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Synthesis of heteroepitaxial germanium tin (GeSn) alloys using excimer laser processing of a thin

4 nm Sn layer on Ge has been demonstrated and studied. Laser induced rapid heating, subsequent

melting, and re-solidification processes at extremely high cooling rates have been experimentally

achieved and also simulated numerically to optimize the processing parameters. “In situ” measured

sample reflectivity with nanosecond time resolution was used as feedback for the simulations and

directly correlated to alloy composition. Detailed characterization of the GeSn alloys after the

optimization of the processing conditions indicated substitutional Sn concentration of up to 1% in

the Ge matrix. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692175]

Recent research on group IV direct band gap alloys for

silicon-based infrared photonics and optoelectronics

undoubtedly affirmed the germanium tin (GeSn) alloy as a

valuable candidate for the convergence of Si based micro-

electronics and photonics.1,2 Due to the extreme low solubil-

ity of Sn in Ge (<1%),3 great efforts were directed to

optimize the growth of such alloys with conventional techni-

ques like chemical vapor deposition (CVD) and molecular

beam epitaxy (MBE) by tuning the deposition parameters for

a non-equilibrium epitaxial growth.4–8 In the past, also alter-

native techniques involving laser annealing9–11 were pro-

posed but not further developed.

In this work, we present the pulsed laser induced epitaxy

(PLIE) as an alternative to CVD and MBE growth methods

for synthesizing heteroepitaxial GeSn alloys on Si(001) sub-

strates with virtual germanium buffer layer (v-Ge). The aim

is to achieve epitaxial GeSn through fast non-equilibrium

solid-liquid-solid phase transitions in order to overcome the

extreme low solubility of Sn in Ge.3 Since the used ArF-

excimer laser features pulse duration with 20-25 ns full width

at half maximum (FWHM) and nanometer penetration depth,

it becomes a useful annealing source capable to deliver very

rapid melt/solidification cycles, if pulse energy density is

well adjusted. To achieve a uniformly irradiated zone at

200 mJ/cm2 pulse energy, a fly-eye beam homogenizer and a

manual attenuator have been used.

A 100-110 nm v-Ge layer on Si(001) was first grown as

a single step buffer (defect density > 1010/cm2) on Si(001) at

300 �C substrate temperature, followed by a 4 nm Sn layer,

deposited at 85 �C in the same MBE reactor.7 Time resolved

reflectivity (TRR) measurements using a HeNe (632.8 nm)

probe laser beam, positioned at about 45� to the sample nor-

mal, was employed to monitor the melt duration12 from the

solid/liquid/solid phase transitions reflectivity changes dur-

ing PLIE. The reflected beam was focused to a fast (<1 ns

rise time) photodiode connected to a digital oscilloscope.

This signal supplied additional information on the surface

roughness, which is directly correlated to the amount of scat-

tered and reflected light, and was compared to surface rough-

ness measurements obtained with a mechanical profiler

(Dektak3ST). The melting depth and duration were calcu-

lated using a finite element method (FEM) solution of the

heat conduction differential equation (HCDE).13 The direct

relation between experiment and theory was provided by the

liquid phase duration that was both calculated through FEM

and extracted from the TRR experimental data.

Figure 1 compares the temporal evolution of the sample

reflectivity, induced by the first 200 mJ/cm2 laser pulse, with

the maximum melting depth (MMD) and interface (Sn/v-Ge

and v-Ge/Si) temperature, as estimated by FEM.

The reflectivity change during the phase transition (Fig-

ure 1(c)) mainly originates from the melting and solidifica-

tion of the v-Ge substrate.14 The predicted onset of melting

at the Sn/Ge interface (Figures 1(a) and 1(b)) at about 16 ns

FIG. 1. (Color online) Temporal evolution of the (a) interface temperatures,

(b) depth of solid-liquid transition, and (c) reflectivity, caused by the first

laser pulse of 200 mJ/cm2.a)Electronic mail: schiussi@uvigo.es.
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after the laser pulse, is experimentally confirmed by TRR.

Similar reflectivity change behavior for laser energy close to

the Ge melting threshold was reported by Jellison et al.15

and Solis and Afonso.16 The increase of the final reflectivity

after the irradiation indicates the GeSn compound forma-

tion.10 However, the model used to calculate MMD and the

temperature profiles at the interfaces does not simulate diffu-

sion, thus static interfaces are assumed, to evaluate when the

melting point (MP) is reached.

The influence of the number of pulses, an important

PLIE processing parameter, can be extracted by monitoring

the TRR data (melting duration, relative reflectivity change)

and surface roughness measurements during multiple pulses

(up to 100 laser pulses at 1 Hz).

Melt duration increases with the number of pulses from

28 ns for 1 pulse to a maximum of 50 ns for 50 pulses and

then drops below 37 ns (Figure 2(a)). On the other hand, the

reflectivity and roughness as a function of the number of

pulses (Figure 2(b)) show that, after the tenth pulse, surface

reflectivity decreases almost linearly but roughness remains

constant. Therefore, the surface roughness does not contrib-

ute to the reflectivity change, indicating only an alloy com-

position change relation, with dependence of the number of

laser pulses. Assuming that best (homogenous) intermixing

is achieved at high number of pulses, characterization of the

sample irradiated with 100 pulses of 200 mJ/cm2 will be pre-

sented in the following.

To quantify the Sn content in the sample and evaluate the

GeSn film quality, Rutherford backscattering spectrometry

(RBS) (1.4 MeV Heþ ions at 170� backscattering angle) of

the untreated Sn/v-Ge/Si(001) structure and the GeSn alloy

obtained after laser treatment was performed (Figure 3). The

random spectrum of the untreated structure reveals a 100 nm

Ge layer and a Sn deposition with an areal density of

2.9� 1015 atoms/cm2. The corresponding channeling spec-

trum exhibits a minimum yield value of about 5% and a sig-

nificant peak at the low energy edge of the Ge signal, which

could be ascribed to the misfit dislocation network at the inter-

face due to the lattice mismatch of 4.2% between Ge and Si.

The Sn signal shows the same intensity both in random and

channeling mode indicating that the deposited Sn is either pol-

ycrystalline or amorphous. After laser treatment, the deposited

Sn is distributed within the Ge layer. In the upper 50 nm of

the v-Ge layer, a concentration of about 1 at. % Sn was deter-

mined that decrease almost linearly towards the interface. In

addition, oxidation of the Ge (and probably Sn) surface was

observed, indicated by the existence of an O surface peak and

a change in the shape of the Ge signal. The channeling spec-

trum of the laser treated sample shows that a substantial part

of the Sn atoms is on substitutional lattice sites. However, the

channeling yield of the Ge signal is rather high due to the for-

mation of an amorphous oxide on the surface.

To obtain a more precise evaluation of the layer struc-

ture as well as of the Sn concentration profiles, time of flight

secondary ion spectroscopy (TOF-SIMS) and transmission

electron microscopy (TEM) analysis of the laser treated sam-

ples have been performed. The TEM images (Figure 4(a))

confirm the RBS results, revealing a sample structure with a

thin oxide cap (about 2 nm) on top of a 40 nm GeSn layer

that does not show any Sn precipitates or clusters. The GeSn

alloy is epitaxial to the v-Ge (inset of Figure 4(a)) and sepa-

rated by a dot-like structured interface of light atomic weight

(probably voids). Moreover, it can be observed, that thread-

ing dislocations present in the v-Ge continue through the

GeSn alloy, suggesting similar dislocations density as for the

untreated sample. The interface between the v-Ge layer and

the Si substrate is well defined with no Si/Ge intermixing,

thus melting has not taken place at this interface. The TOF-

SIMS analysis of the Sn depth distribution (Figure 4(b)) indi-

cates that the Sn content is almost uniform in the first 35 nm,

although the Sn intensity slightly fluctuates and increases,

probably due to knock-on effects of Sn in the Ge matrix and

matrix changes between amorphous surface, crystalline

GeSn, and v-Ge. In the remaining v-Ge, Sn diffusion due to

FIG. 2. (Color online) Melt duration extracted from the TRR spectra (a) and

surface reflectivity and RMS roughness (b) of the sample surface for differ-

ent number of 200 mJ/cm2 pulses. All lines are guide for the eye.

FIG. 3. (Color online) Random (1) and [001] channeling (2) spectra of the

untreated structure in comparison to the random (3) and [001] channeling

(4) spectra of a sample treated with 100 pulses of 200 mJ/cm2. The inset

shows a magnification of the backscattering signal of Sn.
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residual temperature gradient after each of the 100 laser

pulses is observed.5,17 Slight increase of signal intensity at

the v-Ge/Si interfaces can also be attributed to matrix effects

caused by changing crystal lattice.

Finally, Raman analysis using a 632.8 nm excitation

source in backscattering configuration has been performed to

confirm the composition and crystalline structure of the

alloy11–13 by analyzing the frequency shift, given by compo-

sition and strain variation.18 The vibrational modes of fully

strained and relaxed GeSn alloys19,20 show a decreasing Ge-

Ge phonon frequency and an increasing peak asymmetry

with increasing Sn concentration. Figure 5 shows the Raman

spectra of the as-deposited (black dotted line) and the laser

treated (red continuous line) Sn/v-Ge structures. The typical

peak position of the Ge-Ge mode at 301 cm�1 shifts to

299.5 cm�1 after PLIE, indicating compressive strain build-

up in the layer.19 Moreover, a vibrational mode around

263 cm�1, reported for excitation closer to the resonance fre-

quency of the E1/E1 þ D1 optical transitions,20 is clearly

observed for the laser treated structure, confirming substitu-

tional Sn from Ge-Sn bonds. The peak around 186 cm�1 is

assigned to the Sn-Sn vibration mode.

In conclusion, we have presented the synthesis of epitax-

ial GeSn alloy from a Sn/Ge layer system by pulse laser

induced epitaxy. TRR was used for “in situ” monitoring of

surface properties and composition changes during laser

treatment. The GeSn layer thickness may be adjusted by

varying the number of laser pulses. 40 nm thick layer of high

crystalline quality was obtained for 100 laser pulses. RBS,

TOF-SIMS, TEM and Raman analysis clearly demonstrate

the formation of homogenous GeSn alloys with up to 1%

substitutional Sn in the Ge matrix.
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FIG. 4. TEM image (a) taken in tilted geometry to better visualize threading

dislocations with a high resolution image of the sample surface (inset) and

(b) TOF-SIMS depth profile of the Sn content in the GeSn/v-Ge/Si(001)

structure.

FIG. 5. (Color online) Raman spectra of the Ge-Ge vibration mode from v-

Ge/Sn before and after laser treatment with magnified (�10) Ge-Sn and Sn-

Sn modes region.
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