
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

The UNICORE Architecture
Seamless Access to Distributed Resources

Mathilde Romberg

FZJ-ZAM-IB-9909

August 1999

(letzte Änderung: 25.08.99)

Preprint: Proceedings of the eighth IEEE International Symposium
on High Performance Distributed Computing,
August 1999, ISBN 0-7803-5681-0, pp. 287-293

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/34919917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The UNICORE Architecture
Seamless Access to Distributed Resources

Mathilde Romberg
Forschungszentrum Jülich GmbH

Central Institute for Applied Mathematics
D-52425 Jülich, Germany
m.romberg@fz-juelich.de

Abstract

Seamless access to different systems of different vendors
at different sites is an important prerequisite to effective
and efficient use of distributed resources. Learning about
new systems, new software, and new interfaces is a time-
consuming task for users who actually want to run their ap-
plications. UNICORE is a project to overcome these diffi-
culties by providing a uniform interface for job preparation
and control which gives seamless and secure access to su-
percomputer resources. It is an ambitious project delivering
a production ready prototype within two years. The presen-
tation will focus on the UNICORE architecture, especially
the protocol and the underlying security mechanisms.

1. Motivation

Users solving large problems in computational science
usually need resources on a variety of systems at different
locations. The demand for resources often exceeds those
that can be obtained at one site. This causes the users to
work in different environments using one system at one site
on one day, using a different system at a different site the
next day, or using multiple systems at different sites simul-
taneously. In addition to the shortage of resources at a site
users typically need different systems because they have
complex pre- and post-processing tasks which run best on
another architecture than the main application. As a conse-
quence, the users need to learn the details of the environ-
ment at each site like system commands and options and
site specific conventions (user identification, security rules,
limits, ...). Therefore scientists often continue to work at
the site and on the system they know even if their appli-
cation is better suited for another architecture or a larger
system. This results either in sub-optimal use of expensive
resources or leaves solvable problems unsolved. This led

the UNICORE1 project to create a system which provides
seamless access to distributed computing resources.

2. Solutions and projects

There are several projects dealing with access to remote
resources and especially meta-computing, each covering
different aspects of the total picture. At the one end of the
spectrum developments want to enable the user to easily ac-
cess computer resources by providing application specific
interfaces. These allow users to solve their computational
problem using application terms instead of computer hard-
ware and software system terms. The project WebSubmit
at NIST is an example (see [9]). It is a Web-based frame-
work providing seamless access to applications (i.e. Gaus-
sian 94) on a collection of heterogeneous computing sys-
tems. At the other end are projects dealing with grid com-
puting, with a computational grid being defined as a hard-
ware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end
computational capabilities (see [5]). One member of this
group is the Legion project at the University of Virginia
(see [7]). Legion is a meta-system software project using
object-oriented technology. It’s goal is to provide a single,
coherent virtual machine that addresses the issues of scala-
bility, programming ease, fault tolerance, security, and site
autonomy. The Globus project (see [4]) establishes a soft-
ware framework for grid applications by providing a meta-
computer toolkit. This includes for example services for
resource allocation and process management, communica-
tion, data access and security. These basic mechanisms are

1UNICORE (UNiform Interface to COmputer REsources) is a project
funded by the German Ministry of Education and Research (bmb+f). UNI-
CORE is developed by a consortium of people from universities, national
research laboratories, software industry, and computer vendors. It is a two
years project ending in December 1999. For further information on the
project and the project partners refer to http://www.fz-juelich.de/unicore.



used to construct various higher-level meta-computing ser-
vices, such as parallel programming tools and schedulers.
Both projects focus on meta-computing at application level
and combine a large number of distributed systems to run
one huge application which has to be adapted to the frame-
work it wants to use. The projects mentioned above and
others in the area of desktop access to remote resources are
described in short in [8].

3. The UNICORE framework

The idea behind UNICORE is to support the users by
hiding the system and site specific idiosyncrasies and by
helping to develop distributed applications. Distributed ap-
plications within UNICORE are defined as multi-part ap-
plications where the different parts may run on different
computer systems asynchronously or sequentially synchro-
nized. A UNICORE job contains a multi-part application
as described above augmented by the information about the
destination systems, the resource requirements, and the de-
pendencies between the different parts. From a structural
viewpoint a UNICORE job is a recursive object containing
job groups and tasks. Job groups themselves consist of other
job groups and tasks. UNICORE jobs and job groups carry
the information of the destination system for the included
tasks. A task is the unit which boils down to a batch job for
the destination system.
The design goals for UNICORE include

� an uniform and easy to use graphical user interface,

� an open architecture based on the concept of an ab-
stract job,

� a consistent security architecture,

� minimal interference with local administrative proce-
dures,

� exploitation of existing and emerging technologies,

� zero-administration user interface through standard
Web browser and Java applets, and

� a production ready prototype within two years.

UNICORE is designed to support batch jobs, it does not al-
low for interactive processes. At the application level asyn-
chronous meta-computing is supported allowing for inde-
pendent and dependent parts of a UNICORE job to be exe-
cuted on a set of distributed systems. The user is provided
with a unique UNICORE user-id to uniformly get access
to all UNICORE sites. An intuitive graphical user inter-
face (GUI) allows job preparation and control. It should
be noted that the prototype excludes meta-computing at the
application level (synchronous meta-computing), resource
brokerage, and interactive applications including applica-
tion steering.

4. The UNICORE architecture

A three tier architecture has been developed for UNI-
CORE consisting of user, UNICORE server, and batch-
subsystem level. It is compliant with the definition of a
standard three-tier-architecture which Fox and Furmanski
gave in [6] for distributed computing architectures. UNI-
CORE emphasizes the user and the middle tier.
A main component of UNICORE is the underlying secu-
rity architecture which is based on secure http (https) using
X.509 certificates for authentication of users, servers, and
UNICORE software. The user’s certificate is his/her unique
UNICORE user identification which has to be provided by
the local Web browser when connecting to the UNICORE
server. The unique user identification is translated by the
UNICORE server into the user’s user-id on the execution
host. This mechanism eliminates the need to install uniform
UNIX uid/gid pairs for UNICORE users and interferences
with the local user administration at the UNICORE sites.
Another key component is the abstract job description lan-
guage which permits the GUI to seamlessly build a job from
the user input and allows the server to translate it to a real
job for the destination system. The abstract job is defined
as a part of the abstract job object (AJO) which is a re-
cursive Java object specifying the protocol between GUI,
server, and system.
In UNICORE a UNICORE site (Usite) is defined as a com-
puter center offering a UNICORE server and execution
hosts grouped in so called Vsites. A Vsite (virtual site) con-
sists of systems at one Usite sharing the same data space.
The file systems available at the Vsites of a Usite are called
Xspace. All data available to a UNICORE job constitute
the UNICORE file space (Uspace). Thereby the data model
used in UNICORE distinguishes between data inside (Us-
pace) and outside (Xspace and data from the user’s work-
station) of UNICORE. All data needed in UNICORE for a
job has to be specified by the user and is imported into the
Uspace. Analogously data created within UNICORE (in the
Uspace) has to be exported to an external file space. UNI-
CORE manages these data transfers transparently for the
user. The architecture is shown in figure 1 and explained in
more detail below.

4.1. User level

The UNICORE user interface takes advantage of exist-
ing Web browsers and the https protocol (see [3]). This
SSL (secure socket layer) based protocol makes sure that
the user has to authenticate him-/herself before getting ac-
cess to UNICORE. During the SSL handshake between the
UNICORE server and the user’s Web browser the server
first presents its X.509 certificate to the browser in order to
be validated. Then the user’s certificate is given to the Web

2



Figure 1. Detailed architecture

server for user authentication. The signed applet for the job
preparation agent (JPA) or the job monitor controller (JMC)
is loaded from the server into the Web browser only in case
of successful user authentication. The applet certificate is
checked to assure the user that the software has not been
tampered with and can be trusted. The use of applets has the
advantage that the users always work with the latest version
of the software. The GUI provided through the applets as-
sists the user to create uniform jobs or status requests inde-
pendent from the system it will run on. These uniform jobs
are generated by the JPA (or JMC) in the form of an AJO,
the transferable unit between the UNICORE components.
The hierarchically structured jobs, which may consist of
several sub-jobs for different destination systems, and other
requests are transferred to the UNICORE server. Messages,
standard job output, and status information are sent back to
the user and displayed in a consistent way.

4.2. UNICORE server level

The UNICORE server consists of

� the https Web server which provides the UNICORE
Web page,

� the signed Java applets,

� resource information about the available execution
systems at the Usite, which are provided together with
the applet to the user to support him/her in generating
jobs suitable for the destination system,

� the user authentication provided by https by checking
the user’s certificate,

� the Java security servlet (gateway) which maps the
user’s certificate to the user’s id at the target system;

for sites that require the use of smart cards or run DCE
(distributed computing environment) it also offers an
interface for additional site specific authentication,

� the network job supervisor (NJS) which does the job
management. The NJS translates the AJO into one or
more batch jobs for the destination system(s), submits
the batch jobs, and controls them. In addition, it trans-
parently transfers data to and from the destination sys-
tem for the job and makes sure that the dependent parts
of the UNICORE job are scheduled in the predefined
sequence.

For sites using firewalls the UNICORE server can be sepa-
rated into the Web server and the NJS part with the firewall
in between. In this case the Web server has to sit on the fire-
wall system while NJS runs on a system within the firewall.

4.3. Batch-subsystem level

The third tier contains the destination systems with their
batch systems and data storage. One NJS can support mul-
tiple destination systems (Vsites) at one UNICORE site.
Jobs and requests are submitted to these systems and sys-
tem messages as well as job output are made available to
the UNICORE user.
The architecture described above shows the UNICORE
components at one site. The whole UNICORE picture con-
tains multiple UNICORE servers, one at each Usite, provid-
ing access to the resources at that site. The different servers
are connected so that (parts of) UNICORE jobs, data, and
control information can be exchanged to support distributed
applications or to allow the user to contact any UNICORE
server. Figure 2 gives an overview.

Figure 2. Architecture overview

3



5. Implementation of UNICORE

5.1. Basic implementation decisions

At the time the project was started some basic implemen-
tation decisions were made:

� the use of the World Wide Web as user access mecha-
nism and Java as implementation language,

� strong security mechanisms for user authentication,

� minimal impact on the local administration procedures
effective at the UNICORE sites, and

� the use of the resource management system Codine
provided by Genias Software GmbH as part of NJS.

The decisions were driven by the idea to use techniques
and products which are already widely available and well
proven.

5.2. Security architecture

These basic decisions influenced the design and imple-
mentation of several components. For the security archi-
tecture to go with WWW and Java the https protocol has
been chosen as a key component. Https together with the
X.509 certificates guarantees mutual authentication of the
UNICORE ’players’ server, user (Web browser), and soft-
ware (see [2], [10]). The user then knows he/she con-
tacted a valid UNICORE server and that the software has
not been tampered with. On the other side the server
knows the user is the one he/she claims to be. Different
https servers were evaluated but the JigsawSSL server pro-
vided by the W3 consortium with the SSL extensions de-
veloped at the Institute for Applied Information Processing
and Communication (IAIK) at the University of Graz, Aus-
tria, (http://jcewww.iaik.tu-graz.ac.at/Jigsaw/jigsaw1.htm)
has been selected to build a basis for the UNICORE server.
It is written in Java and already provides the needed secu-
rity features while other products demanded additional im-
plementation effort.
The graphical user interface accessible via a UNICORE
Web server is implemented as signed applets as stated
above. The GUI consists of two parts: The job prepara-
tion agent (JPA) to create and submit UNICORE jobs and
the job monitor controller (JMC) to monitor the job status,
control the jobs, and deal with the output.
The security architecture also had to include a mecha-
nism to provide the local user identifications to be placed
into the UNICORE job before it is submitted to the exe-
cution system. With the X.509 user certificate being the
uniform and unique UNICORE user identification a map-
ping process has been implemented in the form of a Java
servlet which maps the user’s distinguished name to the

corresponding user-id. Each UNICORE site administration
therefore maintains a user data base for the local mapping.
Firewalls are another aspect of the security architecture. It
has to be guaranteed that sites using firewalls can run the
UNICORE server. Therefore the two parts of the UNI-
CORE server, the Web server and the NJS, can be run on
different systems. The Web server has to be installed on the
firewall system and the NJS on a system inside the firewall.
The communication between the two components is done
via IP socket connection to a site selectable port.
The implementation of the security architecture relies on
the existence of a Certificate Authority (CA) to generate
the X.509v3 certificates for the server systems, the software
developers, and the users. As the X.509 standard is imple-
mented differently by different browsers (i.e. Netscape and
Microsoft) a decision for a specific format had to be taken.
The Netscape format was adopted because of the availabil-
ity of this browser on all relevant user platforms, PCs and
UNIX workstations. A method for the secure transfer of
the user certificates and the distribution of the necessary in-
formation to the UNICORE sites for the user-id mapping
is defined based on the guidelines developed by the German
Research Network Policy Certificate Authority (DFN-PCA;
http://www.pca.dfn.de/eng/dfnpca).

5.3. Protocols

The UNICORE protocols define the form of requests for
some action to be performed (high-level protocol) and en-
sure the security of communication between the UNICORE
components (low-level protocol). In the following the high-
level protocol is described. It defines a client-server type
of communication. JPA/JMC act as client while NJS (resp.
the gateway) acts as both client and server depending on
the partner. It is server in the JPA/JMC – NJS commu-
nication and client when talking to another NJS which it
has contacted i.e. to send a job group of a UNICORE job.
It is an asynchronous protocol. This design is suitable for
batch processing (UNICORE supports batch jobs) and it is
more robust than a synchronous protocol. By minimizing
the length of time that an interaction takes the asynchronous
protocol protects against any unreliability of the underlying
communication mechanism.
The UNICORE protocol is implemented as a Java object
called the abstract job object (AJO). It specifies all actions
to be performed by the NJS which are grouped together in
the Java class AbstractAction. Figure 3 shows the class
hierarchy of AbstractAction building the AJO: The class
AbstractJobObject contains the directed acyclic job graph
representing the job components (AbstractTaskObject and
AbstractJobObjects) together with their dependencies and
information about the destination site (Vsite), the user, site
specific security, and the user account group. The recursive

4



structure of the AJO allows for the AJO to contain sub-
AJOs (corresponding to job groups in a UNICORE job)
which are intended for other execution systems. The ab-
stract task object (ATO) and the abstract service for job
monitoring are the non-recursive parts of the AJO. A Java

AbstractAction

AbstractJob Object AbstractTaskObject AbstractService

ExecuteTask

FileTask

CompileTask

LinkTask

UserTask

ExecuteScriptTask

ImportTask

ExportTask

TransferTask

ControlService

ListService

QueryService

Figure 3. AJO object hierarchy

class Outcome is defined to contain the status of an abstract
action and the results of its execution. Outcome contains
a subclass for each subclass of AbstractAction which are
associated to give the results of an abstract action.

5.4. Resource description

Currently UNICORE has incorporated a simple model
for resources. It contains the main resources a user needs
for batch job specification and information about available
software (compilers, libraries, program packages). An ab-
stract task object (ATO) as the entity to be translated into
a real batch job for a destination system contains the infor-
mation about the required resources for the job. UNICORE
supports resource requests for the number of CPUs (or pro-
cessor elements), the amount of execution time, the amount
of memory, and the amount of disk space needed, both per-
manent and temporary. These values are specified by the
user during job preparation in the JPA .
Each UNICORE site provides a so called resource page re-
flecting resource information about their Vsites. Besides
minimum and maximum values for the resources needed for
batch submission it contains information about the system
architecture, performance, and operating system as well as
available application and system software. This information
is prepared by a UNICORE site administrator through a re-
source page editor. It is stored in ASN1 format for the JPA
to include it into the GUI supporting the user in creating a
job suitable for the selected destination system.

5.5. Network job supervisor

The NJS consists of two main components, a java trans-
lation server (JTS) and a system for job control and schedul-
ing which in the current implementation is based on Codine.
NJS has a variety of tasks to fulfill:

� transform the abstract job into a Codine internal for-
mat,

� split it into the job groups destined for different sites,

� distribute and control the job groups,

� translate the abstract specifications into the local sys-
tem specific nomenclature using translation tables,

� submit the batch jobs to the execution system,

� create a UNICORE job directory to contain the data
for and created during the job run,

� collect the standard output and error files from the
batch jobs belonging to one UNICORE job and make
them available to the user via the job status interface,
and

� initiate all necessary data transfers, imports, and ex-
ports. In the JPA the user specifies which data in-
cluding binaries (executables) have to be transferred
to the UNICORE job directory for the job steps (im-
port), which data created during the job steps has to be
put to permanent file space somewhere (export), and
which data has to be transferred between dependent
job steps. The user has to know about the locations of
his/her data and binaries and tell UNICORE about it to
do the file transfers.

The scheduling done by the NJS is limited to the deliv-
ery of the generated batch jobs to the destination systems
in the specified sequence. It has no means of influenc-
ing the scheduling on the destination systems. Jobs deliv-
ered through UNICORE are treated the same way any other
batch job is treated on a system. This results from the basic
design decision for UNICORE to have minimal impact on
the local administration. A negative effect of this decision is
that UNICORE can neither estimate the turnaround time for
a job nor influence the scheduling of a particular batch job
(i.e. to allow for synchronous execution of jobs on differ-
ent systems). On the other hand, the acceptance for running
UNICORE is much higher at the sites if site autonomy is
provided.
The UNICORE site administrator together with the Vsite
system administrator establishes the environment for run-
ning UNICORE. This includes setting up the translation ta-
bles for the translation of the abstract job into the real batch
job and the connection between UNICORE server and batch
system.

5



5.6. File transfer

The data model distinguishes between data inside and
outside UNICORE. Therefore data has to be transferred
from outside to a Uspace (import) and vice versa (export) as
well as between the Uspaces located at different UNICORE
sites (transfer). The import of data is implemented for data
from the user’s workstation and from UNIX file-systems at
Vsites while export is done to Xspace at a Vsite. Files from
the user’s workstation needed in a job are put into the AJO.
They are transferred together with the job to a UNICORE
server on the https connection. Imports from Xspace to Us-
pace and exports from Uspace to Xspace are always local
operations performed at a Vsite. They are implemented as
a copy process available at the Vsite.
The file transfer between Uspaces has to be accomplished
through NJS – NJS communication via the gateway (secu-
rity servlet) for user-id mapping. The https protocol guar-
antees the secure communication between the sites. As this
solution has disadvantages with respect to transfer rates es-
pecially for huge data sets UNICORE is working on alter-
natives. Another open issue is the automatic transfer of re-
sult files back to the user’s workstation. The current imple-
mentation sends data back to the workstation only on user
request while the user is working with the JMC.

5.7. Status

UNICORE is running at different German sites includ-
ing the Forschungszentrum Jülich (FZ Jülich), the Comput-
ing Centers of the universities of Stuttgart (RUS) and Karl-
sruhe (RUKA), the Leibniz Computing Center of the Bavar-
ian Academy of Science in Munich (LRZ), the Konrad-Zuse
Zentrum für Informationstechnik in Berlin (ZIB), and the
Deutscher Wetterdienst in Offenbach (DWD). The systems
covered are Cray T3E, Fujitsu VPP/700, IBM SP-2, and
NEC SX-4.
The functions offered to the users by the JPA include cre-
ation of a new UNICORE job, loading of an old UNICORE
job for resubmission, and loading and modification of an old
UNICORE job. The interface allows to specify a sequential
dependency between job groups and/or tasks at the same
level of the job tree. In addition each dependency can be
augmented by the names of the files to be transferred from
one to the other. UNICORE then guarantees that the speci-
fied data sets created by the predecessor are available to the
successor. In the current state of implementation the inter-
face offers support for the creation of jobs containing script
tasks (to include existing batch applications) and compile-
link-execute tasks (for new applications). At this point in
time the compile is implemented for F90.
The JMC shows the job status of the user’s UNICORE jobs
in a display similar to the one of the JPA. The icons are col-

ored to reflect the job status in a seamless way. Depending
on the chosen level of detail the status is displayed for job
groups and/or tasks. The standard output and error files can
be listed and/or saved for tasks.

6. Summary and outlook

UNICORE offers an easy to use and seamless user inter-
face to supercomputer resources hiding the system and site
specific nomenclature and thereby allows the user to focus
on the application. Users then can use different systems at
different sites for their computations without modifying the
application for the different environments; this is all done
by UNICORE. Access to the systems is provided through
the user’s UNICORE X.509 certificate which together with
the usage of https and signed applets guarantees a high level
of security both for the user and the sites. A main advantage
of UNICORE is that supercomputer resources which tend
to be concentrated at only a few sites can be used more effi-
ciently for the large applications because the effort to learn
how to use them is minimal. Users will of course appreciate
enhancements to UNICORE, for example:

� Application specific interfaces for standard packages
like Ansys or Pamcrash will make life easier especially
for users from industry.

� Application steering is needed to control the progress
of a computation.

� A resource broker which supports the users in a way
that they can specify the needed resources on a more
abstract level and the broker finds the appropriate ex-
ecution server for it. Together with accounting func-
tions and load information the resource broker can find
the best system for an application with given time con-
straints.

� For the big grand challenge problems the integration
of meta-computing is a topic. This extends the us-
age of distributed systems in one UNICORE job to the
synchronous use for a single application (UNICORE
task).

UNICORE has laid a solid basis for seamless computing
and is well accepted by non-expert users. Future devel-
opments will integrate features to support more users with
more sophisticated applications.

References

[1] J. Almond and D. Snelling. Unicore: Uniform access to su-
percomputing as an element of electronic commerce.Future
Generation Computer Systems, 613:1–10, 1999.

[2] D. Durbin, R. Mcgregor, J. Owlett, and A. Yeomans.Java
Network Security. Prentice Hall, 1998.

6



[3] J. Feghhi, J. Feghhi, and P. Williams.Digital Certificates -
Applied Internet Security. Addison-Wesley, 1998.

[4] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[5] I. Foster and C. Kesselman. Computational grids. In I. Fos-
ter and C. Kesselman, editors,The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufman Publish-
ers, 1998.

[6] G. C. Fox and W. Furmanski. High performance commod-
ity computing. In I. Foster and C. Kesselman, editors,The
Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufman Publishers, 1998.

[7] A. S. Grimshaw, W. A. Wulf, and the Legion team. The
legion vision of a worldwide virtual computer.Communica-
tions of the ACM, 40(1):39–45, January 1997.

[8] Java Grande Working Group on Concurrency/Applications
and Argonne National Laboratory, MCS Divi-
sion. Notes of the 1st international workshop on
”desktop access to remote resources”. http://www-
fp.mcs.anl.gov/�gregor/datorr/report/datorrreport.doc,
October 1998.

[9] R. McCormack, J. Koontz, and J. Devaney. Websubmit:
Web-based applications with tcl. Technical report, National
Institute of Standards and Technology, June 1998.

[10] Netscape DevEdge Online Documentation. Netscape ob-
ject signing - establishing trust for downloaded soft-
ware. http://developer.netscape.com/docs/manuals/ signe-
dobj/trust7index.htm, July 1997.

7


