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Part I - Theory

Michele Scaraggi,*ab Giuseppe Carbone,a Bo N. J. Perssonc and Daniele Dinib

Received 25th January 2011, Accepted 20th July 2011

DOI: 10.1039/c1sm05128h
We study the lubricated steady sliding contact between rough surfaces of (elastically) soft solids. A

novel mean field theory of mixed lubrication is presented, which takes into account the coupled effect of

asperity–asperity and asperity–fluid interactions. We calculate the fluid flow factors, and discuss the

nature of the transition from the boundary lubrication regime, where the normal load is supported by

the asperity–asperity interactions (sometimes mediated by boundary films), to the hydrodynamic

regime, where a thin fluid film prevents direct contact between the mating surfaces.
I. Introduction

The investigation of the role of roughness in contact mechanics

has attracted the attention of a large number of scientists in the

last two centuries.1–4 As a result, it is now well known that the

presence of roughness between contacting interfaces usually

results in an incomplete contact,5–7 the global or local charac-

teristics of which are of extreme importance in many practical

problems. Indeed, macroscopic contact properties such as fric-

tion, electrical (and thermal) contact resistance, wear and adhe-

sion are fundamentally related to the surface roughness

characteristics.8 In the last decade this concept has been widely

confirmed and replicated by bio-mimetics researchers, who have

experimentally observed that a correctly designed hierarchical

surface structuring allows one to efficiently obtain tailored

tribological/surface properties. The case of the geckos adhesive-

like surfaces research is an example of this. Indeed, geckos

(Gekko gecko) and many insects show an extraordinary climbing

ability on vertical surfaces and ceilings, and this biological

mechanism of attachment is ascribed to the synergy of roughness

hierarchy, fluid secretion (capillarity and viscosity effects) and

van der Waals interaction.9,10

Tailoring surface properties by surface micro (nano-) struc-

tures fabrication is actually state of art,11 and involves a wide

range of applications, from life science (e.g. cell adhesion/

proliferation, tissue engineering, tactile perception) to biology

(e.g. tailored adhesion, self cleaning) and engineering (e.g.

microfluidics, sealants, surface structuring for manufacturing

tools and bearings). However, despite the large amount of

research effort in the surface functionalization, the under-

standing of the fundamental phenomena occurring at the contact
aDIMeG, Politecnico di Bari, V.le Japigia 182, 70126 Bari, Italy
bDepartment of Mechanical Engineering, Imperial College London, South
Kensington Campus, Exhibition Road, SW7 2AZ London, UK
cIFF, FZ-J€ulich, 52425 J€ulich, Germany
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between interfaces is still far from being fully achieved.12 One of

the reasons for such a lack of knowledge is due to the very large

number of degrees of freedom introduced by the surface rough-

ness description in the contact problem formulation. Indeed, the

roughness of real (Nature- or man-made) surfaces can span

length scales from a few millimetres to atomic dimensions,

resulting in surface fluctuations occurring in a �6 orders wave-

lengths range. Then, it is not surprising that the first appearance

of theoretical investigations were on a statistical basis, and this

has been the case of the rough dry contact mechanics of elastic

bodies;6 in the soft matter field, actually a large amount of

fundamental theoretical research on rough dry contact

mechanics and bio-mimetics has been performed by Persson13

and co-workers.

In the case of the lubricated contact of rough bodies, which are

the focus of this paper, theoretical investigations appeared much

later than Ref. 6, and essentially in the form of numerical calcu-

lations on deterministic models.14,15 This should not be a surprise

since the most commonly used (and maybe simplest) mathemat-

ical description of fluid lubrication, namely the Reynolds equa-

tion, does not generally allow analytical treatments, even when it

is applied to very simple geometrical configurations. Actually,

research on the lubricated contact of rough bodies is focused on

particular aspects of the problem itself. As an example in the static

case, the hydraulic conductivity of a contact interface, which is of

utmost importance for industrial applications (e.g. sealants, tires)

as well as for life science (dewetting at soft rough interfaces), has

been recentlymodeled in the case of isotropic surfaces recurring to

percolation theory arguments,16–18 which are in good agreement

with experiments.19Experimental observations of sliding contacts

made with optical interferometry (see e.g. Ref. 20) have instead

confirmed the existence of the so called viscous flattening, an

asperity flattening induced by fluid viscous actions at the asperity

scale, which results in an effective smoothing of the sliding

surfaces. This phenomenon has also been predicted by numerical

calculations of wavy surfaces.21 Interestingly, it has been found
Soft Matter, 2011, 7, 10395–10406 | 10395
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that the contribution of different roughness length scales on the

fluid film and fluid pressure are effectively uncoupled in the

Fourier space, so that the viscous flattening, which admits

a general formulation in wavevector space,22–24 can be separately

calculated for each wavelength.Moreover, it has been shown that

the amplitude of the long wavelengths roughness is reduced

considerably inside the contact, whereas short wavelengths

roughness is only barely affected by the fluid action;22 this is also in

agreement with the existing experimental evidence.20

On a different side, friction measurements have been carried

out for the sliding contact of soft isotropically rough surfaces at

different degrees of hydrophobicity/hydrophilicity and for

different values of rms (root-mean-square) roughness.25 In

particular, in Ref. 25 the authors showed that very different

Stribeck† curves can be obtained in the boundary‡ and mixedx
lubrication regimes by adopting rough surfaces with different

rms. Moreover, they also observed that changing the surface

energy of the contact pair allows the further manipulation of the

friction curves, e.g. the boundary lubrication regime could not be

formed for a hydrophilic contact. A theoretical explanation of

such friction experiments has been recently proposed in Ref. 12.

In Ref. 26, instead, some of us have performed friction measure-

ments in the case of a smooth steel rotating ball in lubricated contact

with a fixed rough PDMS surface; moreover, the rubber sample was

characterized by a strongly anisotropic roughness. We showed that

the roughness anisotropy has a large influence on the shape of the

friction–velocity curve as a consequence of the occurrence of local

(asperity scaled) hydrodynamic lubrication conditions at the contact

interface. These micro-bearings conditions were experienced for the

transverse roughness orientation (i.e. for the roughness main

grooves aligned perpendicularly with the sliding direction), but were

not observed for the longitudinal orientation (simply obtained

rotating the transverse roughness sample by 90�). In particular, the

transverse roughness lubrication was characterized by a secondary

hydrodynamic friction stage located in a velocity range which does

not overlap with the primary (or macroscopic) hydrodynamic fric-

tion stage (i.e. the friction range due to the macroscopic ball shape).

All the cited experimental results suggest thepresenceof a strong link

between surface roughness, viscous flattening and friction in soft

contacts. However, they also highlight the lack of fundamental

theoretical research on the lubricated contact of rough bodies, since,

to the best of the author’s knowledge, there exists no comprehensive

theory able to capture and describe, at least qualitatively, such

phenomena within a unique framework.

The first general insight into the lubrication of rough surfaces

dates back to the late seventies, when Patir and Cheng (P&C)

carried out the first numerical calculations,27,28 and Sun pre-

sented a thorough theoretical investigation.29 P&C27,28 recog-

nised the possibility to calculate the average fluid dynamics

occurring at the interface of mixed lubricated contacts by solving

effective fluid equations involving a set of functions (depending

on the nature of the surface roughness), usually denoted as flow
† Friction as function of the product between viscosity and sliding
velocity.

‡ Lubrication regime where the contact normal load is supported mainly
by asperity–asperity interactions.

x Lubrication regime where the contact normal load is supported by both
asperity–asperity and fluid–asperity interactions.

10396 | Soft Matter, 2011, 7, 10395–10406
factors. These flow factors were determined by solving the fluid

flow equation for small interfacial rectangular regions containing

the rough surfaces, and averaging over several realisations of the

rough surfaces. The basic assumption in this approach is the wide

separation of length scales, i.e. one assumes that the surface

roughness occurs at length scales much shorter than the macro-

scopic contact size of the solid objects. In this case the flow

factors completely describe the influence of the surface roughness

on the (average) fluid flow observed at the macroscopic scale.

After the P&C model, a number of interesting studies have

been performed to model mixed lubricated contacts, see e.g.

Refs. 30–34. In these models the local elastic deformation (at the

asperities scale), resulting from the asperity–asperity and

asperity–fluid interactions, was not included. However, as

recently shown by Meng and co-workers,35 this approximation

may result in non-negligible errors when the average interfacial

separation �u approaches the surface rms roughness hrms,

a condition typically encountered in mixed lubrication. Indeed,

as �u decreases the amount of direct asperity–asperity contact will

increase, influencing the number and the size of non-contact

domains that can be filled by the lubricant. As we show below, by

increasing the load, the contact patches start to merge into larger

multi-connected domains, which behave as closed labyrinths,

thus inhibiting the fluid flow. This occurs at values of the

normalized area of solid contact sufficiently close to the perco-

lation threshold, see e.g. the recent studies on percolation

threshold in static seals.16–18 At the percolation threshold, or at

larger contact areas, a portion of the non-contact surface area

may be filled by the lubricant. However, the fluid remains

entrapped by the solid walls formed by the contacting asperities,

and cannot flow out, therefore providing no contribution to the

total (average) flow at the interface. This effect is likely to be

extremely important in mixed lubrication since the repulsive

hydrostatic force at the interface depends on the fluid filled areas,

and to the best of our knowledge there is no thorough investi-

gation of this phenomenon in the scientific literature.

In this work, which has been inspired by the novel experi-

mental results of Ref. 26, we propose a second order expansion

lubrication theory. We investigate the role of random roughness

on the average flow and friction of soft (compliant) lubricated

contacts, such as those occurring in a wide range of applications,

from the classical tire–road (or seal-shaft) contact, to the soft

contacts in bio-tribological applications. In our theory the

asperity–asperity and asperity–fluid interactions are coupled in

a consistent formulation of the contact mechanics occurring at

the interface. Using this model we discuss the transition

(observed at the macro-scale) from the boundary lubrication to

the hydrodynamic lubrication regime as a consequence of aver-

aging different lubrication states occurring at different locations

at the interface. We also confirm some general findings by Hooke

and Venner21 related to the asperity flattening.

The paper is outlined as follows. The lubrication theory is pre-

sented in Secs. II toV. In Sec. IIwe summarize themeanfield theory

for the asperity–asperity interactions, which is based on the Pers-

son’smultiscale contactmechanics.7 InSecs. III toVwecharacterize

the averagefluidflowat the interface in termsof flow factors, andwe

derive the average lubrication equation by enforcing mass conser-

vation to the average fluid flow. Numerical results and general

considerations are presented in the companion paper (Ref. 36).
This journal is ª The Royal Society of Chemistry 2011
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II. The homogenized asperity–asperity interactions

We consider the macroscopically steady sliding motion of an

elastic ball (or cylinder) pressed against an elastic substrate. We

also assume that both the ball and the substrate are covered with

random roughness. The notation macroscopically steady sliding

simply means that, although at the macro-scale the system

appears in a condition of steady-state, at the micro-scale the

presence of roughness on both surfaces determines local (at the

asperity-scale) transient motions (local squeeze effects), which

are averaged out and cannot be observed at the macroscopic

scale, i.e. at the length scale of the Hertzian contact. Fig. 1

illustrates the essential features of the model: we assume that the

macroscopic contact size is much larger than the largest rough-

ness length scale. This wide difference of length scales enables

averaging over the roughness fluctuations, thus obtaining effec-

tive equations for smooth surfaces which are much more suitable

for implementation from a computational point of view.

Due to the generally low pressures (of orderMPa) occurring in

soft contacts, the lubricant can be assumed to be Newtonian, i.e.

with shear-rate independent and pressure independent viscosity

and density. We also neglect thermal effects, as well as the

occurrence of asperity-scale cavitation, the latter being actually

under investigation by some of the authors. In some cases

a dewetting transition plays a fundamental role in determining

the boundary friction value25 (see also Ref. 37 for a review on the

topic) and the region occupied by the fluid. However, this

phenomenon is only partially modeled in the methodology

proposed here by properly choosing the boundary shear stress.

Moreover, we assume that the sliding surfaces are characterised

by random roughness with known statistical properties (e.g. the

power spectral density (PSD)38).

In this section we present a mean field theory where the

asperity–asperity interactions at the interface are described using

Persson’s contact mechanics formulation.7,39 Each quantity dis-

cussed below must be interpreted as an ensemble average.

For adhesionless elastic contacts, the (average) normalized

real area of solid contact can be calculated as A(z1)/A0 (where A0

is the nominal contact area), where q1 ¼ q0z1 corresponds to the

largest roughness frequency and
Fig. 1 The geometry of two solids in sliding contact with a fluid in

between, observed at the macroscopic scale (left) and at the largest

magnifications z1 in the contact area (right). For randomly rough

surfaces, the smallest asperity length scale l1 ¼ L/z1 can be many orders

of magnitude smaller than the macroscopic contact size L. In this case

a deterministic approach to the contact problem would require a very

large computational effort, and an analytical (average field) theory

should be preferred for a fast estimation of the contact characteristics.

This journal is ª The Royal Society of Chemistry 2011
AðzÞ
A0

¼ erf

� ffiffiffi
2

p
s0

E*½Vh�rmsðzÞ
�
; (1)

where:

½Vh�2rmsðzÞ ¼ h½VhðxÞ�2i ¼
ð
jqj\q0z

d2q q2CðqÞ;

z ¼ q/q0 is the magnification, s0 is the average (or nominal) solid

contact pressure and the combined power spectral density is

C(q) ¼ C1(q) + C2(q).
38 The subscripts (1 & 2) refer to the two

different surfaces respectively. The PSD of each surface is defined

as:

CiðqÞ ¼ 1

ð2pÞ2
ð
d2xhhiðxÞhið0Þie�iq$x;

where h.i stands for ensemble average, and hi(x) is the surface

height of the i-th surface with hhi(x)i ¼ 0. Also we have defined:

1/E* ¼ (1 � n21)/E1 + (1 � n22)/E2,

where Ei and ni are Young’s elastic modulus and Poisson’s ratio

of i-th solid respectively. In the ideal case of self affine isotropic

roughness the PSD has a very simple analytical formulation:C(q)

¼ C0(q/q0)
�2(H+1), where C0 ¼ h2rmsH/[pq20(1 � z�2H

1 )], H is the

Hurst exponent related to the fractal dimension Df through the

relationH¼ 3�Df, q0 is the large wavelength roll-off frequency,

and q1 ¼ z1q0 is the small wavelength cut-off frequency of the

PSD. Fractal surfaces, or more generally, surfaces where only

a fraction of their spectral content is characterized by self-affine

properties, are very common, e.g. asphalt road surfaces, or

fracture surfaces of brittle materials.13

In the case of linear viscoelastic solids, or in the case of contact

between solids of finite thickness (e.g. for thin polymer or rubber

coatings), the equations above are slightly modified as reported

in Ref. 7 for isotropic roughness, and in Ref. 39 for the general

case of anisotropic roughness. In the absence of viscoelastic

effects, the average shear stress at the solid–solid contact is

assumed to be:

ss ¼ asf,

where sf is the frictional shear stress acting in the asperity–

asperity contacts and a ¼ A(z1)/A0 is the relative contact area.

The shear stress in the contact regions, ss, is aligned along the

resultant sliding direction.

The average interfacial separation in the apparent contact areas

at the magnification z can be calculated from Refs. 40 and 41 as:

uðs0; zÞ ¼
ffiffiffi
p

p ðq1
zq0

dq q2CavgðqÞwðz; qÞ
ðN
A0s0=AðzÞ

dp0 e
�½wðz;qÞp0 =E* �2

p0
;

(2)

where Cavg(q) ¼ Cavg
1 (q) + Cavg

2 (q), Cavg
i (q) ¼ (2p)�1

Ð
dfCi(q),

39

and where:

uðz; qÞ ¼
�
p

ðq
zq0

dq0 q03Cavgðq0 Þ
��1=2

: (3)

In order to simplify the notation, in the remaining part of the

article the macroscopic (locally averaged) interfacial separation

�u(s0, 1) will be simply denoted by �u.
Soft Matter, 2011, 7, 10395–10406 | 10397
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Fig. 2 The geometry of two solids in sliding contact with a fluid in

between, observed at a different contact magnification. u1(z
0) represents

the average separation in the apparent contact areas which come out of

contact when the magnification is increased from z0 � dz0 to z0.
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When the magnification increases from z to z + Dz a portion,

A(z) � A(z + Dz), of the surface area moves out of the contact,

and is characterized by a local average interfacial separation

u1(z), see Fig. 2. The latter quantity is related to Eqns. (1) and (2)

through the following equality:

uðzÞAðzÞ ¼ �
ðz1
z

dzA
0 ðzÞ u1ðzÞ (4)

which can be differentiated in z to give u1(z) ¼ [�u(z)A(z)]0/A0

(z).40,41

We now determine an approximate relation for the mean

square (ms) roughness hh2idry, which represents the amount of

height fluctuations occurring at the interfacial voids in dry

contacts. It is clear that the more the surfaces are in intimate

contact, the less is the average separation (and the total amount

of voids at the interface) and, hence, the smaller is hh2idry. In the

case of large separations, hh2idry / h2rms, where h
2
rms corresponds

to the ms of the undeformed surface roughness.

Let Pn(u) be the probability distribution of interfacial sepa-

rations in the non-contact surface areaAn¼ A0� Ac, whereAc¼
A(z1) is the area of real contact and A0 ¼ A(1) the nominal

contact area. We can write:

Pn ¼ 1

An

ð
An

d2x dðu� uðxÞÞ;

where u(x) is the interfacial separation at point x in the non-

contact region. Note that:

Ð
du Pn(u) ¼ 1,

and ð
du uPnðuÞ ¼ 1

An

ð
An

d2x uðxÞ ¼ A0

An

u ¼ un

is the average surface separation in the non-contact area. We can

therefore re-write Pn in the following form:

Pn ¼ 1

An

ðz1
1

dz ½�A
0 ðzÞ�hdðu� uðxÞÞiz:

Here h.iz stands for averaging over the surface area which

moves out of contact as the magnification changes from z to z +

dz. It should be noted that:

hu(x)iz ¼ u1(z),

as shown in Fig. 2. Thus, we obtain:

�
h2
�
dry¼

ð
du PnðuÞðu� unÞ2¼ 1

An

ð
dz ½�A

0 ðzÞ�
D�

uðxÞ � unÞ2
E
z

¼ 1

An

ð
dz ½�A

0 ðzÞ�
D�½uðxÞ � u1ðzÞ� þ ½u1ðzÞ � un�

�2E
z
:

Expanding the square and exploiting the fact that:

h[u(x) � u1(z)]iz ¼ 0,

we get:

�
h2
�
dry
¼ 1

An

ð
dz
	� A0ðzÞ
�D�uðxÞ � u1ðzÞ

�2E
z
þðu1ðzÞ � unÞ2

�
:

10398 | Soft Matter, 2011, 7, 10395–10406
It is clear that the surfaces which move out of contact as the

magnification increases from z to z + dz will have short-wave-

length roughness with wavevectors q > zq0. Thus the real sepa-

ration between these surfaces is not u1(z) but fluctuates around

this value. One may approximately take this into account by

using

h(u(x) � u1(z))
2iz z h2rms(z),

where h2rms(z) is the ms roughness amplitude including only the

roughness components with wavevector q > q0z. We may

approximately write

h2rmsðzÞ ¼
ð
q.q0z

d2q CðqÞ:

Thus we get

�
h2
�
dry
z

1

An

ð
dz
	� A0ðzÞ
hh2rmsðzÞ þ ðu1ðzÞ � unÞ2

i
:

This expression for hh2idry involves quantities which are known

within the contact mechanics theory of Persson. un, defined as the

average interfacial separation in the non contact areas, is in the

following identified with the symbol u. Note that u ¼ �u/(1 � a).

Let us define the ‘‘smoothing’’ parameter

3s(�u) ¼ hh2idry/h2rms. (5)

The parameter 3s(�u) defines the amount of apparent flattening

of the initial roughness occurring in the non contact areas due to

the asperity–asperity interactions.
III. The homogenized fluid-flow equations

In this section we determine the average fluid flow at the interface

between contacting elastic solids with random roughness. We use

the classical Reynolds thin film fluid flowmodel,42 and we assume

that no (micro-) cavitation occurs at the interface, so that the

amount of the load supported by the fluid–asperity interactions is

only due to the asymmetrical deformation of the asperities.

However, neglecting cavitation is not a real limitation, since it

has been shown that for elastically soft solids like rubber,12 this

approximation results only in small errors, so we believe that the

main findings of our model must not be qualitatively affected by

the non-cavitation assumption.
This journal is ª The Royal Society of Chemistry 2011
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For Newtonian fluids the general hydrodynamic lubrication

equations can be written in a form that can be easily linked to the

Reynolds equation:

Jðx; tÞ ¼ � s3

12m
VpþUms

0 ¼ vs

vt
þ V$J; (6)

where x is the in-plane position vector, J(x, t) is the fluid flow

vector, s is the local thickness of the fluid film, Um ¼ (U1 + U2)/2

is the mean surfaces velocity (where Ui is the velocity of the i-th

surface) and p¼ p(x, t) is the fluid pressure at the interface. Since

at the interface some asperities are in direct solid–solid contact,

the domain U where fluid is expected to be present is in general

a multi-connected region, whose boundaries, vU, of which

correspond to the solid walls formed by the direct solid–solid

asperity contacts. At these boundaries the fluid flow vector J

must satisfy the condition J$n ¼ 0, where n is the unit vector

normal to the boundary. Observe that the walls of the asperities

in solid–solid contact may surround some regions (simply-con-

nected cavities) which cannot be reached by the fluid. We then

define b ¼ MðUÞ=A0, where MðUÞ is the measure of the fluid-

flow domain U. Of course bmust satisfy the condition b# 1� a.

The shear stresses which the fluid exerts on the sliding surfaces

can be written as

sf ¼ � s

2
VpHm

U2 �U1

s
; (7)

where the upper sign (minus-sign) refers to the upper surface and

the lower sign (plus-sign) to the lower surface. Note that the shear

stress can be calculated from the velocity profile which, as pre-

dicted by the lubrication theory, is parabolic, and takes the form:

vðx; zÞ ¼ � zðs� zÞ
2m

VpþU1


1� z

s

�
þU2

z

s
:

The calculation of the average flow at the interface can be

carried out by considering a generic representative elementary

volume (REV),43 also identified as the Tonder’sminiature bearing

at the contact interface.44 The REVmust be much larger than the

largest roughness length-scale in order to include many realiza-

tions of the same roughness content, but much smaller than the

macroscopic contact size to avoid to take into account the large-

scale surface curvature. Under these conditions the local sepa-

ration in the fluid domain U can be written as:

s(x, t) ¼ u(x, t) + hr(x, t) + w(x, t), (8)

where w(x, t) is the sum of the local displacement due to the fluid-

induced elastic deformation of both sliding surfaces, and hr(x, t)

the sum of the heights of the (undeformed) roughness of the two

surfaces, with hw(x, t)i ¼ hhr(x, t)i ¼ 0. We observe that in the

case of macroscopic steady-sliding, which is the focus of our

investigation, the average interfacial separation in the REV is

time-independent, i.e. one can write u(x, t) z u(x). Now

assuming that hr/u � 1 we can write two second order terms in

hr/u,
45 p z p0 + p1 + p2, and

w(x, t) z w1(x, t) + w2(x, t), (9)
This journal is ª The Royal Society of Chemistry 2011
with the first and second order terms w1(x, t) and w2(x, t) satis-

fying the following equations:

w1(x, t) z K̂ [p1(x, t) � hp1(x, t)i] (10)

w2(x, t) z K̂ [p2(x, t) � hp2(x, t)i], (11)

where K̂ is a linear integral operator;

K̂f(x) ¼ Ð d2x0 K(x � x0)f(x0),

with the Fourier transform7 K(q) ¼ �2/(E*q), where q ¼ |q|.

Assuming macroscopic steady-state conditions Eqn (8) can be

rewritten as:

s(x, t) ¼ u(x) + h(x, t) + w2(x, t), (12)

where h(x, t) ¼ w1(x, t) + hr(x, t) is a first order term separation.

Expanding Eqn (6) we obtain:

Jz� u3 þ 3u2hþ 3u2w2 þ 3h2u

12m
Vð p0þ p1 þ p2ÞþUmðuþ hþ w2Þ

z

�
� u3

12m
Vp0 þUmu

�
þ
�
� u3

12m
Vp1 � 3u2h

12m
Vp0 þUmh

�

þ
�
� u2

uVp2 þ 3hVp1
12m

� 3u2w2 þ 3h2u

12m
Vp0 þUmw2

�
;

(13)

and

vs

vt
z
vh

vt
þ vw2

vt
:

The continuity equation then gives:

V2p0 ¼ 0

at the zero order, while at the first order45 one obtains:

vh

vt
� u3

12m
V2p1 � 3u2

12m
Vh$Vp0 þUm$Vh ¼ 0 (14)

(note then that since hhi ¼ 0 we have hpi ¼ p0 + hp2i). Taking the
time and spatial Fourier transform of Eqn (14) one obtains:

p1ðq;uÞ ¼ ihðq;uÞ
�
3q$Vp0
uq2

� 12mðuþ q$UmÞ
u3q2

�
; (15)

where q is the wave-vector and u the pulsating frequency.

Assuming that the two surfaces are sliding one against the other

at different constant velocities U1 and U2 we can write hr(x, t) ¼
hr1(x � U1t) + hr2(x � U2t) and in the frequency domain hr(q, u)

¼ hr1(q)d(u � q$U1) + hr2(q)d(u � q$U2). Moreover we can

correlate p1(q, u) to w1(q, u) by taking the Fourier transform of

Eqn (10). Thus, we obtain

w1(q, u) ¼ K(q)p1(q, u). (16)

We observe that for linearly viscoelastic solids, the termK(q) in

Eqn (16) must be replaced with the corresponding viscoelastic

response function.39 Thus we can write:
Soft Matter, 2011, 7, 10395–10406 | 10399
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h(q, u) ¼ hr1(q)d(u � q$U1) + hr2(q)d(u � q$U2) + K(q)p1(q, u).

(17)

Substituting Eqn (17) in Eqn (15) we find that the transform of

the separation fluctuation (induced by the fluid action) can be

written as:

h(q, u) ¼ [1 + K(q)G(q, u)][hr1(q)d(u � q$U1)

+ hr2(q)d(u � q$U2)], (18)

or equivalently

p1(q, u) ¼ G(q, u)[hr1(q)d(u � q$U1) + hr2(q)d(u � q$U2)],

where G(q, u) describes the interaction between the fluid and the

asperities (local fluid–structure interactions, lFSI) of the rough

surfaces:

Gðq;uÞ ¼ i

�
3q$Vp0
uq2

� 12mðuþ q$UmÞ
u3q2

�

�
�
1� iKðqÞ

�
3q$Vp0
uq2

� 12mðuþ q$UmÞ
u3q2

���1

:

(19)

It is interesting to note thatEqn (19) tends to [�K(q)]�1 for average

separations close to zero, so that the transition from lubricated to

boundary lubricated conditions occurs without loss of continuity.

Note also that the fluid–wall interaction, due to the coupling

between the sliding elastic walls and the viscous interposed fluid,

introduces a phase-shift 4(q, u) between the pressure field and

sliding roughness pattern profiles, that can be calculated as:

tan4ðq;uÞ ¼ ImGðq;uÞ
ReGðq;uÞ ¼ �K�1ðqÞ u3q2

3u2q$Vp0 � 12mðuþ q$UmÞ:

The average flow in U can be calculated by averaging Eqn (13)

to get:

hJi ¼ � u3

12m
Vhp0 þ p2i þUmu�

u
�
h2
�

4m
Vh p0 þ p2i � u2

4m
hhVp1i;

(20)

since, to the 2nd order, hh2ihp0i ¼ hh2ihp0 + p2i. Observe that the

average fluid pressure hpi, corresponding to hp0 + p2i, is included
in Eqn (20). However in the following, for the sake of a simplified

notation, we will make use of the symbol p0 to identify hpi. In
order to determine hJi we need to calculate hh2i and hhVp1i. This
can be done by following the procedure shown in the Appendix A

(see also Ref. 45). This leads to:

�
h2
� ¼X2

i¼1

D
h
02
i

E
¼ 3sðuÞ

X2
i¼1

ð
d2q

CiðqÞ
liðq; u;Vp0Þ (21)

and

hhVp1〉 ¼
�3sðuÞP2

i¼1

ð
d2q

�
q
3q$Vp0
uq2

� q
12mq$ðUi þUmÞ

u3q2

�
CiðqÞ

liðq; u;Vp0Þ;

(22)

where 3s(�u) is given by Eqn (5), and where we defined the

parameter li, related to the intensity of the deformation induced
10400 | Soft Matter, 2011, 7, 10395–10406
at the roughness scale by the fluid action on the i-th surface (the

higher the li, the higher the intensity of the defomation) as:

liðq; u;Vp0Þ ¼

1þ 36

z4

"
1

u=hrms

Vp0
q20hrmsE*

$
q

q
� 1

u3=h3rms

4m½2Um � DU�
q20h

3
rmsE

*
$
q

q

#2
$ 1;

(23)

with DU ¼ (U2 � U1)/2. In Eqn (23) the upper sign (plus-sign)

refers to the upper solid surface (2) and the lower sign (minus-

sign) to the bottom surface (1). The detailed derivation of Eqn

(23) is presented in Appendix A. We can also define a lFSI

parameter 0 # 3fi # 1:

3fi ðu;Vp0Þ ¼
ð
d2q

CiðqÞ
liðq; u;Vp0Þ

�ð
d2qCiðqÞ (24)

fromwhich hh02
i i ¼ 3s(�u)3fi(u,Vp0)h

2
rms,i. The effect of fluid–asperity

interactions on the local separation is completely captured by the

parameter li(q, u, Vp0). The amplitudes of the spectral compo-

nents of the fluid film thickness s(x, t) are given by the weighted

sum of the spectral amplitudes of the original undeformed rough

surfaces (where the weights are given by l�1
i ) multiplied by the

smoothing parameter 3s(�u), resulting in an average separation

fluctuation hh2i ¼ 3s(3f1h
2
rms,1 + 3f2h

2
rms,2). The presence of the local

squeeze motions, combined to the viscous action coming from

the flow driving term Um, determines different li parameters for

the two surfaces.

The ms roughness hh2i i of the i-th surface (where (1) is for the

bottom surface and (2) is for the upper surface) is generally

different from the value hh02
i i. Indeed, hh02

i i represents the

contribution of the i-th surface in term of effective ms separation

to the average fluid flow, whereas the true ms roughness hh2i i of
the i-th surface can be calculated (at the first order) from:

hi(q, u) ¼ hri(q)d(u � q$Ui) + p1(q, u)Ki(q),

where Ki(q) ¼ K(q)E*/E*
i and E*

i ¼ Ei/(1 � n2i ). By using a similar

approach as the one presented in Appendix A we get:

�
h2i
� ¼ Dh0 2

i

E
þ 3sðuÞ

 
E*

E*
j

!2 ð
d2qCiðqÞ liðq; u;Vp0Þ � 1

liðq; u;Vp0Þ

þ 3sðuÞ
 
E*

E*
i

!2 ð
d2qCjðqÞ ljðq; u;Vp0Þ � 1

ljðq; u;Vp0Þ ;

(25)

where j¼ 3� i, and i¼ 1 or i¼ 2. Note that hh2ii$ hh02
i i. In Table

1 we show the ms roughness hh2i i and the ms separation hh02
i i

of the surface i-th in a comparison chart, for the simple case of a

smooth surface (2) in sliding contact with a rough substrate

(1), characterized by a rms roughness hrms. Four cases are

considered: (i) both surfaces are compliant (e.g. tongue–palate

contact), (ii) surface (1) compliant and (2) rigid (e.g. rubber seal–

shaft contact), (iii) surface (1) rigid and (2) compliant (e.g. tire–

road or cell–substrate contact), (iv) both surfaces rigid. For

all cases we have, from Eqn (21), a ms separation hh02
2 i ¼ 0.

However, when surface (2) is compliant we have hh22i $ 0,

which means that a non zero roughness is generated on (2).

In particular, in case (iii) the rough surface is rigid and then

hh21i ¼ 3sh2rms as expected, whereas, due to the local fluid pressure

fluctuations generated by surface (1), surface (2) gains a ms
This journal is ª The Royal Society of Chemistry 2011
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Table 1 Comparison chart. hh2i i and hh02
i i have been calculated for the case of a smooth surface (2) in sliding contact with a rough substrate (1) with rms

roughness hrms

Surface (1)

Compliant Rigid

Surface (2) Compliant hh21i $ 3s3f1h
2
rms hh21i ¼ 3sh2rms

hh22i ¼ hh21i � 3s3f1h
2
rms hh22i ¼ hh21i(1 � 3f1)

hh02
1 i ¼ 3s3f1h

2
rms hh02

1 i ¼ 3s3f1h
2
rms

Rigid hh21i ¼ 3s3f1h
2
rms hh21i ¼ h2rms

hh22i ¼ 0 hh22i ¼ 0

hh02
1 i ¼ 3s3f1h

2
rms hh02

1 i ¼ h2rms
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roughness hh22i ¼ hh21i(1 � 3f1). Note that in the limiting case of

�u/hrms � 1 (and non zero sliding velocity), the intensity of

the fluid–asperity interactions is maximized (3f1 / 0) resulting in

hh22i / hh21i. This is easy to understand if we consider that for

�u/hrms � 1 a very thin lubricant layer covers the non contact

areas, so that the local profiles of both surfaces in those domains

differ by less than a constant, the latter being the thickness of the

lubricant layer. Therefore we must have hh22i z hh21i. In case (ii)

the rough surface is compliant. In such conditions hh21i ¼ hh02
1 i ¼

hh2i ¼ 3s3f1h
2
rms so that the separation fluctuation coincides with

the fluctuation of the surface roughness. For the latter contact

configuration the lFSI coefficient 3f1 is more likely to be a viscous

flattening coefficient, since it directly links the average flattening

undergone by the surface asperities as a consequence of the fluid

pressure fluctuations caused by the same roughness.

In Fig. 3 we show how l�1
i varies as a function of the magni-

fication z ¼ |q|/q0. We write l ¼ 1 + 36x2/z4, where x represents

the content of the square brackets in Eqn (23). Note that, as

documented in Refs. 22–24, the high frequency roughness is

almost unchanged by the viscous action, while the large wave-

lengths components are strongly affected; this is again in agree-

ment with the existing experimental evidence.
Fig. 3 The intensity of the fluid–asperity interactions, expressed in terms

of 1/l, as a function of magnification.

This journal is ª The Royal Society of Chemistry 2011
This local viscous action is determined by the superposition of

three effects which can be identified by three dimensionless

parameters: (i) the Poiseuille parameter FP ¼ Vp0/(q
2
0hrmsE

*),

related to the intensity of the fluid–asperity interactions due to

the pressure gradient, (ii) the sliding parameter FS ¼ 4mDU/

(q20h
3
rmsE

*) and (iii) the rolling parameter FR ¼ 8mUm/(q
2
0h

3
rmsE

*),

which govern that part of 3fi caused by the sliding and rolling

components of motion. Eqn (23) can be rewritten as:

liðq; u;Vp0Þ ¼ 1þ 36

z4

"
FP$q=q

u=hrms

� FR$q=q

ðu=hrmsÞ3
H

FS$q=q

ðu=hrmsÞ3
#2
;

where the upper sign (minus-sign) refers to the upper solid surface

(2) and the lower sign (plus-sign) to the bottom surface (1). Note

that while the pressure gradient term FP term has a factor

proportional to the dimensionless ratio hrms/u, the FS and FR

contributions to lFSI are weighted with the cube of hrms/u. We

also note that the lFSI are strongly directional dependent, being

much more effective for the roughness wave-components aligned

with FP, FS and FR.

Eqn (22) can be arranged in terms of the anisotropy tensor D

(u, Vp0),
45 which in our case obeys the following relations:

h h2iDðu;Vp0Þ ¼
X2
i¼1

hh0 2
i iDiðu;Vp0Þ

hh02i iDiðu;Vp0Þ ¼ 3sðuÞ
ð
d2q

qq

q2
CiðqÞ

liðq; u;Vp0Þ; (26)

where the index i ¼ 2 is for the upper surface and i ¼ 1 for the

bottom surface. The average fluid–asperity interaction can be

then expressed as:

hhVp1i ¼ 12m

u3

X2
i¼1

DiUihh0 2
i i �

3

u
hh2iDVp0 þ 12m

u3
hh2iDUm (27)

and the average flow vector hJi can be calculated as:

�
J
�
z� u

12m

1

b
FPVp0 þ u

1

b
FSUm � u

X2
i¼1

1

b
FTi

Ui; (28)
Soft Matter, 2011, 7, 10395–10406 | 10401
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where we have defined the flow factors tensors as:

ð1� aÞ3
b

FP ¼ Iþ 3
�
h2
�

u2
I� 9

�
h2
�

u2
D

1� a

b
FS ¼ I� 3

�
h2
�

u2
D

1� a

b
FTi

¼ 3
�
h
0
i
2
�

u2
Di;

(29)

and whereFP ¼FP(�u, Vp0) is the pressure flow factor tensor,FS

¼ FS(�u, Vp0) the shear flow factor tensor and FTi
¼ FTi

(�u, Vp0)

the squeeze flow factor tensor, all depend upon both the average

interfacial separation �u and the pressure gradient Vp0, and

therefore cannot be determined a prioriwithout solving the entire

lubrication problem. The anisotropy tensors Di link the aniso-

tropic characteristics of a generic roughness to the flow

conductivity tensors of the contact interface. In the ideal case of

rigid and isotropic surfaces Di ¼ I/2 and, consequently, the

generic flow factor tensor Fi f I. This directly results in an

isotropic flow conductivity, e.g. by considering as driving term

the only fluid pressure gradient, the flow term becomes hJi f

FPVp0 f Vp0. However, in the most general case, the flow at the

interface is not directed along the driving sources (e.g. the fluid

pressure gradient), since the surfaces roughness effectively redi-

rects the fluid particles along some resultant (average) direction.

The latter is uniquely determined through the anisotropic

tensors.

We stress that, as shown in Eqn (28), the asperity–asperity

interactions as well as the fluid–asperity interactions have a key

role in the formation of the average fluid flow, both in magnitude

(through the quantities hh02
i i) and in direction (through the

tensors Di). It is also interesting to note that the average flow

direction, governed by elements ofD, is given by thems-weighted

average of the anisotropy tensors of each surface, which means

that in the sliding between rough surfaces with very different rms-

roughness, the intensity and direction of the flow is mainly

determined by the rougher surface.

The average or macroscopic fluid dynamics equation follows

from the mass conservation law. Recalling that n$J ¼ 0 at the

boundaries vU, one can show that:

hV$JiA0
¼ V$hJiA0

(30)

with hJiA0
¼ A�1

0

ð
U

JdA ¼ ½MðUÞ=A0�hJi ¼ bhJi, where

hJi ¼ ½MðUÞ��1

ð
U

JdA has been previously calculated. Using

Eqns (28) and (30) the average Reynolds equation for macro-

scopically steady sliding contacts becomes:

V$

�
u3

12m
FPVp0

�
¼ V$½uFSUm� � V$½uFTiUi�; (31)

where we used u ¼ �u/(1 � a), and where Fi ¼ Fi(�u, Vp0) are

calculated from Eqn (29).
Fig. 4 Numerical prediction of the normalized fluid area b. Black, white

and gray domains correspond, respectively, to contact, non contact and

fluid areas. Calculated with the percolation model described in Ref. 46.
IV. On the size of fluid-flow domain

We now turn our attention to the quantity, b ¼ MðUÞ=A0,

defined as the normalized fluid flow area, given by the ratio
10402 | Soft Matter, 2011, 7, 10395–10406
between the amount of the non contact areas occupied by the

lubricant in the REV, and the total REV area A0. Note first that

the difference between the normalized fluid flow area, b, and the

normalized area of non contact, 1 � a, can be mainly attributed

to the presence of simply-connected voids surrounded by solid–

solid contact walls that cannot be reached by the fluid or (in case

fluid is already present) where it cannot escape from. Fig. 4

(calculated with the percolation model developed in Ref. 46)

clearly shows what happens in a deterministic realization of the

contact interface: the numerically calculated fluid flow domain

area (gray) is shown for different values of the solid contact area

(black). Note that the more the area of contact is increased, the

more the fluid flow area is different from the total non contact

area. We observe that at a z 0.34 the fluid flow area vanishes,

although free voids are still present at the interface. This inter-

esting effect, which has so far been investigated only for static

seals,16–18,46 is determined by the occurrence of two-dimensional

contact geometries at the interface, which behave like solid walls

that prevent fluid flow through the voids. Even for small

percentages of the contact area (see Fig. 4(a)) some simply con-

nected voids still exist which do not contribute to fluid flow.

What happens is that at small values of a (see Fig. 4(a)), the

contact area increases mainly by the nucleation of new contact

patches (we call this the nucleation regime), which are expected

to be almost equally distributed at the interface. The average flow

resistivity then increases essentially because the stream lines of

the fluid flow must bypass the solid–solid contact area thus

increasing the hydraulic losses. By increasing the contact area,

the newly formed contacts start to coalesce and merge with the

already existing ones; this process first happens gradually (see

Fig. 4(a) and 4(b)), and then accelerates (see Fig. 4(c) and 4(d)) in
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 The quantities b and 1 � a as functions of the average interfacial

separation. For z1 ¼ 1000, H ¼ 0.6 and H ¼ 0.8.
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the proximity to the percolation threshold. During this coales-

cence stage the size of the voids increases, determining the further

increase of the average flow resistivity due to the strong decrease

of the amount of fluid filled areas (there are less paths available to

the fluid to flow through the voids).

There is a second reason for which b may differ from 1 � a,

related to local dewetting transitions.47–49 However, in this work

we have not considered surface energies contributions, thus

b comes exclusively from geometric effects.

In Fig. 5 we show the apparent area of contact which occurs

when the interface is observed at the magnification z (Fig. 5(a)),

and the same apparent contact patches at the highest magnifi-

cation z1 ¼ q1/q0, i.e., when all the roughness is included in the

contact (Fig. 5(b)). We note that the real contact area in Fig. 5(b)

is only a fraction of the apparent contact areas shown in

Fig. 5(a). It is possible to determine this fraction by considering

that the average pressure in the apparent contact area A(z) is just

the total applied force divided by A(z), namely [A0/A(z)]s0, and

recalling that at magnification z only roughness components with

wave vector q > q0z will affect the real contact area, one obtains

using Eqn (1):

~AðzÞ
AðzÞ ¼ erf

� ffiffiffi
2

p

E*½Vh�rmsðzÞ
A0

AðzÞ s0

�
; (32)

where this time [Vh]rms(z) is the rms roughness slope including

only the roughness components with wavevector q1 > |q| > q0z:

½Vh�2rmsðzÞ ¼
ð
q1.jqj.q0z

d2qCðqÞq2: (33)

Note that Eqn (32) reduces to one for z ¼ z1.

It is observed that if the relative contact area Ã(z)/A(z), in the

apparent contact patches of Fig. 5(a), is larger than the area

given by the percolation threshold (about 0.4),50 then the newly

formed voids shown in Fig. 5(b) (although they may be in

principle partially filled with lubricant), cannot contribute to the

average flow since the contact ‘‘labyrinths’’ (black areas)

surrounding these voids behave like impenetrable walls. There-

fore, more rigorously b should be defined as b ¼ 1 � A(zp)/A0

where the magnification threshold zp must be the magnification

at which the (normalized) real area of contact occurring in the

apparent contact patches at z ¼ zp is equal to the area at which

percolation starts that, for isotropic roughness, requires Ã(zp)/A
Fig. 5 The role of percolation at the contact interface (schematic). (a)

Area of contact as it appears when the contact is observed at the

magnification z. (b) The real area of contact (observed at the highest

magnification z1) corresponding to Fig. 5(a).

This journal is ª The Royal Society of Chemistry 2011
(zp) z apN. In the general case of anisotropic surfaces, zp should

depend on the flow direction angle q and so does b, which can

therefore be written in a general form as b ¼ b(s0, q). Here we

discuss only the isotropic case, and select apN ¼ 0.4,16 despite

having been shown50 that the (average) percolation threshold apz
should depend on the magnification z as a power law (apN � apz)

f z1/n (where the exponent n can be determined by numerical

percolation calculations). The effect of the contact magnification

z on the percolation threshold value is actually under investiga-

tion by some of the authors, and will be presented in a dedicated

paper.46 In Fig. 6 we show our model prediction b compared with

the non-contact area 1� a as a function of the average interfacial

separation in the case of self affine isotropic roughness with z1 ¼
1000 and two Hurst exponents, 0.6 and 0.8. Note that the

nucleation regime occurs for dimensionless separation �u/hrms $

1, since the difference between b and 1 � a is very small in that

zone. The coalescence regime occurs instead in a range of sepa-

ration 0.01 < �u/hrms < 1, where the normalized fluid area starts to

strongly deviate from the normalized non contact area. Inter-

estingly, b vanishes at the percolation threshold, after which

a further decrease of separation is not relevant since the fluid flow

cannot occur despite the large amount of free voids at the

interface.
V. The average solids deformation

In order to close the set of equations needed to solve the mixed

lubrication problem we need to also calculate the macroscopic

deformations of the solids due to the locally averaged normal

stress (the sum of the solid and fluid pressure) sT ¼ s0 + bp0. The

total stress sT can easily be related to the local average separation

�u(x) through the macroscopic contact geometry equation:

�u(x) ¼ �uR(0) + f(x) + w(x), (34)

where w(x) is the average elastic displacement, determined from:

w(x) ¼ Ð d2x0 K(x � x0)sT(x). (35)

K(x) is the Green function of the elastic solids given by the

Boussinesq solution K(x)¼ [pE*|x|]�1, and f(x) is the shape of the
Soft Matter, 2011, 7, 10395–10406 | 10403
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interfacial separation assuming the two surfaces are not

deformed (e.g. f ðxÞ ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � jxj2

q
for a ball of radius R on

a flat substrate). �uR(0) is a constant which simply represents the

central distance between the two surfaces assuming they are not

deformed. We also need the global force-balance equation along

the normal direction which gives:

Ð
dA sT(x) ¼ FN. (36)

Moreover, the total applied shear stress s ¼ ss + sf, where the
latter is calculated as shown in Appendix B.

VI. Conclusions

In this paper we have proposed a novel theory to describe the

transition from the hydrodynamic lubrication to the boundary

lubrication regime occurring in soft contacts. Our approach is of

a mean field type and based on a perturbation treatment, which

enables the consistent calculation of both asperity–asperity and

asperity–fluid interactions and their effects on the average fluid

flow and solid contact mechanics at the interface. In particular,

we have derived the flow factors including elastic deformation,

which turn out to depend not only on the interfacial separation �u,

but also on the fluid pressure gradient Vp0, to be determined as

a part of the solution of the homogenized system of equations

governing the lubricated contact problem. The proposed meth-

odology is useful in investigating lubrication problems ranging

from boundary to hydrodynamic lubrication regimes, and in

particular should allow to elucidate the contact and lubrication

mechanisms which occur when only part of the interface is

occupied by the fluid. These aspects are discussed in details in the

companion Part II.36

Nomenclature
ni
10404 | Soft Matte
Poisson’s ratio
apN
 Normalized area of percolation for an

infinitely sized representative elementary

volume
apz
 Normalized area of percolation at the

magnification z
a
 Normalized area of solid contact
�u
 Average interfacial separation
b
0

Normalized area of fluid flow
hh 2
i i
 Mean square separation fluctuation related to

surface i-th
hh2i i
 Mean square roughness of surface i-th
hh2i
 Mean square separation fluctuation
Fi
 Flow factor tensor
Di
 Anisotropy tensor
I
 Identity matrix
Ti
 Shear stress tensor
Um
 Mean velocity (U1 + U2)/2
Ui
 Surface velocity
m
 Fluid viscosity
u
 Time frequency
s0
 Average solid contact pressure
sT
 Average pressure on A0
r, 2011, 7, 10395–10406
sf
This
Fluid wall shear stress
ss
 Solid contact wall shear stress
3fi
 Fluid–asperity interaction parameter related

to surface i-th
3s
 Smoothing parameter from solid contact
z ¼ q/q0
 Contact magnification
A(z)
 Area of solid contact at the magnification z
A0
 Representative area of interaction
Ac
 Area of solid contact in A0
An
 Area non contact in A0
C(q)
 Power spectral density
E*
 Reduced elastic modulus
Ei
 Young’s modulus
G(q, u)
 Fluid-asperity interaction kernel
p0
 Zero order fluid pressure
p1
 1st order fluid pressure
p2
 2nd order fluid pressure
q
 Spatial wave vector
q0
 Large scale roughness cut-off frequency
q1
 Small scale roughness cut-off frequency
u
 Average separation in the non contact areas
w(x)
 Average displacement field
Appendix A: Calculations of the film thickness
fluctuation and of the average fluid asperity interaction

Eqn (21) can be determined as following. Consider the following

equality (coming from the definition of power spectral density):

�
h2
� ¼ 3sðuÞ

ð ð
d2q d2q0

ð ð
dudu0

�
hðq;uÞhðq0;u0Þ�eiðuþu0Þteiðqþq0Þ$x:

For an homogeneous statistical process f(x) we have hf(q)f
(q0)i ¼ Cf(q)d(q + q0). Thus, using Eqn (18) we can rewrite

hh(q, u)h(q0, u0)i:
�
hðq;uÞhðq0;u0Þ� ¼ dðqþ q0ÞP2

i¼1

dðu� q$UiÞdðu0 � q0$UiÞCiðqÞ

�½1þ KðqÞGðq;uÞ�½1þ Kðq0ÞGðq0;u0Þ�;
so that:

�
h

02
i

� ¼ 3sðuÞ
ð
d2qj1þ KðqÞGðq; q$UiÞj2CiðqÞ

and hh2i ¼ hh02
1 i + hh02

2 i, where we defined li(q, u, Vp0):

1

liðq; u;Vp0Þ ¼ j1þ KðqÞGðq; q$UiÞj2:

Eqn (22) can be obtained by considering the following

equality:

hhVp1i ¼
3sðuÞ Ð Ð d2q d2q0

Ð Ð
dudu0 ðiqÞ�p1ðq;uÞhðq0;u0Þ�eiðuþu0Þteiðqþq0Þ$x:

We then rewrite hp1(q, u)h(q0, u0)i with Eqns (18) and (19):
journal is ª The Royal Society of Chemistry 2011
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�
p1ðq;uÞhðq0;u0Þ� ¼ dðqþ q0ÞP2

i¼1

dðu� q$UiÞdðu0 � q0$UiÞCiðqÞ
�Gðq; uÞ½1þ Kðq0ÞGðq0;u0Þ�;
and finally:

�
hVp1

�¼ i3sðuÞP2
i¼1

ð
d2q qGðq; q$UiÞ½1þ KðqÞGð�q;�q$UiÞ�CiðqÞ

¼ �3sðuÞP2
i¼1

ð
d2q

�
q
3q$Vp0
uq2

� q
12mq$ðUi þUmÞ

u3q2

�
CiðqÞ

liðq; u;Vp0Þ ;

where:

i

�
3q$Vp0
uq2

� 12mq$ðUi þUmÞ
u3q2

��
liðq; u;Vp0Þ

¼ Gðq; q$UiÞ½1þ KðqÞGð�q;�q$UiÞ:

Appendix B. The homogenized interfacial stress

By adopting the same procedure outlined in the previous section,

the 2nd order expansion of shear stresses acting on the walls is:

sfz� uþ hþ w2

2
Vð p0 þ p1 þ p2ÞHm

U2 �U1

uþ hþ w2

¼
�
� u

2
Vp0Hm

U2 �U1

u

�

þ
�
� h

2
Vp0 � u

2
Vp1 � mh

U2 �U1

u2

�

þ
�
� h

2
Vp1Hmh2

U2 �U1

u3
� mw2

U2 �U1

u2

�
;

where the upper sign is for the upper surface and the lower sign

for the lower surface. The average shear stresses hsfi in the fluid

flow region can be calculated:

�
sf
� ¼ � u

2
Vp0 � hhVp1i

2
Hm

U2 �U1

u

�
1þ

�
h2
�

u2

�

¼ � u

2

1

b
TRVp0H

1

b
mTS

U2 �U1

u
� m

u

1

b

X2
i¼1

TTi
ðUm þUiÞ;

(B1)

where we have defined the rolling shear stress tensor TR ¼
TR(�u, Vp0), the sliding shear stress tensor TS¼ TS(�u, Vp0) and the

squeeze shear stress tensor TTi
¼ TTi

(�u, Vp0) such that:

1� a

b
TR ¼

�
I� 3

�
h2
�

u2
D

�

1

ð1� aÞbTS ¼
�
Iþ

�
h2
�

u2
I

�

1

ð1� aÞbTTi
¼
�
6

�
h
0
i

2�
u2

Di

�
:

(B2)

Finally the average fluid wall shear stress sf ¼ hsfiA0
on the

nominal contact area A0 can be calculated by taking the product

of Eqns (B1) with b to get:

sf ¼ � u

2
TRVp0HmTS

U2 �U1

u
� m

u

X2
i¼1

TTi
ðUm þUiÞ;

where Ti ¼ Ti(�u, Vp0) are calculated from Eqns (B2) and where

the upper sign is for the upper surface and the lower sign for the
This journal is ª The Royal Society of Chemistry 2011
lower surface. We note that the average frictional stress at wall s0

generally differs from sf, since it includes the contributions of

fluid pressure gradient at the interface and it can be easily

calculated once the deformed contacting surfaces have been

determined. In the simplest case of a smooth rigid (lower) surface

in contact with a rough compliant (upper) surface it is easy to

show:

s0 ¼ � u

2
TRVp0HmTS

U2 �U1

u
� m

u
TT2ðUm þU2Þ;

where the upper sign is for the upper surface and the lower sign

for the lower surface.
Acknowledgements

MS and GC acknowledge Region Puglia for having supported

the research activity through the constitution of the TRAS-

FORMA Laboratory Network cod. 28. MS also acknowledges

the Tribology group for the kind hospitality received during his

visit to the Department of Mechanical Engineering of Imperial

College London, where part of this work has been performed.
References

1 D. Dowson, 1998. History of Tribology. Instn Mech. Engrs, London,
UK.

2 F. P. Bowden, D. Tabor, 1950. The friction and lubrication of solids.
Oxford University Press.

3 B. N. J. Persson, 2000. Sliding friction: Physical principles and
applications. Springer.

4 M. Scaraggi, 2010. Contact and friction modeling of rough surfaces in
dry and lubricated contacts. PhD thesis, Politecnico di Bari.

5 J. F. Archard, Elastic deformation and the laws of friction, Proc. R.
Soc. London, Ser. A, 1957, 243(1233), 190–205.

6 J. A. Greenwood and J. B. P. Williams, Contact of Nominally Flat
Surfaces, Proc. R. Soc. London, Ser. A, 1966, 295(1442), 300–319.

7 B. N. J. Persson, Theory of rubber friction and contact mechanics, J.
Chem. Phys., 2001, 115(8), 3840–3861.

8 B. N. J. Persson, Contact mechanics for randomly rough surfaces,
Surf. Sci. Rep., 2006, 61, 201–227.

9 H. Gao, X. Wang, H. Yao, S. Gorb and E. Arzt, Mechanics of
hierarchical adhesion structures of geckos, Mech. Mater., 2005, 37
(2–3), 275–285.

10 H. Zhang, D. J. Guo and Z. D. Dai, Progress on gecko-inspired
micro/nano-adhesion arrays, Chin. Sci. Bull., 2010, 55(18), 1843–
1850.

11 E. Stratakis, A. Ranella and C. Fotakis, Biomimetic micro/
nanostructured functional surfaces for microfluidic and tissue
engineering applications, Biomicrofluidics, 2011, 5, 013411.

12 B. N. J. Persson and M. Scaraggi, On the transition from boundary
lubrication to hydrodynamic lubrication in soft contacts, J. Phys.:
Condens. Matter, 2009, 21(18), 185002.

13 B. N. J. Persson, O. Albohr, U. Tartaglino, A. I. Volokitin and
E. Tosatti, On the nature of surface roughness with application to
contact mechanics, sealing, rubber friction and adhesion, J. Phys.:
Condens. Matter, 2005, 17, R1–R62.

14 D. Dowson, Modelling of Elastohydrodynamic Lubrication of Real
Solids by Real Lubricants, Meccanica, 1998, 33, 47–58.

15 H. A. Spikes, Sixty years of EHL, Lubr. Sci., 2006, 18, 265–291.
16 B. N. J. Persson and C. Yang, Theory of the leak-rate of seals, J.

Phys.: Condens. Matter, 2008, 20(31), 315011.
17 B. Lorenz and B. N. J. Persson, Leak rate of seals: Effective-medium

theory and comparison with experiment, Eur. Phys. J. E, 2010, 31(2),
159–167.

18 F. Bottiglione, G. Carbone, L. Mangialardi and G. Mantriota,
Leakage Mechanism in Flat Seals, J. Appl. Phys., 2009, 106(10),
104902.

19 B. Lorenz and B. N. J. Persson, Leak rate of seals: Comparison of
theory with experiment, Europhys. Lett., 2009, 86, 44006.
Soft Matter, 2011, 7, 10395–10406 | 10405

http://dx.doi.org/10.1039/c1sm05128h


D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ul

ic
h 

G
m

bh
 o

n 
13

/0
5/

20
13

 0
8:

04
:1

7.
 

Pu
bl

is
he

d 
on

 2
2 

Se
pt

em
be

r 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

12
8H

View Article Online
20 P. Sperka, I. Krupka and M. Hartl, Experimental study of real
roughness attenuation in concentrated contacts, Tribol. Int., 2010,
43, 1893–1901.

21 C. J. Hooke and C. H. Venner, Surface roughness attenuation in line
and point contacts, Proc Inst. Mech. Eng., Part J, 2000, 214(5), 439–
444.

22 C. H. Venner and A. A. Lubrecht, An engineering tool for the
quantitative prediction of general roughness deformation in EHL
contacts based on harmonic waviness attenuation, Proceedings of
the Institution of Mechanical Engineers Part J-Journal of
Engineering Tribology, 2004, 219(42), 303–312.

23 C. J. Hooke and K. Y. Li, Rapid calculation of the pressures and
clearances in rough, elastohydrodynamically lubricated contacts
under pure rolling. Part 1: low amplitude, sinusoidal roughness,
Proc. Inst. Mech. Eng., Part C, 2006, 220(6), 901–913.

24 C. J. Hooke and K. Y. Li, Rapid calculation of the pressures and
clearances in rough, elastohydrodynamically lubricated contacts
under pure rolling. Part 2: general roughness, Proc. Inst. Mech.
Eng., Part C, 2006, 220(6), 915–925.

25 J. H. H. Bongaerts, K. Fourtouni and J. R. Stokes, Soft-tribology:
Lubrication in a compliant PDMS–PDMS contact, Tribol. Int.,
2007, 40, 1531–1542.

26 M. Scaraggi, G. Carbone and D. Dini, Experimental Evidence of
Micro-EHL Lubrication in Rough Soft Contacts, Tribol. Lett.,
2011, 43(2), 169–174.

27 N. Patir and H. S. Cheng, Average flow model for determining effects
of 3-dimensional roughness on partial hydrodynamic lubrication, J.
Lubr. Technol., 1978, 100(1), 12–17.

28 N. Patir and H. S. Cheng, Application of average flow model to
lubrication between rough sliding surfaces, J. Lubr. Technol., 1979,
101(2), 220–230.

29 D. C. Sun, Effects of 2-dimensional Reynolds roughness in
hydrodynamic lubrication, Proc. R. Soc. London, Ser. A, 1978, 364
(1716), 89–106.

30 W. L. Li, Some discussions on the flow factor tensor-considerations of
roughness orientation and flow rheology, J. Tribol., 2000, 122(4),
869–872.

31 S. R. Harp and R. F. Salant, An average flow model of rough surface
lubrication with inter-asperity cavitation, J. Tribol., 2001, 123(1),
134–143.

32 M. Prat, F. Plourabou�e and N. Letalleur, Averaged Reynolds
Equation for Flows between Rough Surfaces in Sliding Motion,
Transport in Porous Media, 2002, 48, 291–313.

33 A. Almqvist and J. Dasht, The homogenization process of the
Reynolds equation describing compressible liquid flow, Tribol. Int.,
2006, 39(9), 994–1002.
10406 | Soft Matter, 2011, 7, 10395–10406
34 F. Sahlin, A. Almqvist, R. Larsson and S. Glavatskih, Rough surface
flow factors in full film lubrication based on a homogenization
technique, Tribol. Int., 2007, 40(7), 1025–1034.

35 F. M. Meng, S. Q. Cen, Y. Z. Huc and H. Wang, On elastic
deformation, inter-asperity cavitation and lubricant thermal effects
on flow factors, Tribol. Int., 2009, 42(2), 260–274.

36 M. Scaraggi, G. Carbone and D. Dini, Lubrication in soft rough
contacts: A novel homogenized approach. Part II - Discussion, Soft
Matter, 2011, 7, DOI: 10.1039/c1sm05129f.

37 M. Scaraggi and G. Carbone, Transition from elastohydrodynamic to
mixed lubrication in highly loaded squeeze contacts, J. Mech. Phys.
Solids, 2010, 58(9), 1361–1373.

38 B. N. J. Persson, Contact mechanics for randomly rough surfaces,
Surf. Sci. Rep., 2006, 61(4), 201–227.

39 G. Carbone, B. Lorenz, B. N. J. Persson and A. Wohlers, Contact
mechanics and rubber friction for randomly rough surfaces with
anisotropic statistical properties,Eur. Phys. J. E, 2009, 29(3), 275–284.

40 B. N. J. Persson, Relation between Interfacial Separation and Load:
A General Theory of Contact Mechanics, Phys. Rev. Lett., 2007, 99
(12), 125502.

41 C. Yang and B. N. J. Persson, Contact mechanics: contact area and
interfacial separation from small contact to full contact, J. Phys.:
Condens. Matter, 2008, 20(21), 215214.

42 O. Reynolds, On the Theory of Lubrication and Its Application to
Mr. Beauchamp Tower’s Experiments, Including an Experimental
Determination of the Viscosity of Olive Oil, Philos. Trans. R. Soc.
London, 1886, 177, 157–234.

43 F. A. Howes and S. Whitaker, The spatial averaging theorem
revisited, Chem. Eng. Sci., 1985, 40(8), 1387–1392.

44 K. Tønder, Mathematical verification of the applicability of modified
reynolds equations to striated rough surfaces,Wear, 1977,44, 329–343.

45 B. N. J. Persson, Fluid dynamics at the interface between contacting
elastic solids with randomly rough surfaces, J. Phys.: Condens.
Matter, 2010, 22(26), 265004.

46 M. Scaraggi, F. Bottiglione, G. Carbone, 2010. On the fluid dynamics
in static sealing. In preparation.

47 B. N. J. Persson and F. Mugele, Squeeze-out and wear: fundamental
principles and applications, J. Phys.: Condens. Matter, 2004, 16,
R295.

48 P.Martin and F. Brochard-Wyart, Dewetting at Soft Interfaces,Phys.
Rev. Lett., 1998, 80(15), 3296–3299.

49 B. N. J. Persson, A. Volokitin and E. Tosatti, Role of the external
pressure on the dewetting of soft interfaces, Eur. Phys. J. E, 2003,
11(4), 409–413.

50 D. Stauffer, A. Aharony, 2003. Introduction to Percolation Theory.
2nd Revised Edition, Taylor & Francis.
This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c1sm05128h

	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory
	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory


