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Deformation of semiflexible chains
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The force-extension relation and the end-to-end distribution function are calculated in the constant
force and constant extension ensemble, respectively, for a semiflexible chain of Gaussian segments.
Qualitative differences are found for these quantities when the persistence length is on the order of
the chain length. In particular, beyond a certain persistence length, the free energy assumes two
extreme values in the constant extension ensemble corresponding to zero force at zero and at a finite
extension. The comparison of the force-extension relation with experimental results on DNA
exhibits excellent agreement. The approach provides a simple expression for the end-to-end
distribution function which is in excellent agreement with Monte Carlo simulations of the Kratky–
Porod semiflexible chain model. ©2003 American Institute of Physics.
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I. INTRODUCTION

The functions and properties of biological systems c
cially depend on the conformational properties of the con
tuting ~linear! macromolecules. Prominent examples are
polymers of the cytoskeleton, in particular actin filaments1,2

and DNA. Like many other biological polymers, they a
semiflexible chains. It is~among other aspects! the stiffness
of actin which determines the mechanical properties of a c
Insight into the conformational properties of individual mo
ecules can be gained by fluorescence microscopy.3–5 Mea-
surements of the force-extension relation of DNA molecu
by such techniques reveal the semiflexible character of
logical molecules.6,7

Despite the success of the semiflexible chain appro
there are various aspects of semiflexible chain beha
which are not satisfactorily solved. In particular, the d
tribution function of the end-to-end distance has
tracted considerable attention recently.8–13 Both, approxima-
tion schemes8,11,12 as well as a mean field approach are e
ploited.9,10

The basis of these approaches is the wormlike ch
model of Kratky and Porod,14 which accounts for stiff-
ness via inclusion of bending elasticity. Although physic
reasonable, this model and its numerous, subseq
modifications15–18 have not provided analytically tractab
results for equilibrium and dynamical properties of a chain
arbitrary stiffness. Results for the radial distribution functi
of the Kratky–Porod model have been obtained recently
Wilhelm and Frey8 based on a perturbation theory with
rodlike chain as a reference. Additional inside into the e
to-end distribution of the Kratky–Porod model is provid
by Samuel and Sinha11 as well as Dhar and Chaudhuri12 by
an eigenfunction expansion of the partition function a
computer simulations, respectively.

The most promising candidate for an analytical tracta
model is a chain of Gaussian segments, i.e., a chain

a!Electronic mail: r.winkler@fz-juelich.de
2910021-9606/2003/118(6)/2919/10/$20.00
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Gaussian distributed distances between successive p
along the chain. For flexible chains, we demonstrated
even finite size can be taken into account by this mode19

However, the force constants have to be chosen adequ
in order to satisfy macroscopic requirements, like a fin
contour length. Numerous attempts have been undertake
find the correct description for a semiflexible chain.17,20–30

Taking into account the chain ends properly, it has be
shown that such an approach provides second mom
which agree with those of the Kratky–Porod wormlik
chain.29

In order to interpret experimental data, it would be us
ful to have a clear and complete understanding of the pre
tions of the various models for wormlike chains. Such
understanding would reveal the strengths and deficiencie
a model in describing real polymers and serves as a base
improved models. The major difference between the Gau
ian description and the Kratky–Porod model is the intrin
elasticity of the Gaussian approach. Comparison of exp
mental force-extension data on DNA with the predictions
the Kratky–Porod model yields deviations at lar
extensions,7 which are explained by an internal elasticity
DNA. A remarkable property of the Kratky–Porod mod
with fixed end points is the presence of two stable minima
the free energy for a certain range of persistence lengths11,12

The question arises, whether such minima are also prese
a system with internal elasticity. If an internal elastici
changes the free energy significantly, the predicted effects
the Kratky–Porod chain may not be observed for DNA m
ecules.

Another major aspect is the understanding of the eq
librium and nonequilibrium dynamics of semiflexible chain
To obtain analytical solutions a sufficiently simple model
required which still captured the essential features of se
flexible chains. As we demonstrated, the Gaussian semifl
ible chain29 provides such a model.31–37 Both polymer
melts31,33,36 as well as solutions,32,34,35 including hydrody-
namic interactions, are described in agreement with exp
mental results. The analysis of the experimental data on
9 © 2003 American Institute of Physics
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relaxation dynamics of partially stretched flexible cha
molecules38 reveals the necessity of a semiflexible cha
approach37 and the proper incorporation of their equilibriu
properties.

In this paper the force-extension relation and end-to-
distribution function of semiflexible chains of Gaussian se
ments are studied. The necessary distribution and part
functions are derived using the maximum entro
principle.19,29 In our calculations, we pay particular attentio
to chains with persistence lengths of the order of the ch
contour length. Hence, our calculations extend previ
mean field calculations.9,10,39At the same time our calcula
tions are complementary to calculations using the Kratk
Porod model. Thus, the influence of an internal chain e
ticity on the macroscopic force-extension relation will
unravelled. For near rodlike chains we expect different
sults for a constant force ensemble or a constant exten
ensemble, since we are considering finite systems, which
far from the thermodynamic limit.11 To account for the dif-
ferences, we will present results for both ensembles.

The paper is organized as follows. In Sec. II the se
flexible chain model is outlined and the basic formulas
provided. The force-extension relation of chains with a co
stant external force is determined in Sec. III. In addition,
end-to-end distribution function is addressed. Moreover,
extracted force-extension relation is compared with exp
mental data on DNA. Similar calculations are performed
Sec. IV for a chain with two fixed end points. In detail th
influence of chain stiffness on the force-extension relation
discussed. Moreover, results for the end-to-end distribu
function are presented and compared with Monte Ca
simulations of a Kratky–Porod semiflexible chain model.

II. SEMIFLEXIBLE CHAIN MODEL

Our main focus will be on continuous semiflexib
chains in this article. For certain numerical consideratio
however, it is more convenient to investigate a discrete ch
model. Thus, I will start the calculations from a discre
chain model.

The discrete semiflexible chain is considered as an o
dimensional arrangement ofN11 mass points with equa
massesm. The positions of the points are denoted byr i , i
50,...,N. To remove the translational degrees of freedo
point r0 is fixed at the origin of the reference frame. Th
other mass points are subject to the constraints

^Ri
2&5 l 2, i 51,...,N, ~1!

^RiRi 11&5 l 2t, i 51,...,N21, ~2!

where theRi5r i2r i 21 denote the difference vectors b
tween successive points andl is the bond length. Equation
~1! captures the connectivity of the mass points along
chain contour and Eq.~2! describes bond angle restriction
which result in chain stiffness.29 For a chain with bonds o
constant length, the stiffness parametert is equal to the av-
erage cosine of the angle between successive bonds. Wi
any other constraint, the partition function
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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Z5E expS 2(
i 51

N

l iRi
21 (

i 51

N21

m iRiRi 11D d3Nx ~3!

is obtained in conformational space from the general exp
sion of Eq.~A5!. The components of the various spatial d
mensions are decoupled and the exponent is a quadratic
(a51

d xa
TAxa , were a indicates the various spatial dimen

sions andxa,i5Ra,i ( i 51,...,N). Hence the partition func-
tion is given by

Z5p3N/2uAu23/2, ~4!

whereuAu denotes the determinant of the matrixA. The set of
equations following from Eq.~A6!, which determines the
Lagrangian multipliers, possesses the solution

l15lN5
3

2l 2

1

12t2 , ~5!

l i5
3

2l 2

11t2

12t2 , i 52,...,N21, ~6!

m i5
3

l 2

t

12t2 , i 51,...,N21. ~7!

~For details of the derivation see Ref. 29.! The Lagrangian
multipliers depend upon the applied constraints and cha
when we fix the free end point or apply a force.

The continuous chain is obtained in the limitN→`, l
→0, and t→1 such thatL5Nl, the average length of the
chain, and the persistence length l p51/(2p)
5 lim l→0,t→1 l /(12t) are finite. In this limit constraints~1!
and ~2! read

K S ]r

]sD
2L 5^u2~s!&51, ~8!

lim
l→0

l K S ]2r

]s2D 2L 5 K S ]u

]sD
2L 54p. ~9!

In the continuum representation the chain is parameter
by r (s) with 0<s<L and the partition function is given in
form of a path integral

Z5E expS 2E
0

L

n~s!u2 ds2E
0

L e~s!

2 S ]u

]sD
2

dsDD3u,

~10!

with the new Lagrangian multipliersn(s)5 lim(l i2(m i

1m i 21)/2)l , n05n(0)5n(L)5 lim(l12m1/2)l 2, and e
5 lim m l 3. ~The continuum limit~lim! has to be performed
as indicated above.! From relations~5!–~7! the Lagrangian
multipliers are expressed as follows in terms of the per
tence length:29

n~s!5
3p

2
, n05n~s50!5

3

4
, e5

3

4p
. ~11!

The partition function~10! and the Lagrangian multipli-
ers of Eq.~11! can also be obtained by a saddle point a
proximation of the Kratky–Porod wormlike chain.27,28,30The
partition function of the Kratky–Porod model is given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Z5E expS 2
e

2 E0

LS ]u

]sD
2

dsD)
s

d~u221!D3u. ~12!

The major difference between the Kratky–Porod model a
the Gaussian approach is the way in which the constraints
the vectorsu are treated. In the Kratky–Porod model th
magnitude of the tangent vector is unit at any point along
chain contour. In contrast, in the derivation of the partiti
function by the maximum entropy principle a relaxed co
straint is applied which enforces only the average^u(s)2&.
Hence, the latter chain possesses a certain internal elast
Replacing thed-functions of Eq.~12! by a Fourier represen
tation, the partition function can be rewritten as

Z;E expS 2E
0

L

n~s!~u221!ds

2
e

2 E0

LS ]u

]sD
2

dsDD3uDn. ~13!

The stationary phase approximation with respect to the fi
n(s) yields the partition function~10! and the relaxed con
straint ~8! to determine the extremum ofn.30 Thus, the sta-
tionary phase approximation of the Kratky–Porod mo
yields exactly the same expression for the term with the
grangian multipliern as the maximum entropy principle. Th
major difference between the two approaches is the wa
which the bending energy is treated. The maximum entr
principle considers the restriction in bond angles on the sa
footing as the bond length restrictions. The Lagrangian m
tiplier e is determined from the corresponding constraints
terms of the persistence length of the system. In the m
field approximation an adjustment ofe is necessary, since th
dependence ofe on the persistence length for the Kratky
Porod chain is different from the one for the chain with t
relaxed constraint.29,30 Thus, the mean filed approach r
quires ana posteriori adjustment ofe to the same value
provided by the maximum entropy approach.30 After the ad-
justment the partition functions of both approaches exa
agree with each other.

In this article, we restricted our attention to semiflexib
chains. Results for chains without bending restrictions
presented in Ref. 19.

III. SEMIFLEXIBLE CHAIN WITH CONSTANT
EXTERNAL FORCE

We will now consider a semiflexible chain with a give
mean value for the end-to-end distance. This correspond
a constant force ensemble. We will restrict the following c
culations to a continuous chain.

In addition to constraints~8! and ~9! the constraint

^rL&5K E
0

L

u dsL 5a, ~14!

has to be taken into account@r (0)50#. Due to the additional
constraint, the Lagrangian multipliern will no longer by con-
stant along the chain contour in general and no analyt
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solution for the path integral will be found. Therefore, th
constraint~8! is replaced by the~global! constraint for the
chain contour

K E
0

L

u~s!2 dsL 5L. ~15!

The chain ends, however, have to be treated separate
detailed calculation for a continuous chain yields the L
grangian multiplierse53/(4p) and n053/4 ~cf. Appendix
B!. The partition function is then given by

Zh5E expS 2nE
0

L

u2 ds2
e

2 E0

LS ]u

]sD
2

ds

2n0@u~0!21u~L !2#2hE
0

L

u dsDD3u. ~16!

The path integral can be evaluated by exploiting the anal
with the path integral of a harmonic oscillator in quantu
mechanics,9,22,29 using the eigenfunction expansion for th
operatorO5n2e/2]2/]s2 with the appropriate boundar
conditions, or by a continuum transition of the discre
model.29 The result for the latter is

Zh5 lim
l→0
N→`

uAu23/2expS 1

6
h2R2D , ~17!

with

uAu5mNlA e

2n S S 2n0
2

e2 1
n

e D sinhLA2n

e2

1
2n0

e
A2n

e
coshLA2n

e D , ~18!

R25
3

2n S L2
2n0

n F11
2n0

n
A n

2e
cothLA n

2eG21D .

~19!

@The abbreviationR in the partition function~17! was chosen
sinceZ can be considered the generating functional in cas
a chain without chain end constraints.R2 corresponds then to
the mean square end-to-end distance.# Exploiting the relation
~A6!, h is give by

h52
3a

R2 ~20!

in terms ofa. The force-extension relation follows fromFh

52kBTh,19 with T the temperature andkB the Boltzmann
constant. The equation to determine the Lagrangian mu
plier n is obtained straightforward from]Zh /]n52L.

Sincee53/(4p), Zh is a function ofpL and nL only.
Analytical approximations for the Lagrangian multipliern in
the limit of large and smallpL values are given by:

n5H 3

2
pS 12

a2

L2D 22

pL.1

3

2 S p1
a2

L3D S 12
a2

L2D 21

pL!1.

~21!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The same expression forpL.1 has been obtained in Refs.
39. Equation~21! yields the valuen53p/2 of a chain with-
out external force~11! for a50 in both limits.

A. Force extension relation

Approximations~21! for the Lagrangian multiplier lead
to the following force-extension relations

Fh /kBT55
2n

a

L
5

3pa

LS 12
a2

L2D 2 pL@1

3a

L2 S 11
2nL

3 D5
3~11pL!a

S 12
a2

L2DL2

pL!1.

~22!

The result forpl@1 agrees with the force-extension relatio
obtained by Ha and Thirumalai.39

By a numerical solution of the equation for the Lagran
ian multiplier n, the curves presented in Fig. 1 are obtain
for pL50.1, 1, 10, and 100~solid lines!. The approximate
solution forpL*10 ~dotted lines! are indistinguishable from
the exact solution. A good approximation forpl'1 is ob-
tained with the Lagrangian multiplier forpL.1 and the
force-multiplier relation forpL!1 ~dotted line forpL51).
For not to smallpL we observe deviations between the ex
and the analytically obtained force-extension relation at la
extension. For even smallerpL the agreement between th
analytical and the numerical solutions improves.

As mentioned before, the Lagrangian multipliers are
longer constant along the chain contour when an exte
force is present. To achieve an estimate of the error for
force-extension relation, we numerically calculated the L
grangian multipliers and the force-extension relation of a d
crete chain. In order to compare the obtained numerical d

FIG. 1. Force-extension relations forpL5L/(2l p)5100, 10, 1, 0.1~from
top to bottom! for a Gaussian semiflexible chain within a constant for
ensemble. The solid lines are numerical solutions for the continuous c
model with the Lagrangian multipliern only. The symbols are numerica
solutions of the discrete chain model, where all bond length constraints
been taken into account~Ref. 29!. The dotted lines correspond to analytic
approximations forpl.1. For pL50.1 the analytical approximation fo
small pL is used~dashed line!.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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with the continuum description, we chose parameters wh
correspond to the continuum limit. Comparing the numeri
data obtained for the discrete model with the force-extens
relation of the continuum model, we find excellent agre
ment~squares in Fig. 1 forpl510, 1, and 0.1!. Inspection of
the Lagrangian multipliers shows that only those in the
cinity of a chain end are different from those of the mitt
part of a chain. Hence, the agreement between the results
consequence of the fact thatn(s) is almost constant along
the whole chain. The numerical solution of the discre
model for chain lengths larger than approximatelypL510
requires a significant amount of computer time, becaus
sufficiently large number of segments has to be used
achieve a reasonable approximation for a continuous ch
Considering the agreement between the various models
served in Fig. 1, however, the continuum representation w
only one Lagrangian multiplier is an excellent approximati
of the full problem with a position dependent multiplie
n(s).

To test the validity of our approach, we compare o
analytical result forpL.1 with measurements by Smit
et al.3,7 on B-DNA. As is obvious from Fig. 2, the force
extension relation provides an excellent description of
experimental data. A least square fit ofFh to the experimen-
tal data yields the persistence lengthl p51/(2p)553.5 nm
and the chain lengthL533.5mm,40 respectively, and corre
sponds topL'313. These values agree with those obtain
by Marko and Siggia:7 l p553 nm, L532.8mm. The fit of
the Gaussian semiflexible chain yields a slightly large ch
length, which is in agreement with the values discussed
Ref. 7.

For the sake of completeness, I would like to menti
that a least square fit to the relation 1/AF yields modified
values compared to those presented above. For the fo
extension relation~22!, I find l p559.8 nm andL533.3mm
and for the Marko and Siggia approximationl p559 nm and
L532.7mm, respectively. Hence, the chain lengths exhi

in

ve

FIG. 2. Fit of the force-extension curve of the Gaussian semiflexible ch
model ~solid line! to experimental data of Smithet al. ~Ref. 3!. The fit
parameters obtained from a logarithmic fit arel p553.5 nm and L
533.5mm. The dotted line is calculated using the interpolation formu
derived by Marko and Siggia~Ref. 7! for the Kratky–Porod model with the
parametersl p553 nm andL532.8mm, respectively.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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only very small variations. The persistence lengths, howe
are about 10% larger, but the agreement between the
approaches is excellent.

The major difference between the Gaussian semiflex
chain and the Kratky–Porod model is the fact that the m
nitude of tangent vectoru(s) is not exactly one but only the
averagê u2&51 is constraint. As a consequence, the cont
length is not a constant but fluctuates. Since we adopte
coarse grained description of a DNA~see discussion of dis
crete chain model in Sec. II!, we expect that the distancesRi

2

exhibit some fluctuations due to the various monomers,
hence degrees of freedom, of the real chain incorporate
an effective segment. Naturally, the Gaussian chain can
partially capture such fluctuations. A more adequate mo
would by the model described in Ref. 29~Sec. III A!. How-
ever, such a model can not by treated analytically in gene

B. Distribution function

The end-to-end distribution function of a Kratky–Poro
wormlike chain has been discussed in detailed recently.8–12

Naturally, this distribution function depends on the co
straints applied at the chain ends.

The distributionc(rL) follows from the definition

c~r1!5K dS r l2E
0

L

u2 dsD L . ~23!

Using the Fourier representation of thed function, we can
exploit the results obtained in the calculations of the partit
function Zh . We finally obtain the Gaussian

c~rL!5S 3

2pR2D 3/2

expS 2
3

2R2 @rL2a#2D , ~24!

with R2 of Eq. ~19!. In the limit uau→L, R2 approaches
infinity and the distribution function reduces t
limuau→Lc(r L)5d(rL2a). In general, the end point of th
chain exhibits Gaussian fluctuations around the aver
valuea.

Using the free energy of Eq.~A9! we can introduce an
other distribution function, namely, the approximate e
pression for the end-to-end distribution function of a ch
with a free end point~cf., Sec. IV B!. Using the relation
F52kBT ln Z̃;2kBT ln c(r ), the distribution functionc(r )
of the end point is given by

c~r !;uAu23/2exp~ 1
6 h2R21nL1ha!. ~25!

For pL@1 this expression reads

c~r !5Nc

~12r2/L2r !3/2

~22r2/L2!3 expS 2
3pL

2~12r2/L2! D , ~26!

where Nc is the normalization constant. The factor in th
exponent agrees with the result presented in Refs. 9,
whereas the factor in front of the exponential function
different. The major reason for the difference is that Eq.~26!
is a saddle point approximation of the more general distri
tion function, which will be discussed in Sec. IV B.
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IV. SEMIFLEXIBLE CHAIN WITH FIXED END POINTS

We will now discuss the deformation behavior and t
end-to-end distribution of a semiflexible chain with its e
points fixed atr (0)50 and r (L)5a, respectively, which
corresponds to a constant deformation ensemble.

The partition function of such an ensemble is given b

Za5E expS 2nE
0

L

u2 ds2
e

2 E0

LS ]u

]sD
2

ds

2n0@u~0!21u~L !2# D dS a2E
0

L

u dsDD3u, ~27!

wheren follows from the constraint~15!. The other Lagrang-
ian multipliers can be determined similarly to the procedu
outlined in Appendix B. Removing the appearing derivati
of the delta function by partial integration leads toe
53/(4p) andn053/4, i.e., we find the same expressions
for a system in an external potential.

To evaluate the partition functionZa , we exploit the
results obtained for a chain with external force. Using t
Fourier representation of thed function, the partition func-
tion reads

Za5
1

~2p!3 E Zh~h5 ik!eika d3k ~28!

in terms of the partition functionZh ~16!. Inserting Eq.~17!,
the evaluation of the integral yields

Za5 lim
l→0
N→`

uAu23/2~R2!23/2expS 2
3a2

2R2D . ~29!

QuantitiesuAu andR2 are defined in Eqs.~18! and ~19!, re-
spectively. The force-extension relation follows fromFa

52kBT“a ln Za at constant Lagrangian multipliern. Explic-
itly the force readsFa53kBTa/R2, whereFaia.

The Lagrangian multipliern is again calculated form the
relation ]Za /]n52L. As a calculation shows,n can very
well by approximated by Eq.~21! for pL@1.

A. Force-extension relation

For pL@1 we find the same force extension-relation
for the constant force ensemble@cf. Eq. ~22!#. The differ-
ences in the fluctuations inherent in the two ensembles, h
ever, leads to different force-extension relations forpL
&2.5. Analysis of the equation for the Lagrangian multipli
shows thatn assumes the value zero forpL values below a
certain threshold.~This is not the case in the constant for
ensemble, wheren is always large than zero.! The threshold
value pLc follows from the condition] ln Za /]nua501L50,
which yieldspLc'2.5138. As a consequence, for persisten
lengthspL,pLc , i.e., for chains close to the rod limit,n
will be negative for end-to-end distances below a cert
value ac . The critical valueac follows from ] ln Za /]nun50

1L50, which is a fourth order polynomial. For negativen,
the termAn of Eqs.~18! and~19! has to be replaced byiAunu
and the hyperbolic functions have to be transformed to tri
nometric functions by analytic continuation. As a cons
quence,R2~19! possesses a singularity at an value following
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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from cot(LA2unup/3)5A2unu/(3p). The forceFa;a/R2 is
then zero fora50 as well as a nonzeroaP(0,L).

Figure 3 displays the force-extension relation of a ch
with its end points fixed atr (0)50 and r (L)5a, respec-
tively. For pL*5, we find agreement between the nume
cally determined relation of the continuum model and
model of a discrete chain taking into account all Lagrang
multipliers, as exemplified by the data forpL510. More-
over, the analytical approximation~22! agrees very well with
the numerical data forpL*10. For pL&3, some of the
Lagrangian multipliers of the discrete model become ne
tive and we observe deviations between the force-exten
relations of the continuum model with a position indepe
dent Lagrangian multiplier and the one of the discrete mo
taking into account all Lagrangian multipliers. Figure
shows that the deviations are small forpL'1 but increase
for pL,1. However, the force-extension relations agree
long as the Lagrangian multipliers of the discrete model
positive, which holds for large deformations.

The dependence of the Lagrangian multipliers on
position along the chain contour is plotted in Fig. 4 for va
ous end-to-end distances andpL51. Fora/L.0.7, all mul-
tipliers are positive. With decreasing end-to-end distance,
Lagrangian multipliers in the central part of the chain assu
negative values. The observed deviations between the fo
extension relations are a consequence of the large varia
of the Lagrangian multipliern(s). The value determined by
the constraint~15! is not an adequate representation of t
actual multiplier. Nevertheless, the qualitative behavior
captured by the simplified approach.

Dhar and Chaudhuri12 observe three minima in the fre
energy of the Kratky–Porod model, which implies three en
to-end distances with zero force. For the Gaussian mo
presented in this article, we find two extreme values on
Hence, the presence of contour length fluctuations sign
cantly influences the macroscopic behavior like, e.g.,

FIG. 3. Force-extension relation of a Gaussian semiflexible chain with fi
end points forpL510, 1, 0.1~top to bottom!. The solid lines are numerica
solutions for the continuous chain model with the Lagrangian multiplien
only. The symbols are numerical solutions of the discrete chain mo
where all bond length constraints have been taken into account~Ref. 29!.
The insert displays the force-extension relation forpL510. The dotted line
is the analytical approximation.
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force-extension relation. It remains to show experimenta
which of the models captures the physics of a real molec
more adequately.

The comparison shows that the force-extension rela
~22! for pL@1 describes the behavior of the exact relation
the limit a→L for all persistence lengths. A Taylor expan
sion for a→L yields the expression

a5L2A3

8
A kBT

Fhl p
. ~30!

A similar relation has been derived previously by Odijk39,41

for the Kratky–Porod model. Only the front factor differ
Instead ofA3/8, Odijk obtains 1/2. The actually difference
quit small. Quantitative agreement between the two
proaches is achieved, when the larger persistence lengl p

53l 0/2 for the Gaussian semiflexible chain is used, wherel 0

is the persistence length of the Kratky–Porod model. T
difference between the two approaches in the rod limit c
be understood as follows: Due to the constraintu(s)251,
only elongations transverse to the end-to-end distance
possible for a the Kratky–Porod chain. For the relaxed c
straint ^u(s)2&51 also fluctuations along the chain conto
are present. Hence, the number of degrees of freedom
different by a factor of 1.5. Settingl p51.5l 0 is an adjustment
of the persistence lengths to capture the difference in
effective degrees of freedom.

B. Distribution function

So far we discussed the deformation behavior of a ch
with fixed end points. Using the free energy expression~A9!,
we can extract the end-to-end distribution function of a fin
extensible chain with a free end from the above expressio
With the relationF;2kBT ln c(r ), we find

c~r !;uAu23/2~R!23/2expS 2
3r2

2R2 1nL D ~31!

d

l,

FIG. 4. Position dependence of the Lagrangian multipliern(s) along the
chain contour forpL51 ~constant extension ensemble!. The various curves
correspond toa/L50.85– 0.05~top to bottom! with an interval ofDa/L
50.05. The curves are obtained as continuum limit of a discrete model.
symbols in the center indicate the Lagrangian multipliers for the constr
~15! at the same extensions.
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for the distribution functionc(r (L))5c(r ). Inserting the
approximations forpL@1, c reduces to

c~r !5NcS 12
r2

L2D 23/2S 22
r2

L2D 23

3expS 2
3pL

2~12r2/L2! D . ~32!

The exponential function is identical to the expression
rived in Ref. 9. But, the factor in front of the exponential
different due to different approximations of the identical p
mary expressions. The numerical comparison exhibit
much better agreement between Eqs.~31! and~32! than with
the result presented in Ref. 9.

As mentioned in Sec. III B, the distribution function~25!
corresponds to a saddle point approximation of the parti
function Za ~28!. Replacing the integral by the integran
with the valuek53ia/R2 at the extremum and neglectin
the fluctuation determinant yields the distribution functi
~25! instead of~31!.

Figure 5 displays the distribution functionc(r ) @Fig.
5~a!# as well as the radial distribution functionP(r )
54pr 2c(r )) @Fig. 5~b!# for the continuum model with a
single Lagrangian multiplier and the discrete model w
n(s). The dotted lines are calculated according to the

FIG. 5. End-to-end distribution functions~a! and radial distribution func-
tions ~b! for pL510, 2, 1, 0.1@left to right in ~b!#. Solid lines are calculated
with the exact solution for the Lagrangian multipliern, dotted lines are
determined from the analytical approximation~21! (pL@1), and symbols
correspond to solutions of a discrete chain model.
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proximation of Eq.~22! (pL@1). ForpL.5 we find excel-
lent agreement between the two models. In addition, the
tribution functions also agree very well forpL&0.1, at least
as far as the data are significantly different from zero. Sin
the force-extension relation is directly related to the distrib
tion function c(r ), the deviations present in Fig. 3 refle
deviations in the distribution functions. For persisten
lengthspL'1, the two distribution functions exhibit more o
less pronounced deviations. If the radial distribution fun
tions are considered, close agreement for all persiste
length is obtained. In addition, the figure demonstrates
the analytical approximation agrees very well with the f
solution as long aspL*1. Significant deviations are ob
served forpL'0.1. For such large persistence lengths ot
analytical approximations have to be determined.

In Refs. 11 and 12 the distributionc(r ) of the Kratky–
Porod model is discussed. Qualitatively, the distributi
functions of the Gaussian semiflexible chain are very sim
to those presented in these articles. However, we do not
serve a double hump11 and hence no triple minima for th
free energy.12 Our free energyF;kBT ln c possesses only
one minima. Forr 50 the derivativedF/dr is zero, corre-
sponding to zero force. However, this point is unstable.

Finally, in Fig. 6 we compare the radial distributio
function for the considered semiflexible chain model w
Monte Carlo data of the Kratky–Porod model obtained
Wilhelm and Frey.8 In order to achieve quantitative agre
ment, we determined the persistence length according to
relationl p53l 0/2 ~see discussion at the end of Sec. IV A! for
certain persistence lengths. As is obvious from the figure,
results of our approach agree very well with the simulat
data. Since the radial distribution function is well describ
by the analytical approximation forpL*1, the simulation
data can also be described by this approximation.

In summary, the proposed model and the simulation d
exhibit deviations on the order of a few percent only. Th
our approach quantitatively describes the simulation data
can be used as a basis to analyze experiments.

FIG. 6. Comparison of radial distribution functions obtained from Mon
Carlo simulations~symbols! ~Ref. 8! with Eq. ~31! ~solid lines! for pL55,
1.6, 0.66, 0.33, 0.166 corresponding toL/ l 0510, 5, 2, 1, 0.5.
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V. CONCLUSIONS

In this paper we have considered the deformation beh
ior of a Gaussian semiflexible chain in a constant force
constant extension ensemble, respectively. Applying
maximum entropy principle, we derived partition functio
for both ensembles and extracted the force extension r
tions and the distribution functions of the end-to-end d
tance.

The fit of the force-extension relation of a constant for
ensemble to measurements on B-DNA yields excell
agreement. The obtained parameters of the model~persis-
tence length and chain length! agree very well with the pa
rameters obtained by a fit of the Kratky–Porod semiflexi
chain model. Due to contour length fluctuations inheren
the Gaussian model, the force-extension relation is so
what different form the force-extension relation of th
Kratky–Porod model. As a consequence, a slightly lar
contour length is obtained. This improves the quality of t
fit to the experimental data at large extensions. This is rela
to the issue of the stretchability of DNA7,42,43 beyond the
contour length determined by the fit to the Kratky–Por
model. In terms of the considered model, part of the stre
ing is due to contour length fluctuations, which in turn are
consequence of fluctuations in the length of the segm
that underlie the semiflexible chain model. Since such s
ments appear in a coarse graining process of real molec
the fluctuations may be traced back to fluctuations of d
tances along a polymer chain involving a certain numbe
monomers. To clarify this point further comparisons w
experimental data are necessary.

Using the constant extension ensemble, we have de
mined the end-to-end distribution function of a chain w
one free end. Comparison of the results with Monte Ca
simulations based upon the Kratky–Porod model exhi
quantitative agreement between the radial distribution fu
tions. Moreover, we derived an simple analytical distributi
function that quantitatively describes the Monte Carlo d
even for persistence lengths on the order of the chain con
length.

The calculations provide insight into the differences b
tween a constant force and constant extension ensemble
sufficiently small persistence lengths (pL*10), the differ-
ences are negligible. For persistence lengths on the orde
the chain contour length, however, pronounced differen
appear. Most striking is the appearance of a negative fo
for certain end-to-end distance in the constant extension
semble. However, the force-extension relation seems to
fer from the one of the Kratky–Porod model. That indica
a strong influence of contour length fluctuations on mac
scopic properties.

An experimental setup to realize the constant extens
ensemble is presented in Ref. 12. The two ends of a poly
chain are attached to beads, which are put in optical tr
Making the traps stiff corresponds to a constant extens
ensemble. If the traps are not stiff enough, force-extens
curves are obtained which neither correspond to a cons
extension ensemble nor to a constant force ensemble.
has no implications for flexible chains (pL.10) but for
rather rigid chains, as is obvious from the presented res
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To observe the discussed effects, actin filaments, micr
bules, or short DNA molecules can be used. It remains to
shown, e.g., by such experiments, whether the Kratky–Po
model or the semiflexible chain model based on Gauss
segments provides a more adequate description of the
ous molecules.

In summary, the proposed approach based on the m
mum entropy principle seems to be useful to describe e
librium properties of semiflexible chains. Extensions to
broad spectrum of problems, where the exact treatment o
constraintu251 is difficult, is possible. In particular the dy
namics of semiflexible chains is accessible using the outli
description.

APPENDIX A: MAXIMUM ENTROPY PRINCIPLE

Here we briefly summarize the maximum entropy pr
ciple.

The entropy of a system off degrees of freedom is de
fined by19,29,44

S52kBE c ln c dfq dfp, ~A1!

wherekB denotes the Boltzmann constant,c the distribution
function, and$q%, $p% are the generalized coordinates a
canonical conjugate momenta, respectively. Since the
tropy assumes an extremum at equilibrium, the distribut
function can be obtained by a variational calculation.44 Usu-
ally, the extremum has to be calculated under macrosco
constraints. One of the constraints is the normalization c
dition

E c dfq dfp51. ~A2!

Furthermore, we assume that the system of interest is c
strained by expectation valuesfk of certain dynamical quan
tities hk($q%,$p%), k51,...,M :

E c~$q%,$p%!hk~$q%,$p%!dfq dfq5^hk&5fk . ~A3!

To calculate the extremum ofS in Eq. ~A1!, the constraints
~A2!, ~A3! are taken into account by Lagrangian multiplier
The variation of the entropy yields the following expressi
for the distribution function

c5
1

Z
expS 2 (

k51

M

lkhkD , ~A4!

Z5E expS 2 (
k51

M

lkhkD dfq dfp, ~A5!

whereZ is the partition function. The equations for the e
pectation valuesfk ~A3! give the following equations to
determine the Lagrangian multiplierslk

fk52
] ln Z

]lk
, k51,...,M . ~A6!

The extremum of the entropy is then given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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S5kBS ln Z1 (
k51

M

lkfkD . ~A7!

Using the thermodynamic relationF5U2TS for the free
energy ~F!, where U5^H& is the internal energy,H the
Hamiltonian, andT the temperature, we find

F5U2TkBS ln Z1 (
k51

M

lkfkD . ~A8!

If we assume thatH is equal to the kinetic energy only, i.e
hM5H5( i 51

f pi
2/(2mi), and that all other constraints ar

independent of the momenta, the momenta can be integr
out and we are left with a distribution function in configur
tional space. The free energy reduces then to

F52kBTS ln Z1 (
k51

M21

lkfkD 52kBT ln Z̃, ~A9!

with the partition function

Z̃5Z expS (
k51

M21

lkfkD . ~A10!

APPENDIX B: CALCULATION OF LAGRANGIAN
MULTIPLIER

The partition function of a discrete semiflexible chain
given by

Z5E expS 2(
i 51

N

l iRi
21 (

i 51

N21

m iRiRi 11

2bU~$R%!D d3NR, ~B1!

whereb51/kBT andU($r i%)5U($Ri%) is an external poten
tial. With the substitutionRi85Al iRi the partition function
reads

Z5E expS 2(
i 51

N

Ri8
21 (

i 51

N21
m i

Al il i 11

Ri8Ri 118

2bU~$Ri8/Al i%!D d3NR8(
k51

N
1

lk
2/3. ~B2!

Relation ~A6! yields the following equations for the con
straints of Eq.~1! (1,k,N21):

3

2
1

l 2t

2
~mk1mk21!1blkK ]U

]lk
L 5lkl

2, ~B3!

which is equivalent to

3

2
1

l 2~ t21!

2
~mk1mk11!2

b

2 K ]U

]Rk
RkL

5S lk2
mk

2
2

mk21

2 D l 2. ~B4!

In the continuum limit this equation reads (0,s,L)
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3

2
22pe2 l S p

]e

]s
1n~s!1

b

2 K dU~$u~s!%!

du~s!
u~s!L D50.

~B5!

Here we used the definitions n(s)5 lim(l i2(m i

1m i 21)/2)l , e(s)5 lim m i l
3, 1/(2p)5 lim l /(12t), and s

5 lim( i l ), where lim indicates the limitN→`, l→0, andt
→1. dU/du denotes the functional derivative of the potent
U. Hence, we obtain a position independent Lagrangian m
tiplier e53/(4p) for a continuous chain (l 50). Similarly,
the derivative with respect tol1 can be performed. The con
straint ~1! now yields

3

2
1

l 2t

2
m11bl1K ]U

]l1
L 5l1l 2, ~B6!

i.e., only one term with am appears. This equation is equiva
lent to

3

2
1

l 2~ t21!

2
m12

b

2 K ]U

]R1
R1L 5S l12

m1

2 D l 2. ~B7!

With the definitionn05 lim(l12m1/2)l 2 and e53/4p this
equation yieldsn053/4 independent of the external potenti
and the persistence length in the continuum limit.
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