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We combine large-amplitude oscillatory shear (LAOS) and time-resolved small angle neutron

scattering (t-SANS) measurements on the dynamic response of a dispersion of surfactant worm-like

micelles. By viewing the response as being the result of a sequence of physical processes, we observe new

features of the system response. We identify three distinct frequency regimes including a high frequency

Maxwell-like, a yielding, and a settled flow regime. For each regime we identify the molecular origins,

on a Kuhn segment scale, of the stress response. We show the ability of the material to ‘over-orient’

pre-yielding, compared with stationary flow. Finally, we present a stress–orientation rule which is

rate-based at low frequencies and strain-based at high frequencies.
1. Introduction

Flow instabilities have been the focus of fundamental and

applied research because of the ease with which complexity can

be induced and studied, and the implications that such instabil-

ities have on industrial processing.1 At low Reynolds numbers,

flow instabilities are related to the shear-thinning and thickening

behavior of the fluid.2,3 Surfactant worm-like micellar (WLM)

solutions are a particularly interesting class of material that show

such behavior and cetylpyridinium chloride–sodium salicylate

(CPyCl–NaSal) is a well-studied example.4 WLM solutions are

often referred to as ‘living’ systems because they display a

combination of reptation dynamics of polymeric systems, and

scission and recombination.5 Flow instabilities in CPyCl–NaSal

solutions are manifested in the formation of shear bands with

low ordering and shear rate coexisting with shear bands with

high ordering and shear rate layered in the gradient direction.6–9

These ‘gradient bands’ can then evolve into structure formation

in the vorticity direction.10–12

Though there is a detailed level of understanding concerning

the mechanism and kinetics of SB formation,2–4,13 there is a

corresponding lack of knowledge of the molecular state of the

material prior to this. The amount of deformation the material

can withstand and the degree of alignment it exhibits before and

after the onset of flow instabilities are unclear. In this work we

seek to investigate these states by monitoring the transient

macro- and micro-structural responses of a 6% CPyCl–NaSal

dispersion to deformation rates under which stable flow cannot

be sustained.
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In the case of WLMs information regarding the macro–

microscopic link is contained in the stress–orientation relation-

ship. This general relationship describes a functional dependence

of one parameter on the other. These two are often obtained via

an intermediary parameter, x, whereby derivatives of the orien-

tation and stress tensors with respect to x are combined into a

single relationship which is independent of x. Many forms of

stress–orientation relationships have been identified under steady

shear conditions, where shear rate plays the role of the

intermediary.14–16

To elucidate the stress–orientation relationship before and

after the onset of flow instabilities, an experimental method is

required that probes the orientation in the sample on the relevant

time scales: the equilibrium relaxation which accounts for the

combination of reptation and scission dynamics and the time-

scale of shear band formation7,17–20 and migration.21

There are various examples where orientation of a sheared

sample is determined. In the steady-state, steady-shear limit,

where instabilities have sufficient time to form, orientation has

been measured by in situ Small Angle Neutron Scattering

(SANS),22–27 NMR,8,28,29 and birefringence.27,30,31 These experi-

ments supplied not only information about the degree by which

Kuhn segments are ordered, but also provided evidence for the

existence of shear bands. A qualitative correspondence between

the orientational ordering of Kuhn segments and macroscopic

rheological stress has been found under steady-shear conditions

by linking rheo-SANS measurements to the Giesekus model.24

Most of these experimental methods lack the time-resolution

required to access the desired information. As of publication, the

only technique with sufficient time resolution to follow the

ordering for such fast kinetics is measurement of birefringence,

which has been employed to follow the kinetics of SB formation,

using transient steady-shear step-rate methodologies.7,17–19,32
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We present here large-amplitude oscillatory shear (LAOS)

rheological measurements, performed in parallel with time-

resolved small angle neutron scattering (t-SANS)33,34 on a 6 wt%

CPyCl–NaSal micellar dispersion. With this approach, we

simultaneously access the evolution of the Kuhn segment align-

ment and the macroscopic stress under oscillatory shear.35 We

choose t-SANS as an experimental technique because with SANS

we can very specifically select the length scale at which the

orientational ordering is probed. The length scale selected is that

of the Kuhn segments. A stroboscopic collection of neutrons is

employed to obtain the time-resolution needed to observe the

transient phenomena. Using LAOS, we probe material states

that are inaccessible to steady-shear step-rate methodolo-

gies7,17–20 that have been used in the past to study transience. By

altering the frequency at which strain is applied, we change the

time taken to reach the maximum shear rate. These experiments

should thus be thought of as sweeping up and down the flow

curve at various speeds, passing through low shear-rate stable

flow conditions every half-period. In this way we control the

viscoelastic states that we probe, which range from well-studied

flowing banded states6,7,17,18,20 at low frequencies and high shear

rates, to previously inaccessible highly aligned elastic states at

intermediate and high frequencies.

When analyzing the orientation and stress responses to LAOS,

we do not limit ourselves to linear-algebraic analysis tech-

niques,36,37 but instead recognize that the response of the system

can represent a sequence of physical processes.38 By doing so, we

are able to define time windows within which clear relationships

between the stress and orientational responses can be identified.

The layout of this paper is as follows: we first explain the

methodology used to analyze and interpret the data. Next, in the

Experimental section, we show how t-SANS is used to obtain

time-resolved information on the orientation of the Kuhn

segments of the WLMs. We then present the results from

experiments carried out under low shear rate amplitudes where

responses are predominantly linear. The next section presents

results from large (strain and shear rate) amplitude oscillations,

and it is divided into three parts. We first discuss low frequency

results where SBs have sufficient time to form, and compare our

results with earlier steady-shear findings. Then we present results

of the high frequency regime, where the responses are predomi-

nantly Maxwellian, with the exception of the observation of

strain softening. We conclude the presentation of our results with

an intermediate frequency regime in which yielding behavior in a

shear banded state is observed. From the combination of these

sections we deduce the microstructural information we set out to

determine.

We summarize our findings in two parts showing the different

regimes of responses we have identified in a Pipkin diagram and

concatenating the stress–optical relationships obtained from each

(bounded) frequency regime to form a general relationship that

spans the entire three decade frequency window investigated.
2. Methodology: data analysis

We define the global equilibrium relaxation time l as being the

inverse of the frequency where G0 ¼ G0 0 in linear regime oscilla-

tory shear tests. Under steady-shear conditions, a plateau is

observed in the flow-curve at shear rates in excess of 1/l.4,6–8 l
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therefore sets the natural timescale for shear rate and angular

frequency. The Weissenberg number (amplitude), Wi0 ¼ l _g0, is

the normalized shear rate (amplitude) and the Deborah number,

De ¼ lu, is the normalized angular frequency. The response of

the WLMs is probed by selecting rate amplitudes, Wi0, of the

oscillations well above (Wi0 [ 1) and below (Wi0 < 1) the onset

shear rate of the stress plateau. For a fixed value of Wi0 strain is

applied at frequencies that range fromDe[ 1, where the system

displays an elastic response, to frequencies whose period is much

longer than the time needed for shear band formation. Previous

experiments7,17,18,20 show that at high shear rates, this time is on

the order of a few seconds. The period of the lowest frequency

applied in this study is approximately two orders of magnitude

longer. This experimental protocol therefore provides coverage

of the Pipkin space spanned by Wi0 and De.

Because of the difficulties associated with interpretation of

high-order harmonics of both Fourier and Chebyshev anal-

yses37,39 as recently discussed,36 we adopt a similar analysis

methods to that used by Rogers et al.38 We choose to record

shape-specific quantities based on the strain acquired since the

previous reversal as well as the instantaneous rate at which

specific events occur in oscillatory experiments. One specific

event that is well defined is the point of maximum stress, or the

point of maximum ordering. Unlike G0 and G0 0, these points are
well defined for all response shapes and lend themselves to

physical interpretation easily. To provide some insight into how

this can be used to determine viscoelastic properties, we deter-

mine here the position of the stress maximum in the linear

viscoelastic Maxwell model. The stress response, s(t), of the

Maxwell model to oscillatory shearing of strain amplitude g0 ¼
Wi0/De and angular frequency u ¼ De/l is s(t) ¼ Wi0/De

[G0sin(tDe/l) + G00cos(tDe/l)], where G0 ¼ G0
De2

1þDe2
is the

storage modulus and G00 ¼ G0
De

1þDe2
is the loss modulus. G0 is

the elastic plateau modulus and l is the relaxation time. The

maximum stress response of the Maxwell model is achieved

when t ¼ l tan�1ðDeÞ
De

so that the amount of strain acquired

since the previous reversal at the stress maximum is equal to

gacquired@smax ¼ Wi0/De + Wi0/De sin(tan�1(De)). The instan-

taneous shear rate at the point of maximum stress is therefore

equal to _g@smax¼ _g0 cos(tan
�1De). TheMaxwell model behaves

liquid-like at frequencies much smaller than the inverse of the

relaxation time, i.e. when De � 1. In this limit, the stress

maximum occurs when strain equal to g0 has been acquired since

the previous reversal and the instantaneous shear rate is _g0.

When De [ 1, an elastic response is elicited from the Maxwell

model. This is reflected by the stress maximum occurring after a

strain of 2g0 has been acquired since the previous reversal, which

occurs when the shear rate is instantaneously zero. In the inter-

mediate frequency regime, where Dez 1, a viscoelastic response

is elicited. When the imposed angular frequency is equal to the

inverse of the relaxation time, i.e. when De ¼ 1 the stress

maximum occurs when a strain of g0 1þ 1ffiffiffi
2

p
� �

has been

acquired since the previous reversal, which occurs at an instan-

taneous shear rate of
_g0ffiffiffi
2

p . For a general linear viscoelastic
This journal is ª The Royal Society of Chemistry 2012



Fig. 2 Angle-averaged SANS curve of the quiescent 6% CPyCl. The full

line indicates the q-range where a q�1 dependence is found, typical for

Kuhn-segments. The dashed lines mark the q-range from which our data

are collected.
material, it is expected that the stress maximum will always occur

when an amount of strain between g0 and 2g0 has been acquired

since the previous reversal. It is equivalent to say that the stress

maximum of a general linear viscoelastic material always occurs

in the first quadrant of an elastic Lissajous figure. See for

example Fig. 1.

3. Methodology: experimental

The t-SANS and stress data were acquired simultaneously by

mounting an Anton Paar MCR 501 rheometer, used in the

strain-controlled mode with a quartz Couette geometry, in the

SANS-1 neutron beam at the SINQ spallation source at the Paul

Scherrer Institute (PSI) in Villigen, Switzerland. The CPyCl–

NaSal micellar solution of 6 wt% in 0.5 MNaCl brine in D2O (all

materials from Sigma-Aldrich) was prepared one week prior to

loading. We display in Fig. 2 the angle-averaged scatter curve of

the sample. All measurements were performed at 28.5 �C.

We use the scalar order parameter hP2i ¼
Ðp
0

f ðqÞP2ðqÞsinðqÞdq
as a measure of the degree of orientation of the Kuhn segments,

where q is defined as the angle between the Kuhn segments and

the flow direction in the flow-vorticity plane.23 In this relation-

ship, f(q) is the projection of the normalized orientation distri-

bution function into the flow-vorticity (1�3) plane, and q is the

angle between the Kuhn segment and the flow direction in this

plane. The region where I(q) � q�1 is, however, at quite high

q-values. In order to find a compromise between intensity and

probing the length scale of the Kuhn segments, we scanned the

scalar order parameter over a range of q-values under stationary

flow conditions using a detector distance of 6 m and thermal

neutrons of wavelength 1.3 � 0.1 nm. A small increase of hP2i
with increasing q was observed, which saturated around the

q-range indicated with the solid lines in Fig. 2. This is the q-range

used in all our analysis.

A stroboscopic SANS data acquisition scheme was employed,

with an electronic trigger supplied by the rheometer to initiate the

collection of data from the scattered neutrons. This technique

produces up to n ¼ 400 SANS patterns of time resolution Dt ¼
(2p)/(nu) � 1, where u/2p is the frequency of the applied exci-

tation field. The trigger signals were sent at the point of

maximum shear rate/zero global strain. Data were acquired over

an interval on the order of one hour per experiment. We
Fig. 1 Elastic Lissajous–Bowditch representations (stress plotted

against strain) of three ideal linear material responses. The stress

maximum, as denoted by the stars, is achieved at the point where the

material has acquired g0 strain since the previous reversal in an ideal

viscous material (left). For an ideal elastic solid (right), the point of

greatest stress occurs at 2g0 after the previous strain reversal. A general

linear viscoelastic response (center) has the stress maximum somewhere

intermediate to these limits.

This journal is ª The Royal Society of Chemistry 2012
therefore investigate the steady-state oscillatory response. For

each time step Dt we measure a scatter pattern from which we

derive the hP2i response to the applied forces. Examples of two

scattering patterns are presented in Fig. 3.

Strain amplitudes between g z 0.5 and 770 strain units, and

frequencies between uz 0.024 and 35 rad s�1, which translate to

Deborah numbers between 0.0073 and 10, were applied. While

the Anton Paar MCR 501 is inherently a stress-controlled

rheometer operating in strain-controlled mode, the rheological

measurements presented here have been replicated to within

experimental uncertainties using a strain-controlled ARES G2

rheometer.
4. Results: low shear-rate amplitude regime

The results presented in this paper, as in the theoretical work of

Zhou and co-workers,40 are naturally classified as falling into one
Fig. 3 The azimuthal intensity profile (a) for the two scattering patterns

of the flow–velocity plane taken at a strain of g¼�4.0 (b) and g¼ 2.7 (c)

taken during an oscillation with a frequency of 0.5 Hz (Dez 0.95) and a

shear rate amplitude of 18.8 s�1 (Wi0 ¼ 5.7).
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of two shear rate regimes, determined by whether the Weissen-

berg number amplitude is less than or greater than unity. The

responses to oscillations classified by Wi0 > 1 will be the main

focus of this work and will be investigated in subsequent sections.

In this initial section we briefly investigate the case where the

Weissenberg number amplitude is less than or on the order of

one. In the steady-shear limit under these conditions, the flow

curve is linear and proportional to G0. Under oscillatory shear,

when Wi0 # 1, linear viscoelastic responses are elicited. This is

exhibited in our analysis scheme by the amount of strain acquired

since the previous reversal falling between the expected g0 and

2g0 limits, and matching, nearly perfectly, the expectations of the

linear viscoelastic Maxwell model, as indicated in Fig. 4.

In the next section, we present the results of investigations of

oscillatory responses characterized by Weissenberg number

amplitudes greater than one. We show that in this high shear rate

regime responses can be classified as belonging to one of three

distinct regimes according to the amount of strain acquired at the

point of maximum stress since the previous reversal.
Fig. 5 The amount of strain acquired at the point of maximum stress
5. Results: high shear-rate amplitude regime

In contrast to the response at low Weissenberg number ampli-

tudes, high shear rate amplitude oscillations can elicit nonlinear

material responses. We show in Fig. 5 the response of the system

to Weissenberg number amplitudes much greater than one. It is

obvious that at high frequencies, where De $ 1, linear responses

are obtained, as in the lowWi0 case. However, as the frequency is

lowered below De ¼ 1 (equally, as the strain amplitude is

increased beyond Wi0/De), the strain acquired since the previous
Fig. 4 The amount of strain acquired since the previous reversal at

maximum stress as a function of the Deborah number for three Weis-

senberg number amplitudes, as indicated. In all three cases, the amount of

strain acquired falls within the g0 and 2g0 limits expected for a linear

viscoelastic material response. The blue dashed lines indicate the expec-

tation values of the linear Maxwell model.

since the previous reversal as a function of the Deborah number for

Weissenberg number amplitudes greater than 1, as indicated. At Deborah

numbers De $ 1, in all cases, the amount of strain acquired falls within

the g0 and 2g0 limits expected for a linear viscoelastic material response.

At frequencies belowDe¼ 1, nonlinear responses are elicited as indicated

by the experimental data falling outside the linear limits. At the very

lowest frequencies, the stress maxima occur at points of constant shear

rate, as indicated. The blue dashed lines indicate the expectation values of

the linear Maxwell model. Symbols and lines are as in Fig. 4.

Soft Matter
reversal at the stress maximum increasingly falls outside the

linear viscoelastic limits, as indicated by the solid lines in Fig. 5.

In the low-frequency limit, the maximum stress occurs at a point

of constant shear rate, as indicated by the dashed angled lines in

Fig. 5. As the shear rate amplitude is increased beyondWi0¼ 1.5,

the instantaneous rate at which the stress maximum occurs in the

low-De limit increases towards Wi z 3. Increasing the rate

amplitude beyondWi0 z 3.79, the response to which is indicated

in Fig. 5(c), does not change this critical shear rate.

In the transition zone between the high- and low-frequency

limits, the strain acquired at maximum stress occurs at a nearly

constant value of strain since the previous reversal. This region

starts at a Deborah number of one. We interpret the nearly

constant amount of strain acquired in this transition regime as

indicated by yielding dynamics. As a consequence, we refer to

this regime as the ‘yielding regime’ and refer to the ‘yield strain’

as being the amount of strain acquired at the point of maximum

stress at a Deborah number of one.
This journal is ª The Royal Society of Chemistry 2012



In the following subsections, we will separately present and

discuss the full stress and ordering responses to the three

frequency regions identified above. We focus on the responses to

aWeissenberg number amplitude of 5.70, an overview of which is

contained in Fig. 5(d), as this dataset contains all the salient

features. Where necessary, we will compare these results with

those obtained at other Weissenberg number amplitudes. A

particular contrast will be shown with the linear results from

oscillations characterized by Wi0 ¼ 0.48, an overview of which is

displayed in Fig. 4(a). The low (De � 1) and high-frequency

(De > 1) responses are presented and discussed first, before the

intermediate ‘yielding regime’ responses (De( 1) are interpreted

in terms of interpolating between these two limits.

In each respective regime we identify linear stress–orientation

relationships, where the role of intermediary parameter is played

by shear rate in the low frequency regime and strain in the

intermediate and high frequency regimes. The linear stress–

orientation relationships observed are only exhibited during time

intervals shorter than a period. At high frequencies, where the

strain amplitude of the excitation field is small, the Maxwell-like

stress curves are decomposed to determine an elastic modulus,

while the order parameter is linear with strain only above a

threshold value.
Fig. 6 Orientational order parameter (a) and stress (b) as functions of

Weissenberg number (normalized shear rate) for steady-shear and oscil-

latory tests of Wi0 z 5.7 (black symbols) and 0.5 (red symbols) at a

normalized frequency De¼ 0.0075. Arrows indicate the orbital direction.

Insets display close-ups of low-rate branches of stress (c) and order

parameter (d). The resulting stress–orientation relationship forWi0z 5.7

(e) and steady-shear (f). The solid line in (e) indicates the region of linear

dependence, while in (f) the line is a fit of the form hP2i f s2 + C(De).
5.1. Low frequency regime

It is expected that if the excitation frequency is low enough (De

� 1), the oscillatory response will be equivalent to that of the

steady state. We show in Fig. 6 the steady-shear steady state

responses (solid lines) and the dynamic responses (symbols) from

the lowest measured frequency (De ¼ 0.0075) for two different

Weissenberg number amplitudes.

Under steady-shear conditions for values of Wi ( 1, the

ordering changes exponentially with shear rate, as indicated by

the dashed line in Fig. 6(a). This exponential dependence on rate

could reflect a reorientation of the Kuhn segments towards the

flow direction or, alternatively, a purely exponential increase in

ordering, or a combination of both. Because our t-SANS

detection scheme is insensitive to changes of orientation of the

Kuhn segments in the flow-gradient (1�2) plane, we cannot make

this distinction and alternative geometries need to be used.24 The

resulting stress–orientation relationship, which is obtained by

combining shear-rate-dependent stress and orientation curves,

displays in the range Wi ( 1, a functional dependence that can

be described by a quadratic dependence, as was predicted from

the Giesekus model,24 see Fig. 6(f). However, for the quadratic

dependence to describe the data well, a non-zero scalar termmust

be included, which we expect to be a function of the Deborah

number which vanishes at De ¼ 0. It should also be noted that

the quadratic dependence observed previously24 also included a

term that accounted for the orientation of the Kuhn segment

director, which is inaccessible in our setup.

At large shear rate amplitudes and low frequencies, where De

� 1, the material response is characterized by oscillations of the

orientation of the Kuhn segments and the macroscopic stress

about the steady-shear values as the instantaneous applied rate is

increased beyond _gl (upper arrows in Fig. 6(a) and (b), respec-

tively). The first local maximum is found at an instantaneous

shear rate of approximately Wi ¼ 3. This value is independent of
This journal is ª The Royal Society of Chemistry 2012
frequency, provided that the mechanical perturbation is applied

at a frequency below some critical value Dec. We therefore

interpret this stress/ordering feature as being the maximum of the

unstable underlying flow curve. It is expected that this maximum

will disappear in the limit De / 0, although we have not

experimentally accessed this lower limit which is indistinguish-

able from steady-shear.

When the instantaneous shear rate is decreasing, but still larger

than the onset of the stress plateau, both the ordering of the

Kuhn segments hP2i and the macroscopic stress s change linearly

with the shear rate. Hence, in this frequency regime, a linear

stress–orientation relationship can be defined based on the ratios

of rate dependencies of the orientation order parameter and

macroscopic stress, see Fig. 6(e).

5.2. High frequency regime

In the high frequency case, where De > 1, the stress can be well

described by a Maxwellian sinusoid (see for instance Fig. 4 or 5),

indicating a linear viscoelastic rheological response. The

response to the mechanical excitation in this high-frequency

regime is therefore not considered as LAOS, and linear algebraic

analysis can be adopted. Despite the sinusoidal stress response,
Soft Matter



as exhibited in Fig. 7(b), the ordering of the Kuhn segments

changes linearly with strain during an interval of the oscillation,

as can be seen in the data of Fig. 7(a) where only the positive

shear rate portion of the order parameter orbit (that is, the

portion that is traced from �g0 / g0) is displayed to avoid

confusion. The linear dependence on strain is observed only

above a lower limit of the order parameter. The threshold value is

approximately equal to the steady-shear value at the lower

boundary of the plateau, and therefore the ordering of the Kuhn

segments in the low shear-rate band. The linear dependence on

strain suggests that the director of the Kuhn segments has

aligned with the flow direction and that subsequent application

of strain simply acts to narrow the distribution. Further, the

change in order parameter with strain is independent of

frequency when De > 1, as evidenced by the coincidence of

the oscillatory hP2i data with the parallel lines displayed in

Fig. 7(a). We therefore conclude that the Kuhn segments change

their orientation with strain at a constant rate in the high

frequency regime.

In order to obtain a meaningful stress–orientation relationship

in this frequency regime, we divide the strain dependence of

hP2i by the storage modulus calculated directly from the stress

orbit by

G0 ¼ G0cos(d) ¼ (s0/g0)cos[sin
�1(gs¼0/g0)]

where s0 and g0 are the stress and strain amplitudes, and gs¼0 is

the strain at which the instantaneous stress is zero (see Fig. 7(b)).

The storage modulus increases with frequency, as is observable

by the steepening of the angle between the abscissa and the major

axis of the elliptical stress orbits displayed in Fig. 7(b). This can

be partially related to the linear-regime tendency of the storage

modulus to increase with frequency towards the plateau

modulus.

In the limit of linear viscoelasticity, G0 can be visualized as the

slope of the decomposed s0 parameter,41 which is shown in

Fig. 7(b) for the case where De z 3.81. The so-called ‘elastic
Fig. 7 Order parameter (a) and stress (b) for Wi0 ¼ 5.7 and De > 1.

Lines in (a) emphasize portions of order parameter orbits that change

linearly with strain. The stress and strain parameters in (b) are used to

calculate the storage modulus, G0 (see text). The solid line is the so-called

‘elastic stress’41 for the shear stress response to oscillations at Dez 3.81.

Soft Matter
stress’ is the vertical midpoint of the elastic Lissajous figure,

examples of which are displayed in Fig. 7(b).

Further, we observe a decrease in G0 with increasing strain

amplitude – we directly measure the strain-softening of the

material prior to yielding. The strain-softening of the system,

marked by an elastic modulus G0 that decreases with increasing

strain amplitude (decreasing frequency), is apparent from the

data shown in Fig. 8(a). This behavior can be directly observed as

a decrease in the slope with increasing strain amplitude of the

major axis of the stress Lissajous figures in Fig. 7(b).

The time fitting parameter of the Maxwell model, l, remains

approximately constant at 0.2 s as shown in Fig. 8(a). At very

high frequencies, the period of oscillation sets an upper limit on

l, as shown by the dotted line in Fig. 8(b). The changing modulus

is not reflected in the rate at which the ordering of the system

increases with strain.

The strain softening cannot be interpreted as a shear induced

decrease of either the scission time or the reptation time, given

that l does not change. Alternatively, these observations hint at

the existence of a different relaxation mechanism, where

branching of the micellar system plays an important role.42 It is

known that similar systems to that studied here are significantly

branched.43,44 In branched systems, shear flow has the effect of

enforcing reorganization of branch points, which does not

change relaxation times but does lead to a decrease in the

modulus.
5.3. Intermediate frequency regime

We have examined the behavior of the WLM solution when

subjected to a constant shear rate amplitude and observed at low

frequencies material responses that approximate those of steady-

shear tests. When subjected to high frequency oscillations, the

stress response approximates that of the linear viscoelastic

Maxwell model because of the combination of small strain

amplitudes and high frequencies. The final results presented in

this paper concern the case where large mechanical deformations

are applied at intermediate frequencies, allowing us to address
Fig. 8 The responses to all high frequency responses are well described

by a single-modeMaxwell model. The fitting parameters,G0 (a) and l (b),

for a range ofWeissenberg number amplitudes andDeborah numbers are

shown. The dotted angled line in (b) represents the period of oscillation,

which sets an upper limit on the time fitting parameter.

This journal is ª The Royal Society of Chemistry 2012



the issue of what state the system is in before it fluidizes, as we

know it must from the discussion of the low frequency regime

(Fig. 6). In Fig. 9 typical responses to a Weissenberg number

amplitude of Wi0 ¼ 5.7, and normalized frequencies De ¼ 0.5 to

1 are shown. As before, only the positive rate portion (from �g0
/ g0) of the hP2i data are shown for clarity. The stress orbits

(Fig. 9(b)) are clearly not elliptical, indicating that nonlinear

responses are elicited from the system in this frequency/shear rate

regime. While the specific shapes of the orbits may differ, there is

one important similarity between all stress responses in this

regime: the same maximum (yield) values of the stress and the

degree of ordering are achieved at the point where approximately

ten strain units since the previous flow reversal have been

acquired. This amount of strain is indicated in Fig. 9(b) for one

of the response orbits. The fact that we can, and do, observe

macro- and microscopic properties at the moment the material

yields is a major advantage of our methodology. The critical

strain often corresponds approximately with the acquired strain

when velocimetry measurements indicate the onset of shear

banding in steady-shear step-rate tests.7,17,18,20

Immediately prior to the point of maximum stress, the system

responds nearly purely elastically as evidenced by the linearity of
Fig. 9 Order parameter (a) and stress (b) for Wi0 ¼ 5.7 and Dez 0.5 to

1. Lines emphasize portions of both order parameter and stress orbits

that change linearly with strain. (c) The resulting stress–orientation

relationship, where the solid lines indicate the portions where the rela-

tionships are linear.
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the stress response with strain (lines in Fig. 9(b)). We define

another strain-based stress-orientation rule, see Fig. 9(c), since

hP2i is also linear in strain in the same strain/time window (lines

in Fig. 9(a)). Following these (local and global) maxima, which

we interpret as reflecting static yielding, the response becomes

fluid-like (data now shown). Interestingly, hP2i does not exceed
the value of 0.16, which is, as can be seen from the data of

Fig. 6(a), about a factor of two greater than the ordering at the

corresponding Weissenberg number (amplitude) under steady-

shear, where the material is completely fluidized. The value of

hP2i ¼ 0.16 is also more than a factor of four greater than the

ordering in the low-rate band. We equate this value of hP2i ¼
0.16 with the degree of ordering of the Kuhn segments at the

point of static yielding, the point that the system starts to fluidize

and form shear bands. The system can therefore be said to be

‘over-oriented’ at the point of yielding, compared with the

steady-sheared fluid state. Prior to yielding, the material does not

behave as a fluid, and therefore does not display long time

transients.10–12 The persistence of the higher-ordered state (De ¼
0.48 and 0.71 in Fig. 9(a)) is interpreted as reflecting a transition

in the structure of the material, from an ordered entangled state

(with stress increasing) to an ordered disentangled state (with

stress relaxing). Such a transition can be easily envisioned for

branched systems, since it merely requires a reorganization and

eventual vanishing of branch points.42

6. Discussion

6.1. In situ Pipkin diagram

We summarize the findings of this investigation by way of a

Pipkin diagram, displayed in Fig. 10(a). Open symbols represent

the upper and lower boundaries of the intermediate ‘yielding’

regime (Section 5.3). At frequencies higher than the upper

boundary of this region (Section 5.2), responses are accurately

described by the Maxwell model with the inclusion of softening

(lower moduli recorded at larger strain amplitudes/lower

frequencies). At frequencies lower than the lower boundary of

the ‘yielding’ regime indicated by the open stars in Fig. 10(a), the

stress maximum occurs at the point where an instantaneous shear

rate corresponding to Wic ¼ 3.03 is applied. This apparent crit-

ical shear rate is a constant for all Weissenberg number ampli-

tudes larger than 3.03 (see Fig. 5). At applied shear rate

amplitudes lower than this value, the critical Weissenberg

number is less than 3.03. We indicate this tendency in Fig. 10(a)

with decreasing symbol sizes as the Weissenberg number ampli-

tude is lowered below 3.03. For comparison, we display the

predicted lower boundary of the shear banding regime of the

VCM model as calculated by Zhou and co-workers.40 While our

analysis is unable to unambiguously determine shear banding,

our geometrical approach suggests some refinements be made to

the conclusions drawn previously.

6.2. Stress–orientation relationship

One of the main goals of this paper has been to present a rela-

tionship between the stress and structural response of WLMs to

deformation rates that render the system unstable in the long-

time limit. In order to elucidate these responses, a focus has been

placed on a Weissenberg number amplitude of 5.70, which is
Soft Matter



Fig. 10 (a) Pipkin diagram summarizing the findings of this investiga-

tion. (b) Stress–orientation relationship for a Weissenberg number

amplitude of 5.7. Open stars in (a) mark the upper and lower boundaries

of the intermediate yielding regime. The lower boundary marks the point

where the yield strain coincides with a critical instantaneous shear rate.

Large stars indicate Wic ¼ 3.03 while smaller stars indicate Wic ¼ 2.58

and the smallest stars Wic ¼ 2.27. The filled circles and dotted line that

runs through them are the lower boundary of the shear banding regime of

the VCM model as calculated by Zhou and co-workers.40 The arrows in

(a) indicate the Weissenberg number amplitude of the stress–orientation

rule displayed in (b). Symbols in (b) indicate data obtained from each of

the three different frequency regimes.
sufficient to place the response of the material in the non-linear

regime. Under such oscillatory shear rate conditions, and at all

applied frequencies, we have identified time windows where both

stress and the enforced ordering, hP2i, display a simple linear

dependence on either strain (intermediate and high frequency) or

shear-rate (low frequency). Under low frequency excitations

there is an extended window where both hP2i and stress depend

linearly on the instantaneous shear rate, when the shear rate is

decreasing from the maximum value, Wi0 ¼ 5.70, down to the

shear rate that marks the lower limit of the stress plateau (see

Fig. 6). From the overlap of the macroscopic stress and micro-

scopic ordering data with the stationary data we conclude that

the system is close to its steady state response. It is known that in

the steady state gradient bands are formed, where the relative

sizes of the low and high shear rate bands follow the lever rule.6

In our scattering geometry, where intensity is convoluted over

the gap of the Couette cell, the lever rule directly results in a

linear dependence of the orientational order on the applied shear

rate. This dependence has also been observed by Berret and

coworkers for a similar system.23 Further, the stress displays a
Soft Matter
linear dependence on shear rate, which is due to the stress

gradient that is intrinsically present in a Couette geometry.

By concatenating data obtained from the low-frequency shear

rate dependence, and the intermediate and high frequency strain

dependence, we obtain a stress–orientational rule, displayed in

Fig. 10(b), that covers all experimental frequencies and is inde-

pendent of the intermediary parameters. Interestingly, we note

that this general stress–orientational rule is well described by a

dependence on the inverse square of the frequency. While we

know of no theoretical explanation for this dependence, we make

a further note that in the high frequency case, where De $ 1, the

Maxwellian modulus term for the same Weissenberg number

amplitude is well described by (see Fig. 8) a dependence on the

frequency to the power of one quarter. We know of no reason

why these parameters should be linked and suspect serendipitous

values.

7. Summary and conclusions

We have employed a novel and robust methodology to link

microstructural changes to macroscopic rheological responses in

dynamic environments. While the specific results pertain directly

toWLMs, we believe the methodology to be of great utility to the

soft matter community in general.

In the intermediate frequency regime we have shown that prior

to yielding the Kuhn segments of the WLMs ‘over-align’ when

compared with the fluid state at the same Weissenberg number

(amplitude). Further, we have shown that this ‘over-alignment’ is

nearly independent of frequency. The fact that we can, and do,

observe macro- and microscopic properties at the moment the

material yields is a major advantage of our methodology. The

critical/yield strain of ten corresponds approximately with

the acquired strain when velocimetry measurements indicate

the onset of shear banding using steady-shear step-rate tests.

Interestingly, the enforced ordering of the system, hP2i, does
not exceed the value of 0.16 when subjected to a Weissenberg

number amplitude of �5.7. This value, as can be seen from the

data of Fig. 6(a), is approximately a factor of two greater than

the ordering at the corresponding Weissenberg number (ampli-

tude) under steady-shear, where the material is completely

fluidized. The value of hP2i ¼ 0.16 is also more than a factor of

four greater than the ordering in the low-rate band. We equate

the value of hP2h ¼ 0.16 with the degree of ordering of the Kuhn

segments at the point of static yielding, the point that the system

starts to fluidize and form shear bands. The system can therefore

be said to be ‘over-oriented’ at the point of yielding, compared

with the steady-sheared fluid state.
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