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Fluorescence correlation spectroscopysFCSd has become an important and widely used technique
for many applications in physics, chemistry, and biology. Usually, FCS is measured with sensitive
light detectors working in the photon-counting Geiger mode. A common property of such detectors
is afterpulsing: the generation of spurious photon detection events after a genuine photon detection.
Such afterpulsing causes a significant deviation of the measured autocorrelation function from its
true value on a short time scale and can seriously influence derived parameters for fast processes
such as triplet-state photophysics. Here, we discuss the impact of afterpulsing on FCS in detail. A
new method is developed to eliminate afterpulsing effects by using time-correlated single-photon
counting for separating the true fluorescence signal from afterpulsing events. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1863399g

INTRODUCTION

Fluorescence correlation spectroscopysFCSd is a rela-
tively old technique, originally introduced by Elson, Magde,
and Webb in the early seventies.1–3 However, it took nearly
two decades for the technique to see a renaissance in single
molecule spectroscopysSMSd after the development of new
lasers with high beam quality and temporal stability, low-
noise single-photon detectors, and high-quality microscope
objectives with nearly perfect imaging quality at high nu-
merical aperture. Achieving values of the detection volume
within the range of a few cubic micrometers made the tech-
nique applicable for samples at reasonably high concentra-
tions snMd and enabled reasonably short measurement times
sminutesd. An excellent and extensive description of FCS can
be found in Refs. 4 and 5. For recent reviews see Refs. 6 and
7 and the book in Ref. 8. In FCS, the detected fluorescence
intensity is correlated with a time-shifted replica of itself at
different values of time shiftslag timed. The result is the
so-called autocorrelation functionsACFd, i.e., the second-
order correlation function of the fluorescence intensity sig-
nal. The physical meaning of the ACF is that it is propor-
tional to the probability to detect, on average, a photon at
some later timeslag timed if there was a detection event at
time zero. This probability is composed of two basically dif-
ferent terms: The two photons detected at time zero and
some later lag time can originate from uncorrelated back-
ground or from different fluorescing molecules and therefore
do not have any physical correlationsprovided there is no
interaction of the different fluorescing moleculesd. These
events will contribute to a constant offset of the ACF that is
completely independent on lag timet. Alternatively, the two
photons originate from one and the same molecule and are
therefore physically correlated, leading to a time-dependent

component of the ACF. Thus, the temporal behavior of the
ACF is solely determined by the correlated contributions of
individual molecules. In this sense, FCS is a true SMS tech-
nique, although the analysis does not explicitly identify
single molecule detection events.

On different time scales, the temporal behavior of the
autocorrelation function is determined by different properties
of the fluorescing molecules: On a nanosecond time scale,
photon antibunching can be observed, reflecting the fact that
directly after the emission of a photon the molecule needs to
get re-excited to be able to emit the next photon, leading to a
steep decrease of the ACF towards short times. On a micro-
second time scale, the ACF is dominated by triplet state dy-
namics. If excitation and/or detection are done through po-
larization filters, the autocorrelation will also show
contributions from rotational diffusion dynamics of the mol-
ecules. The behavior of the ACF on a microsecond time scale
is also strongly influenced by detector afterpulsing. As it will
be shown, it is often impossible to clearly distinguish be-
tween fast photophysical processes such as triplet state dy-
namics and detector afterpulsing. On a millisecond to second
time scale, the ACF shows a typical decay due to the lateral
diffusion of the molecules out of the detection region.

THEORY

Basic FCS theory

In an FCS measurement, one records a time trace of
fluorescence intensitiesIstd detected from a small detection
volume and calculates the ACFgstd at different lag timest as
the average

gstd = kIst0 + tdIst0dlt0
, s1d

where averaging is done over all possible timest0. The shape
of this ACF is partially determined by the geometry of the
so-called molecule detection functionUsr d sMDFd describ-
ing the probability to detect a photon when a molecule is
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located at a given positionr . Usually, one makes the simpli-
fied assumption that this MDF has a three-dimensional
Gaussian shape, i.e., thatUsr d is proportional to

Usr d = k expF−
2sx2 + y2d

a2 −
2z2

b2 G , s2d

wherea and b are two characteristic parameters describing
the MDF,k is a factor accounting for the overall light detec-
tion efficiency of the measurement system as well as the
molecules’ absorption cross section and fluorescence quan-
tum yield sfluorescence brightnessd, andx, y, andz are Car-
tesian coordinates, withz along the optical axis. For a solu-
tion of diffusing fluorescing molecules with no triplet-state
dynamics, the infinite-time limit of the ACF is then given by

ḡ0std =
p3/2k2a2b

8 F c

s1 + 4Dt/a2dÎ1 + 4Dt/b2

+ c2p3/2a2bG , s3d

wherec is the fluorophores’ concentration in the sample so-
lution, andD is their diffusion coefficient. If the fluorophores
exhibit not only simple singlet ground state/excited state
photophysics, but also intersystem crossing from the excited
singlet state into the first triplet state with subsequent phos-
phorescence and return to the singlet ground state, the ACF
has additionally an exponentially decaying contribution on
the microsecond time scale and can be approximated by9

ḡstd = F1 +
f

1 − f
expS−

t

t
DGḡ0std, s4d

where f is the average part of molecules residing in the
triplet state during their residence time within the detection
volume, andt is a characteristic decay time depending on
intersystem crossing rate, triplet state lifetime, and excitation
intensity.

Afterpulsing

In counting experiments using photomultipliers and ava-
lanche diodes that are operated in the photon-countingsGei-
gerd mode, several detector nonidealities may play a non-
negligible rolesfor a detailed discussion, see Ref. 10d. The
two most common nonidealities are detector dead time and
afterpulsing. Detector dead time is caused by a minimum
recovery time required for the detector being able to detect
the next photon after a previous detection event. Usually,
detector dead times are in the range of several tens to hun-
dreds of nanoseconds. They cause the measured ACF to drop
towards zero at lag times of the order of the detector dead
time. Usually, this time region is of little interest in FCS
measurements, and thus, we will not consider dead-time ef-
fects further. A more serious effect is detector afterpulsing,
meaning that genuine output pulses may be followed by an
afterpulse. The origin of afterpulsing and its characteristics
depend on the detector type. For photomultipliers the most
frequent causes of afterpulsing are ionized atoms of the re-
sidual gas that are accelerated towards the photocathode and
generate delayed photoelectrons. Other reasons include fluo-
rescence effects of dynodes and luminescence of the residual

gas. In semiconductor avalanche diodes a primary photoelec-
tron initiates a chain of ionizations that causes a breakdown
pulse at the detector output. Some of the generated charge
carriers, however, are temporarily trapped in the junction
depletion layer. When these carriers are released by thermal
excitation, new free carriers are created that can lead to af-
terpulses which are correlated with the initial event. The de-
cay times of the traps can be of the order of milliseconds or
seconds. The probability of afterpulsing depends on many
different parameters like material defects, temperature, and
operating conditions of the detector. It can be kept small by
reducing the bias voltage below the breakdown voltage after
the detection of an output pulse. Hence, the fraction of traps
that are released during the time of reduced bias voltage
cannot undergo the avalanche multiplication process. In
practical applications one has to compromise between high
count rates and a tolerable level of afterpulsing. Important
for FCS is that afterpulsing is a secondary phenomenon that
is correlated to an initial output pulse. Thus, afterpulsing
becomes visible as a fast decay of the ACF at lag times
comparable with the average time between a genuine detec-
tion event and its afterpulse. Let« be the overall probability
to detect an afterpulse after a genuine detection event. Typi-
cal values of« range between zerosnegligible afterpulsingd
and 0.2. Furthermore, letpstd denote the temporal probability
distribution of detecting an afterpulse at timet after its gen-
erating genuine detection event. Typical width of that func-
tion is in the range of some microseconds. Taking into ac-
count afterpulsing effects, the modified ACF reads

gstd = kIstdIs0dl + «E
0

`

dt8pst8dkIst + t8dIs0dl

+ «E
0

`

dt8pst8dkIst − t8dIs0dl

+ «2E
0

`

dt8E
0

t+t8
dt9pst8dpst9dkIst + t8 − t9dIs0dl

+ «pstdkIl, s5d

where the first term corresponds to photon detection pairs
with no subsequent afterpulses, the second and third terms to
photon detection pairs where the first or second detected
photon generates an afterpulse, the fourth term to photon
detection pairs where both generate afterpulses, and the last
term accounts for the correlation between afterpulses and
their generating photon detection events. This equation can
be rewritten by using the “ideal” ACFgstd=kIst8+ tdIst8dlt8
swith no afterpulsing effectsd as

gstd = gstd + «E
0

`

dt8pst8dgst + t8d + «E
0

`

dt8pst8dgsut

− t8ud + «2E
0

`

dt8E
0

`

dt9pst8dpst9dgsut + t8 − t9ud

+ «pstdkIl. s6d

The first term in this expression is the ideal ACF that one
would like to measure, the second through fourth terms are
locally averaged versions of this ideal ACF, wherepstd plays
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the role of the local average weight function, and the last
term is the temporal correlation between afterpulses and their
generating photon detections, thus being directly propor-
tional to pstd. In practice, the last term represents the most
significant deviation of the nonideal from the ideal AFC. The
second through fourth terms are usually not much different
from gstd as long as the time scale over whichgstd signifi-
cantly changes is much longer than the width of the function
pstd. Unfortunately, typical width ofpstd is in the same tem-
poral range as the characteristic times of triplet-state kinetics.
Thus, afterpulsing will mostly interfere with measuring
triplet-state photophysics or comparably fast processes via
FCS. The usual approach for diminishing the impact of de-
tector afterpulsing on an ACF is to use two separate detectors
in two detection channels. Subsequently, the ACF is approxi-
mated by cross correlating the signals between the two de-
tectors instead of autocorrelating each detector signal. Be-
cause afterpulses from one detector are completely
uncorrelated to genuine photon detection events of the other
detector, such a cross correlation completely cancels the last
term in Eq.s6d. However, the second to fourth terms in Eq.
s6d remain even after cross correlation and can still lead to a
significant deterioration of the ACF at short time scales.
Moreover, the necessity to use two detectors always for
proper ACF measurements also makes FCS more demanding
from a technical point of view.

To get a more quantitative estimation of the impact of
afterpulsing on measuring a fast process such as triplet-state
dynamics, let us assume that the ideal ACF has the form of
Eq. s4d with g0std=const.=kIl2 sno diffusiond, and that the
afterpulsing probability has an exponential temporal distribu-
tion p=T−1 exps−t /Td, a realistic description of the actual
afterpulsing behavior of many photon detectors. The modi-
fied ACF then takes the explicit form

g̃std = s1 + «d2kIl2 +
f

1 − f
HexpS−

t

t
D +

«s« + 2d
1 − sT/td2

3FexpS−
t

t
D −

T

t
expS−

t

T
DGJkIl2

+
«kIl
T

expS−
t

T
D . s7d

Figure 1 shows the behavior ofgstd for different values ofT.
As the figure shows, there can be significant deviations of the
measured ACF from its true shapegstd. In particular, both
triplet-state dynamics and afterpulsing lead to exponentially
decaying terms in the ACF, so that afterpulsing can be easily
confused with triplet-state dynamics.

TCSPC-FCS

Using the information contained in fluorescence lifetime
measurement for distinguishing between different fluorescent
species in FCS measurements was first proposed in Ref. 11.
The same technique also can be used for efficiently eliminat-
ing afterpulsing effects in FCS. In a combined fluorescence
lifetime and FCS measurement, fluorescence excitation is
done with a pulsed laser, and the fluorescence photons are
detected on two different times scalessso called time-tagged

time-correlated photon countingd: on a pico- to nanosecond
time scale, where the distance between the exciting laser
pulses and the photon detection events is timedstime-
correlated single-photon counting or TCSPCd; and on a much
larger time-scale between,100 nanoseconds up to seconds,
where the absolute arrival time of detected photons is re-
corded, which is subsequently used for calculating the ACF
sfor details of this kind of time-correlated/time-resolved pho-
ton counting, see Refs. 12 and 13d. Although afterpulses are
correlated with their generating genuine photon detection
events, they show negligible picosecond/nanosecond time
correlation with respect to the exciting laser pulses: The
usual time between subsequent excitation pulses is of the
order of a few dozen nanoseconds, whereas the characteristic
correlation time between photon detections and subsequent
afterpulses is on the order of a few microseconds. Thus, over
the time between two laser pulse excitations, the decrease in
probability of counting an afterpulse after some photon de-
tection hardly changes, leading to a nearly uniform distribu-
tion of afterpulses on the TCSPC time scale. This is the
crucial property that is exploited for distinguishing afterpuls-
ing from any fluorescence which quickly decays on the TC-
SPC time scale.

Thus, let the measured intensity signalI j be

I jstd = ws1dstdpj
s1d + ws2dstdpj

s2d, s8d

where the indexj refers to thej th discrete TCSPC time chan-
nel used for timing the photon detection events with respect
to the exciting laser pulses,pj

s1,2d are thenormalizedfluores-
cence and afterpulse intensity distributions over these chan-
nels, and thews1,2dstd are the total intensities of fluorescence
and afterpulsing measured on the macroscopic time scalet.
Looking at Eq.s8d, it should be emphasized that two com-
pletely different times scales are involved: the macroscopic
time scale oft, on which the ACF is calculated, and the
sdiscreted TCSCP time scale labeled by the numbersj of the

FIG. 1. Impact of afterpulsing on measuring triplet-state dynamics. Open
circles show the ideal ACF of an immobile molecule having triplet-state
photophysics with triplet-state occupationf=0.2 and characteristic correla-
tion time t=5 ms. The solid lines are three ACFs for different afterpulsing
time-constantsT, indicated inms. Total afterpulsing probability of 20%s«
=0.2d and average count rate ofkIl=1/ms were assumed.
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corresponding TCSPC time channel. Thus, one has

gstd = kws1dst0dws1dst0 + tdlt0
s9d

and

gstd = kfws1dst0d + ws2dst0dgfws1dst0 + td + ws2dst0 + tdglt0
,

s10d

where no reference to the TCSPC time scale is present any
longer. To recover expressions9d instead of expressions10d,
one can employ the difference in the temporal distribution of
fluorescence and afterpulsing counts over the TCSPC chan-
nels. Let us rewrite Eq.s8d in matrix notation as

I = M ·w, s11d

whereI andw are column vectors with elementsI j andwskd,
respectively, and the elements of matrixM are given by
Mjk=pj

skd. It can be shown14,15 that the most likely values of
wskdstd at every momentt are found by minimizing the qua-
dratic form

sI − M̄wdT ·V−1 · sI − M̄wd, s12d

whereM̄ is the average ofM over many excitation cycles,
andV is the covariance matrix given by

V = ksI − M̄wd · sI − M̄wdTl − ksI − M̄wdl · ksI − M̄wdlT

= diagkI l. s13d

Here, triangular brackets denote averaging over an infinite
measurement time interval oft. In the last equation, it was
assumed that the photon detection obeys a Poissonian statis-
tics so thatkI jIkl−kI jlkIkl=d jkkIkl. The solution of the above
minimization task is given by using a weighted quasi-inverse
matrix operation and has the explicit form

w = fM̄ T · diagkI l−1 · M̄ g−1 · M̄ T · diagkI l−1 · I = F · I .

s14d

Thus, F=fM̄ T·diagkI l−1·M̄ g−1·M̄ T·diagkI l−1 is the sought-
after filter function that recoversws1dstd from the measured
I jstd

ws1dstd = o
j=1

N

Fj
s1dI jstd s15d

snotice thatF is a 23N matrix, with elementsFj
s1,2d, 1ø j

øNd. Finally, the purely fluorescence-generated ACF is cal-
culated as

gstd = o
j=1

N

o
k=1

N

Fj
s1dFk

s1dkI jst0 + tdIkst0dlt0
. s16d

RESULTS AND DISCUSSION

FCS-measurements were performed on a dilute aqueous
solution of the commercial dye Atto655sAttoTecd, having
maximum excitation at 663 nm and maximum emission at
684 nm wavelengths. Measurements were performed with a
standard confocal epifluorescence setup using a pulsed diode
laser with 80 ps pulse with 40 MHz repetition rate and
635 nm wavelengthsPDL 800, PicoQuantd for excitation,

and a single-photon avalanche diodesSPAD, AQR-14,
Perkin-Elmerd for detection. Fast electronicssTimeHarp 200,
PicoQuantd was used for recording the detected photons in
time-correlated time-tagged recording mode. For a more de-
tailed description of the measurement system and time-
correlated time-tagged photon detection, see Refs. 12 and 13.

Figure 2 shows the fluorescence decay curve, showing
the typical fluorescence decay plus a uniform background
which is mainly caused by SPAD afterpulsing. For approxi-
mating the pure fluorescence decay curve, from the measured
curve its minimum value is subtracted, resulting in the nearly
monoexponential fluorescence decay curve also shown in
Fig. 2. It should be emphasized that the exact character of the
fluorescence decaysmonoexponential, multiexponential, or
otherd is completely unimportant; it is only assumed that it
decays nearly to zero during one excitation cycle, so that any
remaining signal is generated purely by background and af-
terpulsing. For the subsequent analysis, the measured
TCSPC curve minus its minimal value is used, after normal-

ization, as the ideal decay curveM̄ j1= p̄j
s1d of the pure fluo-

rescence signal. As the ideal “decay” curveM̄ j2= p̄j
s2d of the

afterpulsing, a normalized uniform distributionp̄j
s2d=N−1 is

taken, whereN is the total number of TCSPC channels. It
remains to find an estimate for the average intensitykI jl per
TCSPC channel, which is necessary for calculating the co-
variance matrixV and thus the filter functionFj

s1d. As a suf-
ficiently good approximation forkI jl, one can take the num-
ber of measured photons in thej th TCSPC channel over the
complete measurement time, so thatkI jl is approximated by
the raw TCSPC curve as shown in Fig. 2.

For calculating the raw and TCSPC-filtered ACF from
the measured time-tagged time-correlated photon detection
data, fast algorithms were used as described in Ref. 16. Fig-
ure 3 shows the calculated ACFsgstd andgstd, using either
Eq. s1d or the TCSPC-filtered version Eq.s16d. The impact of
afterpulsing is clearly seen as the fast decay of the unfiltered
ACF at short lag times. In contrast, application of the TCSPC
filtering completely eliminates afterpulsing effects, as seen
by the total absence of any fast decay of the ACF on a mi-

FIG. 2. Measured fluorescence decay curve and deduced fluorescence and
afterpulsing TCSPC patterns,ps1d andps2d, respectively.
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crosecond time scale. This was also one reason for using
Atto655 as the sample dye: because it was known that this
dye has negligible triplet-state photophysics, it is the ideal
candidate for demonstrating the efficiency of the TCSPC-
FCS method.

Although we have used the method of TCSPC-filtered
ACF calculationsin short, TCSPC-FCSd here for eliminating
afterpulse effects in FCS measurements only, it can be used
for separating ACFs for different fluorescent species with
sufficiently different fluorescence decay behavior in a single
measurement with a single detectorssee also Ref. 11d. In the
case of afterpulse elimination, the method becomes excep-
tionally simple because noa priori knowledge of any fluo-
rescence decay behavior of the studied sample is necessary:
The filter functionFj

s1d is generated from the same data as
those used for the ACF calculation, by simply subtracting

from the TCSPC curve its constantsmostly afterpulse gener-
atedd background. Thus, the method is completely reference
free and straightforward to implement. It eliminates also the
impact of any other kind of uniform background, i.e., elec-
tronic noise with similarly uncorrelated distribution in TC-
SPC time space.
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