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Deformation of semiflexible chains
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The force-extension relation and the end-to-end distribution function are calculated in the constant
force and constant extension ensemble, respectively, for a semiflexible chain of Gaussian segments.
Qualitative differences are found for these quantities when the persistence length is on the order of
the chain length. In particular, beyond a certain persistence length, the free energy assumes two
extreme values in the constant extension ensemble corresponding to zero force at zero and at a finite
extension. The comparison of the force-extension relation with experimental results on DNA
exhibits excellent agreement. The approach provides a simple expression for the end-to-end
distribution function which is in excellent agreement with Monte Carlo simulations of the Kratky—
Porod semiflexible chain model. @003 American Institute of Physics.
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I. INTRODUCTION Gaussian distributed distances between successive points
along the chain. For flexible chains, we demonstrated that
The functions and properties of biological systems cru-gyen finite size can be taken into account by this médel.
cially depend on the conformational properties of the constiyyoever, the force constants have to be chosen adequately
tuting (linear) macromolecules. Prominent examples are thg, order to satisfy macroscopic requirements, like a finite
polymers of the cytoskeleton, in particular actin filamettts, ¢ontour length. Numerous attempts have been undertaken to
and DNA. Like many other biological polymers, they are fihg the correct description for a semiflexible ch&fR0—3
semiflexible chains. It isamong other aspegtthe stiffness Taking into account the chain ends properly, it has been
of actin which determines the mechanical properties of a ceéllsnawn that such an approach provides second moments

Insight into the conformational properties of individual mol- | hich agree with those of the Kratky—Porod wormlike
ecules can be gained by fluorescence microsc¢opiea- chain2®

surements of the force-extension relation of DNA molecules |, order to interpret experimental data, it would be use-

by such technique75 reveal the semiflexible character of biog,| 1o have a clear and complete understanding of the predic-
logical m_oleculeé: o . tions of the various models for wormlike chains. Such an
Despite the success of the semiflexible chain approac()ngerstanding would reveal the strengths and deficiencies of
there are various aspects of semiflexible chain behaviog mqqel in describing real polymers and serves as a bases for
which are not satisfactorily solved. In particular, the dis-jmnroved models. The major difference between the Gauss-
tribution function of the end-to-end distance has at-jan gescription and the Kratky—Porod model is the intrinsic
tracted Cons'qle[’;‘b'e attention recefitly” Both, approxima- elasticity of the Gaussian approach. Comparison of experi-
tion chfgne% ““as well as a mean field approach are ex-mena| force-extension data on DNA with the predictions of
ploited.” . ) ) the Kratky—Porod model vyields deviations at large
The basis of these approaches is the wormlike chaiensjond, which are explained by an internal elasticity of
model of Kratky and Porodf, which accounts for stiff- A A remarkable property of the Kratky—Porod model
ness via inclusion of bending elasticity. Although physical ity fixed end points is the presence of two stable minima of
reasonable, 5t_hl'§ model and its numerous, subsequegis free energy for a certain range of persistence lergts.
modifications®™* have not provided analytically tractable tpq guestion arises, whether such minima are also present in
results for equilibrium and dynamical properties of a chain ofy gystem with internal elasticity. If an internal elasticity
arbitrary stiffness. Results for the radial distribution function changes the free energy significantly, the predicted effects for

of the Kratky—Porod model have been obtained recently by, Kratky—Porod chain may not be observed for DNA mol-
Wilhelm and Fre§ based on a perturbation theory with a

rodlike chain as a reference. Additional inside into the end-  another major aspect is the understanding of the equi-
to-end distribution %;the Kratky—Porod model is h%;)wded librium and nonequilibrium dynamics of semiflexible chains.
by Samuel and Sinhaas well as Dhar and Chaudhtitby 14 opyain analytical solutions a sufficiently simple model is
an eigenfunction expansion of the partition function andyeqired which still captured the essential features of semi-

computer simulations, respectively. _ flexible chains. As we demonstrated, the Gaussian semiflex-
The most promising candidate for an analytical tractablg e chair? provides such a modét~3" Both polymer
model is a chain of Gaussian segments, i.e., a chain With,o13133.36 55 \well as solution®335 including hydrody-

namic interactions, are described in agreement with experi-
dElectronic mail: r.winkler@fz-juelich.de mental results. The analysis of the experimental data on the
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moleculeg® reveals the necessity of a semiflexible chain  Z= — > MR+ D wiRiR 1 |d3Nx ©)
approach’ and the proper incorporation of their equilibrium =1 =1

properties. is obtained in conformational space from the general expres-
In this paper the force-extension relation and end-to-endjon of Eq.(A5). The components of the various spatial di-
distribution function of semiflexible chains of Gaussian seg-mensions are decoupled and the exponent is a quadratic form
ments are studied. The necessary distribution and partitiogd__xTAx = were a indicates the various spatial dimen-
functions are derived using the maximum entropysjons andx, =R, ; (i=1,...N). Hence the partition func-
principleX*#°In our calculations, we pay particular attention tjon is given by
to chains with persistence lengths of the order of the chain
contour length. Hencel,0 our calculations extend previous Z=mV2A[732 (4)
tirgizn;(zldcc(;r?\lsg?:aonﬁ'ry toAtc;rI]fuIS:';\ ?gsst'lrjns?ncg)utrhga}ﬁlgiy_wherg|A| denotes_ the determinant of th.e matA'xTh_e set of
Porod model. Thus, the influence of an internal chain elas(_aquatloqs followlng from Eq(A6), which dgtermlnes the
. ' ' . . . . Lagrangian multipliers, possesses the solution
ticity on the macroscopic force-extension relation will be
unravelled. For near rodlike chains we expect different re- 3 1
sults for a constant force ensemble or a constant extension )\1:)\N:ﬁz 1—t2 5
ensemble, since we are considering finite systems, which are
far from the thermodynamic limit To account for the dif- 3 1+t
ferences, we will present results for both ensembles. Ni=op i@ 1=2.-N-1 ®
The paper is organized as follows. In Sec. Il the semi-
flexible chain model is outlined and the basic formulas are 3t )
provided. The force-extension relation of chains with a con- A=z 7-¢2° '~ 1..N-1. @
stant external force is determined in Sec. Ill. In addition, the
end-to-end distribution function is addressed. Moreover, théFor details of the derivation see Ref. Phe Lagrangian
extracted force-extension relation is compared with experimultipliers depend upon the applied constraints and change
mental data on DNA. Similar calculations are performed inwhen we fix the free end point or apply a force.
Sec. IV for a chain with two fixed end points. In detail the ~ The continuous chain is obtained in the linNt—o, |
influence of chain stiffness on the force-extension relation is~0, andt—1 such thatL =NI, the average length of the
discussed. Moreover, results for the end-to-end distributio€hain, and  the  persistence lengthl,=1/(2p)
function are presented and compared with Monte Carlg=lim|_o;—11/(1—1) are finite. In this limit constraintsl)
simulations of a Kratky—Porod semiflexible chain model. and(2) read

(%

_ _ _ o . 3°r\2 au\ 2

Our main focus will be on continuous semiflexible Imi{|{==| )={|=] )=4p. 9
U : , . : o \\ds as

chains in this article. For certain numerical considerations,

however, it is more convenient to investigate a discrete chaigy, the continuum representation the chain is parameterized
model. Thus, | will start the calculations from a discreteby r(s) with O<s=L and the partition function is given in

relaxation dynamics of partially stretched flexible chain f p( N N-1
ex

2
>=<u2(s>>=1, (8)
II. SEMIFLEXIBLE CHAIN MODEL

chain model. o o _ form of a path integral
The discrete semiflexible chain is considered as an one-
dimensional arrangement &+1 mass points with equal L ) L e(s) [ du\? 5
massesn. The positions of the points are denoted iy i :J ex _f v(s)u dS_J — |75/ 9s|Pu,
=0,...N. To remove the translational degrees of freedom, (10)
point ry is fixed at the origin of the reference frame. The
other mass points are subject to the constraints with the new Lagrangian multipliers/(s)=Ilim(\;—(x;
+ui— )2, vo=v(0)=p(L)=lim(\;— u./2)I2, and e
(RH=12, i=1,..N, (1)  =lim ul®. (The continuum limit(lim) has to be performed
as indicated aboveFrom relations(5)—(7) the Lagrangian
(RiRi 1)=1t, i=1,.N-1, (2 multipliers are expressed as follows in terms of the persis-
where theR;=r;—r,_; denote the difference vectors be- tence lengt
tween successive points ahds the bond length. Equation 3p 3 3
(1) captures the connectivity of the mass points along the v(S)= 2> vo=v(s=0)= 7 (11)
chain contour and Eq2) describes bond angle restrictions
which result in chain stiffnes®. For a chain with bonds of The partition function10) and the Lagrangian multipli-

constant length, the stiffness paramedtés equal to the av- ers of Eq.(11) can also be obtained by a saddle point ap-
erage cosine of the angle between successive bonds. Withoptoximation of the Kratky—Porod wormlike chaifr?®3°The
any other constraint, the partition function partition function of the Kratky—Porod model is given by
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€ L/ ou\? solution for the path integral will be found. Therefore, the
Z:j ex;{ - Ejo (g) dS)l_S[ S(U?=1)D°u. (12  constraint(8) is replaced by thégloba) constraint for the
chain contour
The major difference between the Kratky—Porod model and
the Gaussian approach is the way in which the constraints for < f u(s)? ds> =L. (15)
the vectorsu are treated. In the Kratky—Porod model the 0

magnitude of the tangent vector is unit at any point along thel.he chain ends, however, have to be treated separately. A

;:hau? con;tomtjrz. In contrast, mtthe der!vapoln of tr:e p"zlrt't'ondetailed calculation for a continuous chain yields the La-
unction by the maximum €entropy principie a relaxe Con'grangian multiplierse=3/(4p) and vy=3/4 (cf. Appendix

straint is applied which enforces only the averdgés)?). B). The partition function is then given by
Hence, the latter chain possesses a certain internal elasticity:

Replacing thes-functions of Eq.(12) by a Fourier represen- L, € (L du\?

tation, the partition function can be rewritten as Zn:f exp — Vjo u“ds— Ef 5] 9s
L 2 L

Z”f ex —fo v(s)(u”—-1)ds —uo[u(0)2+u(L)2]—nf uds)Dsu. (16)
0
2
_€ fL(‘?_u ds| D3uDw. (13) The path integral can be evaluated by exploiting the analogy
2Jo\ds with the path integral of a harmonic oscillator in quantum

_ o _ _mechanics;?>?° using the eigenfunction expansion for the
The stationary phase approximation with respect to the f'EI%perator(Dz v— €2 9?19s? with the appropriate boundary

v(s) yields the partition functiori10) and the relaxed con- ., qitions, or by a continuum transition of the discrete
straint(8) to determine the extremum of* Thus, the sta- 1129 1110 result for the latter is

tionary phase approximation of the Kratky—Porod model

yields exactly the same expression for the term with the La- ) s 1 )
grangian multiplierr as the maximum entropy principle. The Zy= l"”:) Al ex 6 7R, (17)
major difference between the two approaches is the way in N—oo

which the bending energy is treated. The maximum entrop)ov.
o . s ith
principle considers the restriction in bond angles on the same

footing as the bond length restrictions. The Lagrangian mul- A=t c ( 2,2
Al=p"lI\/s
2

0 14
— t=
€ €

) 2v
sinhL \/—
€

tiplier € is determined from the corresponding constraints in
terms of the persistence length of the system. In the mean

field approximation an adjustment efs necessary, since the 21, \/Z \/Z

dependence o€ on the persistence length for the Kratky— + P ?coshL ?) (18
Porod chain is different from the one for the chain with the

relaxed constrair*® Thus, the mean filed approach re- 3 2, 2vy [v o]t
quires ana posteriori adjustment ofe to the same value Rz:z('—‘ - |1t \/%COW- \/;} )
provided by the maximum entropy approafiifter the ad- (19
justment the partition functions of both approaches exactly

agree with each other. [The abbreviatiorR in the partition functior(17) was chosen

In this article, we restricted our attention to semiflexible SinceZ can be considered the generating functional in case of
chains. Results for chains without bending restrictions aré chain without chain end constrain: corresponds then to
presented in Ref. 19. the mean square end-to-end distah&aploiting the relation

(A6), i is give by

3a
lll. SEMIFLEXIBLE CHAIN WITH CONSTANT =" R2 (20
EXTERNAL FORCE
) ) o o ) in terms ofa. The force-extension relation follows frofa,
We will now consider a semiflexible chain with a given = — T4 1° with T the temperature ankiz the Boltzmann

mean value for the end-to-end distance. This CorreSpondS tﬁ)nstant_ The equation to determine the Lagrangian multi-
a constant force ensemble. We will restrict the following cal-pjier 1 is obtained straightforward fromz , /dv=—L.

culations to a continuous chain. Since e=3/(4p), Z,, is a function ofpL and vL only.
In addition to constraint8) and(9) the constraint Analytical approximations for the Lagrangian multipliein
L the limit of large and smalpL values are given by:
(rL)—<Jouds>—a, (14) 3 a2\ —2
has to be taken into account(0)=0]. Due to the additional y= 5 - (21)
constraint, the Lagrangian multiplierwill no longer by con- bl a- 1 _) L<1
stant along the chain contour in general and no analytical 2 P L3 L? P '
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FIG. 1. Force-extension relations fpiL=L/(2l,)=100, 10, 1, 0.1from FIG. 2. Fit of the force-extension curve of the Gaussian semiflexible chain

top to bottor for a Gaussian semiflexible chain within a constant force mode! (solid line) to experimental data of Smitht al. (Ref. 3. The fit
ensemble. The solid lines are numerical solutions for the continuous chaiR@rameters obtained from a logarithmic fit atg=53.5nm andL
model with the Lagrangian multiplies only. The symbols are numerical =33.5um. The dotted line is calculated using the interpolation formula
solutions of the discrete chain model, where all bond length constraints havéerived by Marko and SiggiéRef. 7) for the Kratky—Porod model with the
been taken into accoufiRef. 29. The dotted lines correspond to analytical Parameters,=53 nm andL=32.8um, respectively.

approximations forpl>1. For pL=0.1 the analytical approximation for

small pL is used(dashed ling

with the continuum description, we chose parameters which
correspond to the continuum limit. Comparing the numerical
data obtained for the discrete model with the force-extension
relation of the continuum model, we find excellent agree-
ment(squares in Fig. 1 fopl=10, 1, and 0.L Inspection of

the Lagrangian multipliers shows that only those in the vi-
cinity of a chain end are different from those of the mittel
Approximations(21) for the Lagrangian multiplier leads part of a chain. Hence, the agreement between the results is a

The same expression fpiL>1 has been obtained in Refs. 9,
39. Equation(21) yields the valuev=3p/2 of a chain with-
out external forcg11) for a=0 in both limits.

A. Force extension relation

to the following force-extension relations consequence of the fact thafs) is almost constant along
the whole chain. The numerical solution of the discrete
( a 3pa ; i —
2y = > pL>1 model for chain lengths larger than approximatgly=10
L L( 1 a~ requires a significant amount of computer time, because a
L2 sufficiently large number of segments has to be used to
F,/KeT=9 3a 2uL| 3(1+pl)a achieve a reasonable approximation for a continuous chain.
iz 1+ 3 )— Y pL<1. Considering the agreement between the various models ob-
( — _2) L2 served in Fig. 1, however, the continuum representation with
\ L only one Lagrangian multiplier is an excellent approximation

(22) of the full problem with a position dependent multiplier
The result forpl>1 agrees with the force-extension relation »(s).
obtained by Ha and Thirumal. To test the validity of our approach, we compare our

By a numerical solution of the equation for the Lagrang-analytical result forpL>1 with measurements by Smith
ian multiplier », the curves presented in Fig. 1 are obtainedet al>” on B-DNA. As is obvious from Fig. 2, the force-
for pL=0.1, 1, 10, and 10@solid lineg. The approximate extension relation provides an excellent description of the
solution forpL=10 (dotted line$ are indistinguishable from experimental data. A least square fitfof to the experimen-
the exact solution. A good approximation fpi~1 is ob- tal data yields the persistence lendt 1/(2p)=53.5 nm
tained with the Lagrangian multiplier fopL>1 and the and the chain length =33.5u.m,* respectively, and corre-
force-multiplier relation forpL<1 (dotted line forpL=1).  sponds topL~313. These values agree with those obtained
For not to smalpL we observe deviations between the exactby Marko and Siggid:| p=53nm, L=32.8um. The fit of
and the analytically obtained force-extension relation at largghe Gaussian semiflexible chain yields a slightly large chain
extension. For even small@lL the agreement between the length, which is in agreement with the values discussed in
analytical and the numerical solutions improves. Ref. 7.

As mentioned before, the Lagrangian multipliers are no  For the sake of completeness, | would like to mention
longer constant along the chain contour when an externghat a least square fit to the relationVE yields modified
force is present. To achieve an estimate of the error for thgalues compared to those presented above. For the force-
force-extension relation, we numerically calculated the La-extension relatiorf22), | find I,=59.8 nm and.=33.3um
grangian multipliers and the force-extension relation of a disand for the Marko and Siggia approximatiby=59 nm and
crete chain. In order to compare the obtained numerical data=32.7 um, respectively. Hence, the chain lengths exhibit
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only very small variations. The persistence lengths, howevety. SEMIFLEXIBLE CHAIN WITH FIXED END POINTS
are about 10% larger, but the agreement between the two ) ) ) ]
approaches is excellent. We will n_ow_dls_cuss the def(_)rme_ltlon behavpr gnd the
The major difference between the Gaussian semiflexibl@”fj'to'?nd distribution of a semiflexible challn with |ts_ end
chain and the Kratky—Porod model is the fact that the magP0ints fixed atr(0)=0 andr(L)=a, respectively, which
nitude of tangent vectau(s) is not exactly one but only the COMeSPONdSs to a constant deformation ensemble.
averagg(u?)=1 is constraint. As a consequence, the contour The partition function of such an ensemble is given by
length is not a constant but fluctuates. Since we adopted a L € (L/ou\?2
coarse grained description of a DN&ee discussion of dis- ZaZJ exp{ - Vj u?ds— Ef £> ds
crete chain model in Sec.)]lwe expect that the distanc§§ 0
exhibit some fluctuations due to the various monomers, and
hence degrees of freedom, of the real chain incorporated in —vo[u(0)%+u(L)?]
an effective segment. Naturally, the Gaussian chain can only
partially capture such fluctuations. A more adequate modelvherev follows from the constraintl5). The other Lagrang-
would by the model described in Ref. 28ec. Il A). How- ian multipliers can be determined similarly to the procedure
ever, such a model can not by treated analytically in generabutlined in Appendix B. Removing the appearing derivative
of the delta function by partial integration leads to
=3/(4p) andvy=23/4, i.e., we find the same expressions as
for a system in an external potential.
To evaluate the partition functiod,, we exploit the
The end-to-end distribution function of a Kratky—Porod results obtained for a chain with external force. Using the

wormlike chain has been discussed in detailed rec&itfy. Fourier representation of thé function, the partition func-
Naturally, this distribution function depends on the con-tjon reads

straints applied at the chain ends.

0

5(a—fLu ds>D3u, (27

0

B. Distribution function

The distributiony(r ) follows from the definition Za:(qu-r) f Z, p=ik)eika g3k 28)
L
P(ry)= < 5( r— fo u? dS) > (23 in terms of the partition functio@,, (16). Inserting Eq(17),
the evaluation of the integral yields
Using the Fourier representation of tldefunction, we can 2
exploit the results obtained in the calculations of the partition ~ 7_= |im |A]| —3I4(R2) 302 ex% — _2) ) (29)
functionZ, . We finally obtain the Gaussian 1—0 2R

N— o0

(24) Quantities|A| andR? are defined in Eq(18) and (19), re-
' spectively. The force-extension relation follows froRy
=—kgTV,InZ, at constant Lagrangian multipliet Explic-
itly the force reads,=3kgTa/R?, whereF,||a.

3/2 3
2 2 e a2
with R? of Eq. (19). In the limit |aj —L, R? approaches

infinity and  the distribution function reduces 10~ o agrangian multiplier is again calculated form the

limjg . 4(r)=0(r.—a). In general, the end point of the o \a4i0n 97 79,= — L. As a calculation showsy can very
chain exhibits Gaussian fluctuations around the average .| by approximated by Eq21) for pL>1

valuea.

Using the free energy of EGA9) we can introduce an- A. Force-extension relation
other distribution function, namely, the approximate ex- For pL>1 we find the same force extension-relation as
pression for the end-to-end distribution function of a chain,, the constant force ensemblef. Eq. (22)]. The differ-
with a free end pointcf., Sec. |\_/ B_- U§|ng the_relatlon ences in the fluctuations inherent in the two ensembles, how-
F=—kgTInZ~—kgTIn ¢(r), the distribution functions(r)  ever, leads to different force-extension relations fol

of the end point is given by =<2.5. Analysis of the equation for the Lagrangian multiplier
ap L 5 shows thatr assumes the value zero fpL values below a
¥(r)~|Al” ¥ exp(z "R*+ vL + 7). (25 certain threshold(This is not the case in the constant force

For pL>1 this expression reads ensemble, where is always large than zenoThe threshold
value pL. follows from the conditiond In Z,/dv|,—o+L=0,
(1—r?/L%r)%? 3pL which yieldspL.~2.5138. As a consequence, for persistence
lﬂ(f):Nc(Z_rTz)seXF( - W) (26)  lengthspL<pL., i.e., for chains close to the rod limi
will be negative for end-to-end distances below a certain
where N, is the normalization constant. The factor in the valuea.. The critical valuea, follows from dInZ,/dv|,-
exponent agrees with the result presented in Refs. 9, 10tL=0, which is a fourth order polynomial. For negative
whereas the factor in front of the exponential function isthe termy/v of Egs.(18) and(19) has to be replaced by/m
different. The major reason for the difference is that &) and the hyperbolic functions have to be transformed to trigo-
is a saddle point approximation of the more general distribunometric functions by analytic continuation. As a conse-
tion function, which will be discussed in Sec. IV B. quenceR?(19) possesses a singularity avaalue following
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FIG. 3. Force-extension relation of a Gaussian semiflexible chain with fixed™!G. 4. Position dependence of the Lagrangian multiplies) along the

end points fopL=10, 1, 0.1(top to bottom. The solid lines are numerical chain contour fopL=1 (constant extension ensempl&he various curves
solutions for the continuous chain model with the Lagrangian multiplier ~correspond tca/L =0.85—0.05(top to bottom with an interval ofAa/L

only. The symbols are numerical solutions of the discrete chain model=0.05. The curves are obtained as continuum limit of a discrete model. The
where all bond length constraints have been taken into acd®eit 29. symbols in the center indicate the Lagrangian multipliers for the constraint
The insert displays the force-extension relationgar= 10. The dotted line  (15) at the same extensions.

is the analytical approximation.

force-extension relation. It remains to show experimentally
from cot(L+2|v|p/3)=2[v|/(3p). The forceF,~a/R? is  which of the models captures the physics of a real molecule
then zero fora=0 as well as a nonzerae (0,L). more adequately.

Figure 3 displays the force-extension relation of a chain ~ The comparison shows that the force-extension relation
with its end points fixed at(0)=0 andr(L)=a, respec- (22) for pL>1 describes the behavior of the exact relation in
tively. For pL=5, we find agreement between the numeri-the limit a—L for all persistence lengths. A Taylor expan-
cally determined relation of the continuum model and thesion fora—L yields the expression
model of a discrete chain taking into account all Lagrangian
multipliers, as exemplified by the data fpl=10. More- a=L— \ﬁ A/ kBT_ (30)
over, the analytical approximatid22) agrees very well with 8 VF,Ip
the numerical data fopL=10. For pL=3, some of the A similar relation has been derived previously by Ofjk*
Lagrangian multipliers of the discrete model become negafor the Kratky—Porod model. Only the front factor differs.
tive and we observe deviations between the force-extensiopstead of,/3/8, Odijk obtains 1/2. The actually difference is
relations of the continuum model with a position indepen-qit small. Quantitative agreement between the two ap-
dent Lagrangian multiplier and the one of the discrete mode} gaches is achieved, when the larger persistence lepgth
taking into account all Lagrangian multipliers. Figure 3 —3) /> for the Gaussian semiflexible chain is used, whgre
shows that the deviations are small foL~1 but increase s the persistence length of the Kratky—Porod model. This
for pL<1. However, the force-extension relations agree agjifference between the two approaches in the rod limit can
long as the Lagrangian multipliers of the discrete model argye nderstood as follows: Due to the constraifi)2=1,
positive, which holds for large deformations. only elongations transverse to the end-to-end distance are

The dependence of the Lagrangian multipliers on th&,ossible for a the Kratky—Porod chain. For the relaxed con-
position along the_ chain contour is plotted in Fig. 4 for vari- straint(u(s)2)=1 also fluctuations along the chain contour
ous end-to-end distances aptl=1. Fora/L>0.7, all mul-  are present. Hence, the number of degrees of freedom is
tipliers are positive. With decreasing end-to-end distance, thgjtferent by a factor of 1.5. Setting= 1.5, is an adjustment

Lagrangian multipliers in the central part of the chain assumeys he persistence lengths to capture the difference in the
negative values. The observed deviations between the forc@tfective degrees of freedom.

extension relations are a consequence of the large variations

of the Lagrangian multipliep(s). The value determined by

the constraini(15) is not an adequate representation of theB. Distribution function
actual multiplier. Nevertheless, the qualitative behavior is
captured by the simplified approach.

So far we discussed the deformation behavior of a chain

k5 o with fixed end points. Using the free energy expres$i®),
Dhar and Chaudhuti observe three minima in the free \ye can extract the end-to-end distribution function of a finite

energy of the Kratky—Porod model, which implies three end-gytensible chain with a free end from the above expressions.
to-end distances with zero force. For the Gaussian modg)ith the relationF~ — kg T In ¢(r), we find

presented in this article, we find two extreme values only.
Hence, the presence of contour length fluctuations signifi-
cantly influences the macroscopic behavior like, e.g., the

r2

¢(r)~|A|_3/2(R)‘3’2ex;<—%vaL (3D
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2

r/L

FIG. 6. Comparison of radial distribution functions obtained from Monte
Carlo simulationgsymbolg (Ref. 8 with Eq. (31) (solid lineg for pL=5,
1.6, 0.66, 0.33, 0.166 correspondinglii =10, 5, 2, 1, 0.5.

proximation of Eq.(22) (pL>1). ForpL>5 we find excel-
lent agreement between the two models. In addition, the dis-
tribution functions also agree very well fpiL<0.1, at least
as far as the data are significantly different from zero. Since
the force-extension relation is directly related to the distribu-
L tion function (r), the deviations present in Fig. 3 reflect
deviations in the distribution functions. For persistence
FIG. 5. End-to-end distribution fun(':tior('a) and ragia! distribution func- lengthspL~ 1, the two distribution functions exhibit more or
tions (b) for pL =10, 2, 1, 0.1teft to right in (b)]. Solid lines are calculated less pronounced deviations. If the radial distribution func-
with the exact solution for the Lagrangian multiplier dotted lines are
determined from the analytical approximati@@l) (pL>1), and symbols  tions are considered, close agreement for all persistence
correspond to solutions of a discrete chain model. length is obtained. In addition, the figure demonstrates that
the analytical approximation agrees very well with the full
solution as long aplL=1. Significant deviations are ob-

for the distribution functiony(r(L))=(r). Inserting the served forpL~0.1. For such large persistence lengths other

approximations fopL>1, ¢ reduces to analytical approximations have to be determined.
2\ _32 (2| -3 In Refs. 11 and 12 the distributiop(r) of the Kratky—
lﬁ(f)ZNc( 1— _2> (2_ _2) Porod model is discussed. Qualitatively, the distribution
L L functions of the Gaussian semiflexible chain are very similar
3pL to those presented in these articles. However, we do not ob-
Xex;{ - m) (32  serve a double hunipand hence no triple minima for the

free energy? Our free energyr~kgT In ¢ possesses only
The exponential function is identical to the expression deone minima. For =0 the derivativedF/dr is zero, corre-
rived in Ref. 9. But, the factor in front of the exponential is sponding to zero force. However, this point is unstable.
different due to different approximations of the identical pri- Finally, in Fig. 6 we compare the radial distribution
mary expressions. The numerical comparison exhibits dunction for the considered semiflexible chain model with
much better agreement between E&4) and(32) than with  Monte Carlo data of the Kratky—Porod model obtained by
the result presented in Ref. 9. Wilhelm and Frey In order to achieve quantitative agree-
As mentioned in Sec. 1l B, the distribution functig®5) ment, we determined the persistence length according to the
corresponds to a saddle point approximation of the partitiomelationl ;= 31,/2 (see discussion at the end of Sec. Iyfar
function Z, (28). Replacing the integral by the integrand certain persistence lengths. As is obvious from the figure, the
with the valuek=23ia/R? at the extremum and neglecting results of our approach agree very well with the simulation
the fluctuation determinant yields the distribution functiondata. Since the radial distribution function is well described

(25) instead of(31). by the analytical approximation fopL=1, the simulation
Figure 5 displays the distribution functiop(r) [Fig.  data can also be described by this approximation.
5(@)] as well as the radial distribution functiof(r) In summary, the proposed model and the simulation data

=47r2y(r)) [Fig. 5b)] for the continuum model with a exhibit deviations on the order of a few percent only. Thus,
single Lagrangian multiplier and the discrete model withour approach quantitatively describes the simulation data and
v(s). The dotted lines are calculated according to the apean be used as a basis to analyze experiments.
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V. CONCLUSIONS To observe the discussed effects, actin filaments, microtu-
ules, or short DNA molecules can be used. It remains to be

ior of a Gaussian semiflexible chain in a constant force an&hown, e.g., by such experiments, whether the Kratky—Porod

constant extension ensemble, respectively. Applying '[hédeI otr the szmﬁlenble chgm m?dedl bas_e(td_ on fGtius&an
maximum entropy principle, we derived partition functions Sﬁgr?:c::escglre(z)s\,” €s a more adequate description ot the varl-

for both ensembles and extracted the force extension reld | h q h based h .
tions and the distribution functions of the end-to-end dis- n summary,_ _e proposed approach based on . € max_l-
mum entropy principle seems to be useful to describe equi-

tance. - . o . )
The fit of the force-extension relation of a constant force! /UM Properties of semiflexible chains. Extensions to a

ensemble to measurements on B-DNA yields exceIIenProad spectrum of problems, where the exact treatment of the

. 2_ . . . - . . _
agreement. The obtained parameters of the m@oefsis- constraint®=1is Q|ff|cult, 1S possmle. n parugular the dy
tence length and chain lengthgree very well with the pa- N2amics of semiflexible chains is accessible using the outlined

rameters obtained by a fit of the Kratky—Porod semiflexibledescr'pt'on'

chain model. Due to contour length fluctuations inherent in
the Gaussian model, the force-extension relation is some-
what different form the force-extension relation of the APPENDIX A: MAXIMUM ENTROPY PRINCIPLE
Kratky—Porod model. As a consequence, a slightly larger ) ) ] .
contour length is obtained. This improves the quality of the ~ Here we briefly summarize the maximum entropy prin-
fit to the experimental data at large extensions. This is relate@iPle-
to the issue of the stretchability of DNA?*3 beyond the ~ The entropy of a system dfdegrees of freedom is de-
contour length determined by the fit to the Kratky—Porodfined byt29:44
model. In terms of the considered model, part of the stretch-
ing is due to contour length fluctuations, which in turn area  S= —kBJ yInyd'qdp, (A1)
consequence of fluctuations in the length of the segments
that underlie the semiflexible chain model. Since such segwherekg denotes the Boltzmann constaittthe distribution
ments appear in a coarse graining process of real moleculeiginction, and{q}, {p} are the generalized coordinates and
the fluctuations may be traced back to fluctuations of discanonical conjugate momenta, respectively. Since the en-
tances along a polymer chain involving a certain number ofropy assumes an extremum at equilibrium, the distribution
monomers. To clarify this point further comparisons with function can be obtained by a variational calculaftdlsu-
experimental data are necessary. ally, the extremum has to be calculated under macroscopic
Using the constant extension ensemble, we have detegonstraints. One of the constraints is the normalization con-
mined the end-to-end distribution function of a chain with dition
one free end. Comparison of the results with Monte Carlo
simulations based upon the Kratky—Porod model exhibits f ydiqdp=1. (A2)
guantitative agreement between the radial distribution func-
tions. Moreover, we derived an simple analytical distributionFurthermore, we assume that the system of interest is con-
function that quantitatively describes the Monte Carlo datsstrained by expectation valugg of certain dynamical quan-
even for persistence lengths on the order of the chain contodities h,({g},{p}), k=1,...M:
length.
The calculations provide insight into the. differences be- f p{ar{phHh{a}.iphdiqdig=(h)=¢,. (A3)
tween a constant force and constant extension ensemble. For
sufficiently small persistence lengthpl(=10), the differ-  To calculate the extremum &in Eq. (A1), the constraints
ences are negligible. For persistence lengths on the order gA2), (A3) are taken into account by Lagrangian multipliers.
the chain contour length, however, pronounced difference$he variation of the entropy yields the following expression
appear. Most striking is the appearance of a negative forcer the distribution function
for certain end-to-end distance in the constant extension en- M
semble. However, the force-extension relation seems to dif- _ Ee ~ S Ah
fer from the one of the Kratky—Porod model. That indicates =z =R
a strong influence of contour length fluctuations on macro-

. . M
SEopic properuies. z= f exp( - xkhk) d'qd'p, (A5)
k=1

In this paper we have considered the deformation beha\}?

(A4)

An experimental setup to realize the constant extension
ensemble is presented in Ref. 12. The two ends of a polymer . . . .
chain are attached to beads, which are put in optical trapgvhereZ is the partition function. The equations for the ex-
Making the traps stiff corresponds to a constant extensioRectation valuesp, (A3) give the following equations to
ensemble. If the traps are not stiff enough, force-extensiofétermine the Lagrangian multipliexg
curves are obtained which neither correspond to a constant 9lnz
extension ensemble nor to a constant force ensemble. This ¢=— L k=1,. M. (AB)
has no implications for flexible chaingp(>10) but for k
rather rigid chains, as is obvious from the presented result3’he extremum of the entropy is then given by
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|

Using the thermodynamic relatioh=U—TS for the free
energy (F), where U=(H) is the internal energyH the
Hamiltonian, andT the temperature, we find

|

If we assume thal is equal to the kinetic energy only, i.e.,
hM=H=Eif:1pi2/(2mi), and that all other constraints are

M

S=kg| INZ+ D, N (A7)
k=1

M

F=U-Tkg| INZ+ >, Ny (A8)
k=1

independent of the momenta, the momenta can be integrated 3

out and we are left with a distribution function in configura-
tional space. The free energy reduces then to

M-1

F=—kgT|InZ+ >, )\kqﬁk) =—kgTInZ, (A9)
k=1
with the partition function
M-1
Z=Zexp > Nyl (A10)
k=1

APPENDIX B: CALCULATION OF LAGRANGIAN
MULTIPLIER

The partition function of a discrete semiflexible chain is
given by
N N—1
f ex _21 )\iRi2+_21 MiRiRi 41
i= i=

4

—BU({R}))dsNR, (B1)
whereg=1/kgT andU ({r;}) =U({R;}) is an external poten-
tial. With the substitutiorR/ = \\;R; the partition function
reads

N N—1
Mi
z=f exp — >, R/?+ >, ———R/R/
% “= =4 ’—)\i)\i+1 iTNi+1

N
1
—BU({R{/JATD) R > Vo (B2)

Relation (A6) yields the following equations for the con-
straints of Eq(1) (1<k<N-1):

3 1%t dU )

51 5 (it -1) + Bk Ny =N (B3)
which is equivalent to
3 1%(t—-1) B/ duU
>t o (e =5 a_RkRk

_ _&_ Mk—1 2

—()\k 5 5 )I. (B4)

In the continuum limit this equation reads<G<L)

Deformation of semiflexible chains 2927

DI

(B5)

Here we wused the definitions v(s)=Ilim(\;— (u;
+ui—)I2), e(s)=lim u;l®, 1/(2p)=liml/(1—t), and s
=lim(il), where lim indicates the limiN—<, |—0, andt
—1. 6U/éu denotes the functional derivative of the potential
U. Hence, we obtain a position independent Lagrangian mul-
tiplier e=3/(4p) for a continuous chainl&0). Similarly,

the derivative with respect to; can be performed. The con-
straint(1) now yields

12t U
- :)\llz,
N

S M1t BNy
i.e., only one term with @ appears. This equation is equiva-

B

3 d oU({u(s
E—Zps—l(pa—:+v(s)+§ M

ou(s)

—+

5 (B6)

lent to
3 1%(t—-1) B[ dU A
St T3 a_l:\)lRl —()\1—7 1= (B7)

With the definition vo=lim(\;— u,/2)I? and e=3/4p this
equation yieldsy=3/4 independent of the external potential
and the persistence length in the continuum limit.
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