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Electrical, magnetic, and thermal properties of the δ-FeZn10 complex intermetallic phase
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We report the electrical, magnetic, and thermal properties of the δ-FeZn10 phase in the zinc-rich domain of
the Fe-Zn system. The δ-FeZn10 phase possesses high structural complexity typical of complex metallic alloys:
a giant unit cell comprising 556 atoms, polyhedral atomic order with icosahedrally coordinated environments,
fractionally occupied lattice sites, and statistically disordered atomic clusters that introduce intrinsic disorder
into the structure. Structural disorder results in suppression of the electrical and heat transport phenomena,
making δ-FeZn10 a poor electrical and thermal conductor. Structural complexity results in a complex electronic
structure that is reflected in the opposite signs of the thermoelectric power and the Hall coefficient. The δ-FeZn10

phase is paramagnetic down to the lowest investigated temperature of 2 K with a significant interspin coupling
of antiferromagnetic type. Specific heat indicates the formation of short-range-ordered spin clusters at low
temperatures, very likely a precursor of a phase transition to a collective magnetic state that would take place
below 2 K. The magnetoresistance of δ-FeZn10 is sizeable, amounting to 1.5% at 2 K in a 9-T field. The electrical
resistivity exhibits a maximum at about 220 K, and its temperature dependence could be explained by the theory
of slow charge carriers, applicable to metallic systems with weak dispersion of the electronic bands, where the
electron motion changes from ballistic to diffusive upon heating.

DOI: 10.1103/PhysRevB.86.064205 PACS number(s): 72.15.Eb, 75.47.Np, 65.40.Ba

I. INTRODUCTION

The term “complex metallic alloys” (CMAs) denotes a
class of intermetallic phases with giant unit cells contain-
ing hundreds to many thousands of atoms.1 Examples of
CMAs are the cubic NaCd2 with 1152 atoms per unit cell
(u.c.),2,3 the Bergman phase Mg32(Al,Zn)49 (162 atoms/u.c.),4

the orthorhombic ξ ′-Al74Pd22Mn4 (318 atoms/u.c.), and
the related � phase (about 1500 atoms/u.c.),5–7 the cubic
β-Al3Mg2 (1168 atoms/u.c.),8–10 the hexagonal λ-Al4Mn
(586 atoms/u.c.),11 the Al39Fe2Pd21 (248 atoms/u.c.),12 the
heavy-fermion compound YbCu4.5 (7448 atoms/u.c.),13 and
the cF (23, 256-x)-Al55.4Cu5.4Ta39.1 phase of great complexity,
comprising more than 23 000 atoms in the unit cell.14 These
giant unit cells contrast with elementary metals and simple
intermetallics whose unit cells usually comprise single atoms
to a few tens of atoms only. The giant unit cells with
lattice parameters of several nanometers provide translational
periodicity of the CMA crystalline lattice on the scale of
many interatomic distances, whereas on the atomic scale, the
atoms are arranged in clusters with polyhedral order, where
icosahedrally coordinated environments play a prominent role.
The structures of CMAs thus show duality; on the scale of
several nanometers, CMAs are periodic crystals, whereas on
the atomic scale some of them resemble quasicrystals.15 The
high structural complexity of CMAs together with the two
competing physical length scales—one defined by the unit-cell
parameters and the other by the cluster substructure—may
have a significant impact on the physical properties of these
materials, such as the electronic structure and lattice dynamics.
Recently, the structure of a CMA was reported in the zinc-rich

domain of the Fe-Zn system,16 the δ-FeZn10 phase, which
comprises 556 atoms in the giant hexagonal unit cell arranged
in a very dense packing of icosahedra and a few other
polyhedra. The physical properties of the δ-FeZn10 phase
remain unknown, and it is the purpose of this work to report
on the electrical, magnetic, and thermal properties of this
interesting CMA.

II. STRUCTURAL CONSIDERATIONS
AND SAMPLE DESCRIPTION

The zinc-rich domain of the Fe-Zn system between 67 and
95 at% Zn has been intensely studied in the past,17–20 owing
to its technological importance in the field of anticorrosion
techniques. It comprises several different phases, among which
the δ phase exists in the homogeneity range between 86.5 and
92 at% Zn (at 300 ◦C). A structural model has been elaborated
for the composition FeZn10,16 showing that δ-FeZn10 crystal-
lizes in the hexagonal space group P 63/mmc (No. 194) with
the lattice constants a = 1.2787 nm and c = 5.7222 nm and
556 atoms in the giant unit cell (52 Fe and 504 Zn). The unit cell
contains 47 Zn and 5 Fe crystallographic sites, seven of which
are fractionally occupied [the sites Zn(46), Fe(47), Fe(49),
Zn(50), Zn(51), and Fe(52) by 1/3 and the site Fe(48) by 2/3,
according to the nomenclature of Ref. 16. The structure can
be viewed as very dense packing of four types of polyhedra
(Fig. 1): (1) a statistically disordered distorted icosahedron
centered on the Zn(40) atom and spinning around a threefold
axis inside a large Euler polyhedron containing 40 atoms and
having 76 faces and 114 edges; (2) a Frank–Kasper 16-vertex
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FIG. 1. (Color online) (a) δ-FeZn10 hexagonal unit cell according
to the structural model of Ref. 16. The structure can be viewed as
very dense packing of four types of polyhedra, (b) a statistically
disordered, distorted icosahedron inside a large Euler polyhedron
(blue/medium gray), (c) a Frank–Kasper 16-vertex polyhedron, also
referred to as the icosioctahedron (red/dark gray), (d) a more or less
regular icosahedron (green/light gray), and (e) a bicapped pentagonal
prism (gray online). The remaining “glue” atoms are shown violet
(dark gray).

polyhedron, also referred to as the icosioctahedron; (3) a more
or less regular icosahedron (bicapped pentagonal antiprism);
and (4) a bicapped pentagonal prism. The seven fractionally
occupied sites are all located on the statistically disordered
distorted icosahedron and introduce randomness and intrinsic
disorder into the structure. This icosahedron also contains all
Fe sites.

Our δ-FeZn10 material was synthesized by the self-flux
method under conditions similar to those described in Ref. 16.
A sample of dimensions 1 × 1 × 3 mm3 was extracted from the
ingot. Structural characterization by x-ray diffraction (XRD),
scanning electron microscopy (SEM), and transmission elec-
tron microscopy (TEM) techniques has shown that the sample
was single phase and contained several grains, so it should be
considered as a polygrain material.

III. EXPERIMENTAL RESULTS

Magnetic measurements were conducted by a Quantum
Design Magnetic Property Measurement System (MPMS)
XL-5 superconducting quantum interference device (SQUID)
magnetometer equipped with a 5-T magnet, operating in
the temperature range 2–400 K. The measurements of the
electrical resistivity, the magnetoresistance, the thermal con-

ductivity, and the specific heat were conducted by a Quantum
Design Physical Property Measurement System (PPMS 9T),
equipped with a 9-T magnet and operating in the temperature
range 2–400 K. The electrical resistivity and the magnetoresis-
tance were measured by a standard four-terminal technique.
The thermal conductivity was measured by monitoring the
temperature drop across the sample after a heat pulse was
applied to its end by means of square waves. The specific
heat was measured by a thermal-relaxation calorimeter. The
thermoelectric power was measured between 300 and 2 K in
a homemade cryostat by applying a differential method with
two identical thermocouples (chromel-gold with 0.07% iron),
attached to the sample with silver paint. The Hall coefficient
measurements were performed by the five-point method using
standard ac technique in magnetic fields up to 1 T and in the
temperature interval between 370 and 90 K.

A. Magnetization and magnetic susceptibility

The magnetic susceptibility χ = M/H was determined in
the temperature range 2–300 K in several magnetic fields up
to H = 10 kOe. χ was found to be field independent, and in
Fig. 2(a) it is presented in the H = 1-kOe field. The analysis
with the Curie–Weiss law

χ = χ0 + C

T − θ
(1)

in the high-temperature range T > 100 K (solid curve)
yielded the temperature-independent contribution χ0 = 2.5 ×
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FIG. 2. (Color online) (a) Temperature-dependent magnetic sus-
ceptibility χ = M/H of δ-FeZn10 in a magnetic field H = 1 kOe.
Solid curve is the Curie–Weiss fit for temperatures T > 100 K. The
inset shows the susceptibility in a (χ − χ0)−1versus T plot, where the
Curie–Weiss fit is presented by the straight line. (b) The magnetization
versus the magnetic field, M(H ), at T = 5 K. Solid curve is the fit
with Eq. (2).
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10−4 emu/mol, the Curie–Weiss constant C = 0.33 emu
K/mol, and the Curie–Weiss temperature θ = −112 K, where
χ0 and C are given per mole Fe. The Larmor diamagnetic
susceptibility of closed atomic shells was calculated from
literature tables to amount χdia = − 1.1 × 10−4 emu/mol
of sample so that the positive χ0, which is of the same
order of magnitude as |χdia|, can be interpreted to originate
predominantly from the Pauli spin susceptibility of the con-
duction electrons (the Landau diamagnetic contribution due to
the conduction electron orbital circulation can be neglected
because of the relatively high electrical resistivity of the
δ-FeZn10 material, as we shall demonstrate in the following).
The Curie–Weiss constant C enables extraction of the mean
effective Bohr magneton number per Fe atom, which amounts
to p̄eff = 1.6. This value is significantly reduced with respect
to the Bohr magneton numbers of free ions Fe2+ (p = 5.4) and
Fe3+ (p = 5.9), showing that the Fe magnetic moments in the δ-
FeZn10 phase are partially screened by the conduction-electron
cloud in an electrically conducting environment. The rather
large negative value of the Curie–Weiss temperature θ suggests
relatively strong antiparallel (antiferromagnetic, AFM-type)
coupling between the Fe moments. In the inset of Fig. 2(a),
the susceptibility data are presented in a (χ − χ0)−1versus T

plot, where the Curie–Weiss fit is presented by the straight line
and the intercept of this line with the abscissa yields negative
θ . That graph also suggests that the validity of the Curie–Weiss
law is restricted to temperatures T > 70 K.

The magnetization versus the magnetic field relation,
M(H ), was determined at T = 5 K and is shown in Fig. 2(b).
The data were analyzed by the function

M = M0BJ (μH/kBT ) + kH. (2)

Here M0 is the saturation magnetization, BJ is the Brillouin
function, describing the response of localized paramagnetic
moments of angular momentum J to the external magnetic
field, and μ = JgμB is their magnetic moment, where μB

is the Bohr magneton and g is the Landé factor (taken as
g = 2). The parameter k represents terms in the susceptibility
χ = M/H that are linear in the magnetic field (the Larmor, the
Pauli, and the Landau contributions). It should be in principle
the same as the temperature-independent contribution χ0 in the
Curie–Weiss susceptibility so that in the fit procedure we have
used the k = χ0 value determined previously from the Curie–
Weiss fit. The theoretical fit [solid curve in Fig. 2(b)] was
obtained with the parameter values M0 = 250 emu/mol and
J = 2.2. This J value is intermediate to the values expected for
the Fe2+ (J = 2) and Fe3+ (J = 2.5) ionizations states (under
the condition of quenched orbital angular momentum, L = 0).

Magnetic measurements show that the δ-FeZn10 phase
remains paramagnetic down to the lowest investigated temper-
ature of 2 K. Its magnetism originates from both the localized
Fe moments and the spins of the conduction electrons. The Fe
moments are reduced with respect to the free-ion values due to
partial screening by the conduction-electron cloud, and their
coupling is antiparallel (AFM type).

B. Electrical resistivity

The electrical resistivity of δ-FeZn10 was measured between
300 and 2 K, and the ρ(T ) data are displayed in Fig. 3.

FIG. 3. (Color online) Temperature-dependent electrical resistiv-
ity of δ-FeZn10 between 300 and 2 K. Solid curve (blue) is the
theoretical fit with the model of SCC, whereas the dashed curve
(green) is the fit with the model of WL. The fit parameters are given
in the text.

The resistivity exhibits broad maximum at about 220 K. The
room-temperature (RT) value amounts to ρ300 K = 331 μ
 cm,
the value in the maximum is ρ220 K = 335 μ
 cm, whereas
the resistivity in the T → 0 limit remains large, amounting
to ρ2 K = 312 μ
 cm. The overall variation of the resistivity
between 2 K and the maximum is rather small, amounting to
(ρ220 K − ρ2 K)/ρ2 K = 7%.

The temperature dependence of the electrical resistivity that
exhibits a maximum will be discussed in Sec. IV. Here it is
worth mentioning that the large residual T → 0 resistivity of
ρT →0 ≈ 310 μ
 cm reflects quenched intrinsic disorder in the
lattice due to fractionally occupied sites in the unit cell and
the presence of the statistically disordered icosahedron in the
structure, which locally break the translational periodicity and
consequently increase the resistivity. This effect is a peculiarity
of CMAs and quasicrystals, where even the most perfect
samples may contain an intrinsic disorder that is a part of
the structure, needed for its entropic stabilization.

C. Magnetoresistance

To determine the magnetoresistance of δ-FeZn10, the
electrical resistivity was measured in a magnetic field up to 9 T.
In Fig. 4(a), the resistivity ρ(T ) is shown in the temperature
range from 100 to 2 K in the magnetic field varying in steps
of �B = 1 T. The temperature-dependent magnetoresistance
�ρ/ρ = [ρ(B) − ρ(0)]/ρ(0) in B = 9 T is shown in the inset
of Fig. 4(b), where it is observed that �ρ/ρ remains nonzero
almost up to RT and reaches 1.5% at 2 K. The magnetic field
dependence of �ρ/ρ at the temperatures 2, 5, 10, 20, and 50 K
is shown in Fig. 4(b). The magnetoresistance will be discussed
in Sec. IV.

D. Thermoelectric power

The thermoelectric power data (the Seebeck coefficient S)
of δ-FeZn10, measured between 300 and 2 K, are displayed
in Fig. 5. The thermopower is small, amounting to S300 K =
−1 μV/K at RT, and negative, suggesting that the electrons are
the majority charge carriers. S(T ) exhibits a local minimum
at about 70 K and a local maximum at 160 K. The rather
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(a)

(b)

FIG. 4. (Color online) (a) The resistivity ρ(T ) of δ-FeZn10 in
the temperature range between 100 and 2 K in the magnetic field
varying in steps of �B = 1 T. (b) Magnetic field dependence of
the magnetoresistance �ρ/ρ = [ρ(B) − ρ(0)]/ρ(0) at temperatures
2, 5, 10, 20, and 50 K. The inset shows the temperature-dependent
magnetoresistance �ρ/ρ in B = 9 T between RT and 2 K. Solid
curve is the fit with Eq. (7).

complicated temperature dependence of S(T ) may originate
from both the complexity of the Fermi surface and the electron-
phonon coupling (phonon drag).

E. Hall coefficient

The temperature-dependent Hall coefficient RH =
Ey/jxBz of δ-FeZn10 was determined between 370 and 90 K
and is shown in Fig. 6. The RH values are typically metallic
in the range 10−10 m3 C−1 with the experimental precision of
±0.1 × 10−10 m3 C−1 and positive in the entire investigated

FIG. 5. (Color online) Temperature-dependent thermoelectric
power (the Seebeck coefficient S) of δ-FeZn10 between 300 and
2 K.

−
−

FIG. 6. (Color online) Temperature-dependent Hall coefficient
RH of δ-FeZn10 between 370 and 90 K.

temperature range, suggesting that holes are the majority
charge carriers. RH increases upon cooling by a factor 3.5
from 380 to 90 K, but the values remain in the metallic
range so that this relatively small increase may be attributed to
the temperature-dependent changes of the Fermi surface. The
opposite signs of the thermopower and the Hall coefficient will
be discussed in Sec. IV.

F. Specific heat

The specific heat C(T ) of δ-FeZn10 will be a sum
of the electronic, lattice, and magnetic contributions. The
electronic specific heat depends linearly on temperature,
Cel(T ) = γ T , with the electronic specific-heat coefficient
γ = (π2/3)k2

Bg(εF ), where g(εF ) is the electronic density of
states (DOS) at the Fermi energy εF . At low temperatures
below ∼10 K, the lattice specific heat can usually be well
approximated by the Debye model and is expressed as a
function of temperature in the form Clatt(T ) = αT 3. The lattice
specific heat coefficient α is related to the Debye temperature
via the relation θD = (12π4R/5α)1/3, where R is the gas
constant. The magnetic specific heat Cm depends on the type
of magnetic state. The total specific heat at low temperatures
can be written as

C(T ) = γ T + αT 3 + Cm(T ). (3)

If the magnetic contribution Cm(T ) would be vanishing small,
the coefficients γ and α can be determined from the zero
intercept and slope of the straight line in a C/T versus T 2plot
of the data, yielding g(εF ) and θD . For a significant Cm(T ),
such analysis is inadequate.

The specific-heat measurements were performed in the
temperature range between 2 and 300 K in magnetic fields
B = 0 and 9 T. The low-temperature specific heat below 5 K
is displayed in Fig. 7 in a C/T versus T 2plot, whereas the
specific heat in the entire investigated temperature range is
displayed in the inset. The difference between the zero-field
and the 9-T specific heats is observed only at the lowest
investigated temperatures below about 3.5 K, where the
specific heat in zero field is enhanced with respect to the
one in 9 T. Although there are several possible explanations
of this enhancement effect, the most plausible one seems to
be the magnetic contribution to the specific heat due to the
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FIG. 7. (Color online) Low-temperature specific heat of δ-FeZn10

in magnetic fields 0 and 9 T in a C/T versus T 2 plot. The inset shows
specific heat in the entire investigated temperature range from RT to
2 K.

appearance of magnetic short-range order on approaching a
phase transition to a collective magnetic state, which would
take place below our lowest investigated temperature of 2 K.
The large negative value of the Curie–Weiss temperature (θ =
−112 K) suggests a relatively strong AFM-type exchange
coupling between the Fe moments so that an AFM magnetic
ordering (or spin-glass type, due to intrinsic disorder in the
δ-FeZn10 phase) can be expected to take place at temperatures
low enough that the exchange interactions will prevail over
the thermal disordering of the spins. The hypothesis of
short-range spin ordering at low temperatures is supported
by the response of the specific heat to the magnetic field.
The Zeeman interaction of the spins with the external field
opposes the tendency of the formation of short-range-ordered
AFM-type spin clusters, which diminishes the magnetic
contribution to the specific heat in the field, as also observed
experimentally.

Since the δ-FeZn10 compound consists mainly of
the Zn element (its chemical formula can also be written as
Fe0.09Zn0.91), it is instructive to compare the magnitude of C/T

at the lowest investigated temperature of 2 K to the magnitude
of the electronic specific-heat coefficient γ of the Zn metal.
From Fig. 7 we read the zero-field value (C/T )0 T

2 K = 3.7 mJ/
mol · K2, whereas the 9-T value is (C/T )9 T

2 K =
2.8 mJ/mol · K2. The electronic specific-heat coefficient
of the Zn metal is21 γZn = 0.638 mJ/mol · K2. The inequality
(C/T )2 K > γZn cannot be explained by the difference in the
DOSs of the two materials (since the electrical resistivity
of the Zn metal is two orders of magnitude smaller than
the resistivity of δ-FeZn10, the DOS of Zn is larger and the
opposite inequality should hold in that case) but should be
attributed to the magnetic specific-heat contribution of iron
in the δ-FeZn10. Due to the significant, yet not well-defined
Cm(T ) contribution, the coefficients γ and α cannot be
determined reliably from the data analysis with Eq. (3).

G. Thermal conductivity

Thermal conductivity κ of δ-FeZn10 between 300 and 2 K is
shown in Fig. 8. κ shows a typical phonon umklapp maximum

FIG. 8. (Color online) Thermal conductivity κ of δ-FeZn10

between 300 and 2 K. The decomposition of the total thermal
conductivity κ into the electronic κel and the phononic κph parts
by using the WF law is shown as well.

at about 25 K and a continuous increase above 100 K, reaching
a low value κ300 K = 3.5 W/mK at RT. Since the electrical
resistivity of this material is also high for an intermetallic
compound, δ-FeZn10 is a poor conductor for both the electricity
and the heat. The low electrical and thermal conductivities of
the δ-FeZn10 phase have a simple explanation by considering
the intrinsic disorder-induced suppression of the electron and
phonon propagation in the crystalline lattice.

The phononic thermal conductivity κph = κ − κel can be
estimated by subtracting the electronic contribution κel from
the total conductivity κ using the Wiedemann–Franz (WF) law,
κel = π2k2

BT /3ρ(T )e2, and the measured electrical resistivity
data ρ(T ) from Fig. 3. Here it is important to recall the validity
of the WF law,22 which is valid under the condition of dominant
elastic scattering of the electrons. This is usually realized
at high temperatures T > θD , whereas at low temperatures,
the WF law is valid for solids where only the residual
electrical resistivity (due to elastic scattering by quenched
defects) is observed. Inspecting the electrical resistivity of
the δ-FeZn10 from Fig. 3, we observe that this material
exhibits very large residual resistivity and a relatively small
temperature-dependent resistivity change (by 7% at most)
between 2 K and RT. This suggests that the elastic scattering
by quenched disorder provides an important contribution to the
total resistivity of the intrinsically disordered δ-FeZn10 phase.
The WF law could thus be considered as an approximation
to κel(T ), although we should keep in mind that its validity
is compromised by the observation of the inelastic scattering
effects in the temperature-dependent electrical resistivity (to
be discussed in Sec. IV).

The decomposition of the total thermal conductivity κ into
the electronic κel and the phononic κph parts by using the WF
law is shown in Fig. 8. κph exhibits a plateau above the umklapp
maximum, a consequence of frequent phonon scattering by the
quenched structural disorder that diminishes the lattice thermal
conductivity. At 300 K we obtain the values κel = 2.2 W/mK
and κph =1.3 W/mK. This yields the ratio (κel/κ)300 K = 0.63
so that the electrons (and holes) are the dominant heat carriers
at 300 K.
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IV. DISCUSSION

A. Electrical resistivity

We discuss here two theoretical approaches that can re-
produce the maximum in the temperature-dependent electrical
resistivity and are applicable to systems that contain intrinsic
disorder and compromised translational periodicity such as
CMAs and quasicrystals. The first is the theory of quantum
transport of slow charge carriers (the SCC model),23 and the
second is the theory of weak localization (the WL model)
of conduction electrons in a disordered medium.24 In the
following we apply both models to the electrical resistivity
of δ-FeZn10 from Fig. 3 and show that they reproduce
the experimental ρ(T ) data to practically equal precision.
However, while the application of the SCC model can be
justified at any temperature, the WL model is restricted to low
temperatures with no clear indication at which temperature it
breaks down.

1. Slow charge carriers

The SCC model23 is based on the weak dispersion of the

electronic band energies En(
⇀

k), where n is the band index

and
⇀

k the wave vector, in which case the electron velocity ⇀
v =

(1/h̄)∂En(
⇀

k)/∂
⇀

k is small. The model predicts a transition from
ballistic (Boltzmann) to diffusive (non-Boltzmann) electrical
conductivity as a function of the relaxation time τ between the
electron scattering events that enters the electron mean-free
path l = vτ . The electrical conductivity (the inverse resistivity,
σ = ρ−1) is given by the Einstein relation σ = e2g(εF )D,
where g(εF ) is the DOS at εF and D is the electronic diffusion
constant that can be written by simple kinetic arguments as
D = v2τ/3 = l2/3τ , with v2 being the mean-square electronic
speed. For long τ , usually realized at low temperatures, the
mean-free path l between the scattering events is larger than
the extension of the conduction-electron wave packet Lwp so
that the motion of electrons is ballistic, and one obtains in
the free-electron limit the Drude conductivity σ = ne2τ/m.
Since τ shortens upon raising the temperature, this yields
a positive-temperature-coefficient (PTC) resistivity in the
low-temperature ballistic regime. At higher temperatures, τ

becomes short enough to drive the system into the l ≈ Lwp

limit of diffusive type of motion. The diffusion constant then
becomes inversely proportional to the relaxation time, D =
L2/τ , where L is a constant proportional to the elementary
diffusion step. This yields the conductivity of the type σ ∝ 1/τ

that results in a nonmetallic negative-temperature-coefficient
(NTC) resistivity in the high-temperature regime. At the
transition from the ballistic to the diffusive type of motion,
the resistivity exhibits a maximum and a crossover from the
low-T PTC to the high-T NTC resistivity. The temperature of
the resistivity maximum depends sensitively on the electronic
velocity v (hence on the electronic structure and band dis-
persion) and the temperature-dependent relaxation time τ (T ).
Various possible temperature-dependent electrical resistivities
within the SCC model (PTC, NTC, and mixed PTC-NTC with
a maximum), expressed by the formula of the form

ρ−1 = Aτ + B/τ, (4)

were elaborated theoretically in detail in a previous publication
(see Fig. 7 of Ref. 25). The SCC model has been success-
fully applied to the temperature-dependent resistivities of
the Al4(Cr,Fe) decagonal approximant,25,26 the giant-unit-cell
heavy-fermion compound YbCu4.25,27 the μ-Al4Mn complex
intermetallic,28 and the resistivity in the quasiperiodic plane
of the d-Al-Co-Ni decagonal quasicrystal29 that all exhibit a
maximum.

The relaxation rate τ−1 will generally be a sum of a
temperature-independent rate τ−1

e due to elastic scattering by
quenched defects and a temperature-dependent rate τ−1

i that
contains any inelastic scattering processes, e.g., the scattering
by phonons. In the simplest case, τi can be phenomenologically
written as a power law of the temperature, τi = β/T α , at least
within a limited temperature interval. Equation (4) can then be
cast into the form25

ρ−1 = A

1 + CT α
+ B (1 + CT α) , (5)

where A = e2g(εF )v2τe, B = e2g(εF )L2/τe and C = τe/β.
Equation (5) contains four fit parameters A, B, C, and
α (where the last two always appear in a product CT α).
Equation (5) was used to fit the resistivity of δ-FeZn10,
and the resulting theoretical curve is shown in Fig. 3 as a
solid curve. Excellent agreement with the experiment was
found in the entire investigated temperature range, reproducing
well the maximum of the resistivity. The fit parameters are
A = 2.2 × 10−3 (μ
 cm)−1, B = 1.0 × 10−3 (μ
 cm)−1,
C = 1.6 × 10−3, and α = 1.1, where the units of C are chosen
such that the temperature in the expression CT α appears
dimensionless.

2. Weak localization

In “dirty” metals with strong electronic scattering, the
interference between scattered waves is important. Since
the elastic scattering time τe is independent of temperature,
whereas the inelastic scattering time τi(T ) increases with
decreasing temperature, there exists a region, usually limited
to low temperatures, where the inequality τe � τi holds.
In such a case, several elastic scattering events take place
within one inelastic scattering event, and different types of
interference effects occur: weak localization and enhanced
electron-electron interactions.24 WL is a one-electron effect in
which the elastically scattered electron interferes with itself
during the time of preserved phase coherence, usually taken
to be the inelastic scattering time. This leads to an increased
tendency towards backscattering, from which the terminology
of weak localization has been coined. Weak localization
introduces small temperature-dependent correction �σWL(T )
to the Boltzmann conductivity due to spin-orbit and inelastic
scattering processes of the electrons. The conductivity is
written in the form

σ = σ0 + �σWL(T )

= σ0 + e2

2π2h̄
√

Dτso

(3
√

t + 1 − √
t − 3), (6)

where σ0 is the residual conductivity in the T → 0 limit, D is
the diffusion constant, τso the spin-orbit scattering time, and
t = τso/4τi(T ), where τi(T ) is the inelastic scattering time that
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can be taken in the form τi ∝ 1/T α [the same form as used in
Eq. (5) of the SCC model]. The WL model also yields a maxi-
mum in the temperature-dependent electrical resistivity, which
is a consequence of the interplay between the spin-orbit and
the inelastic scattering processes of the conduction electrons.
The fit of the δ-FeZn10 resistivity data with Eq. (6) is shown in
Fig. 3 by a dashed curve, using the parameter values σ0 = 3.2 ×
10−3 (μ
 cm)−1, e2/(2π2h̄

√
Dτso) = 1.4 × 10−3 (μ
 cm)−1,

and by rewriting t = (T/T0)α , T0 = 608 K, and α = 1.9. The
WL fit is excellent, and moreover, it gives an indistinguishable
curve to the SSC fit.

The WL and the SCC theories thus fit the experimental
resistivity data of the δ-FeZn10 to equal precision. This raises
the question whether the two theories are in essence the same,
despite different starting hypotheses, or the perfect matching
of the two theoretical curves in Fig. 3 is accidental, caused
by a relatively large number of free parameters in the fit
procedure (four in both cases). Here it should be emphasized
that the applicable temperature ranges for the WL and the
SCC models are different. The limiting factor for when the
WL effect disappears is τi(T ) ≈ τe so that the WL theory is
in principle restricted to low temperatures and the maximum
in the ρ(T ), and the nonmetallic NTC resistivity above the
maximum both occur within the ballistic (Boltzmann) regime
with τe < τi (or even τe � τi). This is hard to justify for
the δ-FeZn10, where the resistivity maximum appears at a
temperature as high as 220 K. In contrast, the SCC model
is applicable at any temperature; the resistivity maximum
appears at the transition from the ballistic (Boltzmann) to
the diffusive (non-Boltzmann) type of electron motion and the
high-temperature NTC resistivity occurs in the regime τe 
 τi

that can hold to arbitrary high temperatures. This favors the
use of the SCC model over the WL model.

B. Magnetoresistance

The magnetic field-dependence of the magnetoresistance
�ρ(B)/ρ has been theoretically elaborated in detail for the
WL model,24,30 and the theory was successfully applied to
several icosahedral and decagonal Al-based quasicrystals.31–33

For the SCC model, no theory of the magnetoresistance exists
at present. The WL theory predicts that �ρ(B)/ρ starts as
B2 in the “low” field, whereas at “high” field it may give a√

B or weaker dependence. Here the words “low” and “high”
field are used for when we observe a B2 dependence or not,
with no clear indication on the magnitude of the field where
the change happens. The magnetic-field effects disappear with
increasing temperature. Since the formerly discussed analysis
of the temperature-dependent electrical resistivity of δ-FeZn10

suggests inadequacy of the WL model in this case, we do not
apply fitting of the field-dependent magnetoresistance data
from Fig. 4(b) with the WL theory (that contains many fit
parameters) but only give some qualitative discussion. At all
investigated temperatures, the �ρ(B)/ρ data measured in the
field range between 0- and 9-T field show approximately linear
field dependence with no clear indication of a B2 dependence
at low field.

The temperature-dependent magnetoresistance �ρ/ρ in
B = 9 T, shown in the inset of Fig. 4(b), has been analyzed

phenomenologically by a model function

�ρ

ρ
=

(
a

T − T ′

)β

. (7)

This form fits well the experimental data [solid curve in
the inset of Fig. 4(b)] by using the fit parameter values
a = 121.5 K, T ′ = − 104 K, and β = 3.0. Here we
emphasize that Eq. (7) should be considered merely as a
convenient power-law functional form that reproduces well the
experimental temperature-dependent magnetoresistance data
of the δ-FeZn10, without any deeper physical background.

C. Thermoelectric power and Hall coefficient

Unlike the electrical conductivity, which is proportional to
the square of the electric charge (σ ∝ e2) and hence does not
distinguish between the negative electron-type carriers (−e)
and the positive hole-type carriers (+e), the thermopower
S and the Hall coefficient RH distinguish between the electrons
and holes, as the charge in their expressions appears as e or
1/e, respectively. S and RH are thus much more sensitive to
the details of the Fermi surface that determines the electronic
transport coefficients.

The positive RH of δ-FeZn10 shown in Fig. 6 suggests that
holes are the majority charge carriers, whereas the negative
thermopower S of Fig. 5 offers the opposite conclusion that the
charge is carried by the electrons. This apparent contradiction
can be resolved by considering the details of the Fermi surface.
Since the Fermi surface of the δ-FeZn10 phase has not been
determined as yet, we are unable to make quantitative analysis.
However, opposite-sign S < 0 and RH > 0 are not uncommon
in the literature. This situation was discussed for the high-Tc

cuprates,34 where the electrons form an unusual state in which
the Hall (cyclotron) mass parallel to the Fermi surface is
holelike (<0), but the transport mass perpendicular to it is
electronlike (>0). The electronlike transport mass contributes
to negative S, while the holelike Hall mass results in positive
RH . A similar situation was found also for the Y-phase
Al-Co-Ni decagonal approximant phase,35 where the highly
anisotropic Fermi surface was shown to be composed of eleven
branches, and in the PdGa intermetallic phase.36

V. CONCLUSIONS

The δ-FeZn10 phase in the zinc-rich domain of the Fe-Zn
system possesses high structural complexity typical of CMAs:
a large unit cell comprising 556 atoms, polyhedral atomic order
with icosahedrally coordinated environments, fractionally oc-
cupied lattice sites, and statistically disordered atomic clusters
that introduce intrinsic disorder into the structure. Structural
disorder results in suppression of the electrical- and heat-
transport phenomena, making δ-FeZn10 poor electrical and
thermal conductor. Structural complexity results in complex
electronic structure that is reflected in the opposite signs of the
thermoelectric power and the Hall coefficient. The δ-FeZn10

phase is paramagnetic down to the temperature of 2 K with a
significant interspin coupling of AFM type. The specific heat
indicates the formation of short-range-ordered spin clusters at
low temperatures, very likely a precursor of a phase transition
to a collective magnetic state that would take place below our
lowest investigated temperature of 2 K. The magnetoresistance
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of δ-FeZn10 is sizeable, amounting to 1.5% at 2 K in a 9-T field.
The temperature-dependent electrical resistivity exhibits a
maximum at about 220 K, and its temperature dependence can
be explained by the theory of slow charge carriers, applicable
to metallic systems with weak dispersion of the electronic
bands, where the electron motion changes from ballistic to
diffusive upon heating.
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