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A microscopic look at the reinforcement of silica-filled rubbers
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The deformed structure of silica-filled elastomers under uniaxial strain has been investigated using
a combination of both small angle x-ray scattering and small angle neutron scattering methods.
Using an extraction procedure and taking into account the two-phase nature of these polymer-based
composites, the single chain scattering behavior as well as filler properties could be obtained
uniquely on identical samples. For the first time the deformation of the rubbery matrix on the length
scale of the network chain in a filled rubber could be determined and therewith the importance of
matrix overstrain for the mechanical properties was estimated. Additionally, the determination of
filler deformation and filler destruction presents microscopic details of the mechanisms of filler
networking and the stress-softening Mullins effect. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2191048�
I. INTRODUCTION

The field of composite materials is a fast-growing branch
of modern polymer physics1–13 and very strongly empirically
based and technically guided for which a firm molecular ba-
sis is yet to be provided. The understanding of material prop-
erties especially of reinforcement in these heterogenous com-
posites is intimately related to the structure of and the
interplay between the constituent components.6,8,14 The me-
chanical response of filled elastomers has been the object of
many studies already and a benchmark for a number of
theories.15–17 Even though the mechanical properties are al-
ways determined by a superposition of several processes, in
such systems the complex dependence on deformation and
deformation history allows to a certain extent the separation
of mechanisms. For example, the observed amplitude and
time dependency of dynamical properties necessitated the
introduction of filler networking and also the reexamination
of the role of filler-filler and chain-filler interactions in ex-
plaining the Mullins effect.12,16,17 Consequently, the concept
of matrix overstrain in networks with colloidal highly struc-
tured fillers as expressed by micromechanical or phenomeno-
logical treatments resulting in expressions such as E
=EmF��eff� for the modulus or �=�m��*� for the stress had
to be revised. Here, �* is the enhanced average local defor-
mation of the matrix and the subscript m denotes matrix
properties. �eff is the effective volume fraction of the filler
taking into account all less deformable parts of the rubber
matrix �for details see, e.g., Ref. 16�. One of the typical
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expressions is the Pade approximation of the second order
power series for a polydisperse system of hard spheres3

F��� = 1 +
2.5�eff

1 − 2�eff
, �1�

which is demonstrated in Fig. 1. Expressions like Eq. �1�
were considered to reflect the physics of the reinforcement of
filled rubbers in virgin state at small deformations quite rea-
sonably. The effective volume fraction which is the only nec-
essary free parameter was found to be compatible with the
large pore volume which may be occupied by immobilized
matrix material within highly structured fillers. As already
mentioned above the typical hysteresis at cyclic deforma-
tions and the “return” to the virgin curve at further increasing
deformations required the introduction of filler network con-

FIG. 1. Relative modulus increase and description by strain amplification

according to Eq. �1�. Data points refer to all samples, specified in Table I.
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tributions and therewith decreasing contributions from the
matrix and consequently less overstrain. Recent results ob-
tained by deuterium NMR yield an even more radical picture
and found no indication of overstrain at all in large parts of
the matrix.18 On the other hand, overstrain could unambigu-
ously be detected in a model latticelike microphase-separated
system.19

Taking into consideration these contradictive results the
ability of small angle neutron scattering �SANS� to observe
local matrix deformations on the length scale of a polymer
chain as well of the filler phase becomes highly challenging.
With SANS both selected labeling and contrast matching al-
low to highlight special structures and make it possible to
attempt a direct observation of the proposed mechanisms.
The impossibility of complete contrast matching for systems
with colloidal fillers such as carbon black or silica will be
overcome by small angle x-ray scattering �SAXS� and SANS
investigations on the same systems. In this investigation we
will therefore focus on the deformation behavior of the rub-
bery matrix as well as of the filler system itself on a micro-
scopic scale for a model system for silica-filled rubbers.

II. SCATTERING ANALYSIS

In a preceding publication on the characterization of
typical multicomponent structures with x rays and
neutrons,20 a general scattering theory was developed and
applied to systems in the isotropic state. The approach solely
assumed that the system consists of two incompressible
phases �filler and polymer matrix� and that the distribution of
the polymer chains over the polymer phase is not influenced
by the presence of the filler. This corresponds to the fact that
for the given system no preferential interactions of the poly-
mer with the filler phase should be expected. For a three-
component blend, i.e., filler particles with constant scattering
properties and a deuterated/protonated blend as rubber phase,
the differential scattering cross section resulted in an appar-
ently incoherent addition of two terms,

d�

d�
�q� = �bf − b�P��2Sf�q,�� + �P�bH − bD�2SRPA,P�q,�m� ,

�2�

where P and f stand for polymer chains and embedded filler
particles, respectively, with scattering lengths bf, bH, bD, and
b�P� for the filler, the protonated and deuterated chains, and
their average. Sf�q ,�� is the structure factor of the filler sys-
tem, and SRPA,P�q ,�m� is the RPA-structure factor of the
polymer matrix at the local deformation �m. From this it is
clear that single chain properties are ideally obtained if
matching of the filler, i.e., cancelling the first term, was
achieved. Exactly this parasitic scattering ��Sf� is obtained
ideally from SAXS measurements on the very same sample
which simply sees Sf due to vanishing contrast, i.e., the sec-
ond term between deuterated and protonated chains. The
strict additivity of phase and intrapolymer scattering accord-
ing to Eq. �2� was proved in Ref. 20 using the q dependence
of Sf to obtain the chain scattering from the polymer matrix
also for nonideal matching. Extending this concept to a de-

formed system of cross-linked and entangled chains our
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well- proved approach for networks made from long primary
chains will be applied to SRPA,P�q ,�m�. SRPA,P�q ,�m� can be
expressed by the product of the RPA-structure factor
S0RPA,P�q ,�m�=S0,RPA,P�q�m� of the deformed tube axes,21

S0,RPA,P�q�m� =
�H�DNw

1 − 2�NwP0�q�m��H�D
P0�q�m� , �3�

and the contribution from restricted fluctuations modeled by
the Warner-Edwards tube-model structure factor,

PWE�q,�m� = 2�
0

1

d��
0

�

d��	
�

exp
− �q�Rg�2

���m,�
2 �� − ��� − �1 − �m,�

2 �
d�

2

2�6Rg
2

�
1 − exp
− �� − ���
2�6Rg

2

d�
2 � , �4�

normalized by the bare structure factor P0�q�m� of the la-
beled chains as

SRPA,P�q,�m� = S0,RPA,P�q,�m�PWE�q,�m�/P0�q�m� . �5�

The deformation ratio �m is the deformation on the length
scale of the labeled primary chains, N, �, and � are polymer-
ization degree, Flory-Huggins interaction parameter, and vol-
ume fractions. Rg, q�, and d�=d0�m

1/2 are the radius of gyra-
tion and the components of the scattering vector and the
fluctuation range of the chains. � and �� are dimensionless
integration variables over the chain contour.

III. EXPERIMENT

The preparation of the matrix rubbers was described al-
ready in detail in the former publication to which we refer20

and is only summarized here. Model polyisoprene �PI� ho-
mopolymers were synthesized through living anionic poly-
merization. The final products were deuterated D-PI �Mw

=196 000, P=1.019, H equivalent� and protonated H-PI
�Mw=206 000, P=1.020�. The polydispersity index P
=Mw /Mn was determined by SEC and Mw from independent
LALS. The TESPT-organosilane-modified filler Coupsil
6105 �Degussa AG� with 5% surface activation was based on
the parent Ultrasil VN2 and used as received. Three samples
which differed in labeling degree were prepared by solution
blending, ultrasound treatment, and evaporation under high
vacuum with varying filler volume fraction. Their composi-
tions are listed in Table I. As the bulk density of the used
silica, 2.0 g/cm3, is only known to within 10% accuracy and

TABLE I. Composition of the samples. �D is the fraction of labeled poly-
mer in the rubbery phase, � the volume fraction of filler 6105, and E /Em the
increase of the modulus in comparison to the rubber matrix.

Sample �D �H � Mc �g/mol� E /Em

5C99 0.40 0.60 0.08 12 500 1.42
7C99 0.34 0.66 0.08 12 000 1.45
6C99 0.40 0.60 0.15 12 800 2.31
also irregularities in the surface modifications may contrib-
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ute, the contrast matching of silica �i.e., scattering length
density b /VSiO2

=	SiO2
=3.1�1010 cm−2� with a blend of

polyisoprene cannot be achieved ideally, and therefore
blends with composition close to or around the expected con-
trast matching composition ��D=0.43� were prepared. The
cross-linking process was random using dicumylperoxide as
described. The cross-link density was estimated from swell-
ing degree measurements in cyclohexane. We use the con-
cepts developed by Berriot et al.22 to relate the measured
swelling ratios Q0 of the filled systems to the swelling ratios
Qpol of a polymer matrix with the same cross-link and en-
tanglement density. Our systems show comparable swelling
ratios as the systems of Beriot. Therefore, the same relation-
ships were adopted for Q0 /Qpol to be 0.8 and 0.65, respec-
tively, for �=0.08, 0.15. Using the usual Flory-Rehner
expression23 the molecular weights between the cross-links
Mc were determined and are given in Table I. The modulus
of the matrix was estimated using data for similar networks
with mesh sizes between 3000 and 16 000 g/mol, investi-
gated by swelling and uniaxial stress-strain analysis. From
the reported chemical cross-link contribution Gc�Mc

−1 and
entanglement contribution Gn�Mc

0, a regression formula
Em /MPa=0.105+5.73/ �Mc /kg mol� results.24

The Young modulus of the filled rubbers was determined
by stress-strain tests on a tensile testing unit �Instron 4443� at
constant low crosshead speed �1 mm/min, 0.02/min, and

max=0.2 on the same samples after the scattering investiga-
tions�. The deformation ratio was determined from the
clamping displacement and the initial length of the samples.
The ratio of moduli E /Em with the matrix modulus Em de-
termined as described above is shown in Table I and Fig. 1
together with predictions according to Eq. �1�. The resulting
effective filling degree �eff=1.7� affirms that the investi-
gated samples possess the typical features of carbon black or
silica-filled rubbers.

SANS data on the deformed elastomers as prepared were
obtained from the small angle neutron diffractometer
�SAND�, Argonne National Laboratories, Chicago and
KWS1, FZ Jülich. Synchroton SAXS measurements were
performed after this at ID2, ESRF, Grenoble. Small strain
steps, compared to the discrete larger values in the neutron
experiments, could be achieved due to the high photon flux.
The common scattering vector range q of both scattering
experiments was about 0.002 up to 0.2 Å−1. All data were
obtained two dimensionally and corrections for detector sen-
sitivity, solid angle, and the usual background subtractions
applied channelwise before reducing the data corresponding
to principal axis directions. This was necessary in view of
the different type of data, obtained from a steady source
�KWS1,ID2� and a pulsed source �SAND�. Parallel and per-
pendicular components of the scattering relative to the
stretching direction were determined from narrow sector
opening angles.

IV. EVALUATION OF SCATTERING DATA

For the determination of the matrix deformation from
scattering data using the theory outlined above, Sf�q ,�� in

the deformed state must be known. Figure 2 shows the re-
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sults of SAXS measurements for sample 6C99 with �
=0.15. It is eminent that for this and also all other investi-
gated samples above a certain q value �q*� the scattering is
independent of the deformation ratio of the sample. Latter
affects only the smallest q systematically and will be dis-
cussed below. For the treatment of the SANS data it is of
importance that Sf�q ,�� is � invariant over the experimental
q range and consequently depends on �q� only. The phase
scattering then drops out for any difference of SANS inten-
sities with the same �q�. Therefore, fitting the difference of
SANS intensities parallel and perpendicular to the deforma-
tion direction, only the description of matrix data according
to Eqs. �2�–�5� enters the corresponding procedures. In the
more general case of an anisotropic filler scattering the q
dependence of Sf must be fed in and only a scaling factor
relating SAXS and SANS scatterings from the filler has to be
determined in the same way as we proposed in the isotropic
characterization study of our system. Figure 3 shows the re-
sults of such a description of the SANS data using Eqs.
�3�–�5� for the sample 5C99 with �=0.08. This example
should exhibit the most clear features as the investigated
strain was the highest one in this study. Before discussing the
results and details of the fitting procedure of the SANS data
the attention should be emphasized on the result depicted
here. The isotropic phase scattering extracted from the scat-
tering along the two main axes is compared with the phase

FIG. 2. SAXS-data for sample 6C99. The insert shows the data for q�q*

�10−2 Å−1

FIG. 3. SANS-data for sample 5C99, extracted phase scattering, and res-

caled SAXS data for �=1.8.
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scattering from SAXS on the same sample. The agreement is
strikingly good and confirms the suggested approach. The
scatter at high q is due to intensity levels which submerse in
the incoherent background. The results for the resulting poly-
mer scattering and the theoretical data according to Eqs.
�3�–�5� are presented in Fig. 4. An excellent agreement espe-
cially for the very sensitive Kratky plot can be noticed.

The main fitting parameter was the deformation ratio of
the matrix �m whereas all other parameters of Eq. �4� were
fixed or taken from the isotropic state. Additionally, the in-
tensity I0,th at q=0 and the background u were fitted to avoid
undesirable influences from the limited accuracy of the cali-
bration of the data. Rg of the chain was evaluated as 146 Å
from the isotropic data, � is estimated as �2�10−4. The
values of the parameters are given in Table II and in the
corresponding table caption. The obtained deformation ratio
is quasi-identical to the macroscopic deformation of the
sample and no sign of overstrain can be observed therewith
on the chain level. To facilitate the comparison with the

FIG. 4. Extracted chain scattering of sample 5C99 and theoretical descrip-
tion according to Eqs. �3�–�5� in log-log and Kratky representation for
�=1.8.

TABLE II. Neutron scattering results from the extra
The absolute calibration of the data is in close agreem
and Mw. Fn= ��m−1� / ��−1�.

Sample � � I0,th �cm−1�

5C99 0.08 1.4, 1.6, 1.8 336
7C99 0.08 1.2 305
6C99 0.15 1.35 323
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to
strain amplification factor F���, the corresponding quantity
Fn= ��m−1� / ��−1��1 was introduced. The values for Fn

presented in Table II are close to 1 where the errors are
determined mainly by the accuracy of the applied macro-
scopic strain which is about 0.1. The overall uncertainty in-
cluding those from the fitting procedure is about 0.15. Strain
amplifications of the order given by the modulus enhance-
ment are outside of the range of errors and would lead to
much too strong anisotropic patterns than observed experi-
mentally. The found Fn values which are only slightly lower
than 1 are then most probably due to the overestimation of
the deformation ratio in the scattering experiment. From the
overall good agreement of the theoretical description and the
experimental data it can also be concluded that the deforma-
tion is rather homogeneous, e.g., the data exclude very sen-
sitively the presence of more than 10% of undeformed �im-
mobilized� or also higher deformed rubber in addition to the
affinely stretched chains. To validate this result it should be
pointed out that for the tube radius d� in Eq. �4� the result
obtained from unfilled networks d0=42 Å was used. It is
necessary to fix d0 since the deformation dependence of
PWE�q ,�m� according to Eq. �4� is sensitive to d0 especially
at larger q. On the other hand a property as d0=42 Å with a
length scale clearly below the scale of the filler particles
should be unaffected by their presence.

The main parameters of the filler system were already
determined in Ref. 20 for the undeformed system by a two-
level Beaucage-type analysis.25 The results are the size of the
primary particles Rp, the radius of gyration of the cluster Rg,cl

of z primary particles, and two fractal dimensions dp and df

characterizing the particle surface and the cluster structure.
Here, the same analysis applies with Rp and dp fixed to the
isotropic values in agreement with the � independence of the
SAXS data at large q and the expectation that primary-
particle related properties should be unchanged at deforma-
tion. The number of primary particles z in a cluster and its
fractal dimension df are the only deformation-dependent pa-
rameters to describe the SAXS data at low q in Fig. 2. The
relations between the prefactors of the components of the
Beaucage model were expressed by the usual relations as in
Refs. 20 and 25. Figure 5 shows the results of two represen-
tative samples for the components of the radius of gyration
of the clusters parallel and perpendicular to the direction of
the deformation given by

Rg,cl = ��2Rp�2z2/df/��1 + 2/df��2 + 2/df�� , �6�

for �=0.08 and 0.15. The mass fractal exponents df of the
clusters increase slightly both parallelly and perpendicularly
within the range of scatter. We note that according to �*

procedure for the effective three-component model.
ith expected intensities, given uncertainties in �, �D,

,fit �cm−1� u �cm−1� Fn F���

264±23 0.32±0.02 0.89±0.15 1.42
275±10 0.33±0.01 0.83±0.15 1.45
299±11 0.34±0.02 0.86±0.15 2.3
ction
ent w
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��Rg,cl /Rp�df−3��900/124�df−3�0.2, all investigated sys-
tems are below the overlap concentration and therefore the
properties of single clusters should be reflected by Rg,cl. In
Fig. 5 for two different filler loadings Rg,cl,� is constant at
small deformations and increases almost proportional to �
above a certain threshold whereas Rg,cl,� increases almost
linearly with the deformation. In the simplest interpretation
the transition from constant Rg,cl,� to linear growth is as-
signed to the onset of cluster break which has been postu-
lated only recently as the mechanism of the Mullins
effect.12,16,17 This is a first microscopic proof of this process.
This picture is also supported by the observed relationship of
the deformations at the transition for the different filler load-
ings which correspond to nearly constant values of E /Em in
Fig. 1, respectively.13 This suggests a loading-invariant stress
at break of the clusters. The continuous increase of Rg,cl,�

must be attributed to the fusion of clusters due to the reduc-
tion of perpendicular dimensions at uniaxial deformation.
The dependence of the mass fractal exponents df of the clus-
ters on strain corroborates the increase of Rg,cl,� by cluster
fusion which is accompanied by more compact clusters.13

V. CONCLUSIONS

To conclude, SANS measurements of partially labeled

FIG. 5. Rg,cl for samples 5C99 and 6C99, respectively, �=0.08 and
�=0.15.
silica-filled rubbers in the nonmatching state have offered an

Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to
independent tool to focus on both matrix and filler interac-
tions. These first results on the rubbery phase for our model
system show a clear failure of the still popular overstrain
picture of rubber reinforcement and support the important
role of filler networking. It should be noticed that the solu-
tion blending to achieve the model silica-filled rubbers were
sufficiently close to typical rubbers with industrial impor-
tance. Although the analyzed network chain densities as well
as the filling degree are about half the ones of representative
rubbers, nevertheless the same typical properties could be
identified. Further, this work also allowed the first direct ob-
servation of breaking-up processes in the filler system. The
presented analysis was facilitated by the deformation inde-
pendence of the filler scattering within the range of chain
scattering but the presented method should be confidently
applicable to more complex filled systems.
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