011a, 2011b; TransnetBW, 2012a, 2012b] 

and offshore wind power based on FINO data [BSH, 2011] IEK-STE 2012 
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Figure 4 shows only the energy balance of each night. As the excess wind power is 

not evenly distributed over the night hours and the charging power of the EVs is 

limited, the excess wind energy which actually can be utilized by EVs is even lower. 

The yearly sums of utilized and non-utilized wind power are shown in Figure 5. In 

2020, the effect of 1 million EVs is so small that it can hardly be seen. 6 million EV in 

2030 have a noticeable but not dramatic effect and can be powered without 

extensions of the electric power system (described in detail in [Linssen et al., 2012]). 

Note that in Figure 5 “other power” only includes the power directly fed into the 

transmission grid (380 and 220 kV voltage level) and the total energy in this figure is 

lower than the total electricity consumption.  

In 2030 about 50 % of the energy need of the EVs can be met by utilizing excess 

wind power, but only if 20 GW of must-run power are required for grid stabilization. If 

zero must-run power would be required, even in 2030 most wind power could be 

utilized in other loads and hardly any excess wind power is available for charging the 

EVs. 
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Figure 5: Yearly energy balance including wind power and EV charging 

 

 

Source: Own calculations based on grid load and onshore wind power data from 

German TSOs [50Hertz Transmission, 2011a, 2011b; amprion, 2011a, 2011b; 

TenneT, 2011a, 2011b; TransnetBW, 2012a, 2012b] 

and offshore wind power based on FINO data [BSH, 2011] IEK-STE 2012 
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VII Energy balance with grid restrictions 

For assessing the capabilities of the transmission grid to deliver EV charging power 

and to absorb wind power, a model of the German transmission grid including the 

power plant portfolio was developed for 2020 and 2030. The details are published, 

see [Mischinger et al., 2012].  

The calculations with the grid model show that in the scenario year 2020 the share of 

excess wind energy useable in EVs with controlled charging is limited to 7.5 % by 

grid bottlenecks, compared to the potential of 8.4 % with no grid restrictions. In the 

scenario year 2030 the limitation is more significant, 8 % compared to 15 % without 

grid restrictions, because the grid capacity does not keep up with the increased 

installed wind turbine power. The share of charging energy supplied by wind energy 

in 2030 is limited by grid bottlenecks to 30 %, compared to a potential of 50 % 

without grid restrictions.  

VIII Conclusions 

1 million EV have hardly any effect on the energy balance, 6 million have a 

noticeable but not dramatic effect. 

In the scenario, significant excess wind power is only available if it is assumed that 

20 GW of conventional power is required for grid stabilization. If no minimum of 

conventional power is required, all wind power – as far as it can be transported by 

the transmission grid – can be utilized by other consumers, so that all charging power 

of the EVs must be delivered by increased production from conventional power 

plants. 

Without grid restrictions and a must-run power plant capacity of 20 GW, in the model 

year 2030 about 15 % of the excess wind power can be utilized for charging EVs and 

can supply up to 50 % of the energy needed by the EVs. The utilization of wind 

power is limited by the daily charging demand of the cars. 

Taking bottlenecks of the transmission grid into account, in the model year 2030 a 

significant amount of wind power cannot be transported to the consumers, reducing 

the share of EV charging supplied from wind power from 50 % to 30 %. However, the 

reinforcements of existing and additions of new high voltage power lines as defined 

in the recent grid development plan [TenneT TSO GmbH et al., 2013] will remove 

most of these bottlenecks. 
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