
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/25/1/3
The online version of this article can be found at:

DOI: 10.1177/1094342010391989

 2011 25: 3 originally published online 6 January 2011International Journal of High Performance Computing Applications
der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski and Kathy Yelick

Streitz, Bob Sugar, Shinji Sumimoto, William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero, Aad van
Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc Snir, Thomas Sterling, Rick Stevens, Fred

Paul Messina, Peter Michielse, Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima, Michael E
Keyes, Bill Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka,

Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway, David
Choudhary, Sudip Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld, Michael

Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, Franck Cappello, Barbara Chapman, Xuebin Chi, Alok
Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude Andre, David Barkai,

The International Exascale Software Project roadmap

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/25/1/3.refs.htmlCitations:

 What is This?

- Jan 6, 2011 OnlineFirst Version of Record

- Feb 11, 2011Version of Record >>

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/34899906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hpc.sagepub.com/
http://hpc.sagepub.com/content/25/1/3
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/25/1/3.refs.html
http://hpc.sagepub.com/content/25/1/3.full.pdf
http://hpc.sagepub.com/content/early/2011/01/04/1094342010391989.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://hpc.sagepub.com/

The International Exascale Software
Project roadmap

Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts,
Giovanni Aloisio, Jean-Claude Andre, David Barkai,
Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig,
Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh,
Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld,
Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka Ishikawa, Fred Johnson,
Sanjay Kale, Richard Kenway, David Keyes, Bill Kramer, Jesus Labarta, Alain Lichnewsky,
Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka, Paul Messina,
Peter Michielse, Bernd Mohr, Matthias S. Mueller,Wolfgang E. Nagel, Hiroshi Nakashima,
Michael E Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner,
Marc Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto,
William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero,
Aad van der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski and Kathy Yelick

Abstract
Over the last 20 years, the open-source community has provided more and more software on which the world’s high-
performance computing systems depend for performance and productivity. The community has invested millions of
dollars and years of effort to build key components. However, although the investments in these separate software ele-
ments have been tremendously valuable, a great deal of productivity has also been lost because of the lack of planning,
coordination, and key integration of technologies necessary to make them work together smoothly and efficiently, both
within individual petascale systems and between different systems. It seems clear that this completely uncoordinated
development model will not provide the software needed to support the unprecedented parallelism required for peta/
exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such
as transactional memory, speculative execution, and graphics processing units. This report describes the work of the
community to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated Inter-
national Exascale Software Project.

Keywords

exascale computing, high-performance computing, software stack

Table of Contents

1. Introduction 6
2. Destination of the IESP Roadmap 7
3. Technology Trends and their Impact on Exascale 8

3.1 Technology Trends 8
3.2 Science Trends 9

University of Tennessee at Knoxville, USA

Corresponding author:

Jack Dongarra, University of Tennessee, at Knoxville, 1122 Volunteer Boulevard, Suite 203, Knoxville, TN 37996-3450, USA.

Email: dongarra@cs.utk.edu

The International Journal of High
Performance Computing Applications
25(1) 3–60
ª The Author(s) 2011
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342010391989
hpc.sagepub.com

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

3.2.1 Energy Security 10
3.3 Key Requirements Imposed by Trends on the X-stack 10
3.4 Relevant Politico-economic Trends 11

4. Formulating Paths Forward for X-stack Component Technologies 11
4.1 System Software 12

4.1.1 Operating Systems 12
4.1.1.1 Technology Drivers for Operating Systems: Increasing Importance of Effective Management of

Increasingly Complex Resources 12
4.1.1.2 Alternative R&D Strategies for Operating Systems 12
4.1.1.3 Recommended Research Agenda for Operating Systems 12

4.1.2 Runtime Systems 13
4.1.2.1 Technology and Science Drivers for Runtime Systems 13
4.1.2.2 Alternative R&D Strategies for Runtime Systems 13
4.1.2.3 Recommended Research Agenda for Runtime Systems 13
4.1.2.4. Cross-cutting Considerations 15

4.1.3 I/O Systems 15
4.1.3.1 Technology and Science Drivers for I/O Systems 15
4.1.3.2 Alternative R&D Strategies for I/O Systems 16
4.1.3.3 Recommended Research Agenda for I/O Systems 17
4.1.3.4 Cross-cutting Considerations 17

4.1.4 Systems Management 17
4.1.4.1 Technology and Science Drivers for System Management 18
4.1.4.2 Alternative R&D Strategies for System Management 18
4.1.4.3 Recommended Research Agenda for System Management 18
4.1.4.4 Cross-cutting Considerations 19

4.1.5 External Environments 20
4.1.5.1 Technology and Science Drivers for External Environments 20
4.1.5.2 Alternative R&D Strategies for External Environments 21
4.1.5.3 Recommended Research Agenda for External Environments 22
4.1.5.4 Cross-cutting Considerations 22

4.2 Development Environments 23
4.2.1 Programming Models 23

4.2.1.1 Technology and Science Drivers for Programming Models 23
4.2.1.2 Alternative R&D Strategies for Programming Models 23
4.2.1.3 Recommended Research Agenda for Programming Models 23
4.2.1.4 Cross-cutting Considerations 23

4.2.2 Frameworks 24
4.2.2.1 Technology and Science Drivers for Frameworks 24
4.2.2.2 Alternative R&D Strategies for Frameworks 24
4.2.2.3 Recommended Research Agenda for Frameworks 24
4.2.2.4 Cross-cutting Considerations 26

4.2.3 Compilers 26
4.2.3.1 Technology and Science Drivers for Compilers 26
4.2.3.2. Alternative R&D Strategies for Compilers 26
4.2.3.3 Recommended Research Agenda for Compilers 26
4.2.3.4 Cross-cutting Considerations 27

4.2.4 Numerical Libraries 27
4.2.4.1 Technology and Science Drivers for Libraries 27
4.2.4.2 Alternative R&D Strategies for Libraries 27
4.2.4.3 Recommended Research Agenda for Libraries 27
4.2.4.4 Cross-cutting Considerations 28

4.2.5 Debugging 28
4.2.5.1 Technology Drivers for Debugging 28
4.2.5.2 Alternative R&D Strategies for Debugging 28
4.2.5.3 Recommended Research Agenda for Debugging 29

4.3 Applications 29
4.3.1 Application Element: Algorithms 29

4 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4.3.1.1 Technology and Science Drivers for Algorithms 29
4.3.1.2 Alternative R&D Strategies for Algorithms 30
4.3.1.3 Recommended Research Agenda for Algorithms 30
4.3.1.4 Cross-cutting Considerations 31

4.3.2 Application Support: Data Analysis and Visualization 31
4.3.2.1 Technology and Science Drivers for Data Analysis and Visualization 31
4.3.2.2 Alternative R&D Strategies for Data Analysis and Visualization 32
4.3.2.3 Recommended Research Agenda for Data Analysis and Visualization 33
4.3.2.4 Cross-cutting Considerations 33

4.3.3 Application Support: Scientific Data Management 33
4.3.3.1 Technology and Science Drivers for Scientific Data Management 33
4.3.3.2 Alternative R&D Strategies for Scientific Data Management 34
4.3.3.3 Recommended Research Agenda for Scientific Data Management 35
4.3.3.4 Cross-cutting Considerations 35

4.4 Cross-cutting Dimensions 35
4.4.1 Resilience 35

4.4.1.1 Technology Drivers for Resilience 35
4.4.1.2 Gap Analysis 35
4.4.1.3 Alternative R&D Strategies 36
4.4.1.4 Recommended Research Agenda for Resilience 36

4.4.2 Power Management 36
4.4.2.1 Technology Drivers for Power Management 36
4.4.2.2 Alternative R&D Strategies for Power Management 37
4.4.2.3 Recommended Research Agenda for Power Management 38

4.4.3 Performance Optimization 39
4.4.3.1 Technology and Science Drivers for Performance Optimization 39
4.4.3.2 Alternative R&D Strategies for Performance Optimization 39
4.4.3.3 Recommended Research Agenda for Performance Optimization 40
4.4.3.4 Cross-cutting Considerations 40

4.4.4 Programmability 41
4.4.4.1 Technology and Science Drivers for Programmability 41
4.4.4.2 Alternative R&D Strategies for Programmability 41
4.4.4.3 Recommended Research Agenda for Programmability 41
4.4.4.4 Cross-cutting Considerations 45

4.5 Summary of X-Stack Priorities 45
5. Application Perspectives and Co-design Vehicles 46

5.1 From Here to Exascale: An Application Community View 46
5.2 IESP Application Co-design Vehicles 47
5.3 Initial Considerations for Co-design Vehicle Analysis 48
5.4 Representative Co-design Vehicles 48

5.4.1 High-energy Physics/QCD 49
5.4.2 Plasma Physics/Fusion Energy Sciences 49
5.4.3 Strategic Development of IESP CDVs 52

5.5 Matrix of Applications and Software Components Needs 52
6. Perspectives on Cooperation between IESP and HPC Vendor Communities 53

6.1 Challenging Issues for Vendor/Community Cooperation 53
6.2 Taxonomy of Development/Support Models 53
6.3 Requirements and Methods 54
6.4 Software Testing 56
6.5 Recommendations 57

7. IESP Organization and Governance 57
7.1 Importance of a Business Case 57
7.2 Application of Current Funding Mechanisms 58
7.3 Governance Model 58
7.4 Vendor Interaction 58
7.5 Timeline 59

Dongarra et al. 5

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

1. Introduction

The technology roadmap presented here is the result of

more than a year of coordinated effort within the global

software community for high-end scientific computing. It

is the product of a set of first steps taken to address a critical

challenge that now confronts modern science and is pro-

duced by a convergence of three factors: (1) the compelling

science case to be made, in both fields of deep intellectual

interest and fields of vital importance to humanity, for

increasing usable computing power by orders of magnitude

as quickly as possible; (2) the clear and widely recognized

inadequacy of the current high-end software infrastructure,

in all its component areas, for supporting this essential

escalation; and (3) the near complete lack of planning and

coordination in the global scientific software community in

overcoming the formidable obstacles that stand in the way

of replacing it. At the beginning of 2009, a large group of

collaborators from this worldwide community initiated the

International Exascale Software Project (IESP) to carry

out the planning and the organization building necessary

to solve this vitally important problem.

With seed funding from key government partners in the

United States, European Union (EU), and Japan, as well as

supplemental contributions from some industry stake-

holders, we formed the IESP around the following mission:

The guiding purpose of the IESP is to empower ultra-high

resolution and data-intensive science and engineering

research through the year 2020 by developing a plan for

(1) a common, high-quality computational environment for

petascale/exascale systems and (2) catalyzing, coordinat-

ing, and sustaining the effort of the international open-

source software community to create that environment as

quickly as possible.

There exist good reasons to think that such a plan is

urgently needed. First and foremost, the magnitude of the

technical challenges for software infrastructure that the

novel architectures and extreme scale of emerging systems

bring with them is daunting (Kogge et al., 2008; Sarkar

et al., 2009b). These problems, which are already appearing

on the leadership-class systems of the US National Science

Foundation (NSF) and Department of Energy (DOE), as

well as on systems in Europe and Asia, are more than suf-

ficient to require the wholesale redesign and replacement of

the operating systems (OSs), programming models,

libraries, and tools on which high-end computing necessa-

rily depends.

Secondly, the complex web of interdependencies and

side effects that exist among such software components

means that making sweeping changes to this infrastructure

will require a high degree of coordination and collabora-

tion. Failure to identify critical holes or potential conflicts

in the software environment, to spot opportunities for

beneficial integration, or to adequately specify component

requirements will tend to retard or disrupt everyone’s

progress, wasting time that can ill afford to be lost. Since

creating a software environment adapted for extreme-

scale systems (e.g. the NSF’s Blue Waters) will require the

collective effort of a broad community, this community

must have good mechanisms for internal coordination.

Thirdly, it seems clear that the scope of the effort must

be truly international. In terms of its rationale, scientists in

nearly every field now depend on the software infrastruc-

ture of high-end computing to open up new areas of inquiry

(e.g. the very small, very large, very hazardous, and very

complex), to dramatically increase their research produc-

tivity, and to amplify the social and economic impact of

their work. It serves global scientific communities who

need to work together on problems of global significance and

leverage distributed resources in transnational configura-

tions. In terms of feasibility, the dimensions of the task –

totally redesigning and recreating, in the period of just a few

years, the massive software foundation of computational

science in order to meet the new realities of extreme-scale

computing – are simply too large for any one country, or

small consortium of countries, to undertake on its own.

The IESP was formed to help achieve this goal. Begin-

ning in April 2009, we held a series of three international

workshops, one each in the United States, Europe, and

Asia, in order to work out a plan for doing so. Information

about, and the working products of all these meetings, can

be found at the project website, http://www.exascale.org. In

developing a plan for producing a new software infrastruc-

ture capable of supporting exascale applications, we

charted a path that moves through the following sequence

of objectives.

1. Make a thorough assessment of needs, issues and

strategies: a successful plan in this arena requires a

thorough assessment of the technology drivers for

future peta/exascale systems and of the short-term,

medium-term, and long-term needs of applications that

are expected to use them. The IESP workshops brought

together a strong and broad-based contingent of

experts in all areas of high-performance computing

(HPC) software infrastructure, as well as representa-

tives from application communities and vendors, to

provide these assessments. As described in more detail

below, we also leveraged the substantial number of

reports and other material on future science applica-

tions and HPC technology trends that different parts

of the community have created in the past three years.

2. Develop a coordinated software roadmap: the results

of the group’s analysis have been incorporated into a

draft of a coordinated roadmap intended to help guide

the open-source scientific software infrastructure effort

with better coordination and fewer missing compo-

nents. This document represents the current version

of that roadmap.

3. Provide a framework for organizing the software

research community: with a reasonably stable and

complete version of the roadmap in hand, we will

6 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

endeavor to develop an organizational framework to

enable the international software research community

to work together to navigate the roadmap and reach the

appointed destination – a common, high-quality com-

putational environment that can support extreme-

scale science on extreme-scale systems. The frame-

work will include elements such as initial working

groups, outlines of a system of governance, alternative

models for shared software development with common

code repositories, and feasible schemes for selecting

valuable software research and encouraging its transla-

tion into usable, production-quality software for appli-

cation developers. This organization must also foster

and help coordinate research and development

(R&D) efforts to address the emerging needs of users

and application communities.

4. Engage and coordinate with the vendor community in

cross-cutting efforts: to leverage resources and create a

more capable software infrastructure for supporting

exascale science, the IESP is committed to engaging

and coordinating with vendors across all of its other

objectives. Industry stakeholders have already made

contributions to the workshops (i.e. objectives 1 and

2 above) and we expect similar, if not greater participa-

tion, in the effort to create a model for cooperation, as

well as coordinated R&D programs for new exascale

software technologies.

5. Encourage and facilitate collaboration in education

and training: the magnitude of the changes in program-

ming models and software infrastructure and tools

brought about by the transition to peta/exascale archi-

tectures will produce tremendous challenges in the

area of education and training. As it develops its model

of community cooperation, the IESP plan must, there-

fore, also provide for cooperation in the production of

education and training materials to be used in curri-

cula, at workshops and online.

This roadmap document, which focuses on objectives 1

and 2 above, represents the main result of the first phase of

the planning process. Although some work on tasks 3–5 has

already begun, we plan to solicit, and expect to receive in

the near future, further input on the roadmap from a much

broader set of stakeholders in the computational science

community. This version of the roadmap begins that pro-

cess by including more extensive input from the science

application community, international funding agencies, and

vendor partners. The additional ideas and information we

gather as the roadmap is disseminated are likely to produce

changes that need to be incorporated into future iterations

of the document as plans for objectives 3–5 develop and

cooperative R&D efforts begin to take shape.

2. Destination of the IESP Roadmap

The metaphor of the roadmap is intended to capture the idea

that we need a representation of the world, drawn from our

current vantage point, in order to better guide us from where

we are now to the destination we want to reach. Such a

device is all the more necessary when a large collection of

people, not all of whom are starting from precisely the same

place, need to make the journey. In formulating such a map,

agreeing on a reasonably clear idea of the destination is

obviously an essential first step. Building on the background

knowledge that motivated the work of IESP participants,

we define the goal that the roadmap is intended to help our

community reach as follows:

By developing and following the IESP roadmap, the inter-

national scientific software research community seeks to

create a common, open-source software infrastructure

for scientific computing that enables leading-edge science

and engineering groups to develop applications that exploit

the full power of the exascale computing platforms that will

come online in the 2018–2020 timeframe. We call this inte-

grated collection of software the extreme-scale/exascale

software stack, or X-stack.

Unpacking the elements of this goal statement in the

context of the work performed so far by the IESP reveals

some of the characteristics that the X-stack must possess,

at minimum.

� The X-stack must enable suitably designed science

applications to exploit the full resources of the largest

systems: the main goal of the X-stack is to support

groundbreaking research on tomorrow’s exascale com-

puting platforms. By using these massive platforms and

X-stack infrastructure, scientists should be empowered

to attack problems that are much larger and more com-

plex, make observations and predictions at much higher

resolution, explore vastly larger datasets, and reach

solutions dramatically faster. To achieve this goal, the

X-stack must enable scientists to use the full power of

exascale systems.

� The X-stack must scale both up and down the platform

development chain: science today is done on systems at

a range of different scales, from departmental clusters

to the world’s largest supercomputers. Since leading

research applications are developed and used at all

levels of this platform development chain, the X-stack

must support them well at all these levels.

� The X-stack must be highly modular, so as to enable

alternative component contributions: the X-stack is

intended to provide a common software infrastructure

on which the entire community builds its science applica-

tions. For both practical and political reasons (e.g.

sustainability, risk mitigation), the design of the X-stack

should strive for modularity that makes it possible for

many groups to contribute and accommodate more than

one choice in each software area.

� The X-stack must offer open-source alternatives for all

components in the X-stack: for both technical and

mission-oriented reasons, the scientific software

Dongarra et al. 7

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

research community has long played a significant role

in the open-source software movement. Continuing this

important tradition, the X-stack will offer open-source

alternatives for all of its components, even though it

is clear that exascale platforms from particular vendors

may support, or even require, some proprietary soft-

ware components as well.

3. Technology Trends and their Impact on
Exascale

The design of the extreme-scale platforms that are expected

to become available in 2018 will represent a convergence

of technological trends and the boundary conditions

imposed by over half a century of algorithm and application

software development. Although the precise details of

these new designs are not yet known, it is clear that they

will embody radical changes along a number of different

dimensions as compared to the architectures of today’s

systems and that these changes will render obsolete the

current software infrastructure for large-scale scientific

applications. The first step in developing a plan to ensure

that appropriate system software and applications are ready

and available when these systems come online, so that

leading-edge research projects can actually use them, is

to carefully review the underlying technological trends that

are expected to have such a transformative impact on

computer architecture in the next decade. These factors and

trends, which we summarize in the following sections,

provide essential context for thinking about the looming

challenges of tomorrow’s scientific software infrastructure;

therefore, describing them lays the foundation on which

subsequent sections of this roadmap document builds.

3.1 Technology Trends

In developing a roadmap for the X-stack software infra-

structure, the IESP has been able to draw on several

thoughtful and extensive studies of impacts of the current

revolution in computer architecture (Kogge et al., 2008;

Sarkar et al., 2009a). As these studies make clear, technol-

ogy trends over the next decade – broadly speaking,

increases of 1000� in capability over today’s most massive

computing systems, in multiple dimensions, as well as

increases of similar scale in data volumes – will force a

disruptive change in the form, function, and interoperabil-

ity of future software infrastructure components and the

system architectures incorporating them. The momentous

nature of these changes can be illustrated for several critical

system-level parameters.

� Concurrency – Moore’s law scaling in the number of

transistors is expected to continue through the end of

the next decade, at which point the minimal very

large-scale integration (VLSI) geometries will be as

small as five nanometers. Unfortunately, the end of

Dennard scaling means that clock rates are no longer

keeping pace, and may in fact be reduced in the next

few years to reduce power consumption. As a result, the

exascale systems on which the X-stack will run will

likely be composed of hundreds of millions of arith-

metic logic units (ALUs). Assuming there are multiple

threads per ALU to cover main-memory and network-

ing latencies, applications may contain ten billion

threads.

� Reliability – system architecture will be complicated by

the increasingly probabilistic nature of transistor beha-

vior due to reduced operating voltages, gate oxides, and

channel widths/lengths, resulting in very small noise

margins. Given that state-of-the-art chips contain bil-

lions of transistors and the multiplicative nature of

reliability laws, building resilient computing systems

out of such unreliable components will become an

increasing challenge. This cannot be cost-effectively

addressed with pairing or traditional matrix representa-

tion (TMR); rather, it must be addressed by X-stack

software and perhaps even scientific applications.

� Power consumption – 20 years ago, HPC systems

consumed less than a megawatt. The Earth Simulator

was the first such system to exceed 10 MW. Exascale

systems could consume over 100 MW, and few of

today’s computing centers have either adequate infra-

structure to deliver such power or the budgets to pay

for it. The HPC community may find itself measuring

results in terms of power consumed, rather than oper-

ations performed. The X-stack and the applications it

hosts must be conscious of this situation and act to

minimize it.

Similarly dramatic examples could be produced for

other key variables, such as storage capacity, efficiency,

and programmability.

More importantly, a close examination shows that

changes in these parameters are interrelated and not ortho-

gonal. For example, scalability will be limited by efficiency,

as are power and programmability. Other cross correlations

can be perceived through analysis. The Defense Advanced

Research Projects Agency (DARPA) Exascale Technology

Study (Kogge et al., 2008) exposes power as the pacesetting

parameter. Although an exact power consumption con-

straint value is not yet well defined, with upper limits of

today’s systems of the order of 5 megawatts, increases of

an order of magnitude in less than 10 years will extend

beyond the practical energy demands of all but a few strate-

gic computing environments. A politico-economic pain

threshold of 25 megawatts has been suggested (by the

DARPA) as a working boundary. With dramatic changes

to core architecture design, system integration, and pro-

gramming control over data movement, best estimates for

complementary metal-oxide semiconductor (CMOS)-based

systems at the 11-nanometer feature size is a factor of

between three and five times this amount. One consequence

is that clock rates are unlikely to increase substantially in

spite of the IBM Power architecture roadmap with clock

8 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

rates between 0.5 and 4.0 GHz, a safe regime, and a nominal

value of 2.0 GHz that is appropriate, at least for some logic

modules. Among the controversial questions is how much

instruction-level parallelism (ILP) and speculative opera-

tion is likely to be incorporated on a per processor core

basis and the role of multithreading in subsuming more

of the fine-grained control space. Data movement across

the system, through the memory hierarchy, and even for

register-to-register operations, will likely be the single

principal contributor to power consumption, with control

adding to this appreciably. Since future systems can ill

afford the energy wasted by data movement that does not

advance the target computation, alternative ways of hiding

latency will be required in order to guarantee, as much as

possible, the utility of every data transfer. Even taking into

account the wastefulness of today’s conventional server-

level systems and the energy gains that careful engineering

has delivered for systems such as Blue Gene/P, an improve-

ment of the order of 100�, at minimum, will still be

required.

As a result of these and other observations, exascale

system architecture characteristics are beginning to

emerge, although the details will become clear only as the

systems themselves actually develop. Among the critical

aspects of future systems, available by the end of the next

decade, which we can predict with some confidence are the

following:

� feature size of 11–22 nanometers, CMOS in 2018;

� total average of 25 picojoules per floating-point

operation;

� approximately 10 billion-way concurrency for simulta-

neous operation and latency hiding;

� 100 million to 1 billion cores;

� clock rates of 1–2 GHz;

� multithreaded, fine-grained concurrency of 10–100-

way concurrency per core;

� hundreds of cores per die (varies dramatically depend-

ing on core type and other factors);

� global address space without cache coherence; exten-

sions to partitioned global address space (PGAS) (e.g.

AGAS);

� 128-petabyte capacity mix of dynamic random-access

memory (DRAM) and non-volatile memory (most

expensive subsystem);

� explicitly managed high-speed buffer caches; part of

deep memory hierarchy;

� optical communications for distances >10 centimeters,

possibly inter-socket;

� optical bandwidth of 1 terabit per second;

� system-wide latencies of the order of tens of thousands

of cycles;

� active power management to eliminate wasted energy

by momentarily unused cores;

� fault tolerance by means of graceful degradation and

dynamically reconfigurable structures;

� hardware-supported rapid thread context switching;

� hardware-supported efficient message-to-thread con-

version for message-driven computation;

� hardware-supported, lightweight synchronization

mechanisms;

� three-dimensional (3-D) packaging of dies for stacks of

between four and 10 dies, each including DRAM,

cores, and networking.

Because of the nature of the development of the under-

lying technology, most of the predictions above have an

error margin of þ/–50% or a factor of 2, independent of

specific roadblocks that may prevent reaching the predicted

value.

3.2 Science Trends

A basic driver of the IESP is the fact that the complexity of

advanced challenges in science and engineering continues

to outpace our ability to adequately address them through

available computational power. Many phenomena can be

studied only through computational approaches; well-

known examples include simulating complex processes

in climate and astrophysics. Increasingly, experiments and

observational systems are finding that not only are the data

they generate exceeding petabytes and rapidly heading

toward exabytes, but the computational power needed to

process the data is also expected to be in the exaflops range.

A number of reports and workshops have identified key

science challenges and applications of societal interest that

require computing at exaflop levels and beyond (Depart-

ment of Energy, 2008a,b, 2009a,b,c,d,e,f,g,h, 2010;

National Research Council Committee on the Potential

Impact of High-End Computing on Illustrative Fields of

Science and Engineering, 2008; Stevens et al., 2008). Here

we summarize some of the significant findings on the

scientific necessity of exascale computing; we focus pri-

marily on the need for the software environments needed

to support the science activities. The DOE held eight work-

shops in the past year that identified science advances and

important applications that will be enabled through the use

of exascale computing resources. The workshops covered

the following topics: climate, high-energy physics, nuclear

physics, fusion energy sciences (FES), nuclear energy,

biology, materials science and chemistry, and national

nuclear security. The US National Academy of Sciences

published the results of a study in the report ‘The Potential

Impact of High-End Capability Computing on Four Illustra-

tive Fields of Science and Engineering’ (National Research

Council Committee on the Potential Impact of High-End

Computing on Illustrative Fields of Science and Engineer-

ing, 2008). The four fields were astrophysics, atmospheric

sciences, evolutionary biology, and chemical separations.

Likewise, the NSF has embarked on a petascale comput-

ing program that has funded dozens of application teams

through its Peta-Apps and PRAC programs, across all areas

of science and engineering, to develop petascale applica-

tions, and is deploying petaflops systems, including Blue

Dongarra et al. 9

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Waters, expected to come online in 2011. It has commis-

sioned a series of task forces to help plan for the transition

from petaflop to exaflop computing facilities, to support the

software development necessary, and to understand the

specific science and engineering needs beyond petascale.

Similar activities are seen in Europe and Asia, all reach-

ing similar conclusions: significant scientific and engineer-

ing challenges in both simulation and data analysis already

exceed petaflops and are rapidly approaching exaflop-class

computing needs. The Partnership for Advanced Comput-

ing in Europe (PRACE) involves 20 partner countries,

supports access to world-class computers, and has activities

aimed at supporting multi-petaflop and eventually exaflop-

scale systems for science. The EU is also planning to

launch projects aimed at petascale and exascale computing

and simulation. Japan has a project to build a 10-petaflop

system and has historically supported the development of

software for key applications, such as climate. As a result,

scientific and computing communities, and the agencies

that support them in many countries, have been meeting

to plan joint activities that will be needed to support these

emerging science trends.

To give a specific and timely example, a recent report1

states that the characterization of abrupt climate change

will require sustained exascale computing in addition to

new paradigms for climate change modeling. The types

of questions that could be tackled with exascale computing

(and cannot be tackled adequately without it) include the

following.

� ‘How do the carbon, methane, and nitrogen cycles

interact with climate change?’

� ‘How will local and regional water, ice, and clouds

change with global warming?’

� ‘How will the distribution of weather events, particu-

larly extreme events, determine regional climate

change with global warming?’

� ‘What are the future sea-level and ocean circulation

changes?’

Among the findings of the astrophysics workshop and

other studies are that exascale computing will enable cos-

mology and astrophysics simulations aimed at the

following:

� measuring the masses and interactions of dark matter;

� understanding and calibrating supernovae as probes of

dark energy;

� determining the equation of state of dark energy;

� measuring the masses and interactions of dark matter;

� understanding the nature of gamma-ray bursts.

3.2.1 Energy Security. The search for a path forward in assur-

ing sufficient energy supplies in the face of a climate-

constrained world faces a number of technical challenges,

ranging from issues related to novel energy technologies,

to issues related to making existing energy technologies

more (economically) effective and safer, to issues related

to the verification of international agreements regarding the

emission (and possible sequestration) of CO2 and other

greenhouse gases. Among the science challenges are the

following:

� verification of ‘carbon treaty’ compliance;

� improvement in the safety, security, and economics of

nuclear fission;

� improvement in the efficiency of carbon-based electric-

ity production and transportation;

� improvement in the reliability and security in the

(electric) grid;

� nuclear fusion as a practical energy source.

Computational research will also play an essential role

in the development of new approaches to meeting future

energy requirements (e.g. wind, solar, biomass, hydrogen,

and geothermal), which in many cases will require exascale

power.

Industrial applications, such as simulation-enhanced

design and production of complex manufactured systems

and rapid virtual prototyping, will also be enabled by exas-

cale computing. To characterize material deformation and

failure in extreme conditions will require atomistic simula-

tions on engineering time scales that are out of reach with

petascale systems.

A common theme in all of these studies of the important

science and engineering applications that are enabled by

exaflop computing power is that they have complex struc-

tures and present programming challenges beyond just

scaling to many millions of processors. For example, many

of these applications involve multiple physical phenomena

spanning many decades of spatial and temporal scale. As

the ratio of computing power to memory grows, the ‘weak

scaling,’ which has been exploited for most of the last

decade, will increasingly give way to ‘strong scaling,’

which will make scientific applications increasingly sensi-

tive to overhead and noise generated by the X-stack. These

applications are increasingly constructed of components

developed by computational scientists worldwide, and the

X-stack must support the integration and performance port-

ability of such software.

3.3 Key Requirements Imposed by Trends on the
X-stack

The cited trends in technology and applications will impose

severe constraints on the design of the X-stack. Below are

cross-cutting issues that will affect all aspects of system

software and applications at exascale.

Concurrency: a 1000� increase in concurrency for a

single job will be necessary to achieve exascale throughput.

New programming models will be needed to enable appli-

cation groups to address concurrency in a more natural

way. This capability will likely have to include ‘strong

scaling’ because growth in the volume of main memory

10 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

will not match that of the processors. This in turn will

require minimizing any X-stack overheads that might oth-

erwise become a critical Amdahl fraction.

Energy: since much of the power in an exascale system

will be expended moving data, both locally between pro-

cessors and memory as well as globally, the X-stack must

provide mechanisms and application programming inter-

faces (APIs) for expressing and managing data locality.

These will also help minimize the latency of data accesses.

APIs also should be developed to allow applications to

suggest other energy-saving techniques, such as turning

cores on and off dynamically, even though these techniques

could result in other problems, such as more faults/errors.

Resiliency: the VLSI devices from which exascale

systems will be constructed will not be as reliable as those

used today. All software, and therefore all applications, will

have to address resiliency in a thorough way if they are to

be expected to run at scale. Hence, the X-stack will have to

recognize and adapt to errors continuously, as well as pro-

vide the support necessary for applications to do the same.

Heterogeneity: heterogeneous systems offer the oppor-

tunity to exploit the extremely high performance of niche

market devices such as graphics processing units (GPUs)

and game chips (e.g. STI Cell), while still providing a

general-purpose platform. An example of such a system

today is Tokyo Tech’s Tsubame, which incorporates AMD

Opteron central processing units (CPUs) along with

Clearspeed and NVIDIA accelerators. Simultaneously,

large-scale scientific applications are also becoming more

heterogeneous, addressing multiscale problems spanning

multiple disciplines.

Input/output (I/O) and memory: insufficient I/O capa-

bility is a bottleneck today. Ongoing developments in

instrument construction and simulation design make it clear

that data rates can be expected to increase by several orders

of magnitude over the next decade. The memory hierarchy

will change based on both new packaging capabilities and

new technology. Local random-access memory (RAM) and

non-volatile random access memory (NVRAM) will be

available either on or very close to the nodes. The change

in memory hierarchy will affect programming models and

optimization.

3.4 Relevant Politico-economic Trends

The HPC market is growing at approximately 11% per

year. The largest-scale systems, those that will support the

first exascale computations at the end of the next decade,

will be deployed by government computing laboratories

to support the quest for scientific discovery. These capabil-

ity computations often consume an entire HPC system and

pose difficult challenges for concurrent programming,

debugging, and performance optimization. Thus, publicly

funded computational scientists will be the first users of the

X-stack and have a tremendous stake in seeing that suitable

software exists, which is the raison d’être for the IESP.

In the late 1980s, the commercial engineering market

place, spanning diverse fields such as computer-aided engi-

neering and oil reservoir modeling, used the same comput-

ing platforms and often the same software as the scientific

community. This is far less the case today. The commercial

workload tends to be more capacity oriented, involving

large ensembles of smaller computations. The extreme lev-

els of concurrency necessary for exascale computing sug-

gests that this trend may not change, so it is not clear

how much demand for those features of the X-stack unique

to exascale computing will come from commercial HPC

users. On the other hand, the HPC vendor community is

eager to work with, and leverage the R&D effort of, the

IESP software community. To that end, plans for coopera-

tion and coordination between the IESP software and the

HPC vendor community are being developed; we summar-

ize the current state of this discussion in Section 6.

4. Formulating Paths Forward for X-stack
Component Technologies

In this section of the roadmap, the longest and most

detailed, we undertake the difficult task of translating the

critical system requirements for the X-stack, presented in

Section 3, into concrete recommendations for R&D agen-

das for each of the software areas and necessary compo-

nents of the X-stack. The roadmapping template we used

roughly follows the approach described in the excellent

study from Sandia National Laboratories by Garcia and

Bray (1997). Accordingly, the discussion of each compo-

nent or area is divided into the following parts.

� Technology and science drivers: the impacts of the

critical technology trends and science requirements

must be described and analyzed for each software area

and/or component of the X-stack. These impacts repre-

sent technology and science drivers for each such area/

component of the X-stack, and each must be evaluated

in terms of how well or poorly current technologies

address the target requirements and where the obstacles

to progress lie.

� Alternative R&D strategies: once the technology and

science drivers are identified and studied, the different

possible lines of attack on the problems and challenges

involved, insofar as we can see them today, need to be

described and explored.

� R&D agenda recommendations: alternative R&D

strategies in each area need to be evaluated and ranked,

and actual plans, including specific milestones, must be

drawn up. Clearly these plans must take into account a

variety of factors, many of which have been (or should

be) described elsewhere in the roadmap.

� Cross-cutting considerations: many of the parts of the

X-stack will have interdependencies and cross-cutting

effects related to other component areas; allusions to

these effects are likely to be laced or scattered through

the previous three sections. In many cases it will be

Dongarra et al. 11

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

desirable to break out a summary of these considerations

as a separate section in order to highlight gaps or to

ensure that activities are suitably coordinated. This ver-

sion of the roadmap focuses on four such cross-cutting

areas: resiliency, power/total-cost-of-ownership, per-

formance, and programmability.

4.1 System Software

The system software list is often described as that software

that manages system resources on behalf of the application

but is usually transparent to the user. For the purposes of

mapping the road to a viable X-stack, we include under this

heading the OS, runtime system, I/O system, and essential

interfaces to the external environment (e.g. data reposi-

tories, real-time data streams, and clouds). Each of these

areas is treated in turn below.

4.1.1 Operating Systems
4.1.1.1 Technology Drivers for Operating Systems: Increasing

Importance of Effective Management of Increasingly Complex
Resources. Exascale systems will increase the complexity

of resources available in the system. Moreover, in order

to attain the benefits offered by an exascale system, effec-

tive management of these resources will be increasingly

important.

As an example, consider the execution environment pre-

sented by an exascale system. Current systems provide

hundreds of thousands of nodes with a small number of

homogeneous computational cores per node. Exascale

systems will increase the complexity of the computational

resource in two dimensions. Firstly, the core count per node

will increase substantially. Secondly, the cores most likely

will be heterogeneous (e.g. combining stream-based cores

with traditional cores based on load/store). In addition to

increasing the complexity of the computational resources,

the resources shared between the computational resources

(e.g. the memory bus) can have a far greater impact on

performance.

Besides the changes in the resources provided by an

exascale system, the programming models will undergo

an evolution. In particular, non-message-passing interface

(MPI) programming models will undoubtedly have increas-

ing presence in exascale systems. The only trends clear at

the present time are that there will be an increasing empha-

sis on data-centric computations and that programming

models will continue to emphasize the management of

distributed-memory resources. Given the evolution in

programming models, we can also expect that individual

applications will incorporate multiple programming mod-

els. For example, a single application may incorporate

components that are based on the MPI and other compo-

nents that are based on shared memory. The particular com-

bination of programming models may be distributed over

time (different phases of the application) or space (some

of the nodes run the MPI; others run shared memory).

The purpose of an OS is to provide a bridge between the

physical resources provided by a computing system and the

runtime system needed to implement a programming

model. Given the rapid change in resources and program-

ming models, a common OS must be defined for the exas-

cale community. This will provide the exascale community

with a common set of APIs that can be used by a runtime

system to support fully autonomic management of

resources, including adaptive management policies that

identify and react to load imbalances and the intermittent

loss of resources (resilience). In order to achieve this goal,

the APIs supported by the OS must expose low-level

resource APIs, and the runtime must be aware of the con-

text (within the application) of a specific computation.

4.1.1.2 Alternative R&D Strategies for Operating Systems.
Several approaches could be adopted in the development

of a community OS for exascale systems. One approach

is to evolve an existing OS, for example, Linux, Plan 9,

or IBM’s Compute Node Kernel. An alternative approach

is to start with a new design to address the specific needs

of exascale systems. The first approach has the advantage

that the APIs provided by the OS have already been

defined, and many runtime implementations have already

been developed for the APIs. Moreover, these OSs also pro-

vide drivers for many of the devices that will be used in

exascale systems (e.g. the peripheral component intercon-

nect (PCI) bus). However, because the APIs are based on

the resources provided by previous systems (many of these

OSs were defined nearly a half-century ago), they may not

provide the appropriate access to the resources provided by

an exascale system. In the end, it is likely that a hybrid

approach, which builds on APIs and existing code bases

and redesigns and modifies the most specialized compo-

nents, will prevail.

The OS must maintain a high degree of flexibility. This

flexibility can be accomplished only by minimizing the

resource management strategies that are required by the

OS.

4.1.1.3 Recommended Research Agenda for Operating
Systems. The first step in the development of a common

OS for the exascale community is to develop a framework

for the OS. This should be undertaken by a small collection

of researchers who have significant experience in imple-

menting HPC OSs.

One of the critical challenges in developing HPC OSs is

our inability to study the impact of resource management

decisions ‘at scale.’ To remedy this problem, we will need

to develop a full-system simulation capability. A number of

efforts are addressing parts of the full-system simulation

capability; however, these efforts need to be coordinated

to ensure that they provide the needed capability.

The most critical APIs provided by the community OS

will include APIs to support inter- and intranode communi-

cation, inter- and intranode thread management, and expli-

cit management of the memory hierarchy provided by the

entire system. APIs to support energy management and

12 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

resilience will also be critical. However, these APIs require

more experience and, as such, their final definition should

be deferred until the final stages of this research activity.

The critical research areas in which substantial, if not

groundbreaking, innovations will be required in order to

reach this goal are the following:

� fault-tolerant/masking strategies for collective OS

services;

� strategies and mechanisms for power/energy

management;

� strategies for simulating full-scale systems;

� general strategies for global (collective) OS services.

4.1.2 Runtime Systems
4.1.2.1 Technology and Science Drivers for Runtime Systems.

The role of a runtime system is to act on behalf of the appli-

cation in matching its algorithm’s characteristics and

requirements to the resources that the system makes avail-

able in order to optimize performance and efficiency. By

programming to the runtime system’s interface, application

developers are freed from the mundane but often difficult

jobs of task scheduling, resource management, and other

low-level operations that would force them to think about

the computer rather than the science they are trying to

do. As the description of the technology trends and science

requirements above suggests, it will be extremely challen-

ging to create runtime systems that can continue to fulfill

this role. The design of tomorrow’s runtime systems will

be driven not only by dramatic increases in overall system

hierarchy and high variability in the performance and avail-

ability of hardware components, but also by the expected

diversity of application characteristics, the multiplicity of

different types of devices, and the large latencies caused

by deep memory subsystems. Against this background, two

general constraints on design and operation of X-stack

runtime systems need to be highlighted: power/energy

constraints and application development cost. The first con-

straint establishes the objective for X-stack runtimes as max-

imizing the achieved ratio of performance to power/energy

consumption, instead of raw performance alone. The second

constraint means that X-stack runtimes must focus on sup-

porting the execution of the same program at all levels of the

platform development chain, which is in line with the basic

criteria for X-stack success (Section 2).

The runtime system is the part of the software infrastruc-

ture where actual and more accurate information is available

about system resources allocated to the application, its needs

and potential performance; thus this component has the

potential to make better-informed decisions on behalf of the

application. To achieve this goal, however, and successfully

insulate application programmers from the complexities of

extreme-scale platforms, X-stack runtimes will have to

incorporate much more intelligence than current technolo-

gies support. The real challenge will be to use this added

intelligence effectively in the limited timeframe that is typi-

cally available while the application runs. Being in charge of

the actual execution of the program, the runtime system is

also a key component for resilience. Being in charge of the

actual execution of the program, the runtime system is also a

key component for resilience. For example, it should detect

and forecast problems, and provide basic mechanisms that

enable the application to ‘survive’ faults and, subsequently,

reallocate the potentially reduced set of resources so that

performance is still maximized.

4.1.2.2 Alternative R&D Strategies for Runtime Systems.
Several directions can and should be tried in order to create

X-stack runtimes that achieve the targeted scale. The most

obvious division of alternatives is in terms of degree of

hierarchy, namely, a flat runtime model (e.g. message pass-

ing) and a hierarchical model (e.g. shared memory within a

node and message passing across nodes). In the latter case,

the runtime hierarchy can have the same underlying model

at different levels or use different models at different levels.

Flat and hierarchical alternatives are not totally opposed in

direction, and a hybrid approach can certainly benefit from

the flat approach pushing its capabilities to the limits.

Another set of alternatives to explore are general-purpose

runtime systems, on the one hand, and application type-

or area-specific (or customizable) runtime systems, capable

of more effectively exploiting platform resources relative

to special sets of needs, on the other.

4.1.2.3 Recommended Research Agenda for Runtime
Systems. Challenging research topics include heterogeneity,

Table 1.

Timeframe Targets and milestones – operating systems

2010–2011 Community-defined framework for HPC operating systems that defines a set of core components
and coarse-grained APIs for accessing the resources provided by an HPC system.

2012–2013 Scalable, full-system simulation environment that can be used to evaluate resource management
mechanisms at scale.

2014–2015 APIs for fine-grained management of internode communication, thread management, and memory
hierarchy management.

2016–2017 APIs for fine-grained management of power (energy) and resilience.
2018–2019 At least one runtime system that provides global, autonomic management of the resources provided

by a HPC system. This runtime system should provide for transparent resilience in the
presence of failing resources.

Dongarra et al. 13

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

asynchrony, reduction of process management and synchro-

nization overheads, provision of shared naming/addressing

spaces, optimization of communication infrastructure,

scheduling for parallel efficiency and memory efficiency,

memory management, and application-specific customiz-

ability. These topics can be grouped into four priority

research directions (PRDs).

� Heterogeneity:

– Research challenge: X-stack runtime systems will have

to work on several different platforms, each of them

heterogeneous, and this will certainly prove challen-

ging. The objective will be to optimize the application’s

utilization of resources for best power/performance by

helping the application adapt to and exploit the level

of granularity supported by the underlying hardware.

– Anticipated research directions: anticipated research

includes unified/transparent accelerator runtime models;

exploitation of systems with heterogeneous (functional-

ity/performance) nodes and interconnects; scheduling for

latency tolerance and bandwidth minimization; and

adaptive selection of granularity. This type of research

is also expected to be useful for homogeneous multicores.

– Impact: research in this area broadens the portability of

programs, decoupling the specification of the computa-

tions from details of the underlying hardware, thereby

allowing programmers to focus more exclusively on

their science.

� Load balance:

– Research challenge: a key challenge is to adapt to the

unavoidable variability in time and space (processes/

processors) of future applications and systems. This

will have to be done with the objective of optimizing

resource utilization and execution time.

– Anticipated research directions: directions include

general-purpose, self-tuned runtime systems that detect

imbalance and reallocate resources (e.g. cores, storage,

dynamic voltage and frequency scaling (DVFS), band-

width) within or across processes and other entities at

the different levels; virtualization-based mechanisms

to support load balancing; minimization of the impact

of temporary resource shortages, such as those caused

(at different granularity levels) by OS noise; and partial

job preemptions.

– Impact: research in this area will result in self-tuned

runtime systems that will counteract, at fine granularity,

unforeseen variability in application load and availabil-

ity and performance of resources, thus reducing the

frequency at which more expensive application-level

rebalancing approaches will have to be used. Globally,

this will significantly reduce the effort requested of the

programmers to achieve efficient resource utilization

and ensure that the resources that cannot be profitably

used are returned to the system to be reallocated.

� Flat runtime systems:

– Research challenge: a major challenge is to increase the

scalability of existing and proposed models with

respect to the resources required for their implementa-

tion and the overheads they incur. This includes the

need to optimize the utilization that is currently

achieved of internal resources, such as adaptors and

communication infrastructure. In addition, typical prac-

tices today where globally synchronizing calls (bar-

riers, collectives) represent big limitations at large

scale will have to be addressed.

– Anticipated research directions: research will be

needed in optimization of resources and infrastruc-

ture for implementing the runtime system (e.g. mem-

ory used by message-passing libraries, overheads for

process management and synchronization) and

increased usage of prediction techniques to acceler-

ate the runtime system, or at least introduction of

high levels of asynchrony and communication/com-

putation overlap (i.e. asynchronous MPI collectives,

APGAS approaches, and data-flow task-based

approaches). Also needed will be hierarchical imple-

mentations of flat models (e.g. thread based MPI,

optimization of collective operations) and adaptation

of communication subsystems to application charac-

teristics (routing, mapping, remote direct memory

access (RDMA), etc.)

– Impact: research in this area will result in increased

scalability of basic models. Techniques developed here

will also be beneficial for the hierarchical approach.

Globally, this will extend the lifespan of existing codes

and will help absorb the shock that the transition to

exascale represents.

� Hierarchical/hybrid runtime systems:

– Research challenge: a key challenge is how to properly

match the potentially different semantics of the models

at different levels, as well as to ensure that the schedul-

ing decisions taken at each of them have positive

synergy. This matching between models must also con-

sider the actual matching of the execution to the under-

lying hardware structure and ensure efficient utilization

of the resources for any target machine. One of the chal-

lenges that motivates the hierarchical approach is con-

straining the size of the name/address spaces (i.e. ranks,

amount of shared state), while still providing a fair level

of concurrency and flexibility within each level.

– Anticipated research directions: anticipated research

includes experimentation on different hierarchical

integrations of runtime systems to support models,

such as MPI þ other threading or task-based models,

threading models þ accelerators, MPI þ threading þ
accelerators, MPI þ PGAS, and hierarchical task-

based models with very different task granularities

at each level; techniques to support encapsulation,

14 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

modularity, and reuse; selection of appropriate num-

ber of entities (processes/threads) at each level in the

hierarchy and the mapping to actual hardware

resources; and automatic memory placement, associa-

tion, and affinity scheduling.

– Impact: research in this area will result in effectively

matching the execution to the available resources,

enabling smooth migration paths from today’s flat

codes.

4.1.2.4. Cross-cutting Considerations. The runtime func-

tionality interacts with all cross-cutting areas.

� Power management: the runtime system will be respon-

sible for measuring the application performance and

deciding the appropriate setups (frequency and voltage,

duty cycles, etc.) for the knobs that the underlying hard-

ware will provide.

� Performance: the runtime system will have to be instru-

mented to provide detailed information to monitoring

systems such that they can report appropriate measure-

ments to upper levels of the resource management

infrastructure (i.e. job scheduler) or to the user. The

runtime system will also need monitoring information

about the performance of the computational activity

of the application to select the most appropriate

resource for them or to choose the appropriate power

mode.

– Resilience: the runtime system will be responsible for

implementing some fine-grained mechanisms (i.e. reis-

sue failed tasks, preserve state), as well as for deciding

when to fire coarse-grained mechanisms and the actual

amount of state they should handle.

– Programmability: the runtime system will have to

implement the features needed to support the various

programming models used on exascale systems.

Global coordination between levels (architecture, run-

time, compiler, job schedulers, etc.) is needed.

4.1.3 I/O Systems
4.1.3.1 Technology and Science Drivers for I/O Systems.

Technology and science drivers for I/O systems include

architectural alternatives for I/O systems, the underlying

application requirements or purpose for doing I/O, the I/

O software stack, the expected capabilities of the devices,

and fault resiliency. The data management (discussed in

detail in Section 4.3.3), life cycle, and its future usage and

availability also influence how the I/O system software

should be designed. Given the current state of I/O and stor-

age systems in petascale systems, incremental solutions in

most aspects are unlikely to provide the required capabil-

ities in exascale systems. I/O architectures, when designed

as separate and independent components from the compute

infrastructure, have already been shown not to be scalable

as needed. That is, traditionally I/O has been considered as

Table 2.

Timeframe Targets and milestones – runtime systems

2010–2011 Asynchrony/overlap: demonstrate for both flat and hierarchical models 3� scalability for strong scaling
situations where efficiency would otherwise be very low (i.e. 30%)

Why: fighting variance is a lost battle – learn to live with it. Synchronous behavior is extremely sensitive to
variance and does not forgive communication delays.

2012–2013 Heterogeneity: demonstrate that the ‘same’ code can be run on different heterogeneous systems.
Locality-aware scheduling: demonstrate that automatic locality-aware scheduling can get a factor of 5� in
highly NUMA memory architectures.

Why: by then, everybody will have experienced that rewriting the same application for every new platform
is not a viable alternative. Machines will have deep, non-coherent memory hierarchies, and we have to
demonstrate we know how to use them.

2014–2015 Optimizing runtime: general-purpose runtime automatically achieving load balance, optimized network usage,
and communication/computation overlap, minimization of memory consumption at large scale, maximization
of performance to power ratio, malleability, and tolerance to performance noise/interference on
heterogeneous systems.

Why: complexity of systems will require automatic tuning support to optimize the utilization of resources,
which will not be feasible by static, user-specified schedules and partitionings.

2016–2017 Fault-tolerant runtime: tolerating injection rates of 10 errors per hour (cooperating with application provided
information and recovery mechanisms for some errors).

Why: by then systems will have frequent failures, and it will be necessary to anticipate and react to them in
order that the application delivers useful results.

2018–2019 Fully decoupling runtime: dynamically handling all types of resources, such as cores, bandwidth, logical and
physical memory or storage (i.e. controlling replication of data, coherency and consistency, changes in the
layout as more
appropriate for the specific cores/accelerators).

Why: underlying system complexity and application complexity will have to be matched in a very dynamic
environment.

Dongarra et al. 15

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

a separate activity that is performed before or after the main

simulation or analysis computation, or periodically for

activities such as checkpointing, but still as separate over-

head. This mindset in designing architectures, software,

and applications must change if the true potential of exas-

cale systems is to be exploited. I/O should be considered an

integral activity to be optimized while architecting the sys-

tem and the underlying software. File systems, which have

mainly been adapted from the legacy (sequential) file

systems with overly constraining semantics, are not scal-

able. Traditional interfaces in file systems and storage

systems, or even in some cases higher-level data libraries,

are designed to handle the worst-case scenarios for con-

flicts, synchronization, and coherence and mostly ignore

the purpose of the I/O by an application, which is an impor-

tant source of information for scaling I/O performance

when millions of cores simultaneously access the I/O sys-

tem. Emerging storage devices, such as solid-state disks

or storage class memories (SCMs), have the potential to

significantly alter the I/O architectures, systems, perfor-

mance, and software system. These emerging technologies

also have significant potential to optimize power consump-

tion. Resiliency of an application under failures in an exas-

cale system will depend significantly on the I/O systems –

its capabilities, capacity, and performance – because saving

the state of the system in the form of checkpoints is likely to

continue as one of the approaches.

4.1.3.2 Alternative R&D Strategies for I/O Systems. Many

R&D strategies at different levels of the architecture and

software stack can potentially address the above technol-

ogy drivers and for exascale systems. The metrics of I/O

systems are performance, capacity, scalability, adaptability

of applications, programmability, fault resiliency, and sup-

port for end-to-end data integrity.

1. Delegation and customization within I/O middleware:

the best place for optimizing and scaling I/O is the

middleware within user space, because that is where

most semantic data distribution, data usage, and access

pattern information are available. The middleware is

not only for the single-user space: it also cooperates

with other user file I/O activities on the machine so that

system-wide optimization can be performed. The con-

cept of delegation within I/O middleware entails the

use of a small fraction of the system on which the mid-

dleware exists and runs within the user space to per-

form I/O-related functions and optimizations on

behalf of the applications. Using the application

requirements, it can perform intelligent and proactive

caching, data reorganization, optimizations, and

smoothing of I/O accesses from burst to smooth pat-

terns. This approach can provide services to the appli-

cation in such a way that the application can customize

the resources used based on its requirements. The dele-

gation and customization approach also has the oppor-

tunity to perform various functions on data while it is

being produced or to preprocess the data before it is

consumed. The availability of multicore nodes pro-

vides the opportunity to use one or more cores on each

node, to perform I/O services, to use an exclusive set of

select nodes, and to provide a range of customization

options, including locality enhancements.

2. Active storage and online analysis: the concept of

active storage is based on the premise that modern stor-

age architectures might include usable processing

resources at the storage nodes that can be exploited for

performing various important tasks, including data

analysis, organization, and redistribution. This concept

has significant potential to improve performance and

knowledge discovery by exploiting the significant pro-

cessing power within the caching and delegate nodes

or within the storage system. The potential use of both

significantly more memory and general-purpose

graphics processing units (GPGPUs), as well as field-

programmable gate array (FPGA) types of accelerators

for data reformatting, subsetting, analysis, and search-

ing, make it even more attractive. However, the poten-

tial for developing these should be explored within the

runtime middleware (e.g. MPI-I/O or higher-level

libraries) or at the file system layer. These layers

should be modified to provide appropriate interfaces

to enable this capability. Online analytics can poten-

tially reduce the need to store certain types of data if

all the necessary information and knowledge from this

data can be derived while it is available.

3. Purpose-driven I/O software layers: the traditional

homogeneous I/O interfaces do not explicitly exploit

the purpose of an I/O operation. A checkpointing I/O

activity is different from an I/O activity, which stores

data for future analysis using some other access pat-

tern. An example of the latter is the use of data in ana-

lyzing a subset of variables along a time axis.

Optimizations in the two activities may require differ-

ent approaches by the software layers. The software

layers from file systems, middleware, and higher

should be modified by incorporating these capabilities

and by exploiting the purpose of I/O.

4. Software systems for integration of emerging storage

devices: emerging storage devices, such as solid-state

devices and SCMs, offer significant potential to

improve performance, reduce power consumption, and

improve caching; such devices can potentially reduce

or eliminate explicit I/O activities and traffic on tradi-

tional disks if they are transparently incorporated

within the I/O software layers. R&D of newer I/O

models and different layers of software systems,

including file systems and middleware, is important for

the exploitation of these devices. Various approaches

must be investigated along with the various options for

using these devices in the exascale architecture (e.g. a

SCM device being part of each node’s memory

hierarchy or each node’s memory hierarchy being part

of a separate section of the architecture that has these

16 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

devices). These systems have implications in how var-

ious layers are designed and optimized and should be

topics for R&D. Furthermore, power optimization

approaches in software layers should be explored.

5. Extension of current file systems: efforts may be made

to extend current file systems to address the parallelism

and performance needed. However, given the current

capabilities and performance of these files systems,

which are derived from conservative and reactive

designs and with strict sequential semantics, the

chances of success of this approach are limited.

6. New approach to scalable parallel file systems:

research is needed for newer models, interfaces, and

approaches that are not limited by sequential semantics

and for consistency models that incorporate newer and

highly scalable metadata techniques, and that can

exploit information available from user and higher lev-

els, as well as that can incorporate newer storage

devices and hierarchies.

7. Incorporation of I/O into programming models and

languages: important research areas include language

features and programming model capabilities in which

users can use the programming models and language

to provide the I/O requirements, access patterns, and

other high-level information. Ideally, it should be pos-

sible for compilers to use these enhanced models to

optimize I/O, pipeline I/O, and intelligently schedule

I/O to maximize overlap with other computations.

Moreover, the models should be usable on multicore

architectures, where they can be exploited to utilize

cores for enhancing I/O performance and specify

online analysis functions on delegate systems of active

storage.

8. Wide-area I/O and integration of external storage sys-

tems: scalable techniques are needed in which paralle-

lism in accessing storage devices is integrated with

parallelism for network streaming. Also important is

integrating parallel streaming of data over the network,

using similar principles as those in parallel I/O.

4.1.3.3 Recommended Research Agenda for I/O Systems.
The recommended research agenda for I/O systems is all

items above except item 5.

4.1.3.4 Cross-cutting Considerations. The architecture of

the systems in general, and for storage and I/O systems and

their use of emerging devices in particular, will influence

the I/O system software. Architectures should consider the

issues outlined above in designing I/O systems. I/O-related

communication and storage device usage will significantly

influence power optimizations. The I/O system software

clearly has implications for resiliency, the schedulers, the

OSs, and programming models and languages.

4.1.4 Systems Management. Systems management com-

prises a broad range of technical areas. We divided these

topics into five categories to be able to more tightly

describe the challenges, research directions, and impact

of each: (1) ‘resource control and scheduling,’ which

includes configuring, start-up, and reconfiguring the

machine, defining limits for resource capacity and quality,

provisioning the resources, and workflow management; (2)

‘security,’ which includes authentication and authorization,

integrity of the system, data integrity, and detection of

anomalous behavior and inappropriate use; (3) ‘integration

and test,’ which involves managing and maintaining the

health of the system and performing continuous

Table 3.

Timeframe Targets and milestones – I/O systems

2010–2011 � I/O delegation concepts in various I/O software layers
� New abstractions and approaches to parallel file systems
� Protocols for parallel data transfers for wide-area I/O

2012–2013 � Initial I/O runtime and file systems for SCM/SSD devices
� Develop purpose-driven I/O software layers
� I/O delegation optimizations, including analytics and data-processing capabilities
� Programming language and model constructs for I/O integration

2014–2015 � Active storage alternatives in runtime and file systems
� Customizable I/O APIs and implementations
� Tuned I/O API implementations demonstrated with new memory hierarchy components

that include SCM
� Scalable tools with parallel I/O and parallel streaming for wide-area I/O

2016–2017 � Newer programming models and languages with capabilities enabled for active storage
� Fault resiliency and low-power capabilities added in the I/O software layers
� Integration of online analysis within active storage architecture with new storage devices (SCM)
� Protocol conversion capabilities for wide-area I/O

2018–2019 � File systems and runtime software layers for exascale I/O optimized for new storage devices
� Power-performance optimization capabilities in I/O software layers
� Scalable software layers for wide-area I/O integrated with schedulers with special-purpose

protocols for external networks

Dongarra et al. 17

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

diagnostics; (4) ‘logging, reporting, and analyzing informa-

tion,’ where the data consists of a static definition of the

machine (what hardware exists and how it is connected),

the dynamic state of the machine (what nodes are up, what

jobs are running, how much power is being used), Reliabil-

ity, Availability, Serviceability (RAS) events (warning or

error conditions, alerts), and session log information (what

jobs ran, how long, how much resource they consumed);

and (5) ‘external coordination of resources,’ which is how

the machine coordinates with external components (e.g.

how the HPC machine fits in a cloud) and comprises a com-

mon communication infrastructure, reporting errors in a

standardized way, and integrating within a distributed com-

puting environment.

4.1.4.1 Technology and Science Drivers for System
Management. In addition to the fundamental drivers men-

tioned above (scale, component count failure rates, etc.)

there are additional technical challenges for system man-

agement. The first challenge is the fact there is a ‘real-time’

component to all system management tasks, with the time

periods ranging from microseconds to weeks. Whether it

is running the right task at the right time, getting the right

data to the right place at the right time, getting an exascale

system integrated and tested in a timely manner, or

responding to attempted security compromises, all system

management tasks have to be responsive. On exascale

systems the tasks also have to be automatic and proactive

in order to stay within response limits.

Another driver for exascale system management is that

the limited resources that have been used in system

resource control and scheduling for the gigascale to petas-

cale – processors and computational operations – are no

longer the most constrained resource. The DARPA studies

listed in this report document that data movement, rather

than computational processing, will be the constrained

resource at exascale. This is particularly true when power

and energy are taken into account as limiting design and

total cost of ownership criteria. Hence, resource control and

management – and the utilization logs for resources – have

to change focus to communications and data movement.

Today, most of the data movement components of a system

are shared and not scheduled, while most of the computa-

tion resources are controlled and dedicated to an applica-

tion. That may not be the best solution going to exascale,

but we do not know.

System management also has to ensure system integrity,

a major factor of which is system security (security is used

here in the sense of open-system cyber security). Exascale

systems will be so varied and complex that in order to pro-

tect their correct operation, security features (such as

authentication and authorization, intrusion detection and

prevention, and data integrity) will have to be built into the

many components of the system. The ‘defense-in-depth’

concepts that are successful for facility-wide security will

have to be extended throughout the exascale system with-

out impinging on performance or function.

System complexity is another driver at exascale. HPC

systems are exceedingly complex and susceptible to small

perturbations having extraordinary impact on performance,

consistency, and usability. Taking the number of transistors

multiplied by the number of lines of code simultaneously in

use as a measure of complexity, exascale systems will be

four orders2 of magnitude more complex than their petas-

cale predecessors. The system manager’s job is to manage

this complexity in order to provide consistent high perfor-

mance and quality of service. Without the reinvention of

many of the tools used today and the invention of new

tools, system managers will not be able to meet those

expectations.

4.1.4.2 Alternative R&D Strategies for System Management.
The obvious alternative is to take an evolutionary approach

to extending terascale and petascale system management

practices. This will result in significant inefficiencies in

exascale systems, extended outages, and low effectiveness.

As a metric, one can extend the Performability (Perfor-

mance � Reliability) measure to also include the effective-

ness of resource allocation and consistency (PERC). Given

the evolutionary approach, it is likely that exascale systems

will have a PERC metric within an order of magnitude of

petascale, because of much less efficient resource manage-

ment, much less consistency, and much less reliability.

Another approach could be to import technical

approaches from other domains, such as the telecommuni-

cations industry, which provisions data movement and

bandwidth as key resources. Another domain that has tech-

nology to offer is real-time systems, which use control the-

ory, statistical learning techniques, and other methods to

manage limited resources in a proactive manner. As a final

example, some cyber-security intrusion detection technol-

ogy also has potential to offer stateful, near-real-time anal-

ysis of activities and logs. Data mining and data analytics

also have the potential to offer point solutions to managing

large amounts of event data and identifying key factors that

need to be addressed at high levels.

4.1.4.3 Recommended Research Agenda for System
Management. Here we present a representative list of

research problems that will need to be addressed in order

to achieve the goals of exascale system management pre-

sented above.

Category 1 – ‘Resource control and scheduling’ and

‘External coordination of resources’:

� better characterize and manage non-traditional

resources, such as power and I/O bandwidth;

� determine how to manage and control communication

resources – provision and control, different for HPC

than for wide-area network (WAN) routing;

� determine and model real-time aspects of exascale sys-

tem management and feedback for resource control;

� develop techniques for dynamic provision under con-

stant failure of components;

� coordinate resource discovery and scheduling with

exascale resource management.

18 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The first area for research in Category 1 is obtaining a

better characterization of non-traditional resources, such

as power and I/O data motion. Related is research into how

to control that data motion. As part of that study, the com-

munity needs to identify whether additional hardware

enhancements should be designed, such as network

switches that allow multiplexing streams by percentage uti-

lization. In part, the control will need to build on the results

of the ability to better characterize the data motion, but it

may also proceed somewhat independently. Another

research initiative that must be undertaken is determining

how to integrate the characterization and perform the con-

trol in real time. The most challenging piece of research is

determining how to keep the system running in the pres-

ence of constant failures. System management in the

exascale timeframe ideally must be able to proactively

determine failures and reallocate resources. If a failure is

not predetected, the system management infrastructure

must be able to detect, isolate, and recover from the failure,

by allocating additional equivalent resources. While effort

is underway in the application space to handle failures,

system management research should target presenting

applications with machines where failures are corrected

transparently by reallocating working resources to replace

the failed ones. Moreover, in order to integrate the HPC

machine into a larger infrastructure, research should be

undertaken to provide standardized reporting of machine

definitions and capabilities that exist in a globally sched-

uled environment.

Category 2 – ‘Security’:

� provide fine-grained authentication and authorization

by function/resources;

� provide security verification for software built from

diverse components;

� provide appropriate ‘defense in depth’ within systems

without performance or scalability impact;

� develop security-focused OS components in X-stack;

� assess and improve end-to-end data integrity;

� determine guidelines and trade-offs of security and

openness (e.g. grids).

For a system as complex as an exascale system, the risk

of undetected compromise is too high to rely on traditional

security at the borders (login nodes). Fine-grained authen-

tication and authorization by function and for each resource

are needed through all software and hardware components

of the system. This has to be lightweight so as not to restrict

or slow authorized use or limit scalability, while at the

same time comprehensive enough to assure as complete

protection as possible. The security model should be to

monitor and react rather than restrict, as much as possible,

and to enable open, distributed ease of use.

Because the system is expected to be built from

diverse components, created by different communities,

security verification of software components will have

to be done efficiently. This will require a means to verify

correct functioning, but the challenge will be to

accommodate the scale and the diversity of use of an

exascale resource.

Since other needs point to creating a novel HPC OS, a

critical feature to be considered is making a security-

focused OS. There may also be hardware assist features that

can combine finer-grained control and access management.

Security requires integrity, so end-to-end data integrity has

to be included. Moreover, new analysis to provide the right

balance between security and openness for distributed com-

puting (e.g. grid, web services) needs to be explored.

Category 3 – ‘Integration and test’ and ‘Logging,

reporting, and analyzing information’:

� determine key elements for exascale monitoring;

� continue mining current and future petascale failure

data to detect patterns and improvements;

� determine methods for continuous monitoring and test-

ing without affecting system behavior;

� investigate improving information filters; provide state-

ful filters for predicting potential incorrect behavior;

� determine statistical and data models that accurately

capture system behavior;

� determine proactive diagnostic and testing tools.

The first research initiative that must be undertaken to

reach the end goal of proactive failure detection is deter-

mining the key elements that need to be monitored. Much

work has already occurred in this area. Thus, determination

of what will be required for exascale is needed, with poten-

tially new items identified. Additional research must be

encouraged in the field of mining failure data to determine

patterns and develop methodologies for doing so. Because

the amount of collected data will be vast in the exascale era,

investigations for filters and statistical models must occur.

In both cases, it is critical to significantly reduce the vol-

ume while accurately capturing system behavior and not

losing critical events. For filtering, there is a critical need

to develop stateful techniques, where the dynamic state

of the machine determines what events the filter provides.

Techniques must be researched to allow this monitoring,

filtering, and analysis to occur in real time without affect-

ing application behavior running on the system. These

research initiatives need to feed research of proactively

determining where failures will occur by monitoring and

analyzing filtered data.

4.1.4.4 Cross-cutting Considerations. System management

functionality crosses all aspects of the vertical integration

– performance, usability/programmability, resilience, and

power. System management directly impacts consistency

and total cost of ownership as well. In addition, system

management relies heavily on accumulating, integrating,

and analyzing disparity data from all system components,

as well as all applications wanting to use the system. Multi-

level analysis of system usage, subsystem activities, and

component and subsystem health are needed to provide

dynamic resource provision and to facilitate consistent and

correct execution of application tasks.

Dongarra et al. 19

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4.1.5 External Environments. The term external environments

refers to the essential interfaces to remote computational

resources (e.g. data repositories, real-time data streams,

high-performance networks, and computing clouds) that

advanced applications may need to access and utilize. The use

of such resources is already typical for many high-end appli-

cations, and they form a critical part of the working environ-

ment for most, if not all, major research communities.

In the following, ‘distributed data repositories’ are dis-

cussed. This discussion complements the views presented

in, for example, Section 4.3.3. In particular, while in Sec-

tion 4.3.3 the main focus is on data management issues and

challenges in the data center, this section discusses data

management issues (i.e. data access/integration) with

regard to external data repositories (data grids/clouds) and

how the exascale roadmap can pave the way toward a trans-

parent, efficient, and integrated management of scientific

databases distributed across data centers, data grids, data

clouds, and other external data repositories. Cross-

references with other parts of this roadmap can be identi-

fied in Section 4.3.2 (with special regard to metatools and

new data analysis approaches), Section 4.4 (cross-cutting

dimensions such as resilience, performance, and program-

mability), and Section 4.1.2 (I/O systems with special

regard to active storage and online analysis, as well as scal-

able file systems).

4.1.5.1 Technology and Science Drivers for External
Environments. Exascale cyber infrastructures will face

important and critical challenges, both from computational

and data perspectives. Increasingly complex and parallel

scientific codes will lead to the production of a huge

amount of data. For instance, climate change scientists are

expected to generate hundreds of exabytes of data (distrib-

uted across several centers) through heterogeneous storage

resources (located in data centers as well as in external

environments, such as data grids and data clouds) for

access, analysis, post-processing, and other scientific activ-

ities. Collections of data will be stored at different sites and

made available to users for further analysis.

The large volume of data and the time needed to locate,

access, analyze, and visualize this data will greatly impact

the scientific productivity. Significant improvements in the

data management field therefore will be critical to increase

research productivity in solving complex scientific

problems.

Since external environments will play an important role

in the scene, several challenges must be taken into account

in developing the exascale roadmap context.

� The first challenge at such large scale is to provide effi-

cient, scalable, resilient, and transparent access to the

external (with regard to the data center) and distributed

Table 4.

Timeframe Targets and milestones – systems management

2010–2011 Category 1: creation and validation of an analytic model and simulation capability for exascale resource
management that spans different implementations of job and resource management systems. This work
will enable experimentation of alternative designs that will accelerate implementation in the later timeframes.

Category 2: fine-grained authentication – being able to provide access to individual or classes of resources to a
single user or to groups of users.

2012–2013 Category 1: dynamic provisioning of traditional resources – being able to provide applications with more nodes
and memory on the fly.

Category 3: unified framework for event collection – providing a community-agreed-upon standard format for
events across machines and subsystems within a machine.

2014–2015 Category 1: expanded analytic model and simulation capability for exascale resource management to include
external coordination of services.

Category 2: security validation of diverse components, providing a methodology for the different components
in a system to ensure that security is maintained across the components.

Category 3: model and filter for event analysis, using the data produced by the above unified framework to
produce models representing the system for understanding how different policies would impact the system,
and providing filters, some of which should be stateful (dependent on the dynamic state of the machine).

2016–2017 Category 1: integrated non-traditional resources, such as bandwidth and power – by using the above models and
filters, and the dynamic provisioning of resources, providing the ability to manage new important resources,
such as power and data motion.

Category 3: continual monitoring and testing so that, by building on the unified framework for collecting data
and filters, real-time monitoring and testing of the machine are provided.

2018–2019 Category 1: continual resource failure and dynamic reallocation – using the above proactive failure detection as
input, and the above-described dynamic provisioning of traditional and non-traditional resources to provide the
ability to keep the machine running in the presence of continual failures by reallocating resources.

Category 2: hardware support for full system security. ‘Defense-in-depth’ security is needed so that security
does not rely solely on access control to the machine. Also needed is development of end-to-end
methodologies, including integrated hardware to protect all components of the machine.

Category 3: proactive failure detection – building on the above continual monitoring and analysis tools to
provide the ability to predict failures.

20 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

(from a geographical point of view) data repositories.

Exascale applications will have to efficiently manage

and access data inside/outside the data center with a

high level of performance and through common inter-

faces that are able to decouple fabric/middleware layers

from the application one. Data centers will increasingly

need access to external data repositories to take advan-

tage of a wide set of data collections. This should be

made transparent, and this transparency represents a

key challenge because the heterogeneity of the data

environments is expected to further increase as it is

directly connected with technology evolution.

� Related challenges that will become critical will be

replication and distribution. At exascale, huge data

repositories will be replicated and distributed across

several sites to increase data availability, provide

higher levels of fault tolerance and locality. For exam-

ple, in the climate change domain, the CMIP5 data

repositories will be replicated across the United States

and Europe, and future scenarios will strongly rely on

replication needs and schemas. Distribution and repli-

cation are expected to be strongly exploited in the near

future; because of the scale and evolution of future exa-

byte systems, they represent a relevant challenge.

� Considering the wide variety of external data reposi-

tories available worldwide, uniform access in terms of

common interfaces will be fundamental. The wide set

of interfaces to data services is already a challenge.

Because of the large-scale environment, the heteroge-

neity of the platforms, and the complexity of the exas-

cale system, interoperability will play an important role

in creating highly feasible, transparent, and productive

interaction among all the involved components and ser-

vices available inside data centers, data grid environ-

ments, and data clouds.

� Data portals are today the entry points to vast data col-

lections for several institutions, data centers, and data

clouds. In the exabyte era, stronger support and integra-

tion of scientific, collaborative, and social aspects are

expected in the context of new scientific gateways.

Social networking capabilities, poorly exploited today

for scientific purposes, are strongly needed to increase

the level of discussions, feedback, exchange of scien-

tific results, and dissemination among groups. What is

missing today is low-level and pervasive interoperabil-

ity to enable data repositories in data centers, data grids,

and data clouds to be transparently accessed and easily

integrated in order to exploit new multidimensional and

multidisciplinary research opportunities.

� Data knowledge and discovery will play a critical role

as the number of data collections and the volume of

data stored in distributed (heterogeneous) repositories

becomes larger. A high number of (heterogeneous)

metadata/ontologies sources (from different institu-

tions/centers) are anticipated, which describe the avail-

able data collections with regard to different domains.

Metadata provenance will increasingly become

fundamental, in order to identify, trace, and record the

history of data and the related processing and analysis

steps in such a multifaceted environment. Automatic

metadata extraction needs to be improved to support the

data publication process at exascale data production

rates. Semantic interoperability needs to be further

addressed to make data integration a reality.

� Open access will become the key for effective sharing

of data. At present, several restrictions and access pol-

icies make real sharing and easy access to the available

data collections complicated, creating several non-

connected (isolated) islands of data repositories. This

problem must be solved, while taking into account that

access and usage policies must be preserved as well.

What is missing is transparent and uniform manage-

ment of such aspects across several countries and

institutions.

4.1.5.2 Alternative R&D Strategies for External
Environments. Access to data repositories in grid and cloud

environments raises numerous challenges. In most cases,

an evolutionary approach seems adequate if we consider

the status of existing middleware and technologies and the

production environments that have been built on top of

them in several international initiatives in Europe, the

United States, and Japan. Obviously, the scale and the

requirements in the exabyte era will need a reengineering,

extension, and improvement of several modules to make

the integration feasible. New efforts must be devoted to the

intermediate layers (e.g. middleware) to have more intero-

perable, robust, and complete support to access the external

data environments at exascale.

Since access to data grids and data clouds is a key ele-

ment for external environments, the design of common

interfaces (for middleware components) will be fundamen-

tal. What is crucial is the coexistence of standards and de

facto standards and scientific and commercial actors, which

makes more complex the entire realm. Stronger efforts in

interoperability and standardization need to be globally

sustained with a co-design approach supported by commer-

cial and scientific partners. Such an approach will enable

effective access to a larger set of external data repositories

and environments. Metadata standards, domain-based

ontologies, and the associated standardization and discus-

sion processes must be strongly addressed. Such efforts will

allow us to better describe, at exascale, data related to dif-

ferent scientific domains through a widely accepted,

known, and adopted set of information.

Metadata standardization will be an enabling process for

effective access and sharing of data, since it addresses

search and discovery of data collections across different

data sources. It is also a driving factor for interoperability,

obviously implying the need to develop new tools, soft-

ware, and services that are able to deal with such a new

standard at exascale.

Also critical is further investigation into new algorithms,

protocols, replication schemas, placement strategies,

Dongarra et al. 21

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

consistency protocols, lifetime issues, and dynamic aspects.

At this layer, a standardized access to the external data envir-

onments will be needed, access that can be exploited to decou-

ple replication aspects from the access ones.

4.1.5.3 Recommended Research Agenda for External
Environments. The recommended research agenda focuses

on three areas.

1. Access to external data repositories:

� stronger effort in data delivery mechanisms, paral-

lel data transfer, compression algorithms, efficient

data protocols, and data access services;

� more pervasive use of new and higher performance

networks;

� further activities on standard interfaces that will

provide a stronger level of interoperability among

different data repositories – an effective collabora-

tion and co-design between industrial and scientific

partners is recommended;

� further work to make the middleware more robust,

to transparently access heterogeneous data envir-

onments in data centers, data grids, and data

clouds.

2. Replication and distribution of data:

� further investigation on new algorithms, protocols,

replication schemas, and placement strategies,

which are crucially needed at such a large scale;

� dynamic replication strategies based on historical

information and usage patterns;

� a stronger need to deal with several kinds of transi-

ent failures (e.g. network and storage failures), pro-

viding efficient recovery procedures in case of

faults, and better addressing resilience.

3. Scientific data gateways:

� collaborative, easy-to-use, integrated, social-based

features, tailored on user access patterns and levels

that are highly configurable;

� complex and distributed dataflow support;

� knowledge mining and discovery, starting from

advanced and integrated decision support systems;

� the ability to represent the virtual place where peo-

ple can work together, create communities, exploit

a wide set of tools, and analyze, visualize, and

compare data coming from data centers, grids, or

cloud environments.

In short, the roadmap for distributed data repositories

must move toward extremely integrated, interoperable,

and interdisciplinary data environments, where the trans-

parent integration of heterogeneous data sources (inside

and outside the data center) will allow, at exascale, a better

and deeper understanding of complex phenomena and

problems.

4.1.5.4 Cross-cutting Considerations. Four cross-cutting

considerations have been identified.

Performance: efficient access to external environments

is crucial, particularly if this step is part of complex work-

flows that start/run inside the data centers and exploit exter-

nal data sources to enrich their processing and analysis.

To have data grids or clouds as part of the system, high-

performance network connections are strongly needed, as

well as high-performance data transfer protocols.

Resilience: external environments relating to distributed

environments (i.e. data grids) are characterized by many

software (i.e. services) and hardware (i.e. routers, switches,

storages) components. Consequently there could be transi-

ent and permanent errors and issues everywhere in the

global scenario to be addressed at runtime. Making hard-

ware and software components resilient is a strong chal-

lenge for external data environments.

Scalability: at such a large scale the number of potential

users and actors in this milieu, as well as the number of data

collections, will be high. This situation implies the need to

have a scalable architecture that is able to deal with a

Table 5.

Timeframe Targets and milestones – distributed data repositories

2010–2011 Workshops focused on the main topics of the research agenda for distributed data repositories.
Metadata management, harvesting capabilities, ontology management, dynamic replica management,
improved search and discovery capabilities, standardization activities on data services.

2012–2013 Advanced web access and workflow capabilities for scientific data portals, federated data management,
interoperability among data services, semantic data integration services.

2014–2015 Resilient services for distributed data repositories, advanced ontology management, operational data
gateways integrated, collaborative and community-oriented, stronger level of interoperability, new data
analysis services, advanced support for semantic and scalable search and discovery across distributed
scientific databases, integrated (cross-domain) data platforms. Distributed, efficient, and resilient
data-mining support.

2016–2017 Operational interoperability related to heterogeneous data-oriented environments, production level data
services, social collaborative virtual environments, and distributed knowledge-based systems.

2018–2019 Full data integration and interoperability among heterogeneous environment (data centers, data grids,
clouds environments). Cross-domain, real-time, and interactive data and knowledge discovery, access,
processing, mining, analysis, and visualization.

22 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

growing community and an increasing volume of data,

without decreasing the level of quality of service and

efficiency.

Programmability: the applications developers cannot be

expected to manage, at a low level, distribution, replication,

load balancing, and other issues explicitly in their codes.

Complex aspects of distributed services need to be avail-

able as high-level APIs to allow end users to optimize their

code, perform tuning operations, and improve their

applications.

4.2 Development Environments

The application development environment is the software

that the user has to program, debug, and optimize pro-

grams. It includes programming models, frameworks, com-

pilers, libraries, debuggers, performance analysis tools,

and, at exascale, probably fault tolerance.

4.2.1 Programming Models
4.2.1.1 Technology and Science Drivers for Programming

Models. Several challenges have been identified, and possi-

ble approaches for addressing these challenges have been

suggested.

� Exascale systems are expected to have a huge number

of nodes. Even within the node, much parallelism will

exist in many-core architectures and accelerators, such

as GPGPUs. Programming models and languages

should support the use of such huge levels of

parallelism.

� Exascale systems may consist of several kinds of com-

ponents, including conventional multicore CPUs,

many-core chips, and general and application-specific

accelerators, resulting in heterogeneity. Programming

models and languages should alleviate the program-

ming difficulties arising from such heterogeneity.

� Exascale systems will consist of a huge number of com-

ponents, which will increase the failure rate. Program-

ming models can provide a way to handle such failures

with fault resilience mechanisms.

� Memory bandwidth will be important in exascale sys-

tems. Programming models and languages should pro-

vide models to exploit the data locality to make use

of complex memory hierarchies.

� The programming model will need to address emerging

and ongoing applications trends. For example, algo-

rithms and applications are increasingly adaptive.

Exascale computations will perform massive amounts

of I/O; the programming model will need to enable the

highest levels of I/O performance. New application

domains may require new programming models.

� The use of deep, large software stacks require the capa-

bility to detect and isolate errors at various stages (code

development, production, compile time, runtime) and

report them at an appropriate level of abstraction.

4.2.1.2 Alternative R&D Strategies for Programming Models.
The following strategies are proposed.

� Hybrid versus uniform: a hybrid programming model is

a practical way to program exascale systems that may

have architectural heterogeneity. Uniform program-

ming models provide a uniform view of the computa-

tion. They reduce the need for the application

developer to be aware of the details of the architectural

complexity and are often considered to be more produc-

tive. Their provision is a challenge, however.

� Evolutionary versus revolutionary approaches: specifi-

cation of incremental improvements to the existing

models is a safe approach. Revolutionary approaches

may be attractive, but risky.

� Domain-specific versus general-purpose programming

models: for some application areas, domain-specific

models may provide performance and portability with

higher productivity than general-purpose programming

models offer.

� Widely embraced standards versus single implementa-

tions: while the latter have the advantage of rapid

development and implementation, the former are based

on the experience of a wider community and are often

required by application groups.

4.2.1.3 Recommended Research Agenda for Programming
Models. Research is needed into a variety of promising pro-

gramming models for exascale computing, including

system-wide models that provide a uniform approach to

application development across an entire platform, as well

as hybrid programming models that combine two or more

programming APIs. Such models will need to provide a

range of means for the expression of high levels of concur-

rency and locality and may be capable of supporting

application-specific fault tolerance. Enhancements to exist-

ing programming interfaces, as well as new programming

approaches, should be explored. For new models, intero-

perability with existing HPC programming interfaces is

highly desirable. Programming models that facilitate pro-

ductive application development are to be encouraged.

Other desirable characteristics are performance transpar-

ency and the ability to support incremental application

migration.

4.2.1.4 Cross-cutting Considerations. Major characteristics

of exascale architectures will have a significant impact

on the nature of the programming models that are

designed to facilitate the creation of exascale-level

applications. Hence major departures from the envisaged

range of system architectures may necessitate a rethink-

ing of the dominant features of an exascale program-

ming model.

The programming model must facilitate efficient sup-

port for massive levels of I/O by applications and must

enable the application developer to write fault-aware

applications.

Dongarra et al. 23

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The implementation technology will need to be devel-

oped to realize the programming models that are defined

for exascale computing. The compiler translation will be

critical and will need to be of exceptional quality. The run-

time system will be expected to provide significant support

to the compiler by providing features for managing com-

pute threads, implementing a variety of mechanisms for

synchronization, scheduling computations, supporting

efforts to balance the workload, executing correctness

checks that have been deferred to runtime, collecting per-

formance data, and more.

Applications and libraries will be created using the

programming models defined for exascale computing. The

programming model will be expected to provide a sufficient

range of features to enable the expression of their concurrency

and locality and the orchestration of the actions of different

threads across the system. The model also must facilitate the

composition of different modules and library routines.

A variety of programming-model-aware tools will be

required to enable productive application development,

translation, and deployment. For instance, tools to support

application development might reduce the effort involved

in identifying portions of code suitable for execution on

certain system components. Tools for debugging will need

to be created that are aware of the model’s semantics; per-

formance analysis and tuning tools will need to be created

that reduce the effort involved in program optimization and

are aware of the specific factors that influence program

performance under a given programming model. In addi-

tion, user annotations may need to be defined to support the

actions of the compilers and tools.

4.2.2 Frameworks
4.2.2.1 Technology and Science Drivers for Frameworks.

Effective use of exascale systems will place many new

demands on application design and implementation. Left

alone, each application team will face a daunting collection

of infrastructure requirements, independent of the science

requirements. Frameworks (when properly developed)

have successfully provided a common collection of inter-

faces, tools, and capabilities that are reusable across a set

of related applications. In particular, challenging computer

science issues – which are often orthogonal to science

issues – can be encapsulated and abstracted in a way that

is easy for applications to use, while still maintaining or

even improving performance.

A focused effort on frameworks for exascale systems is

needed for the following reasons:

� we have a large body of existing scalable applications

that we want to migrate toward exascale;

� many novel exascale-class applications are expected;

� frameworks provide the best cost and time approach to

application development;

� exascale computing provides a new opportunity for

multiscale, multiphysics, and multidisciplinary

applications.

4.2.2.2 Alternative R&D Strategies for Frameworks. Two

R&D strategies are considered for frameworks.

No frameworks: most successful frameworks are con-

structed in response to substantial experience developing

individual components, where these components have

substantial common requirements, natural interoperabil-

ity relationships, or both. It is certainly possible to

ignore the commonalities and relationships and focus

on one-of-a-kind applications. Initially this strategy may

appear attractive because it provides the shortest path to

single application completion. As more applications are

developed, however, this strategy produces redundant,

incompatible, and suboptimal software that is difficult

to maintain and upgrade, ultimately limiting the number

of exascale applications, their quality, and their ability

to be improved over their lifetime.

Clean-slate frameworks: if exascale systems eventually

require a completely new programming model, the

approach we will use to establish exascale frameworks will

differ from the case where existing applications are refac-

tored. In this case, the framework will be best constructed

to solve a minimally interesting problem. Then existing

applications will be mined for their useful software frag-

ments. This strategy was required for many applications

when making the transition from vector multiprocessors

to the MPI.

4.2.2.3 Recommended Research Agenda for Frameworks.
Successful development of exascale-class frameworks will

require a decade of effort. Among the critical research

topics that must be addressed to achieve this goal are the

following.

� Identification and development of cross-cutting algo-

rithm and software technologies: for the existing

Table 6.

Timeframe Targets and milestones – programming models

2010–2011 Interoperability between established
programming models for HPC (MPI,
OpenMP in particular)

Initial workshops to discuss potential exascale
programming models

2012–2013 Fault-tolerant MPI
Standard programming model for

heterogeneous nodes
System-wide programming model(s) for

petascale platforms available

2014–2015 Candidate programming models for
exascale systems defined

2016–2017 Candidate programming models for
exascale systems implemented

2018–2019 Exascale programming model(s) adopted

24 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

scalable application base and for new applications,

there will be common requirements for moving to exas-

cale systems. For example, partitioning and load-

balancing algorithms for exascale systems and usage

of many-core libraries are common needs.

� Refactoring for many-core: in anticipation of many-

core programming-model decisions, we must still make

progress in preparing for exascale systems by under-

standing the common requirements of many-core pro-

gramming that will be true regardless of the final

choice of programming model.

Table 7, which gives the initial timeline for major activ-

ities and deliverables, focuses on the following elements.

Workshops: the computational science and engineering

communities have many existing frameworks, some multi-

institutional but most centered at a single institution. As a

result, the practices, tools, and capabilities of each frame-

work vary greatly, as does the scope of visibility outside the

host institution. The first priority for successful exascale

framework development must be a series of workshops.

The first workshop will bring together people from existing

framework efforts, developers of enabling technologies

(programming models, algorithms, and libraries), and

application stakeholders who must ultimately use and

develop within the proposed frameworks to perform

analyses of capabilities and gaps. Subsequent workshops

will focus on specific R&D issues necessary for success.

Breadth-first frameworks: the next major effort will be

the development of two to three frameworks – one for

libraries and one or two specific application domains.

Although programming models, libraries, and fault-

resilient capabilities will probably not be mature, this initial

breadth-first approach will facilitate co-design of the

framework with these enabling tools to ensure compatibil-

ity. This effort will also focus on mining capabilities from

existing applications as appropriate, as well as provide a

first definition of the common tool chain.

Full-scope, additional frameworks: in subsequent years,

the programming model, libraries, and fault-resilient strate-

gies should mature, allowing the initial frameworks to soli-

dify these aspects of the design and implementation.

Shortly after, or perhaps concurrently, several new

domain-specific frameworks can begin, utilizing the design

decisions and tool chain established by the first

frameworks.

Table 7.

Timeframe Targets and milestones –– frameworks

2010–2011 Workshops: 2010, 2011, regularly thereafter.
Bring together members from key existing framework efforts, algorithm/library developers,

programming models.
Workshop 1:
– Capabilities/gaps analysis.
– First opportunities for multi-institutional frameworks.
– Best practices from existing efforts.
– Common tool chain requirements.
– Possible win–win scenarios.

Workshop 2:
– Plan for programming model evaluations.
– Development of library data model semantics.

Workshop 3:
– Applications-driven resilience models.

2012–2013 Develop first two applications and first library frameworks, 2013.
– Mining of components from existing capabilities.
– Implementation of common tool chain, programming model, first resilience harness,

library interfaces.

Breadth-first approach.
2014–2015 Full development of exascale-specific framework features:

� Mature framework-library data layout semantics.
� Fully capable fault resilience capabilities.
� Fully defined common toolchain.

2016–2017 Development of two to three additional application frameworks, 2017.
� Leveraging of infrastructure/design knowledge from first efforts.
� Development of intercomponent coupling capabilities (e.g. data sharing).

2018–2019 Demonstration of full-scale application capabilities across all frameworks on exascale
system, 2019.

Dongarra et al. 25

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Deployment: in the first years of exascale capabilities,

all frameworks should be in a state to demonstrate exascale

capabilities on the first available exascale-class systems.

4.2.2.4 Cross-cutting Considerations. Framework efforts

will be greatly affected by evolving programming models,

libraries, and new algorithm development, as well as fault-

resilient requirements and capabilities. Although the MPI

will likely be part of the picture, with a node programming

model underneath, a radical new programming and execu-

tion model may be needed. In all cases, a framework will be

important for rapidly deploying a critical mass of applica-

tion capabilities.

Ultimately, any frameworks we develop must have buy-

in from application development teams, those domain

scientists who are encoding the physics and engineering

models. Without their full support, our frameworks will

be irrelevant. Computational domain scientists must be part

of the framework development process as needed to obtain

this support.

Frameworks and the libraries they provide must be part

of the software stack for petascale, trans-petascale, and

exascale systems. This approach is essential for providing

application developers with a common software environ-

ment at several scales of computing.

4.2.3 Compilers
4.2.3.1 Technology and Science Drivers for Compilers. Com-

pilers will be a critical component of exascale software

solutions. Not only will they be required to implement new

and enhanced programming models and to generate object

code with exceptional quality, but they will also need to

support the process of program adaptation, tuning, and

debugging. The high number of potentially simpler (in-

order) cores and the existence of specialized components

will increase the importance of the compiler.

Compilers for uniform programming models that span

entire systems will need to manage the distribution of data,

locality of computation, and orchestration of communica-

tion and computation in such a manner that all components

of the machine perform useful computations. With substan-

tial support from the runtime library, they may also be

required to balance the workload across the system compo-

nents. Compilers for node programming models may be

required to generate code that runs across a large collection

of general-purpose cores or across a node that may be con-

figured with general-purpose cores along with one or more

specialized accelerators.

Memory hierarchies will be highly complex; memory

will be distributed across the nodes of exascale systems and

there will be non-uniform memory access (NUMA) within

the individual nodes, with many levels of cache and possi-

bly scratchpad memory. Compilers will be expected to gen-

erate code that exhibits high levels of locality in order to

minimize the cost of memory accesses. Compilers also may

need to explicitly manage the transfer of data between dif-

ferent subcomponents within nodes.

4.2.3.2. Alternative R&D Strategies for Compilers. The alter-

native R&D strategies described for programming models

apply equally to compilers, since they provide the major

part of the implementation of the programming models.

By ensuring interoperability between different languages

and programming models, compilers can be key to mitigat-

ing the risk involved in selecting an emerging program-

ming model and may increase the adoption of new

models by offering an incremental path from existing or

proposed models (e.g. MPI, OpenMP, UPC, X10, Chapel).

4.2.3.3 Recommended Research Agenda for Compilers.
Advances in compiler technology are key to the provision

of programming models that offer both performance and

productivity characteristics. The following topics should

be pursued.

� Techniques for the translation of new exascale pro-

gramming models and languages supporting high pro-

ductivity and performance, hybrid programming

models, and programming models that span heteroge-

neous systems.

� Powerful optimization frameworks. Implementing par-

allel program analyses and new, architecture-aware

optimizations, including power, will be key to the effi-

cient translation of exascale programs. Improved strate-

gies for automatic parallelization are needed, as are

techniques for determining regions of code that may

be suitable for specific hardware components.

� Experimentation with new optimizations and online

feedback-based optimizations, benefiting from recent

experiences with just-in-time compilation. Other topics

include generation of multiple code versions; more

aggressive, speculative optimizations; and incorpora-

tion of lightweight strategies for modifying code on the

fly.

� Support of strategies for enabling fault tolerance. For

example, compilers may be able to help reduce the

amount of data involved in checkpointing.

� Standard interfaces facilitating interactions between the

compiler and the development and execution environ-

ment. Such interfaces could enable tools or application

developers to drive the translation process in new ways

and enable the compiler to drive the actions of tools

during runtime, for example to gather specific kinds

of performance data. Compilers should be capable of

automatically instrumenting code.

� Compiler-based tools for application development.

Such tools could support the application development

process, help interpret the impact of the compiler’s

translation on the application’s runtime behavior, and

explain how the application developer might improve

the results of this translation.

� Innovative techniques. Compilers may be able to bene-

fit from autotuning, may incorporate methods for learn-

ing from prior experiences, may exploit knowledge of

suitable optimization strategies that is gained from the

26 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

development and execution environments, and may

apply novel techniques that complement traditional

translation strategies.

4.2.3.4 Cross-cutting Considerations. Compilers must no

longer be viewed as a black box but rather as open transla-

tion infrastructures that must be capable of interoperating

with all elements of the development and execution envi-

ronment, particularly the runtime system and tools.

The runtime system will be expected to provide signifi-

cant support to the compiler by providing a number of fea-

tures for managing compute threads, implementing a

variety of mechanisms for synchronization, scheduling

tasks and other computations, and supporting efforts to bal-

ance the workload.

Compilers need to generate efficient code for the target

architecture. Therefore they need to be developed in an

architecture-aware manner. The use of explicit cost models

may simplify the generation of code for different hardware

configurations.

4.2.4 Numerical Libraries
4.2.4.1 Technology and Science Drivers for Libraries.

Numerical libraries underpin any science application

developed for HPC and offer the potential to exploit the

underlying computer systems without the application

developer necessarily understanding the architectural

details. Hence, science drivers are more or less automati-

cally built in. However, we may expect new applications

to emerge with exascale systems, and libraries should adapt

accordingly.

The technology drivers for library development include

hybrid architectures, programming models, accuracy, fault

detection, energy budget, memory hierarchy, and the rele-

vant standards. Numerical libraries depend on the forma-

tion of various standards that will be needed to ensure the

widespread deployment of the software components. The

libraries will be equally dependent on the OS and the com-

puter architecture features and how they are communicated

to the library level.

4.2.4.2 Alternative R&D Strategies for Libraries. The alter-

native R&D strategies for libraries will be driven by the

OS and software environment provided on given architec-

tures. We can assume that we will see models such as

message-passing libraries, global address space languages,

and message-driven work queues. Since all three models

likely will occur at some level in future systems, matching

implementations need to be developed concurrently. In par-

ticular, the three programming models should be interoper-

able to permit the widest deployment.

4.2.4.3 Recommended Research Agenda for Libraries. Exist-

ing numerical libraries will need to be rewritten and

extended in light of the emerging architectural changes.

The technology drivers will necessitate the redesign of the

existing libraries and will force re-engineering and imple-

mentation of new algorithms. Because of the enhanced lev-

els of concurrency on future systems, algorithms will need

to embrace asynchrony to generate the number of required

independent operations.

The research agenda will need to include the following.

1. Hybrid and hierarchical based software: efficient

implementations need to be aware of the underlying

platform and memory hierarchy for optimal

deployment.

2. Autotuning: libraries need to have the ability to adapt

to the possibly heterogeneous environment in which

they have to operate.

3. Fault-oblivious and error-tolerant implementations:

the libraries need to be resilient with regard to the

increased rate of faults in the data being processed.

4. Mixed arithmetic for performance and energy saving:

the libraries must be able to find optimal mapping of

the required precision in terms of speed, precision, and

energy usage.

5. Architectural-aware algorithms that adapt to the under-

lying architectural characteristics: the libraries must be

able to act on given architectural information to select

or generate optimal instantiations of library routines.

6. Energy-efficient implementations to optimize the

energy envelope for a given implementation: the

libraries should have the ability to take the total power

usage into account and optimize for this parameter.

7. Algorithms for minimizing communications: such

algorithms are essential because communications play

such an important role in performance and scalability.

8. Algorithms for shared-memory architectures: these

algorithms have long been a staple, but they will have

a prominent role on future exascale systems as a way to

mitigate the impact of increased iteration counts in

Schwarz-type algorithms.

Table 8.

Timeframe Targets and milestones – compilers

2010–2011 MPI-aware compilers supporting MPI
implementations

Initial interface specified to enable compilers
to interact with performance and runtime
correctness-checking tools

2012–2013 Compiler support for hybrid programming
models

2014–2015 Standard heterogeneous programming model
implemented

System-wide high-level programming model
implemented

2016–2017 Exascale programming model implemented
Standard interfaces for interactions between

compilers and other tools in development
and execution environment

2018–2019 Refinement of architecture awareness
Compilers that interact smoothly with

performance and runtime tools

Dongarra et al. 27

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

9. Fusion of library routine implementations: libraries

often introduce artificial separations into the code,

based on the function of each routine. Techniques that

permit the fusion of such routines (e.g. of the loops in

two consecutive library calls) will be needed.

4.2.4.4 Cross-cutting Considerations. Libraries will require

standards to build on. These will include standards for

power management, architectural characteristics, program-

ming for heterogeneous environments, and fault tolerance.

Establishing such standards presupposes that the informa-

tion regarding the underlying architecture, energy usage,

and so forth, will be available as parameters to be used

within the library implementations.

The libraries need to provide language bindings for

existing and newly emerging languages. At the same time,

the calling sequences for their routines should fit in with the

various programming models available for exascale

environments.

4.2.5 Debugging
4.2.5.1 Technology Drivers for Debugging. Historically

debugging has meant the process by which errors in pro-

gram code are discovered and addressed. The scale of mod-

ern parallel computers has pushed the boundaries of that

definition in two ways. Massive concurrency at terascale

and petascale has led to profound challenges in the ability

of a software debugger to encompass the entire parallel

application, consisting of thousands of processes. In addi-

tion, it has initiated the need to debug not just the code but

also the machine and OS environments, where bugs and

contention outside the program code itself may be the

underlying cause of faults seen at the application layer.

With exascale computing, we formally broaden the

scope of debugging to including finding problems in the

execution of program code by identifying and addressing

application incorrectness as well as application failure and

critical application performance bottlenecks that may be

either reproducible or transient. These faults and bottle-

necks may have their origins in the code itself or may be

consequences of hardware or software conditions outside

the control of the application. As an example and evident

already at the petascale, a failed switch adapter on a remote

node may cause failures in other jobs or may bring commu-

nication to a near standstill. For bulk synchronous parallel

codes it normally takes only one slow task to limit the over-

all performance of the code.

The following aspects of exascale technology will drive

decisions in debugging:

� concurrency-driven overhead in debugging;

� scalability of debugger methodologies (data and

interfaces);

� concurrency scaling of the frequency of external errors/

failures;

� heterogeneity and lightweight OSs.

These technology drivers are specific instances of the

more broadly stated technology trends in exascale of con-

currency, resiliency, and heterogeneity within a node. If

ignored, debugging at exascale will become more and more

costly, increasing the human effort applied to debugging

and diminishing the investment in HPC resources by

requiring more machine hours to be devoted to costly

debug sessions. The research strategy for exascale debug-

ging therefore must aim to streamline the debugging pro-

cess by making it more scalable and more reliable.

4.2.5.2 Alternative R&D Strategies for Debugging. Exascale

is a regime in which the rate of hardware faults will make

debugging, in the expanded context mentioned above, a

persistently needed real-time activity. We therefore suggest

a strategy that ‘plans to debug’ at compile time and also

addresses the data management problems presented by dra-

matically higher concurrencies. The utility in debugging in

a separate session will be limited, since a large class of bugs

may not be reproducible. Exascale will require the ability to

‘debug without stopping.’ Scalability in debugging has

been addressed in previous generations of HPC systems.

Research to advance the state of the art in scalability will

be required.

Instead of pursuing the development of debuggers as

monolithic applications capable of running other user

applications in a debug environment, we propose R&D to

improve the information sources from which a variety of

debugging frameworks can benefit. This strategy borrows

a lesson learned in the performance tools community,

which has largely moved away from each tool having its

own means of deriving machine function (reading counters,

registers, etc.) toward development of robust APIs that

deliver that information in a portable manner. For example,

the performance application programming interface (PAPI)

provides a common interface for performance information

upon which performance tools may be built.

To build such scalable and reliable sources of informa-

tion for debugging, we suggest vertical integration with the

compiler, library, runtime, OS, and I/O layers. This

Table 9.

Timeframe Targets and milestones – numerical libraries

2010–2012 Standards for hybrid (heterogeneous)
computing are needed immediately

2011: milestone: heterogeneous software
libraries

2012: milestone: language issues addressed
2012–2014 Standards required for architectural

characteristics.
2013: milestone: architectural transparency

2014–2016 2015: milestone: self-adapting for performance
Standards required for energy awareness

2016–2017 2016: milestone: energy awareness
Standard for fault tolerance required

2018–2019 2018 milestone: fault tolerance
2019: milestone: scaling to billion way

28 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

integration achieves two important goals at the same time.

Firstly, it expands the perspective into the application from

multiple directions by providing multiple layers or contexts

in which to debug. Specific aspects of codes, such as just

communication, I/O, specific libraries, or even user-

defined quantities or data structures, will allow the debug-

ging process to zero in on the anomaly or fault in question.

Composition of these data sources will allow for cross-

checking and hypothesis testing as to the origin of a fault

or bottleneck. This contrasts with the idea of using a debug-

ger to step through executing code on an instruction or sub-

routines basis and moves in the direction of having the

debugging framework become advisory and participatory

in the production and execution of codes.

Secondly, vertical integration that delivers portable

standards for gathering and acting on debug information

provides efficiency in the design and maintenance of

debugging tools. Instead of developing an end-to-end solu-

tion within each debugger, we imagine a lowered barrier to

entry to the design of special-purpose, custom-fitted debug-

gers that draw on reliable, scalable, and portable mechan-

isms for monitoring and controlling application codes.

Moving from a one-size-fits-all perspective on debugging

to modularly selectable approaches will enhance the ability

for applications to incorporate the handling of faults and

problem scenarios internally. Currently, a large mismatch

exists between what the layers underlying the application

tell the application about faults and what the application

needs to know.

4.2.5.3 Recommended Research Agenda for Debugging.
Debugging technology needs to grow away from mono-

lithic applications toward runtime libraries and layers that

detect problems and aggregate highly concurrent debug-

ging information into a categorical rather than task-based

context. Pursuing this path raises a variety of research chal-

lenges whose solution will be critical to finding a success-

ful approach to debugging at exascale.

� Methods for scalable clustering of application process/

thread states: many millions of synopses can be made

understandable by clustering into types or categories.

Debuggers will need to have the ability to search

through this volume of data to find the ‘needle in the

haystack’ in order to speed root cause determination.

� Debugging without stopping (resilient analysis of vic-

tim processes): support for debugging will be needed

in cases where one node has died, and the OS and run-

time methods are able to migrate and/or reschedule

failed tasks, keeping the application alive. Debuggers

will need interoperability with the system and runtime

fault tolerance technologies.

� Vertical integration of debug and performance informa-

tion across software layers: it will be necessary to find

ways to move debugging into multiple levels of appli-

cation development, build, and execution in order to get

a fuller picture of application problems. Consistent

standards in the design of these interfaces will be

needed to make debuggers and tools more portable, as

well as easier to develop and maintain.

� Layered contexts or modes of debugging: instead of a

one-size-fits-all approach, developers will need to be

able to select custom levels of debug in order to connect

the dots between potential bugs and their causes. ‘All

the data all the time’ will not be an option for full-

scale exascale debugging. Intelligent selection from a

menu of reliable data sources will have to be able to tar-

get the specifics of a potential bug.

� Automatically triggered debugging: instead of debug-

ging test cases in a separate session, some exascale

debugging must be delivered as problems unfold. Users

will have to be able to advise the application about

objectives from which deviation is considered a bug.

A debugging framework with these capabilities would

enable applications to advise the user about problem

indicators, for example, expanding memory footprint,

incorrectness, and sudden changes in performance.

By focusing on the ability of debugging frameworks to

scale and communicate well, this agenda will lower the bar-

riers to debugging, lower the human and machine costs of

debugging, and enhance the trust in the reliability of scien-

tific output from exascale systems.

4.3 Applications

While the IESP may not focus on developing applications

per se, they are nevertheless the reason for the existence

of such systems. It may be that exascale systems are specia-

lized machines, co-designed with specific families of appli-

cations in mind. Therefore, the IESP needs to invest in the

technology that makes these applications feasible.

4.3.1 Application Element: Algorithms
4.3.1.1 Technology and Science Drivers for Algorithms.

Algorithms must be developed to deal with the architec-

tural realities in an exascale system. In addition, algorith-

mic innovation can provide efficient alternatives to

computer hardware, addressing issues such as reliability

and power.

Scalability is perhaps the most obvious driver for algo-

rithms. Contributing to scalability are problems in concur-

rency, latency, and load balancing. Because an exascale

Table 10.

Timeframe Targets and milestones – debugging tools

2010–2011 Planning and workshops
Lightweight debugging at 1e5 cores

2012–2013 Support for heterogeneity in nodes
2014–2015 Simulation at 106 cores
2016–2017 Software development to support 1e6

core production debugging
2018–2019 Near-production exascale

Dongarra et al. 29

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

system will have 108–109 threads, simply creating enough

concurrency from an application can become a challenge

(a 10003 mesh has one point per thread on such a system;

the low computation/communication ratio of such a prob-

lem is typically inefficient). Even current systems have a

103–104 cycle hardware latency in accessing remote mem-

ory. Hiding this latency requires algorithms that achieve a

computation/communication overlap of at least 104 cycles;

exascale systems are likely to require a similar degree of

latency hiding (because the ratio of processor and memory

speeds are expected to remain about the same). Many cur-

rent algorithms have synchronization points (such as dot

products/allreduce) that limit opportunities for latency hid-

ing (e.g. Krylov methods for solving sparse linear systems).

These synchronization points must be eliminated.

Moreover, static load balancing rarely provides an exact

load balance; experience with current terascale and near-

petascale systems suggests that this is already a major scal-

ability problem for many algorithms.

Fault tolerance and fault resilience are also drivers for

algorithms. While hardware and system software solutions

to managing faults are possible, it may be more efficient for

the algorithm to contribute to solving the fault resilience

problem. Experience shows applications may not detect

faults (which may also be missed by the hardware): we

need to evaluate the role of algorithms in detecting faults.

Detecting faults in hardware requires additional power and

memory. Regardless of which component detects a fault, it

must be repaired. The current general-purpose solutions

(e.g. checkpoint/restart) are already demanding on high-end

platforms (e.g. requiring significant I/O bandwidth). We need

to evaluate the role of algorithms in repairing faults, particu-

larly transient (e.g. memory upset) faults. In addition, one can

imagine a new class of algorithms that are inherently fault-

tolerant, such as those that converge stochastically. The

advantage of robustness on exascale platforms will eventually

override concerns over computational efficiency.

Because of the likely complexity of an exascale system,

algorithms must be developed that are a good match to the

available hardware. One of the most challenging demands

is power; algorithms that minimize power use need to be

developed. This will require performance models that

include energy. Note that this may be combined with other

constraints, since data motion consumes energy. As many

proposals for exascale systems (and power-efficient petas-

cale systems) exploit heterogeneous processors, algorithms

will need to be developed that can make use of these pro-

cessor structures. The current experience with GPGPU sys-

tems, while promising for some algorithms, has not shown

benefits with other algorithms. Heterogeneous systems also

require different strategies for use of memory and func-

tional units. For example, on some hardware it may be

advantageous for algorithms to exploit multiple levels of

precision. Exascale systems are likely to have orders of

magnitude less memory per core than current systems

(although still having large amounts of memory). Power

constraints may reduce the amount of fast memory

available, adding to the need for latency hiding. Thus we

need algorithms that use memory more efficiently, for

example, more accuracy per byte, fewer data moves per

result. The choice of algorithm for a particular application

may depend sensitively on details of the memory hierarchy

and implementation; portability between diverse architec-

tures will require algorithms that can automatically adjust

to local hardware constraints.

The final driver is this need to re-examine the classes of

applications that are suitable for exascale computing.

Because exascale systems are likely to be different from

simple extrapolations of petascale systems, some applica-

tion areas may become suitable again; others (because of

the extreme scale and degree of concurrency) may become

possible for the first time.

A major concern is that an exascale system may be very

different from current systems and will require new

approaches.

4.3.1.2 Alternative R&D Strategies for Algorithms. All stra-

tegies for developing algorithms for exascale systems must

start with several ‘strawman exascale architectures’ that are

described in enough detail to permit the evaluation of the

suitability of current algorithms on potential exascale sys-

tems. There are then two basic strategies: (1) refine existing

algorithms to expose more concurrency, adapt to heteroge-

neous architectures, and manage faults; and (2) develop

new algorithms.

In refining algorithms, a number of strategies may be

applied. Developing new algorithms requires rethinking the

entire application approach, starting with the choice of

mathematical model and approximation methods used. It

is also important to re-evaluate existing methods, such as

the use of Monte Carlo, reconsider trade-offs between

implicit and explicit methods, and replace fast Fourier

transform (FFT) with other approaches that can avoid the

all-to-all communication. In creating algorithms that are

fault tolerant, a key approach is to use or create redundant

information in the algorithm or mathematical model. To

make effective use of likely exascale hardware, methods

that make more efficient use of memory, such as higher-

order methods, as well as the development of more predic-

tive analytic performance models, will be key.

4.3.1.3 Recommended Research Agenda for Algorithms. A

research agenda is shown Table 11, along with comments

providing more detail about each in the list below. Not cap-

tured in this table is the need to follow two broad strategies:

an evolutionary one that updates current algorithms for

exascale (following the approaches that have successfully

been followed to take us to petascale) and one that invests

in higher risk but higher payoff development of new algo-

rithms. In either case, it is important to develop perfor-

mance models (and thus strawman exascale architecture

designs) against which algorithm developments can be

evaluated. In addition, it is all too easy for applications to

define algorithm ‘requirements’ that overly constrain the

possible solutions. It is important to re-evaluate application

30 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

needs, for example, evaluating changes to the model or

approximation to allow the use of exascale-appropriate

algorithms.

Against this background, the critical research challenges

that need to be addressed for application algorithms that

build on the X-stack are as follows:

� gap analysis: the need to perform a detailed analysis of

the applications, particularly with respect to quantita-

tive models of performance and scalability;

� scalability, particularly relaxing synchronization

constraints;

� fault tolerance and resilience, including fault detection

and recovery;

� heterogeneous systems: algorithms that are suitable for

systems made of functional units with very different

abilities.

4.3.1.4 Cross-cutting Considerations. The ability to design

and implement efficient and novel algorithms for exascale

architectures will be closely tied to improvements in many

cross-cutting areas. Examples include the following.

The development of libraries that recognize and exploit

the presence of mixed-precision mathematics will spur the

creation of algorithms that effectively utilize heteroge-

neous hardware. Ideally, the user could specify the required

precision for the result, and the algorithm would choose the

best combination of precision on the local hardware in

order to achieve it. The actual mechanics would be hidden

from the user.

The creation of debugging tools that expose cache use,

load imbalance, or local power utilization will be critical for

the implementation of self-optimizing algorithms in each of

these areas. Currently available methods of debugging

large-scale codes to catch, for example, load-balancing

issues are manpower intensive and represent a significant

barrier to the development of efficient algorithms.

Runtime systems that make available to the running

code information about mean time before failure (MTBF)

on the hardware can allow for auto-adjustment of defensive

restart strategies. The I/O strategy for even a petascale

simulation must be carefully optimized to avoid wasting

both compute and storage resources. The situation will only

be more critical at exascale.

The tuning of algorithms for performance optimization

will benefit from compilers and programming languages

that can recognize and utilize multiple levels of parallelism

present in the hardware. Current strategies for optimization

on HPC architectures result in either one-off, hand-tuned

codes or portable and inefficient codes, since it is difficult

to express multiple possible levels of parallelism into the

structure of the code. The increased portability allowed

by some measure of autotuning will maximize the remote

direct memory access over internet (ROI) on code develop-

ment and thus lower the effective cost of entry into HPC.

4.3.2 Application Support: Data Analysis and Visualization
4.3.2.1 Technology and Science Drivers for Data Analysis

and Visualization. Modern scientific instruments – for exam-

ple, in synchrotron science, high-energy physics, astron-

omy, and biotechnology – are all experiencing

exponential growth in data generation rates through a com-

bination of improved sensors, increases in scale,

Table 11.

Timeframe Targets and milestones – algorithms

2010–2011 Gap analysis. Needs to be completed early to guide the rest of the effort.
Evaluation of algorithms needed for applications. Needs to be initiated early and completed early

to guide allocation of effort and to identify areas where apps need to rethink the approach (cross-cutting
issue). Needs to develop and use more realistic models of computation (quantify need).

2012–2013 Algorithms for intranode scaling
Algorithms for internode scaling
Evaluation on petascale systems
Better scaling in node count and within nodes can be performed using petascale systems in this timeframe

(so it makes sense to deliver a first pass in this timeframe).
2014–2015 Prototype algorithms for heterogeneous systems

Heterogeneous systems are available now but require both programming model and algorithmic innovation;
while some work has already been done, others may require more time. This can be viewed as ‘a significant
fraction of algorithms required for applications expected to run at exascale have effective algorithms for
heterogeneous processor systems.’

2016–2017 Fault resilience
Fault resilience is a hard problem; this assumes that work starts now but will take this long to meet the same

definition as for heterogeneous systems – ‘a significant fraction of algorithms have fault resilience.’
2018–2019 Efficient realizations of algorithms on exascale architectures

Efficient implementation includes the realization in exascale programming models and tuning for real systems,
which may involve algorithm modifications (since the real architecture will most likely be different from the
models used in earlier developments). In addition, the choice of data structures may also change, depending
on the abilities of compilers and runtimes to provide efficient execution of the algorithms.

Dongarra et al. 31

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

widespread availability, and rapid advances in the support-

ing information technology. Model simulations – for exam-

ple, in climate, computational fluid dynamics (CFD),

materials science, and biological science – are also produc-

ing vast amounts of data as they scale with the exponential

growth in HPC performance. Experimental science, model-

ing, and simulation are routinely generating petabyte-scale

datasets. Exabyte-scale datasets are now part of the plan-

ning process for major scientific projects.

The increasing scale and complexity of simulations and

the data they produce will be a key driver of the research

agenda in the area of data analysis and visualization. These

will force new approaches to coupling analysis and visua-

lization computations to the larger datasets. Considerations

of dataset size will also drive innovations in analysis tech-

niques, allowing for the advancement of current technology

and requiring the R&D of new solutions. Analysis and

visualization will be limiting factors in gaining insight from

exascale data.

Interactive data exploration will also become increas-

ingly important as dataset scale and complexity continue

to grow. However, it will become increasingly difficult

to work interactively with these datasets, thus requiring

new methods and technologies. These solutions will

need to supply the scientist with salient reductions of the

raw data and new methods for information and process

tracking.

4.3.2.2 Alternative R&D Strategies for Data Analysis and
Visualization. Several strategies for enabling data analysis

and visualization at exascale are available to us. One

strategy would be to continue to incrementally improve and

adapt existing technologies (visualization and analysis algo-

rithms, data management schemes, and end-to-end resource

allocation). This adiabatic expansion of current efforts is

well traveled and has a lower barrier to entry than others, but

it may not provide adequate solutions in the long run.

Inevitably, some combination of existing technologies

and the integration of the four approaches described next

will serve important roles in the necessary R&D enterprise.

� New algorithms: it would make sense to pursue devel-

opment of entirely new algorithms that fit well with

new large and complex architectures. This approach

will be increasingly difficult, owing to the need to

explicitly account for larger pools of heterogeneous

resources.

� New data analysis approaches: new mathematical and

statistical approaches must be identified for analysis of

exabyte datasets.

� Integrated adaptive techniques: development of inte-

grated adaptive techniques will enable on-the-fly and

learned pattern performance optimization from fine to

coarse grain. This strategy would provide a range of

means to extract meaningful performance improve-

ments implicitly, rather than by explicit modeling of

increasingly complex systems.

� Pro-active software methods: another strategy is to

expand the role of supporting visualization environ-

ments to include more pro-active software: model- and

goal-aware agents, estimated and fuzzy results, and

advanced feature identification. This strategy will

Table 12.

Timeframe Targets and milestones – data analysis and visualization

2010–2011 Planning and workshops
Assess current tools and technologies
Perform needs and priority analysis across multiple disciplines
Identify common components
Identify new mathematical and statistical research needed for analysis of exabyte datasets
Integrate analysis and visualization into scientific workflows
Develop exascale data analysis and visualization architecture document
Commence initial set of projects for common components and domain-specific data analysis

and visualization libraries
Plan deployment of a global system of large-scale, high-resolution (100 Mpixel) visualization and data

analysis systems to link universities and research laboratories
2012–2013 Develop 1.0 common component data analysis and visualization libraries

Develop 1.0 priority domain-specific data analysis and visualization libraries
Begin deployment of a global system of large-scale, high-resolution (100 Mpixel) visualization and

data analysis systems
Achieve data analysis and visualization at 105 cores with petabyte datasets

Provide support for heterogeneity in nodes
2014–2015 Integrate data analysis and visualization tools in domain-specific workflows

Achieve data analysis & visualization at 106 cores with 10–100 petabyte datasets
2016–2017 Complete 2.0 domain-specific data analysis and visualization libraries and workflows

Complete 2.0 common component data analysis and visualization libraries
Achieve data analysis and visualization at 106 cores with near-exascale datasets

2018–2019 Roll out data analysis and visualization at exascale

32 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

require abdicating some responsibility to autonomous

system software in order to more rapidly sift through

large amounts of data in search of hidden elements of

discovery and understanding.

� Metatools: with a focus on mitigating the increasing

burden of high-level organization of the exploration

and discovery process, it would be advantageous to

invest in methods and tools for keeping track of the pro-

cesses and products of exploration and discovery.

These will include aids to process navigation, hypoth-

esis tracking, workflows, provenance tracking, and

advanced collaboration and sharing tools.

� Collaboration: deployment of a global system of

large-scale, high-resolution (100 Mpixel) visualization

and data analysis systems based on open-source archi-

tectures will link universities and research laboratories

and facilitate collaborations.

4.3.2.3 Recommended Research Agenda for Data Analysis
and Visualization. Many of the innovations required to cope

with exascale data analysis and visualization tasks will

require considerable development and integration in order

to become useful. At the same time, most would be of con-

siderable utility at the petascale. Consequently, it is not

only required but could provide up-front benefits to aggres-

sively develop the proposed methods so that they can be

deployed early, at least in prototype form, for extensive use

in research situations and rigorously evaluated by the appli-

cation community.

Among the research topics that will prove critical in

achieving this goal are the following:

� identification of features of interest in exabytes of data;

� visualization of streams of exabytes of data from scien-

tific instruments;

� integrating simulation, analysis, and visualization at

exascale.

Ongoing activities supporting adiabatic expansion of

existing techniques onto new hardware architectures and

the R&D of new algorithms will continue throughout the

time span. The major milestones and timetable reflected

in Table 12 would be supported by the development of

many of the ideas at a smaller scale, beginning as soon as

possible.

4.3.2.4 Cross-cutting Considerations. Architecture at coarse

and fine grain: analysis and visualization can use any or all

of the computational, storage, and network resources in a

computational environment. Methods developed to address

the driving technology and science issues are likely to inter-

sect with the design and implementation of future architec-

tures at all granularities, from wide-area considerations to

heterogeneity of available processing elements. In addition,

compiler and debugging tools appropriate for software

development on exascale systems will need to be developed

to meet the needs of the timetable outlined above.

Opportunistic methods: many emerging approaches to

analysis and visualization leverage opportunities that arise

from data locality (e.g. in situ methods), synergies of hap-

penstance (as in analysis embedded in I/O libraries and data

movers), and unused capacity (e.g. background analysis

embedded in I/O servers). These will each require coordi-

nation with fine-grained execution of the numerical algo-

rithms used in the simulation, ongoing read/write

operations, and system-level resource scheduling.

Researchers should consider using exascale performance

to rapidly perform model simulations, with data analysis

and visualization integrated into the simulation to avoid

storing vast amounts of data for later analysis and visuali-

zation. This strategy would affect the development of

domain-specific simulation codes.

End-to-end or global optimizations: improvements in

understanding algorithms for large-scale heterogeneous

architectures and the related advances in runtime and com-

piler technologies are likely to afford new opportunities for

performance optimization of the combined simulation and

analysis computations. These and other benefits may

accrue from taking a more holistic view of the end-to-end

scientific discovery pipeline. Integrating data analysis and

visualization into domain-specific exascale scientific work-

flows will be essential to maximizing the productivity of

researchers working on exascale systems.

4.3.3 Application Support: Scientific Data Management
4.3.3.1 Technology and Science Drivers for Scientific Data

Management. The management, analysis, and mining of

large datasets already present challenging problems, but

these activities are critical in petascale systems and will

be even more so for exascale systems. Most science appli-

cations at this scale will be extremely data intensive; indi-

vidual simulations are expected to produce petabytes of

data and, when combined with multiple executions, the

data could approach exabyte scales. Thus, managing scien-

tific data has been identified by the scientific community as

one of the most important emerging needs because of the

sheer volume and increasing complexity of data. The

potential impact of exascale computing will be measured

not just in the power it can provide for simulations, but also

in the capabilities it provides for managing and making

sense of the data produced. Clearly needed is an end-

to-end approach that encompasses all stages, from the ini-

tial data acquisition to the final analysis of the data. Many

common questions arise across various application disci-

plines. Are data management tools available that can

manage data at this scale? Although scalable file systems

are important as underlying technologies, they are not suit-

able as a user-level mechanism for scientific data manage-

ment. What are the scalable algorithm techniques for

statistical analysis and mining of data at this scale? Are

there mathematical models? Does the ‘store now and

analyze later’ model work at this scale? What are the mod-

els and tools for indexing, querying, and searching these

massive datasets and for knowledge discovery? What are

Dongarra et al. 33

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

the tools for workflow management? An emerging model

relies ever more on teams working together to organize new

data, develop derived data, and produce analyses based on

the data, all of which can be shared, searched, and queried.

What are the models for such sharing, and what are designs

for such databases or data warehouses? Data provenance is

another critical issue at this scale. What are scalable data

formats, and what are the formats for metadata?

4.3.3.2 Alternative R&D Strategies for Scientific Data
Management. Scientific data management covers many sub-

fields, from data formats, workflow tools, and querying to

data mining and knowledge discovery. For most of the sub-

fields, R&D strategies must simultaneously consider the

scalable I/O and storage devices for the required scaling for

exascale systems.

Data analysis and mining software and tools: knowledge

discovery from massive datasets produced or collected will

require sophisticated, easy-to-use, yet scalable tools for sta-

tistical analysis, data processing, and data mining. Scalable

algorithms and software must be developed that can handle

multivariate, multidimensional (and large number of

dimensions), hierarchical, and multiscale data at massive

scales. Scalable tools based on these algorithms must be

developed with a capability to incorporate other algo-

rithms. Traditionally, analytics and mining specification

languages have been sequential and are unable to scale to

massive datasets. Parallel languages for analysis and min-

ing that can scale to massive datasets will be important.

Data mining and analysis scalability can also be addressed

via the use of accelerators, such as GPGPUs and FPGAs;

and the development of scalable algorithms, libraries, and

tools that can exploit these accelerators will be important.

Techniques for online analytics, active storage models, and

co-processing models should be developed that can run

concurrently (potentially on a subsystem) with the

simulations and can exploit the multicore nature of the sys-

tems. In addition, maximizing the use of data while it is

available should be investigated.

Scientific workflow tools: scientific workflow is defined

as a series of structured activities, computation, data anal-

ysis, and knowledge discovery that arise in scientific

problem-solving. That is, it is a set of tools and software

that allow a scientist to specify end-to-end control and data

flow, as well as coordination and scheduling of various

activities. Designing scalable workflow tools with easy-

to-use interfaces will be important for exascale systems,

both for performance and for scientific productivity, as well

as for effective use of these systems. Scaling of workflow

tools will entail enhancements of current designs and/or

developing new approaches that can effectively use scal-

able analytics and I/O capabilities and that can incorporate

query processing. New design mechanisms, including tem-

plates, semantic types, and user histories will simplify

workflow design and increase dependability. As a part of

the workflow tools, the creation, management, querying,

and use of data provenance must be investigated.

Extensions of databases systems: commercial database

systems, such as those based on relational or object models

(or derivation thereof), have proved unsuitable for organiz-

ing, storing, or querying scientific data at any reasonable

scale. Although it is an alternative for pursuing data man-

agement solutions, it is not likely to be successful.

Design of new database systems: a potential approach to

database systems for scientific computing is to investigate

completely new approaches that scale in performance,

usability, query, data modeling, and an ability to incorpo-

rate complex data types in scientific applications and that

eliminate the over-constraining usage models, which are

impediments to scalability in traditional databases. Scal-

able file systems will be critical as an underlying

software layer, but not as a user-level interface for data

Table 13.

Timeframe Targets and milestones – scientific data management

2010–2011 � Extensions and redesign of scalable data formats
� Extend capabilities of workflow tools to incorporate analytics
� Design of data mining and statistical algorithms for multiscale data

2012–2013 � Design and definition of scientific database systems
� Workflow tools with fault-resiliency specification capabilities
� Integration of scalable I/O techniques with wide-area SDM technologies

2014–2015 � Analytics and mining for active storage systems, including functionality for users to
embed their functions.

� Scalable implementations of high-level libraries for various high-level data formats
� Scalable query and search capabilities in scientific database systems

2016–2017 � Comprehensive parallel data mining and analytics suites for scalable clusters with GPGPU and
other accelerators

� Extensive capabilities for managing data provenance within the workflow and other SDM tools
� Online analytics capability and its integration with workflow tools

2018–2019 � Real-time knowledge discovery and insights
� Comprehensive scientific data management tools

34 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

management purposes. It is critical to move to dataset-

oriented paradigms for data management, in which the file

systems serve the data management layer and need to be

optimized for the limited functionality needed by the data

management layer, which in turn presents an intuitive,

easy-to-use interface to the user for managing, querying

and analyzing data with a capability for the users to embed

their functions within the data management systems.

Scalable data format and high-level libraries: scientists

use different data formats, mainly driven by their ability

to specify the multidimensional, multiscale, often sparse,

semi-structured, unstructured, and adaptive data. Examples

of these formats and corresponding libraries include

netCDF and HDF and their corresponding parallel

(PnetCDF and PHDF) versions. Changes in these have been

driven mainly by backward compatibility. Approaches to

adapt and enhance these formats and scale the data access

libraries must be investigated. Furthermore, new storage

formats that emphasize scalability and the use of effective

parallel I/O, along with the capabilities to incorporate ana-

lytics and workflow mechanisms, are important areas for

R&D. Although the use of new storage devices, such as

SCM, has been discussed in the context of I/O systems,

their use in redesigning or optimizing storage of data and

metadata for performance and the effective querying of

high-level data formats and libraries should be pursued,

particularly given that accessing metadata is a major

bottleneck.

Search and query tools: effective searching and query-

ing of scientific data are critical. New technology is needed

for efficient and scalable searching and filtering of large-

scale, scientific multivariate datasets with hundreds of

searchable attributes to deliver the most relevant data and

results. Users may be interested in querying specific events

or the presence or absence of certain data subsets. Further-

more, filtering of data based on certain query specifications

is important, including capabilities to combine multiple

datasets and query across them.

Wide-area data access, movement, and query tools:

wide-area data access is becoming an increasingly impor-

tant part of many scientific workflows. In order to most

seamlessly interact with wide-area storage systems, tools

must be developed that can span various data management

techniques across a wide area, integrated with scalable I/O,

workflow tools, and query and search techniques.

4.3.3.3 Recommended Research Agenda for Scientific Data
Management. The recommended research agenda for scien-

tific data management systems includes all items above

except for extentions of database systems.

4.3.3.4 Cross-cutting Considerations. Scientific data man-

agement clearly has cross-cutting considerations with scal-

able storage and I/O, visualization techniques and tools,

OSs, fault-resiliency mechanisms, the communication

layer, and, to some extent, programming models.

4.4 Cross-cutting Dimensions

4.4.1 Resilience. Since exascale systems are expected to have

millions of processors and hundreds of millions of cores,

resilience will be necessary for the exascale applications.

If the relevant components of the X-stack are not fault tol-

erant, then even relatively short-lived applications are

unlikely to finish, or worse, may terminate with an incor-

rect result. In other words, insufficient resilience of the

software infrastructure would likely render extreme-scale

systems effectively unusable. The amount of data needing

to be checkpointed and the expected rate of faults for petas-

cale and larger systems are already exposing the inadequa-

cies of traditional checkpoint/restart techniques. The trends

predict that, for exascale systems, faults will be continuous

and across all parts of the hardware and software layers,

which will require new programming paradigms. Because

there is no compromise for resilience, the challenges it pre-

sents need to be addressed now for solutions to be ready

when exascale systems arrive.

4.4.1.1 Technology Drivers for Resilience. Five technology

drivers have been identified.

� Exponential increases in the number of sockets, cores,

threads, disks, and memory size are expected.

� Because of the size and complexity, there will be more

faults and a large variety of errors (soft errors, silent

soft errors, transient and permanent software and hard-

ware errors) everywhere in the system. Some projec-

tions consider that the full-system mean time to

failure will be in the range of one minute.

� Silent soft errors will become significant and raise the

issues of result and end-to-end data correctness.

� New technologies, such as flash memory (solid-state

drive (SSD)), phase-change RAM, and accelerators

will raise both new opportunities (stable local stor-

age, faster checkpointing, faster checkpoint compres-

sion, etc.) and new problems (capturing the state of

accelerators).

� Intel has estimated that additional correctness checks

on chip will increase power consumption by 15–20%.

The need to significantly reduce the overall power used

by exascale systems is likely to reduce the reliability of

components and reduce the mean time to failure of the

overall system.

4.4.1.2 Gap Analysis. This section briefly identifies the

technology gaps that must be overcome in moving from

current HPC to the exascale.

� Existing fault tolerance techniques (global checkpoint/

global restart) will be impractical at the exascale. New

techniques for saving and restoring state need to be

developed into practical solutions.

� The most common programming model, the MPI, does

not offer a paradigm for resilient programming. A

Dongarra et al. 35

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

failure of a single task often leads to killing the entire

application.

� Present applications and system software are neither

fault tolerant nor fault aware and are not designed to

confine errors/faults, to avoid or limit their propagation,

and to recover from them when possible.

� There is no communication or coordination between the

layers of the software stack in error/fault detection and

management, nor coordination for preventive or correc-

tive actions.

� Errors, fault root causes, and propagation are not well

understood.

� There is almost never verification of the results from

large, long-running simulations.

� There are no standard metrics, no standardized experi-

mental methodology, and no standard experimental

environment to stress resilience solutions and compare

them fairly.

4.4.1.3 Alternative R&D Strategies. Resilience can be

attacked from different angles:

� global recovery versus fault confinement and local

recovery;

� fault recovery versus fault avoidance (fault prediction

þ migration);

� transparent (system managed) versus application

directed;

� recovery by rollback versus replication.

Since rollback recovery, as we know it today, will be not

applicable by 2014–2016, research needs to progress on all

techniques that help to avoid global coordination and glo-

bal rollback.

4.4.1.4 Recommended Research Agenda for Resilience. The

recommended research agenda follows two main tracks:

1. extend the applicability of rollback toward more local

recovery – scalable, low overhead, fault-tolerant proto-

cols, integration of SSDs and phase-change random-

access memory (PRAM) for checkpointing, reducing

checkpoint size (new execution state management),

error and fault confinement and local recovery, consis-

tent fault management across layers (including appli-

cation and system software interactions), language

support and paradigm for resilience, and dynamic error

handling by applications;

2. fault-avoidance and fault-oblivious software to limit the

recovery from rollback – improve RAS collection and

analysis (root cause), improve understanding of error/

fault and their propagation across layers, develop situa-

tional awareness, system-level fault prediction for time

optimal checkpointing and migration, fault-oblivious

system software, and fault-oblivious applications.

4.4.2 Power Management
4.4.2.1 Technology Drivers for Power Management. Power

has become the leading design constraint for future HPC

system designs. In thermally limited designs, power also

forces design compromises that lead to highly imbalanced

computing systems (such as reduced global system band-

width). The design compromises required for power-limited

logic will reduce system bandwidth and consequently reduce

delivered application performance and greatly limit the scope

and effectiveness of such systems. From a system manage-

ment perspective, effective power management systems can

substantially reduce overall system power without reducing

application performance, and therefore make fielding such

Table 14.

Timeframe Targets and milestones – resilience

2010–2012 Target 1: extension of the applicability of rollback recovery
� Design of scalable, low-overhead, fault-tolerant protocols
� Integration of checkpoint size reducing techniques (compiler, incremental, compression, etc.)
� Demonstration of partial-local replication as complement to rollback

2013–2015 Target 1: extension of the applicability of rollback recovery
� Integration of phase-change RAM technologies
� Implementation of error and fault confinement, local recovery, TMR (cores)
� Development of fault-aware system software
� Provision of language support and paradigm for resilience
� Development of application and system software interactions (standard API)
� Consistency across layers (CIFTS or CIFTS-like mechanisms)

Target 2: fault-avoidance and fault-oblivious software
� RAS collection and analysis (root cause), situational awareness
� Hardware and software integration

2016–2019 Target 2: fault-avoidance and fault-oblivious software
� System-level fault prediction for time-optimal checkpointing and migration
� Fault-oblivious system software
� Fault-oblivious applications

36 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

systems more practical and cost-effective. The existing power

management infrastructure has been derived from consumer

electronic devices and fundamentally never had large-scale

systems in mind. Without comprehensive cross-cutting tech-

nology development for a scalable active power management

infrastructure, power consumption will force design

compromises that will reduce the scope and feasibility of

exascale HPC systems.

From an applications perspective, active power manage-

ment techniques improve application performance on

systems with a limited power budget by dynamically direct-

ing power usage only to the portions of the system that require

it. For example, a system without power management would

melt if it operated memory interfaces at full performance

while also operating the floating-point unit at full perfor-

mance – forcing design compromises that limit the memory

bandwidth to 0.01 bytes/flop according to the DARPA projec-

tions. In this thermally limited case, however, one can deliver

higher memory bandwidth to the application for short periods

of time by shifting power away from other components.

Whereas the projected bandwidth ratio for a machine would

be limited to 0.01 bytes/flop without power management, the

delivered bandwidth could be increased to 1 byte/flop for the

period of time where the application is bandwidth limited, by

shifting the power away from the floating point (or other com-

ponents that are under-utilized in the bandwidth-limited

phase of an algorithm). Therefore, power management is an

important part of enabling better delivered application perfor-

mance through dynamic adjustment of system balance to fit

within a fixed power budget.

From a system management perspective, power is a

leading component of system total cost of ownership.

Every megawatt of reduced power consumption translates

to a savings of $1M/year on even the least expensive

energy contracts. For systems that are projected to consume

hundreds of megawatts, power reduction makes fielding of

such systems more practical. HPC-focused power manage-

ment technology can have a much broader impact across

the large-scale computing market. High-end servers, which

are the building blocks of many HPC systems, were esti-

mated to consume 2% of North American power generation

capacity as of 2006, and this factor is growing. By 2013, the

International Data Corporation (IDC) estimates that HPC

systems will be the largest fraction of the high-end server

market. Hence, the direct impact of improved power man-

agement technology is to reduce the operating cost for

exascale HPC systems, but the broader impact is to reduce

power consumption of the largest and fastest growing sec-

tor of the computing technology market (HPC systems) and

reduce carbon emissions for all server technology.

The current state-of-the-art power management systems

are based on features developed for the consumer-

electronics and laptop markets, which make local control

decisions to reduce power. Unfortunately, the technology

to collect information across large-scale systems and make

control decisions that coordinate power management deci-

sions across the system is not well developed, nor are

reduced models of code performance for optimal control.

Furthermore, the interfaces for representing sensor data for

the control system, describing policies to the control sys-

tem, and distributing control decisions are not available

at scale. Effective system-wide power management will

require development of interface standards to enable both

vertical (e.g. between local components and integrated sys-

tem) and horizontal (e.g. between numerical libraries) inte-

gration of components. Standardization is also a minimum

requirement for broad international collaboration on devel-

opment of software components. The R&D effort required

to bring these technologies into existence will touch on

nearly every element of a large-scale computing system

design – from library and algorithm design to system man-

agement software.

4.4.2.2 Alternative R&D Strategies for Power Management.
Fundamentally, power management technology attempts to

actively direct power towards useful work. The goal is to

reduce system power consumption without a corresponding

impact on delivered performance. This is accomplished pri-

marily through two approaches.

1. Power down components when they are under-utilized:

examples include DVFS, which reduces the clock rate

and operating voltage of components when the OS

directs it to. Memory systems also support many

low-power modes when operating at low loads. Mas-

sive Arrays of Redundant Disks (MAID) allow disk

arrays to be powered down incrementally (subsets of

disks) to reduce power. In the software space, OSs or

libraries use information about the algorithm resource

utilization to set the power management policy to

reduce power.

2. Explicitly manage data movement: both algorithms

and hardware subsystems are used to manage data

movement to make the most effective use of available

bandwidth (and hence power). Examples from the

hardware space include solid-state disk caches to lower

I/O power for frequently accessed data, offloading of

work to accelerators, and software-managed memory

hierarchies (local stores). Examples from the software

space include communication-avoiding algorithms,

programming models that abstract use of local stores,

and libraries that can adapt to current power manage-

ment states or power management policy.

Current power management features are derived pri-

marily from consumer technology, where the power sav-

ings decisions are all made locally. For a large parallel

system, locally optimal solutions can be tremendously

non-optimal at the system scale. When nodes go into

low-power modes, opportunistically based on local deci-

sions, they create a jitter that can substantially reduce

system-scale performance. Therefore, localized automatic

power management features are often turned off on pro-

duction HPC systems. Moreover, the decision to change

Dongarra et al. 37

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

system balance dynamically to conserve power requires

advance notice because there is latency for changing

between different power modes. Hence, the control loop

for such a capability requires a predictive capability to

make optimal control decisions. Therefore, new mechan-

isms that can coordinate these power savings technologies

at the system scale will be required to realize an energy-

efficiency benefit without a corresponding loss in deliv-

ered performance.

A completely adaptive control system requires a method

for sensing current resource requirements, making a control

decision based on an accurate model for how the system

will respond to the control decision, and then distributing

that control decision in a coordinated fashion. Currently,

the control loop for accomplishing this kind of optimal

control for power management is fundamentally broken.

Predictive models for response to control decisions are

generally hand-crafted (a time-consuming process) for the

few examples that exist. There is no common expression

of policy or objective. There is no comprehensive monitor-

ing or data aggregation. More importantly, there is almost

no tool support for the integration of power management

into libraries and application codes. Without substantial

investments to create system-wide control systems for

power management, standards to enable vertical and hori-

zontal integration of these capabilities, and the tools to

facilitate easier integration of power management features

into application codes, there is little chance that effective

power management technologies will emerge. The conse-

quence will be systems that must compromise system bal-

ance (and hence delivered application performance) to fit

within fixed power constraints, or systems that have

impractical power requirements.

4.4.2.3 Recommended Research Agenda for Power
Management. The R&D required for the X-stack to enable

comprehensive, system-wide power management is perva-

sive and will touch on a broad variety of system compo-

nents. The cross-cutting research agenda includes the

following elements.

OS/node-scale resource management: OSs must support

quality-of-service management for node-level access to

very limited/shared resources. For example, the OS must

enable coordinated/fair sharing of the memory interface

and network adaptor by hundreds or even thousands of pro-

cessors on the same node. Support for local and global con-

trol decisions requires standardized monitoring interfaces

for energy and resource utilization (PAPI for energy coun-

ters). Standard control and monitoring interfaces enable

adaptable software to handle diversity of hardware fea-

tures/designs. Future OSs must also manage new power-

efficient architectures, heterogeneous computing resources,

including devices such as GPUs, embedded CPUs, and

non-volatile low-power memory and storage, and data

movement and locality in memory hierarchy.

System-scale resource management: power perfor-

mance monitoring and aggregation are needed that scale

to a 1 billion-core system. System management services

require standard interfaces to enable coordination across

subsystems and international collaboration on component

development. Many power management decisions must

be executed too rapidly for a software implementation and

hence must be expressed as a declarative policy rather than

a procedural description of actions. Therefore, policy

descriptions must be standardized to do fine-grained man-

agement on chip. In particular, standards are required for

specifying reduced models of hardware power impact and

Table 15.

Timeframe Targets and milestones – power management

2010–2011 Energy monitoring interface standards
Energy-aware/communication avoiding algorithms
� System management
� Algorithms
� Libraries
� Compilers and frameworks
� Applications

2012–2013 Local OS-managed, node-level, energy-efficiency adaptation
System-level standard interfaces for data collection and dissemination of control requests

2014–2015 Compatible energy-aware libraries using standardized interfaces
Ability to annotate libraries for parameterized model of energy to articulate a policy to manage

trade-offs (different architectures)
Standardized approach to expressing lightweight performance models for predictive control (analytic

models and empirical models)
Scalable algorithms for adaptive control

2016–2017 Automated code instrumentation (compilers, code generators, frameworks)
Standardized models of hardware power impact and algorithm performance to make logistical decisions

(when/where to move computation þ response to adaptations)
2018–2019 Automated system-level adaptation for energy efficiency

Scale up systems to 1 billion-way parallel adaptive control decision capability

38 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

algorithm performance to make logistical decisions about

when and where to move computation, as well as the

response to adaptations. These include analytical power

models of system response and empirical models based

on advanced learning theory. Also needed are scalable con-

trol algorithms to bridge the gap between global and local

models. Systems to aggregate sensor data from across the

system (scalable data assimilation and reduction) must

make control decisions and distribute those control deci-

sions in a coordinated fashion across large-scale systems

hardware. Both online and offline tuning options based

on advanced search pruning heuristics should be

considered.

Algorithms: we must investigate energy-aware algo-

rithms that base the order of complexity on the energy cost

of operations rather than flops. A good example of this

approach is communication-avoiding algorithms, which

trade off flops for communication to save energy. Since the

optimal trade-off is context specific, however, we must

enable libraries to be annotated for a parameterized model

of energy to articulate a policy to manage those trade-offs

on different system architectures. Standardizing the

approach to specifying lightweight models to predict

response to resource adjustment will be important to this

effort.

Libraries: to create cross-architecture compatible,

energy-aware libraries, library designers need to use their

domain-specific knowledge of the algorithm to provide

power management and policy hints to the power manage-

ment infrastructure. This research agenda requires that

performance/energy-efficiency models and power manage-

ment interfaces in software libraries be standardized. Such

standardization will ensure compatibility of the manage-

ment interfaces and policy coordination across different

libraries (horizontal integration), as well as support port-

ability across different machines (vertical integration).

Compilers: compilers and code generators must be

able to automatically instrument code for power manage-

ment sensors and control interfaces to improve the pro-

grammability of such systems. Compiler technology can

be augmented to automatically expose ‘knobs for control’

and ‘sensors’ for monitoring of non-library code. A more

advanced research topic is to find ways to automatically

generate reduced performance and energy consumption

models to predict response to resource adaptation.

Applications: applications require more effective

declarative annotations for policy objectives and interfaces

to coordinate with advanced power-aware libraries and

power management subsystems.

The proposed research agenda targets the following key

metrics for improving overall effectiveness of exascale

systems.

� Performance: scalable, lightweight, and cross-

software hierarchy performance models (analytic mod-

els and empirical models) need to be constructed that

enable predictive control of application execution, so

that we can find ways of reducing power without hav-

ing a deleterious impact on performance.

� Programmability: the application developers cannot

be expected to manage power explicitly due to the over-

whelming complexity of the hardware mechanisms.

Making power management accessible to application

and library architects requires coordinated support from

the compiler, libraries, and system services.

� Composability: there must be standards to enable sys-

tem components and libraries that are developed by dif-

ferent research groups to work in coordinated fashion

with underlying power systems. Standardization of

monitoring and control interfaces minimizes the num-

ber of incompatible ad hoc approaches and enables an

organized international effort.

� Scalability: we must be able to integrate information

from the OS, the system-level resource manager, and

applications and libraries for a unified strategy to meet

objectives.

4.4.3 Performance Optimization
4.4.3.1 Technology and Science Drivers for Performance

Optimization. Exascale systems will consist of increasingly

complex architectures with massive numbers of potentially

heterogeneous components and deeper memory hierarchies.

Meanwhile, hierarchies of large, multifaceted software

components will be required to build next-generation appli-

cations. Taken together, this architectural and application

complexity is compounded by the fact that future systems

will be more dynamic in order to respond to external

constraints, such as power and failures. As reduced time to

solution is still the major reason to use supercomputers,

powerful integrated performance modeling, prediction,

measurement, analysis, and optimization capabilities will

be required to efficiently operate an exascale system.

Table 16.

Timeframe
Targets and milestones – performance
optimization

2012–2013 � Support for hybrid programming models
(mixing MPI, PGAS, OpenMP, and other
threading models, accelerator interfaces)

� Support for modeling, measurement, and
analysis, and autotuning on/for
heterogeneous hardware platforms

2014–2015 � Handling of observation of million-way
concurrency

� Predictive exascale system design
2016–2017 � Handling of observation of hundreds of

million-way concurrency
� Characterize performance of exascale

hardware and software for application
enablement

2018–2019 � Handling of observation of billion-way
concurrency

Dongarra et al. 39

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4.4.3.2 Alternative R&D Strategies for Performance
Optimization. In the exascale regime the challenges of per-

formance instrumentation, analysis, modeling, and engi-

neering will be commensurate with the complexity of the

architectures and applications. An instrumented application

is nothing but an application with modified demands on the

system executing it. This makes current approaches for per-

formance analysis still feasible in the future, as long as all

involved software components are concurrent and scalable.

In addition to the increased scalability of current tools and

the use of inherently more scalable methods, such as statis-

tical profiling, techniques such as automatic or automated

analysis, advanced filtering, online monitoring, clustering,

and analysis, as well as data mining, will be of increased

importance. A combination of various techniques will have

to be applied.

Another alternative is a more performance-aware and

model-based design and implementation of hardware and

software components from the beginning, instead of trying

to increase the performance of a functionally correct but

poorly performing application after the fact.

In addition to user-controlled analysis and tuning, par-

ticularly on higher-level (internode) components of the

X-stack, self-monitoring, self-tuning frameworks, middle-

ware, and runtime schedulers – particularly at node levels

– are necessary. Autotuning facilities will be of great

importance here.

Worse, all of these approaches might not work for

machine architectures that are radical departures from

today’s machines. This situation likely will need funda-

mentally different approaches to performance

optimization.

In the performance modeling area, new methodologies

will be needed that go beyond a static description of the

performance of applications running on the system, in order

to capture the dynamic performance behavior under power

and reliability constraints. Performance modeling will also

be a main tool for the co-design of architectures and

applications.

4.4.3.3 Recommended Research Agenda for Performance
Optimization. The following considerations are key for a

successful approach to performance at exascale.

� Continued development of scalable performance mea-

surement, collection, analysis (online reduction and

filtering, clustering), and visualization (hierarchical)

facilities. Here, performance analysis needs to incorpo-

rate techniques from the areas of feature detection,

signal processing, and data mining.

� Support for modeling, measurement, and analysis of

heterogeneous hardware systems.

� Support for modeling, measurement, and analysis of

hybrid programming models (mixing MPI, PGAS,

OpenMP, and other threading models, accelerator

interfaces).

� Automated/automatic diagnosis and autotuning.

� Reliable and accurate performance analysis in the pres-

ence of noise, system adaptation, and faults. This work

will require inclusion of appropriate statistical

descriptions.

� Performance optimization for metrics other than time

(e.g. power).

� Performance observability and control by hardware and

software components through appropriate interfaces

and mechanisms (e.g. counters). The aim is to provide

sufficient performance details for analysis if a perfor-

mance problem unexpectedly escalates to higher levels.

Vertical integration across software layers (OS, compi-

lers, runtime systems, middleware, and application)

will be needed for this task.

� Design of programming models with performance anal-

ysis in mind. Software and runtime systems must

expose their model of execution and adaptation, as well

as their corresponding performance through a (standar-

dized) control mechanism in the runtime system.

4.4.3.4 Cross-cutting Considerations. In order to ensure per-

formance analysis and optimization at exascale, the various

components and layers of the X-stack must be transparent

with respect to performance. This performance in transpar-

ency will result in the escalation of unforeseen problems to

higher layers, including the application. It is not a new

problem, but certain properties of an exascale system sig-

nificantly increase its severity and significance.

� At this scale, there always will be failing components in

the system with a large impact on performance. A real-

world application will never run on the exact same con-

figuration twice.

� Load-balancing issues limit the success even on moder-

ately concurrent systems, and the challenge of locality

will become another severe issue that has to be

addressed by appropriate mechanisms and tools.

� Dynamic power management (e.g. at the hardware level

inside a CPU) will result in performance variability

between cores and across different runs. The alternative

of running at lower speed without dynamic power

adjustments may not be an option in the future.

� The unknown expectation of the application perfor-

mance at exascale will make it difficult to detect a per-

formance problem if it is escalated undetected to the

application level.

� The ever-growing higher integration of components

into a single chip and the use of more and more hard-

ware accelerators make it more difficult to monitor

application performance and move performance data

out of the system unless special hardware support will

be integrated into future systems.

� Performance comes from all layers of the X-stack, so an

increased integration with the different layers, particu-

larly the OSs, compilers, and the runtime systems, will

be essential.

40 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

An integrated and collaborative approach clearly is

needed to handle performance issues and correctly detect

and analyze performance problems.

4.4.4 Programmability. Programmability is the cross-cutting

property that reflects the ease by which application pro-

grams may be constructed. Although quantitative metrics

are uncertain (e.g. source lines of code (SLOC)) in their

effectiveness, a qualitative level of effort in programmer

time may reflect relative degree, noting that there is no ‘bell

jar’ programmer by which to make absolute comparisons.

Programmability itself involves three stages of application

development: (1) program algorithm capture and represen-

tation; (2) program correctness debugging; and (3) program

performance optimization. All levels of the system, includ-

ing the programming environment, the system software,

and the system hardware architecture, affect programmabi-

lity. The challenges to achieving programmability are

myriad, related both to the representation of the user appli-

cation algorithm and to underlying resource usage.

� Parallelism: sufficient parallelism must be exposed to

maintain exascale operation and hide latencies. It is

anticipated that 10 billion-way operation concurrency

will be required.

� Distributed resource allocation and locality manage-

ment: to make such systems programmable, the tension

must be balanced between spreading the work among

enough execution resources for parallel execution and

co-locating tasks and data to minimize latency.

� Latency hiding: intrinsic methods for overlapping com-

munication with computation must be incorporated to

avoid blocking of tasks and low utilization of comput-

ing resources.

� Hardware idiosyncrasies: properties peculiar to specific

computing resources, such as memory hierarchies,

instruction sets, and accelerators, must be managed in

a way that circumvents their negative impact while

exploiting their potential opportunities without

demanding explicit user control.

� Portability: application programs must be portable

across machine types, machine scales, and machine

generations. Performance sensitivity to small code per-

turbations should be minimized.

� Synchronization bottlenecks: barriers and other over-

constraining control methods must be replaced by light-

weight synchronization overlapping phases of

computation.

4.4.4.1 Technology and Science Drivers for Programmability.
As a cross-cutting property of exascale systems, program-

mability is directly affected by all layers of the system

stack. The programming model and language provide the

API to the user, determine the semantics of parallel com-

puting, and deliver the degree of control and abstraction

of the underlying parallel execution system. The compiler

assists in extracting program parallelism, establishing

granularity of computing tasks, and contributing to task

scheduling and allocation. The runtime system is critical

to exploiting runtime information and determines the level

of dynamic adaptive optimization that can be exploited.

The OS supports the runtime system by providing hardware

resources on demand and providing robust operation. In

addition, while not part of the software system, the archi-

tecture directly affects programmability by fixing the over-

head costs, latency times, power requirements, memory

hierarchy structures, heterogeneous cores, and other

machine elements that determine many of the challenges

to programming and execution.

4.4.4.2 Alternative R&D Strategies for Programmability. The

two general strategies for programmability are evolution-

ary, based on incremental extensions to conventional pro-

gramming models, and revolutionary, based on a new

model of computation that directly addresses the challenges

to achieving exascale computing. The evolutionary strategy

is expected to be pursued as part of community efforts to

extend common practices as far into the trans-petaflops

performance regime as possible. The MPI-3 Forum, the

HPCS program, and the roadmaps for Cray and IBM indi-

cate possible trajectories of such incremental approaches.

Hybrid programming models derived from the integration

of the MPI and object constraint language (OCL) or usage

parameter control (UPC) have been suggested to achieve

higher levels of scalability through hierarchical parallelism

while retaining compatibility with existing legacy codes,

libraries, software environments, and skill sets. However,

it is uncertain as to how far the evolutionary approach can

be extended to meet the escalating challenges of scalability,

reliability, and power. The evolutionary strategy also

assumes incremental extensions to current OSs, primarily

Unix derivatives (e.g. Linux), that can improve efficiency

of synchronization and scheduling while retaining the basic

process, Pthreads, and file model.

The revolutionary path follows historical patterns of

devising new paradigms to address the opportunities and

challenges of emergent enabling technologies and the

architectures devised to exploit them. Revolutionary pro-

gramming models and contributions at other system layers

can be created to minimize the programming burden of the

programmer by employing methods that eschew the con-

straints of earlier techniques, while reinforcing the poten-

tial of future system classes.

4.4.4.3 Recommended Research Agenda for
Programmability. Unlike programming models and lan-

guages, programmability spans all components of the

system stack, both system software and hardware architec-

ture, that in any way influence the usability of the system to

craft real-world applications and have them perform cor-

rectly and with optimal performance through minimum

programmer time and effort. Thus, while research in pro-

grammability must include factors of programming mod-

els, languages, and tools, it will also consider compilers,

Dongarra et al. 41

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

runtime systems, OSs, and hardware architecture structures

and semantics.

New model of computation: in synthesizing the effects

of potentially all system layers on programmability, a sin-

gle unifying conceptual framework is required to provide

the governing principles establishing the functionality and

interoperability of the system components to operate in

synergy and realize critical performance properties. CSP,

the common scalable execution model for STEM applica-

tion targeted systems, is already unduly stressed in support

of present multicore/many-core heterogeneous systems and

cannot, in its current form, be expected to achieve the

required functionality for scalability, efficiency, and

dynamic scheduling. Therefore, research must be con-

ducted to devise a new, overarching execution model,

either as a dramatic extension of current practices or an

entirely new (likely based in part on experimental prior art)

model of computation explicitly derived to address the

unique challenges of exascale computing.

New programming models and methods: research into

new programming models and ultimately APIs, tools, and

methods will be required in order to provide the user inter-

face to construct new application (and system software)

programs and to determine which responsibilities of control

of exascale systems will devolve directly to the user and

which will be assigned to lower levels of the system, thus

relieving the user of these burdens (but possible inhibiting

needed control as well). An important property of any new

programming model is a clear separation of logical func-

tionality from performance attributes; such a separation

distinguishes those aspects of code specification that con-

vey across multiple platforms unchanged (portability) from

those that must be adjusted on a per platform basis for per-

formance optimization (tuning). Preferably, all machine-

specific program optimizations will be accomplished by

lower system layers. New programming models will have

to greatly expand the diversity of parallelism forms and

sizes over conventional control semantics to dramatically

increase by many orders of magnitude exploitable concur-

rency. In addition, whether entirely new or an extended

derivative, the next-generation exascale programming

models will have to interoperate with legacy codes, both

application (e.g. numerical libraries) and systems software

(e.g. parallel file systems), for ease of transition of commu-

nity mission-critical workloads to the new classes of exas-

cale system architecture. Future models need to include

semantic constructs in support of the broad range of

dynamic graph-based algorithms whose access, search, and

manipulation can be very different from more prosaic vec-

tors and matrices for which current systems have been opti-

mized. Emergent programming methods will require new

tools and environments to make the best use of them from

a programmer perspective.

New runtime systems: research into advanced runtime

systems will be an important means of dramatically

improving programmability supporting dynamic software

behavior, such as load balancing, thread scheduling,

processing and memory resource allocation, power

management, and recovery from failures. Only runtime

systems (and OSs to some degree) can take advantage of

the on-the-fly system status and intermediate application

software state that cannot be predicted at compile time

alone. This situation will be particularly true for systems

of up to a billion cores and constantly changing system con-

figurations. In particular, new runtime software will move

most programming practices from a static methodology to

dynamic adaptive techniques exploiting runtime informa-

tion for improved performance optimization. Examples

include lightweight thread scheduling, context switching,

and suspension management, as well as inter-thread syn-

chronization, management of deep memory hierarchies,

and namespace management. For dynamic graph-based

problems, data-directed execution using the graph structure

to efficiently define the parallel program execution will

require runtime support.

New compiler support: while much of the responsibility

of future compilers will reflect prior techniques for back-

end support, many new responsibilities will accrue as well

to drive the exascale systems of the future. Advanced com-

piler techniques and software will be required for automatic

runtime tuning to match hardware architecture specific

properties (e.g. cache sizes), for heterogeneous architec-

tures, to interface with and support advanced runtime sys-

tems, to detect alternative forms of parallelism, for

employing advanced synchronization semantics and primi-

tives, to take advantage of more sophisticated messaging

methods (e.g. message-driven mechanisms), and to involve

new forms of active global address space and its

management.

X-gen architectures: although the actual development of

exascale architectures is beyond the scope of the IESP pro-

gram agenda, research in critical system software and pro-

gramming methods will be sensitive to and have to respond

to the emergence of new architectures. Of particular con-

cern are methods to reduce the temporal and power over-

heads of parallel control mechanisms, optimize the

exploitation of heterogeneous core architectures, support

fail-safe reconfigurable system structure techniques for

fault tolerance, engage in active power management, and

support self-aware resource management.

New OS: while the execution model is the machine, as

seen from the semantic perspective, the OS is the machine

from the usage viewpoint. The OS owns the system, man-

ages its resources, and makes them available to the program

layer, as well as provides many services to that layer. A

new OS will be essential for the X-gen architectures and

their supporting programming environments, including

APIs, compilers, and greatly expanded runtime software.

One of the most important attributes of a new OS is its

order-constant scaling property such that it can operate at

speed, independent of the scale of the number of processor

cores or memory banks. A second critical property is the

management of an advanced class of global address space

that can support multiple applications sharing all resources

42 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Table 17.

X-stack components Needed capabilities Exascale uniqueness Exascale criticality

Frameworks Resilience API and utilities 3 C
Multi-institutional/multiproject collaboration plan 2 U
Tool chain development/selection 2 U
Programming model evaluation/adoption 2 C
Data placement 2 C
Multicomponent simulation utilities 2 U
Access to third-party libraries 1 C

Numerical libraries Fault-oblivious, error-tolerant software 3 C
Asynchronous methods 2 C
Overlap data and computation 3 U
Self-adapting hybrid and hierarchical-based algorithms 1 C
Hybrid and hierarchical-based algorithms (e.g. linear algebra

split across multicore and GPU)
1 U

Algorithms that minimize communications 3 C
Architecture-aware algorithms/libraries 3 C
Autotuning-based software 1 U
Standardization activities 1 U
Energy-efficient algorithms 2 U
Mixed arithmetic 1 U

Algorithms Scalability 2 N
Fault tolerance/resilience 1 N
Conforming to architectural requirements 3 N
New areas/uses of algorithms 1 U

Debugging Concurrency and architecture driven high frequency of
errors/failures

3 C

Scalability of debugger methodologies (data volumes and
interfaces)

3 C

Focus on multilevel debugging, communicating details of
faults between software layers

3 U

Synthesis of fault information into understanding in the
context of apps and architecture

3 C

Specialized lightweight operating systems 2 N
Automatic triggers, need compile time bridge to debugging

that removes need to rerun
2 N

Scalable clustering of apps process states and contexts,
filter/search within debugger

2 N

Vertical integration of debug and per information across
software layers

2 N

Excision of buggy code snippets to run at lower
concurrencies

1 N

Heterogeneity 1 N
I/O Customization with I/O, purpose-driven I/O 3 C

New I/O models, SW, runtime systems and libs 3 C
Intelligent/proactive caching mechanisms for I/O 3 N
Fault-tolerant mechanisms 3 C
I/O into programming models and languages 3 N
Balanced architectures with newer devices 2 N
File systems or alternative mechanisms 2 N
Active storage 2 N
Wide-area I/O and integration of external storage systems 2 N
Special-purpose network protocols for parallelism 2 N
Balanced architectures with newer devices embedded

with the node
1 N

(continued)

Dongarra et al. 43

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Table 17 (continued)

X-stack components Needed capabilities Exascale uniqueness Exascale criticality

Scientific data management Scalable data analysis and mining SW and tools 3 C
Scalable data format and high-level libraries 3 C
Scientific workflows tools 2 C
Search and query tools 2 N
Wide-area data access movement and query tools 2 N
Scientific databases 2 N

Programming models Exascale programming model 3 C
Scalable, fault-tolerant MPI 3 C
Applications development tools 3 N
Heterogeneous node programming model 2 C
Domain-specific programming models 2 N
Language features for massively parallel I/O 2 U
Language support for adaptive computation 2 N
Interoperability between models 1 N

Compilers Implement exascale languages 3 C
Support for resilience 3 C
Implement heterogeneous programming models 2 C
Support for massive I/O 2 C
New optimization frameworks 2 N
Interactions between compilers and tools, runtime 2 C
Dynamic compilation, feedback optimization 2 N
Autotuning-based software 2 N
Enhancements to existing languages/APIs 1 N
Automatic parallelization 1 N

Operating systems Define the base OS (standard API) 3 C
APIs for resilience (access to RAS, etc) 3 C
Collective OS operations 3 N
Scalable system simulation environment 2 C
Improved APIs for scalable performance monitoring

and debugging
2 C

New APIs for energy management 2 U
Improved APIs for explicit memory management 1 C
Improved APIs for threading 1 U

Performance Extremely scalable performance methods and tools 3 C
Performance measurement and modeling in presence of

noise/faults
3 C

Automated/automatic diagnosis and autotuning 2 N
Predictive future large-scale system design 2 C
Vertical integration across SW layers 2 N
Performance-aware design and implementation 2 U
Performance optimization for metrics other than time 2 U
Support for heterogeneous hardware and hybrid

programming models
1 C

Power Power performance monitoring and aggregation that
scales to 1 billion core system

3 C

Power control system 3 C
Scalable control algorithms to bridge gap between global

and local power models
2 C

Power-aware and scalable resource control and scheduling 2 C
Optimally tuned system power based on control loop 1 N
Power instrumentation and control standardization 1 N

Programmability New models of computation 3 C
New runtime/OS interface for environment aware

programming
2 C

Programmability to decouple exascale system issues
from applications programming

1 C

(continued)

44 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

in the presence of the need for dynamic allocation and data

migration, even as it provides inter-job protection. The new

OS must support the greatly expanded role of the runtime

system, even as it takes on the added complexity of dealing

with heterogeneous cores and deeper memory hierarchies.

The old view of conventional processes and parallel OS

threads will have to be revised, supporting much more

lightweight mechanisms offered by the underlying archi-

tectures while yielding many responsibilities to the runtime

software driven by application requirements and new pro-

gramming models. The OS will have to provide much more

information about the system operational state so that self-

aware resource management techniques can be more effec-

tively developed and applied for fail-safe, power-efficient

scalable operation.

4.4.4.4 Cross-cutting Considerations. Programmability is a

cross-cutting factor affected by all layers of the system

stack, including software and hardware. It also is interre-

lated with other cross-cutting factors, such as performance

and, potentially, resilience. Whether there exists a relation-

ship between programmability and power management is

uncertain. However, when writing system software, one

clearly needs to develop power management software for

the OS and possibly the runtime system.

Programmability and performance are tightly coupled.

For HPC, a major factor affecting programmability has

been performance optimization. This relates to the expo-

sure of application parallelism, locality management and

load balancing, and memory hierarchy management. These

components are expected to be even more important for

exascale systems. The complexity at that extreme scale will

require that the responsibility for all but parallelism (and

even not all of that) be removed from the programmer and

handled by a combination of the compiler and runtime sys-

tem in cooperation with the OS and system architecture.

With respect to reliability, it may be valuable for the

programmer to have the option of dictating the required

recourse in the presence of faults, such as recovery or prior-

itized actions (in the case of urgent/ real-time computing).

However, default options should be prevalent and used

most of the time, in order to minimize programmer inter-

vention and therefore improve programmability.

4.5 Summary of X-Stack Priorities

In this section, we present a prioritized list of R&D items

for each software component area in the X-stack. To assure

that software efforts receive appropriate attention, we use

two attributes for each effort.

Table 17 (continued)

X-stack components Needed capabilities Exascale uniqueness Exascale criticality

Resilience Performance measurement and modeling
in-presence faults

3 C

Better fault tolerance protocols 2 C
Fault isolation/confinement 2 C
NVRAM for local state, cache of file system 2 C
Replication (TMR, backup core) 2 U
Proactive actions (migration) 2 U
Domain-specific API and utilities for frameworks 2 C
Applications-guided fault management 2 C
Language/compiler/runtime support for resilience

(fault-aware programming, API from OS, RAS)
2 C

Fault-tolerant MPI 2 C
Fault-oblivious, error-tolerant numerical libraries 2 C
Resilient applications and algorithms 1 N
Fault-oblivious system software 2 C
Fault-aware system software and API for resilience 2 C
Prediction for time-optimal checkpoint/migration 2 U
Fault models, event log standardization root cause analysis 2 C
Resilient I/O, storage, and file systems 2 C
Situational awareness 2 C
Experimental environment 2 C
Fault isolation/confinement þ local management 2 C

Runtime systems Load balance 3 C
Asynchrony, overlap 2 C
Hierarchical execution models and scheduling 3 N
Scaling/optimization of communications 3 C
Memory management and locality scheduling 2 C
Heterogeneity: scheduling 2 U
Fine-grained mechanisms at node level 1 U

1: non-unique, 2: spanning, 3: unique, C: critical, U: unknown, N: non-critical

Dongarra et al. 45

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

� Uniqueness to exascale: some efforts are concerned

with exascale systems and have little relevance for less

capable systems. Other efforts are relevant to exascale

but will likely impact lesser systems (i.e. petascale and

upper-end terascale); we refer to this as ‘spanning.’ In

addition, some efforts are important to all future scales

of computing.

� Criticality for exascale: during early classification dis-

cussions, we determined that uniqueness to exascale

was insufficient for prioritizing activities. In particular,

although there are efforts that are not unique to exas-

cale, some of these are essential for successful exascale

computing. We classify an item’s criticality as either

critical, unknown/indeterminate, or non-critical.

The following are examples.

� Application-managed resilience – uniquely exascale

and critical: resilience is an issue for many efforts.

Historically, resilience has not required applications

to do anything but checkpoint/restart. At present, there

is general agreement that the entire software stack,

including user and library code, will need to explicitly

address resilience beyond the classic checkpoint/restart

approach.

� Many-core mathematical libraries – not uniquely

exascale but critical: many-core configuration is an

essential element of all exascale plans, but libraries for

many-core configurations are also critical for all levels

of computing. Although exascale requirements may

exceed those of scales, we should recognize and lever-

age other funding sources for this kind of work, clearly

identifying and funding the uniquely exascale aspects

of this work.

Table 17 lists each of the X-stack components along

with their needed capabilities. Each component capability

is followed, to the right, by its uniqueness and criticality

at exascale level.

5. Application Perspectives and Co-design
Vehicles

Standing at the beginning of the road to exascale, applica-

tion communities that are highly motivated to take that road

are well aware of the challenges confronting them. Many of

the applications for which exascale systems will be built

exist today in high-performance implementations. How-

ever, all of them will have to be rewritten substantially,

in terms of data structures, algorithms, and possibly even

mathematical formulations; any new applications under

development should be formulated from the start with exas-

cale in mind. As application custodians and exascale cus-

tomers, we respond by considering how particular

applications – so-called co-design vehicles, or CDVs, after

the principal new programming paradigm in the exascale

regime – will migrate to the exascale. Here, we summarize

several factors that we believe are key to exascale success

for application communities. We then present the concept

of CDVs, describe some of their issues, limitations, and

requirements, and give the first examples of what we hope

will be a diverse portfolio of CDVs that can help drive the

X-stack development process and start producing exascale

science at the earliest possible date.

5.1 From Here to Exascale: An Application
Community View

The application leaders who have been informing the

development of the IESP roadmap over the past year recog-

nize a certain disconnect between the planning effort the

IESP has initiated and the current state of major science

applications. Specifically, although the shared goal is to

enable exascale science on exascale systems by the end

of the decade, the reality is that today only a scant few

applications can successfully exploit the power of current

and emerging petascale systems. The difficulties involved

in finding the support and recruiting the interdisciplinary

teams needed to create such leading-edge applications is,

no doubt, part of the explanation for this disconnect. How-

ever, these same difficulties, perhaps to an even higher

degree, will confront the communities aiming toward

exascale.

At the same time, participating application representa-

tives have expressed a clear desire for exascale computa-

tional power in order to make fundamental progress in

their respective areas. The sources of this desire are largely

intrinsic to the process of scientific exploration: scientists

want to resolve their models at their full, natural range of

length or time, to accommodate physical effects with

greater fidelity, to create models with degrees of freedom

in all relevant dimensions, to better isolate artificial bound-

ary conditions or better approach realistic levels of dilution,

to combine multiple complex models, to solve inverse

problems, or perform data assimilation, to perform optimi-

zation or control, and to quantify uncertainty and make sta-

tistical estimates with orders of magnitude more accuracy.

The computational obstacles to achieving these goals

are easy to quantify for some applications, such as quantum

chromodynamics (QCD), cosmology, and seismic inver-

sion, which are already scaling extremely well and experi-

encing processing bottlenecks. The situation is harder to

quantify but equally important for less uniform applications

(e.g. reservoir monitoring) with complex geometry, adap-

tivity, and multiple phases with different physics. Such dif-

ferences between application groups make it clear that the

former group will not be able to adequately proxy for the

latter in terms of defining X-stack requirements.

However, some common obstacles, which are bound to

become more prominent on the road to exascale, are

already appearing in the experience of many groups. At the

level of hardware architecture, for example, the most com-

monly envisioned path to exascale is thousand-fold many-

core at 1 GHz each, within a tightly coupled network of

46 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

about 1 million such nodes. However, memory bandwidth

is already limiting today’s low core count nodes to less than

10% of peak on most applications, whose kernels offer little

cache reuse (e.g. stencil operations or sparse matvecs). Pro-

cessors are cheap, small in chip area (compared to mem-

ory), and relatively low in power, so there is no harm in

having them in excess most of the time, but the opportuni-

ties for exploiting the main new source for performance are

undemonstrated for most applications. At the much higher

and more abstract level of interdisciplinary research, while

there are opportunities for combining today’s individually

high-capability simulations into more complex simula-

tions, there is no silver bullet for merging the data struc-

tures of the separate applications. Moreover, given the

current state of software infrastructure, the data copying

inherent in the code coupling will likely prevent exploita-

tion of the apparent concurrency opportunities.

Surveying such experiences in the light of projections by

the IESP community about the probable path to exascale,

we have identified the following items as keys to success

for many application communities.

� Programming model: prior to possessing exascale hard-

ware, application groups can prepare themselves by

exploring new programming models on many-core and

heterogeneous nodes. Attention to locality and reuse is

valuable at all scales and will produce performance

paybacks today and in the future. New algorithms and

data structures can be explored under the assumption

that flops are cheap and moving data is expensive. Con-

sidering mixed-precision algorithms and using lower

precision wherever possible can also reduce bandwidth

pressure.

� Data I/O: many communities are already struggling to

cope with a growing deluge of data, and this data flood

presents both tremendous opportunities and challenges.

In simple terms, an exascale machine, once the data is

loaded up, is a 32-petabyte fast store, with lots of pro-

cessors to graze over it. We expect that there will be

many new and exciting applications to take advantage

of such storage, for example, data mining in climate

modeling and astrophysics. Such applications can begin

to be explored today in miniature on petascale comput-

ers with 300 terabytes. However, it is widely agreed

that the I/O – reading data in and writing data out for

analysis, checkpointing, visualization, etc. – is already

a bottleneck for some applications and is likely to

become one for many fields as data quantities escalate.

� Fault tolerance: applications people reluctantly recog-

nize that fault tolerance is a shared responsibility. It is

too wasteful of I/O and processing cycles to handle

faults purely automatically through checkpoint/restart.

Different types of faults may be handled in different

ways, depending on the consequences evaluated by sci-

entific impact. For example, application developers and

users can orchestrate strategic, minimal working set

checkpoints.

� Reproducibility: applications people realize that bit-

level reproducibility is unnecessarily expensive most

of the time. Although scientific outcomes must be run-

time independent and machine independent, we have

no illusions about bit-level reproducibility for individ-

ual pairs of executions with the same inputs. Since

operands may be accessed in different orders, even

floating-point addition is not commutative in parallel

and on homogeneous hardware platforms. A new fea-

ture in the context of co-design, with an emphasis on

low power (low-voltage switching), is that lack of

reproducibility may emerge for many other (hard-

ware-based) reasons. If application developers are tol-

erant of irreproducibility for their own reasons (e.g.

for validation and verification through ensembles), then

this has implications for considering less expensive,

less reliable hardware.

5.2 IESP Application Co-design Vehicles

CDVs are applications that provide targets for, and feed-

back to, the software research, design, and development

efforts in the IESP. These are required because there are

several possible paths to exascale, with many associated

design choices along the way. The earliest realizations will

include some of today’s terascale or petascale applications

that have a clear need for exascale performance and are suf-

ficiently well understood that the steps required to achieve

it can be mapped out. CDVs are accordingly a key part of

the exascale design and development process. However,

the specific domain applications themselves are not neces-

sarily the scientific or societal drivers for developing exas-

cale capabilities.

A CDV must satisfy the following criteria.

1. It is a petascale or near-petascale application today

with a demonstrated need for exascale performance.

2. In progressing to exascale, it should achieve significant

scientific goals in an area that is expected to be a sci-

entific or societal driver for exascale computing, such

as basic physics, environment, engineering, life

sciences, or materials. Ideally, the results of the appli-

cation should be amenable to experimental validation.

This criterion is designed to help ensure that the effort

elicits the necessary support from at least one agency.

3. It should offer realistic and a definable set of steps to

exascale that can be mapped out over 10 years or less.

4. The community developing and supporting the CDV

application should be experienced in algorithm, soft-

ware, and/or hardware developments and be willing

to engage in the exascale co-design process. In other

words, there must be at least one organized research

group, considered to be among the leaders in the field,

that is interested in and willing to work with the IESP.

5. The CDV should be modular and open enough to sti-

mulate the development of additional modules addres-

sing related questions in the area.

Dongarra et al. 47

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

6. Since the X-stack will need to be stressed along a num-

ber of different dimensions, the CDV should fill a slot

in the portfolio of extreme-scale application needed to

test all these dimensions.

The IESP will identify a manageable portfolio of CDVs

(e.g. four or five) that span the full range of anticipated

software challenges. A short list of the most important sci-

ence drivers in a specific application’s domain will be

articulated, and then a description provided of what the bar-

riers and gaps might be in these PRDs. The primary task for

each candidate CDV is to demonstrate the need for exascale

and what will be done to address the PRDs. A major com-

ponent of this activity is to identify what new software cap-

abilities will be targeted and to what purpose. Further, it is

necessary to describe how the associated software R&D

can be expected to help the targeted application benefit

from exascale systems, in terms of accelerating progress

on the PRDs. With regard to developing an appropriate

roadmap for this activity, it will be important to identify the

timescale on which involvement in the path to exascale

R&D can produce significant exascale-enabled impact. The

choice of CDVs will be informed by the matrix of HPC

applications versus software components (Section 5.3).

Different categories of CDVs include: (1) societally rel-

evant simulations (e.g. climate, patient-specific medicine);

(2) more likely readily scaled simulations (e.g. QCD, cos-

mology); (3) data-processing problems (e.g. Square Kilo-

meter Array in Australia, which generates 1 EB/s of data

and needs FFTs per image while data is streaming); and

(4) surprise outsiders, not currently practical at the terascale

or petascale.

5.3 Initial Considerations for Co-design Vehicle
Analysis

The application participants in the IESP have begun to

develop an analysis of the issues, limitations, and needs

to be addressed to make good use of CDVs in the

X-stack R&D process.

Issues for scaling up CDVs: the big question in terms of

CDV scalability concerns whether the software for co-

design factors or whether all the inefficiency, over time,

involves data copies at interfaces between the components.

In selecting CDV applications to move toward exascale, in

a staged co-design process, types that need to be examined

include the following:

� weak-scaling applications, up to distributed-memory

limits and/or proportional to the number of nodes;

� strong-scaling applications, beyond distributed-

memory limits and/or proportional to cores per node/

memory unit;

� applications whose workflow scales, proportional to the

number of instances (ensembles) and/or in integrated

end-to-end simulation.

Limitations to be explored by CDVs.

� Strong-scaling algorithms may be limited in terms of

sufficient coarse-grained parallelism and may encoun-

ter problems with load imbalance due to irregular

task/data size; bulk synchronous algorithms on 1 mil-

lion nodes are not currently tolerant to load imbalance

worse than one part per million for a synchronous

task;

� For acceptable single-node performance, compiler-

generated code for hybrid/multicore may be limited.

Linear algebra kernels typically come with autotuning.

However, for non-standard linear algebra kernels, we

will need the autotuning tools, not just their output.

Needs to be addressed by CDVs:

� CDV developers need tools to generate domain-specific

languages and to provide for powerful source-to-source

transformations, to enhance composability in order to

enable new science and expand developer and user

communities (which implies decreasing complexity

as we go to exascale), to write performance-portable

code (retargetable) that can extend the effective life-

time of code over generations of hardware, and to

implement domain-specific frameworks that both pro-

vide solutions to significant HPC problems and are

interoperable, so as to facilitate collaboration in an

increasingly multidisciplinary future;

� expanded or new programming models are needed that

move more of the burden of managing the scheduling of

computation and placement of data to runtime, expand

intrinsically fault-tolerant programming models to be

relevant to a broader class of algorithms, and increase

the interoperability of programming models (GAS,

MPI, Cilk, HPCS, etc.) that we already have;

� CDV developers must understand the design space

trade-offs associated with options for power consump-

tion and resilience, taking into account the nature of

expected faults, including common signaled faults and

particularly silent faults.

5.4 Representative Co-design Vehicles

To provide specific examples of CDVs that conform to the

selection criteria, we focus here on the high-energy phy-

sics/QCD and the plasma physics/FES areas. It should not

be inferred that these are the highest priority applications in

the path-to-exascale portfolio. The IESP is considering a

range of applications as CDVs, including simulations with

special relevance to vitally important problems (e.g. cli-

mate change, patient-specific medicine), and applications

that involve extremely data-intensive analysis (e.g. the

Square Kilometer Array in Australia). We expect to recruit

more CDVs as IESP partners in 2010 in order to stress all

critical aspects of the X-stack.

48 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

5.4.1 High-energy Physics/QCD. Simulations of QCD, the the-

ory of the strong interaction between quarks and gluons that

are the basic building blocks of hadrons, have played a pio-

neering role in the development of parallel and HPC since

the early 1980s. Today, lattice QCD codes are among the

fastest-performing and most scalable applications on petas-

cale systems. Through 30 years of efforts to control all

sources of numerical uncertainty and systematic errors, the

current state of the art is that fully realistic simulations are

possible and starting to provide results for a range of quan-

tities needed by the experimental program, relating to the

masses and decays of hadrons, with uncertainties at the

few-percent level. Expected discoveries at the Large

Hadron Collider (LHC) will drive the need to extend these

simulations to other quantum field theories that might

describe new physics underlying electroweak symmetry

breaking.

Lattice QCD already has a long track record of acting as

a CDV. Specifically, it meets all of the above criteria for

exascale co-design.

� Lattice QCD codes sustain multi-teraflops performance

today and appear capable of scaling linearly through the

petascale range. They are compute-limited, specifically

demanding a balance between compute and on-/off-

node memory access speeds, so that scientific progress

requires the highest possible sustained performance. In

order to deliver realistic and sufficiently precise results

for the range of quantities needed by today’s experi-

ments, lattice sizes must at least double, increasing the

computational cost by a factor of more than 1000. Even

larger lattices will open up more hadronic quantities to

first-principles computation and require performances

well into the exascale range.

� As lattice QCD codes sustain multi-petaflops, the

original goal of the field – to solve QCD at the

few-percent level for many of the simplest properties

of hadrons – will be achieved. Not only will this be a

major milestone for theory, but it will also enable

experiments to identify possible discrepancies with

the Standard Model and, hence, clues to new physics.

In approaching sustained exaflops, sufficiently large

lattices will be employed to extend these computa-

tions to multi-hadron systems, permitting nuclear phy-

sics to be computed also from first principles.

Depending on what is discovered at the LHC, petas-

cale/exascale simulations may help explain electro-

weak symmetry breaking.

� The pathway to early exascale performance for QCD

requires developing multilayered algorithms and

implementations to exploit fully (heterogeneous)

on-chip capabilities, fast memory, and massive par-

allelism. Optimized single-core and single-chip com-

plex linear algebra routines, usually via automated

assembler code generation, and the use of mixed-

precision arithmetic for fast memory access and

off-chip communications, will be required to

maintain balanced compute/memory access speeds

while delivering maximum performance. Tolerance

to and recovery from system faults at all levels will

be essential because of the long runtimes. In partic-

ular, use of accelerators and/or GPGPUs will

demand algorithms that tolerate hardware without

error detection or correction. The international

nature of the science will demand further develop-

ment of global data management tools and standards

for shared data.

� The lattice QCD community has a successful track

record in co-design, extending over 20 years and three

continents; for example, the Quantum Chromody-

namics on Digital Signal Processors (QCDSP) and

Quantum Chromo-dynamics On-a-chip (QCDOC) proj-

ects in the United States, the series of APE machines in

Europe, and Computational Physics - Parallel Array

Computer System (CP-PACS) in Japan. Notably,

design features of QCDOC influenced IBM’s Blue

Gene. In all cases, QCD physicists were involved in

developing both the hardware and system software.

Typically, these projects resulted in systems that

achieved performances for QCD comparable to the best

that could be achieved at the time from commercial sys-

tems. The community has also agreed on an interna-

tional metadata standard, QCDML.

As a CDV, lattice QCD has already been adopted by

IBM for stress testing and verification of new hardware and

system software. Other cross-cutting outputs from a QCD

CDV are likely to include performance analysis tools, opti-

mizing compilers for heterogeneous microprocessors,

mechanisms for automatic recovery from hardware/system

errors, parallel high-performance I/O, robust global file

systems and data sharing tools, and new stochastic and lin-

ear solver algorithms.

5.4.2 Plasma Physics/Fusion Energy Sciences. Major progress

in magnetic fusion research has led to the International

Thermonuclear Experimental Reactor (ITER) – a multi-

billion-dollar burning plasma experiment supported by

seven governments (EU, Japan, US, China, Korea, Russia,

and India), representing over half of the world’s population.

Currently under construction in Cadarache, France, it is

designed to produce 500 million watts of heat from fusion

reactions for over 400 seconds with gain exceeding 10,

thereby demonstrating the scientific and technical feasibil-

ity of magnetic fusion energy. Strong R&D programs are

needed to harvest the scientific information from the ITER

to help design a future demonstration power plant with a

gain of 25. Advanced computations at the petascale and

beyond, in tandem with experiment and theory, are essen-

tial for acquiring the scientific understanding needed to

develop whole device integrated predictive models with

high physics fidelity.

As a representative CDV, the FES area meets the criteria

for exascale co-design.

Dongarra et al. 49

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

T
a
b

le
1
8
.

Sc
ie

n
ce

an
d

en
gi

n
ee

ri
n
g

d
is

ci
p
lin

es
Su

b
ar

ea
s

N
ew

p
ro

-
gr

am
m

in
g

m
o
d
el

s
an

d
n
ew

w
ay

s
to

sp
ec

ify
co

m
p
u
ta

ti
o
n

P
ro

gr
am

m
ab

ili
ty

–
im

p
ro

ve
d

co
d
e

d
ev

el
o
p
m

en
t

an
d

ap
p
lic

at
io

n
B
u
ild

in
g

E
n
vi

ro
n
m

en
ts

R
es

o
u
rc

e
m

an
ag

em
en

t,
p
o
w

er
m

an
-

ag
em

en
t

an
d

w
o
rk

flo
w

s

D
yn

am
ic

d
at

a
st

o
ra

ge
an

d
m

an
ag

em
en

t

Li
b
ra

ri
es

th
at

ex
p
lo

it
ad

va
n
ce

d
H

W
an

d
SW

fe
at

u
re

s

R
es

ili
en

cy
an

d
fa

u
lt

m
an

ag
em

en
t

D
eb

u
gg

in
g

an
d

p
er

fo
rm

an
ce

tu
n
in

g
at

sc
al

e

Sy
st

em
m

an
ag

em
en

t
an

d
se

cu
ri

ty

Sc
al

ab
le

o
p
er

at
in

g
sy

st
em

s

Su
p
p
o
rt

fo
r

ap
p
lic

at
io

n
m

o
d
el

in
g

M
at

er
ia

ls
sc

ie
n
ce

�
N

an
o
-s

ci
en

ce
�

St
ru

ct
u
ra

l
an

al
ys

is
�

E
le

ct
ro

n
ic

st
ru

ct
u
re

s

X
X

X
X

X
X

X

E
n
er

gy
sc

ie
n
ce

s
�

A
lt
er

n
at

iv
e

fu
el

s
�

N
u
cl

ea
r

fis
si

o
n

�
C

o
m

b
u
st

io
n

�
N

u
cl

ea
r

fu
si

o
n

�
So

la
r

�
E
n
er

gy
ef

fic
ie

n
cy

X
X

X
X

X
X

X

C
h
em

is
tr

y
�

M
o
le

cu
la

r
d
yn

am
ic

s
X

X
X

X

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

T
a
b

le
1
9
.

Sc
ie

n
ce

an
d

en
gi

n
ee

ri
n
g

d
is

ci
p
lin

es
Su

b
ar

ea
s

N
ew

p
ro

gr
am

m
in

g
m

o
d
el

s
an

d
n
ew

w
ay

s
to

sp
ec

ify
co

m
p
u
ta

ti
o
n

P
ro

gr
am

m
ab

ili
ty

–
im

p
ro

ve
d

co
d
e

d
ev

el
o
p
m

en
t

an
d

A
p
p
lic

at
io

n
B
u
ild

in
g

E
n
vi

ro
n
m

en
ts

R
es

o
u
rc

e
m

an
ag

em
en

t,
p
o
w

er
m

an
ag

em
en

t
an

d
w

o
rk

flo
w

s

D
yn

am
ic

d
at

a
st

o
ra

ge
an

d
m

an
ag

em
en

t

Li
b
ra

ri
es

th
at

ex
p
lo

it
ad

va
n
ce

d
H

W
an

d
SW

fe
at

u
re

s

R
es

ili
en

cy
an

d
fa

u
lt

m
an

ag
em

en
t

D
eb

u
gg

in
g

an
d

p
er

fo
rm

an
ce

tu
n
in

g
at

sc
al

e

Sy
st

em
m

an
ag

em
en

t
an

d
se

cu
ri

ty

Sc
al

ab
le

o
p
er

at
in

g
sy

st
em

s

Su
p
p
o
rt

fo
r

ap
p
lic

at
io

n
m

o
d
el

in
g

E
ar

th
sy

st
em

s
�

C
lim

at
e

�
W

ea
th

er
�

E
ar

th
q
u
ak

e/
se

is
m

ic
�

Su
b
su

rf
ac

e
tr

an
sp

o
rt

�
W

at
er

re
so

u
rc

es

X
X

X
X

X
X

X
X

X

A
st

ro
p
h
ys

ic
s

as
tr

o
n
o
m

y
�

D
ar

k
en

er
gy

�
G

al
ax

y
fo

rm
a-

ti
o
n
/

in
te

ra
ct

io
n

�
C

o
sm

ic
m

ic
ro

w
av

e
b
ac

kg
ro

u
n
d

ra
d
ia

ti
o
n

�
Su

p
er

n
o
va

�
Sk

y
su

rv
ey

s

X
X

X
X

X
X

X

B
io

lo
gy

/l
ife

sy
st

em
s

�
G

en
o
m

ic
s

�
P
ro

te
in

fo
ld

in
g

�
E
vo

lu
ti
o
n

�
E
co

lo
gy

�
O

rg
an

is
m

en
gi

n
ee

ri
n
g

X
X

X
X

X
X

X

H
ea

lt
h

sc
ie

n
ce

s
�

D
ru

g
d
es

ig
n

�
C

o
n
ta

gi
o
u
s

d
is

ea
se

�
R

ad
ia

ti
o
n
-

re
la

te
d

h
ea

lt
h

�
M

ed
ic

al
re

co
rd

s
�

C
o
m

p
ar

at
iv

e
ge

n
o
m

ic
s

X
X

X
X

X
X

X

N
u
cl

ea
r

an
d

h
ig

h
en

er
gy

p
h
ys

ic
s

�
Q

C
D

�
N

eu
tr

in
o
s

�
A

cc
el

er
at

o
r

d
es

ig
n

X
X

X
X

X
X

Fl
u
id d
yn

am
ic

s
�

In
te

rn
al

�
E
x
te

rn
al

X
X

X
X

X
X

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

� FES applications currently utilize the leadership com-

puting facilities (LCFs) at Oak Ridge National Labora-

tory (ORNL) and Argonne, as well as advanced

computing platforms at Lawrence Berkeley National

Laboratory (LBNL), demonstrating scalability of key

physics with increased computing capability. Two HPC

FES topics with significant scientific impact were iden-

tified at the major DOE Workshop on Grand Chal-

lenges in FES & Computing at the Extreme Scale

(April 2009): high physics fidelity integration of multi-

physics, multiscale FES dynamics and burning plas-

mas/ITER physics simulation capability.

� A productive FES pathway of over 10 years can be

readily developed for exploitation of exascale. This

includes carrying out experimentally validated confine-

ment simulations (including turbulence-driven trans-

port) and demonstrates the ability to include higher

physics fidelity components with increased computa-

tional capability. This is needed for both of the areas

identified as PRDs, with the following associated bar-

riers and gaps.

– While FES applications for macroscopic stability, tur-

bulent transport, edge physics (where atomic processes

are important), and others have demonstrated, at vari-

ous levels of efficiency, the capability of using existing

LCFs, a major challenge is to integrate/couple

improved versions of large-scale HPC codes to produce

an experimentally validated, integrated simulation

capability for the scenario modeling of a whole burning

plasma device, such as the ITER.

– New simulations of unprecedented aggregate floating-

point operations will be needed for addressing the

larger spatial and longer energy-confinement time

scales as FES enters the era of burning plasma experi-

ments on the reactor scale. Demands include dealing

with spatial scales spanning the small gyroradius of the

ions to the radial dimension of the plasmas (i.e. an order

of magnitude greater resolution is needed to account for

the larger plasmas of interest, such as the ITER) and

with temporal scales associated with the major increase

in plasma energy confinement time (*1 second in the

ITER device), together with the longer pulse of the dis-

charges in these superconducting systems.

� With regard to potential impact on new software devel-

opment, each science driver for FES and each exascale-

appropriate application approach currently involves the

application and further development of current codes

with respect to mathematical formulations, data struc-

tures, current scalability of algorithms and solvers

(e.g. Poisson solvers) with associated identification of

bottlenecks to scaling, limitations of current libraries

used, and ‘complexity’ with respect to memory, flops,

and communication. In addition, key areas being tar-

geted for significant improvement over current capabil-

ities include workflows, frameworks, verification and

validation methodologies including uncertainty quanti-

fication, and the management of large datasets from

experiments and simulations. As part of the aforemen-

tioned ongoing FES collaborations with the LCFs,

assessments are moving forward on expected software

developmental tasks for the path to exascale, with the

increasingly difficult challenges associated with con-

currency and memory access (data movement

approaches) for new heterogeneous architectures

involving accelerators. Overall, new methods and

exascale-relevant tools can be expected to emerge from

the FES application domain. With respect to potential

impact on the user community (usability, capability,

etc.), the two FES PRDs noted earlier will potentially

be able to demonstrate how the application of exascale

computing capability can enable the accelerated deliv-

ery of much needed modeling tools. The timescale in

which such impact may be felt can be briefly summar-

ized as follows for the FES application: 10–20 petaflops

(2012) for integrated plasma, core-edge coupled simu-

lations and 1 exaflop (2018) for whole-system burning

plasma simulations applicable to the ITER.

5.4.3 Strategic Development of IESP CDVs. The technology

drivers for CDV applications are, for the most part, con-

nected to advanced architectures with greater capability but

with formidable software development challenges. The

need to address concurrency issues and to deal with com-

plex memory access/data movement challenges for emer-

ging heterogeneous architectures with accelerators is

expected to drive new approaches for scalable algorithms

and solvers. For risk mitigation, alternative R&D strategies

need to be developed for choosing architectural platforms

capable of effectively addressing the PRDs in the various

domain applications while exploiting the advances on the

path to the exascale. Beneficial approaches include the

following:

� developing effective collaborative alliances involving

computer science and applied mathematics (e.g. fol-

lowing the Scientific Discovery through Advanced

Computing (SciDAC) model);

� addressing cross-cutting challenges shared by CDV

application areas through identification of possible

common areas of software development, appropriate

methodologies for verification and validation and

uncertainty quantification, and the common need for

collaborative interdisciplinary training programs to

deal with the critical task of attracting, training, and

assimilating young talent.

5.5 Matrix of Applications and Software Components
Needs

Table 18 was created to stimulate and inform thinking

about CDVs. Clearly all science areas and engineering

52 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

areas that contain potential CDVs need something in all the

software areas, but for the purposes of this exercise we tried

to sort out areas of emphasis for each application domain,

that is, where we expect the major challenges will be for

that domain. For example, all areas need some I/O, but the

ones checked were deemed to need considerable I/O, based

on the problems that exist today. Likewise, the areas that

have less software maturity (e.g. health and energy) have

more Xs in the programming, languages, and debugging

columns.

6. Perspectives on Cooperation between
IESP and HPC Vendor Communities

In order to meet the many challenges involved in program-

ming exascale machines, the components of the X-stack

that the IESP community aims to produce must entrain a

whole software ecosystem. As the size of the ecosystem

grows, vendors will be increasingly motivated to leverage

and contribute to the community’s efforts to satisfy that

ecosystem’s requirements. In order to achieve this goal,

however, several challenges must be overcome, including:

(1) finding a suitable structure to agree on common APIs;

(2) producing a coordinated, interlocked effort between

vendor partners, the IESP and scientific communities, and

HPC facilities, with meaningful deliverables and timeta-

bles; (3) balancing the time needed for research and explo-

ration to overcome the exascale hurdles with the need to

produce timely, concrete implementations that can be inte-

grated by the vendor partners and used by the IESP and sci-

entific communities to run on the exascale systems; and (4)

finding appropriate development, support, intellectual

property (IP), and funding models that allow vendor

partners to incorporate software produced by the commu-

nity, which can be supported by the community and funded

by the interested government agencies.

Recent discussions among vendors as part of the IESP

process have produced a number of considerations that

need to be taken into account. We first expand on the likely

challenges that need to be overcome for vendor partners to

utilize the R&D efforts of the IESP community. We then

present a taxonomy that describes the different models of

development and support for software that might structure

cooperation within the X-stack ecosystem. Next we

describe the requirements and methods of such software.

We conclude with a set of recommendations to help guide

both the IESP community and vendors to effectively colla-

borate to produce the kind of ecosystem this collective

effort needs.

6.1 Challenging Issues for Vendor/Community
Cooperation

Common APIs: it is critical to agree on common and open

APIs. The development and evolution of APIs must occur

in a way that produces the kind of stability that IESP vendor

partners need, but must also be flexible enough to

incorporate early research and exploration of alternatives.

Waiting to achieve agreement through slow-moving, for-

mal standards processes may not be timely enough to meet

the expected needs of X-stack software. There are compo-

nents of the system software that need to take into account

hardware-specific characteristics or that can be better tuned

by exploiting hardware-specific features. Because multiple

vendor partners will be working on such low-level aspects,

it becomes even more important to the community to find a

methodology to agree on common APIs, at least for the

exascale effort.

X-stack co-development: the IESP community, vendor

partners, and HPC facilities must work together to produce

the software stack. The IESP community’s message about

the importance of vendor participation should be communi-

cated clearly and repeatedly. If it appears that the commu-

nity is going to fund all or most of the components of the X-

stack, vendor partners will find it challenging to achieve the

levels of software testing expertise and resources required

to work with their results.

Research time versus development time: research and

early investigation are necessary in addressing exascale

software challenges. It is also crucial that when the hard-

ware becomes available, the software is sufficiently

mature. For the interim system, targeted for 2015, time is

short for making decisions on high-level issues (e.g. is pro-

gramming model X the correct one for exascale?). It is

important that funding agencies realize the urgency in pro-

ducing solicitations and making funding available for the

early investigations.

Support: providing sufficient, ongoing support for the

components may be the largest non-technical challenge

facing the HPC community. Software researchers have

typically not provided the level of support provided by ven-

dor partners, and few research groups provide the level of

support needed for HPC facilities to meet their traditional

quality-of-service requirements. Further, to date there has

not been a strong track record for the community coordinat-

ing with vendor partners tightly enough so the vendor part-

ners could include software components in their product

plan. In order to produce the rich software ecosystem the

X-stack needs, a novel structure needs to be put in place

to address these support issues.

6.2 Taxonomy of Development/Support Models

The vendor partners, funding agencies, and R&D commu-

nity must have each software component in the X-stack cate-

gorized in terms of two key characteristics: (1) who is

expected to develop/supply the component; and (2) who is

expected to maintain and support the component. Figure 1

shows the four quadrants defined by these characteristics

and how some of the component areas of the X-stack sort

into them.

In Quadrant 1, the system provider both supplies and

supports the component. This is the typical model of sys-

tem providers who supply a proprietary software stack.

Dongarra et al. 53

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

However, the software components in this quadrant may

also be open-source, community-developed, co-

developed, and/or third-party software components for

which the system provider also provides support. In this

context, then, ‘supplies’ basically means ‘tests and

packages for the system.’ Linux and MPI are often in this

category for vendor partners.

In Quadrant 2, the system provider supplies a

community-developed component, and the community

provides the support. In this case, the system provider

builds the component and supplies it to customers for each

installation. Although the system provider does not main-

tain or support the component, it may be one of the contri-

butors for that component in the community. Portable,

Extensible Toolkit for Scientific Computation (PeTSC),

Scalable Linear Algebra Package (ScaLAPACK), and

GNU C Compiler (gcc) are examples from this quadrant.

In Quadrant 3, the component is developed/supplied and

supported by the community. The facility and/or end-user

obtains, builds, and installs the software on the system and

works with the community for maintenance and support.

For example, NWChem and gnu software are in this

quadrant.

In Quadrant 4, the component is developed by the com-

munity, but the system provider is expected to be responsi-

ble for fully maintaining and supporting the component.

Examples in this quadrant are typically unique to specific

customers. From the perspective of the vendor partners, this

quadrant is an undesirable quadrant because, while they are

expected to take responsibility for maintenance and sup-

port, they do not have enough control to sufficiently

influence the component development/support community

or control the destiny of the component. Consequently,

facilities have difficulty obtaining the quality of support

they are interested in.

From the system provider’s perspective, components in

Quadrants 1 and 2 are appropriate as request for proposal

(RFP) requirements. However, only components in Quad-

rant 1 are appropriate as strong acceptance criteria. Quad-

rant 3 is extremely difficult for the system providers and

should be avoided whenever possible. There are no restric-

tions on Quadrant 4 from the vendor partners, but there may

be issues regarding the expectations of facility managers

and scientific users, and some of these issues may require

alternative resource and/or funding streams.

While the system providers may participate in develop-

ing software in any of the quadrants, e.g. by engaging in

open source development efforts, it is likely that system

providers will be more active in the development of compo-

nents in Quadrants 1 and 2.

6.3 Requirements and Methods

The goals of the IESP effort challenge not only the techni-

cal capability of the HPC community but also the social and

economic models that the community uses to create,

integrate, test, and support software for emerging

extreme-scale systems. Policies surrounding open source

software offer one illustration of the challenge. On one

hand, many government funding organizations require that

software developed with public funds be available as open

source. However, the absolute requirement for all software

Figure 1. Elements in the X-stack software roadmap categorized relative to supplier/support criteria from the vendor perspective.
Cross-cutting areas – resilience, power management, performance optimization, and programmability – are not shown since they
affect components at all layers and that may fall in different quadrants. As components are designed, the project owners should clearly
identify the appropriate category for the component.

54 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

thus created to be open source makes it difficult for the

providers of systems and the facilities deploying and sup-

porting them as scientific tools to meet the quality-of-

service objectives that the user community has come to

expect. Pulling in the other direction, however, is the rec-

ognition that the HPC community is relatively small,

while many hands are needed to craft viable solutions

in the time available. This recognition is one of the pri-

mary reasons for trying to harness the entire international

community to the effort. To engage everyone, there needs

to be a shared and open way to work together. By its very

nature, proprietary code tends to thwart goals and reduce

the number of hands that can contribute.

To describe this tension and evaluate the trade-offs, we

define the requirements that science users have for the large

X-stack software development effort, many of which we

believe can be met by open software. The goals and expec-

tations of computing center management, the software

research community, and the scientific application users

include the following.

� The community does not want to be limited to proprie-

tary solutions over which they have little or no control.

The features and improvements that have to wait for

commercial providers to supply them can be proble-

matic. Often these providers have priorities not always

aligned with the HPC/exascale community, making

improvements and/or corrections less timely and/or less

functional than needed.

� Many aspects of exascale have a degree of uncertainty

(risk) that strongly suggests having alternatives for risk

mitigation and being prepared to replace components of

the software stack in a timely manner.

� Software developers, ranging from application develo-

pers to system tool and feature developers, need

well-defined and consistent APIs to which they can

write code.

� Government organizations need to be able to leverage

their investments of public funds in software develop-

ment, so that results in one project or area can be reused

for the multiple exascale hardware targets and for other

non-exascale projects or areas as well.

� Government organizations need to be able to protect

their investments of public funds in software develop-

ment from being lost. In the past, significant publicly

funded software (and hardware) investments have been

lost when companies go out of business or change to

other business models.

� Applications teams will be working to create highly

scalable applications that run effectively on multiple

system targets. These application teams want to have

a cross-platform, or easily portable, programming and

development environment to increase productivity.

� Exascale systems will be advanced scientific instru-

ments. As part of the scientific process, scientists need

to know how the devices work for scientific reproduci-

bility and accuracy. Treating the system software as a

black box run by code that cannot be examined or

verified does not accomplish this goal.

System providers have their own requirements, some of

which are expressed in Figure 1. The primary requirement

Table 20. Matrix mapping the requirements for exascale software to methods of software development and support.

Requirement
Open
source

Open Source
with formal

support
Open

software
Collaborative
development

Co-
development

Proprietary
development

Proprietary
development
with escrow

Community
Does not want to be limited

to a fully proprietary solution
X X X X ?

Flexibility to replace components
of the stack

X X X X ?

Open API X X X X X
Leverage Gov’t investment X X X X X
Protect Gov’t investment X X X X X X
Applications have compatible

environment
X X X X X ? ?

Scientists need to know their
devices work for reproducibility

X X X ? ? ?

Provider
Not held responsible for compo-

nents that they do not have
control over

X X X X X

Protect other provider proprietary
information

X X X

Facility
Level of quality X X X X X
Best value X X X X X

Dongarra et al. 55

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

is that system providers are not be held responsible or liable

for the correctness or performance of software over which

they do not have control. Providers want the freedom,

based on their business models, to use open-source and

other software components to meet requirements at their

own risk. For example, they may decide to offer an open-

source component but budget the effort to provide the nec-

essary support themselves. On the other hand, providers

should not be held accountable for software they do not

control. Sound business practices also dictate that providers

be able to protect their proprietary information (e.g. low-

level system hardware design), as has historically been the

case.

The facilities that will deploy the exascale systems and

help scientists make efficient use of the systems have tradi-

tionally made both explicit and implicit quality-of-service

commitments to users and have accepted quality-of-

service expectations/metrics from the funding agencies.

Just like vendor partners, facilities are hesitant to rely on

casual support agreements (e.g. open source) to resolve

problems and make improvements in software that are crit-

ical to their success, particularly if they do not have the

resources to provide their own full support for the compo-

nent. Facilities, as surrogates for government stakeholders,

also have to ensure the systems they deploy are the best

value possible.

While there are overlaps, the methods below capture, to

the first order, the primary methods for developing and sup-

porting software.

� Open source is defined, in the current context, as when

all software is provided as buildable source code, with

licenses that allow full rights for others to change and

use the software without infringement to anyone’s IP.

Support for the software may be casual to non-

existent. An example is the Perl scripting language.

� Open source with formal support is an enhancement of

the open source in which all software is buildable

source, as above, but in which there also exists a formal,

or in some cases paid, arrangement for support of the

software. An example is Lustre.

� Open software should be differentiated from open

source. ‘Open software’ refers to software where all

APIs are published and supported and are not changed

arbitrarily or unduly, but the buildable source code is

not released with rights to use or modify. Open software

allows software developers to create software that inter-

faces with other component (including application

codes) and allows components to be replaced as long

as the component has the same API.

� Collaborative development is a method that extends to

both joint development and joint ownership of the soft-

ware IP with a formal agreement defining roles, respon-

sibilities, and rights. These agreements typically define

a way to provide ongoing support, as well as original

development. An example is the High-performance

Storage System (HPSS) Collaboration.

� Co-development is a method that captures more ad hoc

arrangements for joint development and support efforts.

Co-development may co-exist with open software and/

or open source. Examples in this category include Mes-

sage Passing Interface CHameleon (MPICH) and the

Advanced CompuTational Software (ACTS) toolkit.

� Proprietary development is the funded or unfunded

development and support by an organization that

retains the IP rights. For example, the DARPA high-

performance computing system (HPCS) efforts fund

vendor partners to create software that in some cases

remain proprietary.

� Proprietary development with code escrow is the

funded or unfunded development and support where the

provider retains IP but formally agrees to release all

software without restriction if certain conditions occur,

such as the provider leaving the business.

Table 20 characterizes which software development and

support methods address which requirements of computing

center managers, software R&D groups, and scientific

application groups. An X means the method substantially

addresses the requirements. A question mark means it may,

with some restrictions, address the requirements. A blank

space means the method does not support the requirement.

This table shows that the collaborative development

approach addresses all the requirements, because there is

shared responsibility and defined roles. More importantly,

there is shared ownership of the software, so if one partner

drops out of the relationships, other partners can continue.

Open source with formal support addresses all the require-

ments except for protecting the system provider from pro-

prietary details if the software components have to

interface to the hardware system at the low level (e.g.

low-level interconnect features); in this case, releasing the

code may implicitly release the proprietary hardware

details.

6.4 Software Testing

So far, for the sake of simplicity, we have focused on soft-

ware component development and support. In any large

software development project, however, integration and

testing (I&T) must be an integral and well-planned effort

to ensure success, often taking at least as much effort and

time as the actual code development. For the X-stack proj-

ect, the situation is complicated by the fact that machines at

this scale are unique resources, so they are the only place

where testing can be done. As a consequence, all exascale

and pre-exascale systems must, as part of their design, sup-

port community I&T. Vendor partners are expected to take

the responsibility for I&T in Quadrants 1 and 2 and are con-

cerned that there are either explicit or implicit unfunded

requirements for I&T in Quadrants 3 and 4. On the other

hand, with a few exceptions, funders and facilities do pro-

vide sufficient resources to do the appropriate level of I&T

without a vendor or facility incurring penalties.

56 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

In the case of X-stack, with the limited number of sys-

tems planned, the aggressive increase in scale, and the

potential radical departures in hardware and software, the

IESP roadmap must have a credible plan with clear respon-

sibilities for I&T at expanding scales.

6.5 Recommendations

Discussion between the vendor partners, funding agencies,

facilities, and the IESP and the scientific community has

yielded the following recommendations.

1. The IESP community should produce a methodology

for categorizing software components into the devel-

opment and support model they will fit. This should

be broken down by each planned component, for

example, OS, runtime, and programming models. It

is also possible that different instantiations within a

component may be categorized differently. For exam-

ple, within programming models, MPI and OpenMP

may be treated differently to UPC. Therefore, this pro-

cess may need to iterate to gain a meaningful under-

standing of the X-stack creation and support plan.

The result should be a ‘living document’ and be refined

as more information is learned about each of the

components.

2. Interlocking (between vendor partner, community, and

facility) milestones should be clearly defined. In order

to work effectively together and provide a mechanism

for vendor partners to have confidence including ‘not

invented here’ components into their product plan,

these milestones will allow the vendor partner, as the

product roadmap progresses, to ensure the require-

ments are on track to meet the required schedule. As

illustrated in Table 20, the co-development model,

with joint ownership and responsibility with a formal

agreement, meets the requirements.

3. The community should produce a model that allows for

components to become mature before inclusion into

the product stack. Linux, for example, was not sup-

ported by vendor partners until it had been in existence

for at least 10 years. While this amount of lead time

may not be needed for all components, a mechanism

for allowing components to mature before inclusion

is important.

4. As part of meeting co-development goals, the roadmap

committee should interact with the application groups

to identify key application characteristics, early

enough to enable the characteristics to influence the

hardware and software design trade-offs. These char-

acteristics can then be used as input into the overall

software architecture, requirements, and design, and

hardware architecture teams can also use them.

5. Funding agencies should apply resources to integration,

testing, maintenance, and support, as well as develop-

ment of X-stack software. Enabling the community to

effectively deploy and utilize the X-stack components

requires a non-trivial investment of resources. Funding

agencies, aware of this fact, need to be prepared to help

underwrite that investment. Furthermore, there must be

a model in place that allows the community to support

that software. A good rule of thumb is that for every dol-

lar dedicated to researching and developing a compo-

nent, there should be a dollar dedicated for testing,

maintenance, and support. Insuring the success of the

IESP effort will require a well-planned program of

resource I&T.

6. Open-source licenses from non-profit and publicly

funded efforts should be vendor friendly. The pedigree

of the code should track with contributor agreements,

clearly indicating that the code is free of IP entangle-

ments from the start. The license should be ‘non-viral’

in order to allow the software to be included into ven-

dor commercial products. In fact, this model should be

encouraged, since it facilitates a more sustainable soft-

ware base, not just for exascale, but for other efforts as

well.

7. The community should start working early on draft IP

agreements with the goal of producing the bulk of the

IP agreement that can be agreed to across countries,

agencies, vendor partners, regions, components, and

so forth. This is likely to need an even longer lead time

than the technology, so starting as soon as possible is

highly recommended, since it will resolve many

important questions and issues earlier rather than later.

7. IESP Organization and Governance

Initial discussions of a long-term organization and govern-

ance model for the IESP took place at the April 2010 meet-

ing in Oxford. A relatively large group of representatives

from participating governmental agencies, including repre-

sentatives from the US (DOE, NSF, DARPA), European

Commission, and Japan (Ministry of Education, Culture,

Sports, Science and Technology (MEXT), Rikagaku Ken-

kyusho (RIKEN)), as well as national funding agencies

from the UK (Engineering and Physical Sciences Research

Council (EPSRC), Biotechnology and Biological Sciences

Research Council (BBSRC), Science and Technology

Facilities Council (STFC)), France (Agence Nationale de

la Recherche (ANR), Grand Equipement National de Cal-

cul Intensif (GENCI)), Germany, and the Netherlands

(NOW), considered potential governance models in various

aspects. Below we present some of the main considerations

on which the views of the participants converged.

7.1 Importance of a Business Case

Taking seriously the possibility of formally organizing the

IESP and providing it with ongoing support means, first

and foremost, acknowledging the validity of basic

questions about the need for such an organization: Is the

R&D of software for exascale systems really something

new, particularly as compared to the road to petaflop/s

Dongarra et al. 57

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

computing? Why is a separate project or program needed?

What would happen if the funding agencies were to say,

‘Why bother: this regulates itself?’ Deliberations about

IESP governance began with such questions, which were

pursued in something of a ‘devil’s advocate’ spirit.

Although we concluded that there is, indeed, something

new and uniquely challenging about the expected path to

exascale software infrastructure, so that the IESP will

require more formal organization and ongoing funding, it

was also clear that documenting a business case for this

will be essential in order to involve the funding agencies

and provide them with the policy resources necessary to

enable them to raise the funding. The costs and benefits for

doing a common (i.e. international) project will have to be

made clear.

Contents of a business case typically contain budget

estimates, timelines, expected actors, roadmaps, risks, and

contingency plans. It is believed that each funding agency

will need a general business case, but should also have

room for aspects in the business case that are of local

importance to the country of the funding agency. This

approach will ensure compatibility of business cases

between the funding agencies. Another important aspect

is the scope of the IESP. There is some question, for exam-

ple, as to whether the IESP will end with the delivery of the

first exascale system or whether it represents a distinctly

new phase, which happened to begin just last year, of a con-

tinuous movement that will extend into the future.

A third important aspect that should be addressed by a

business case is what can be called a tree or pyramid effect.

It should be shown that parts that are developed in the IESP

could and would be leveraged by a much broader user com-

munity several years after deployment. Such effects make

funding agency and vendor interest stronger.

7.2 Application of Current Funding Mechanisms

One aspect to be addressed is the need for coordination of

funding between the funding agencies (both within and

among nations), once the business case has been validated.

Currently, some types of funding calls can be identified,

ranging from loose to much more regulated (loosely

coupled, coordinated, joint, or in a well-specified legal

framework). Either coordinated or joint funding models are

considered the best options for the IESP. For example, a

coordinated call might have characteristics such as the fol-

lowing: issued at the same time, having the same text pro-

posal, and including several subjects within one call. Based

on experience, it certainly seems feasible to have a few

funding agencies working together to issue a coordinated

call, but the larger the set of funding agencies participating,

the better the coordination between the efforts will be. In

this regard, an important aspect is the alignment of the sub-

jects of the calls to the priorities of the funding agencies.

Coordinated or joint call models should enable such appro-

priate alignments.

7.3 Governance Model

One of the key items of a working governance model for

the IESP is the fact that the agencies funding the effort will

need to remain in control of what they fund, why, and

when. We believe that the IESP should deliver to the fund-

ing agencies the analysis and planning resources that they

will require to make such coordinated solicitations regard-

ing exascale software infrastructure possible. One approach

might be to have two separate tasks (and the entity to per-

form these tasks): one defining and one monitoring. The

defining task would constitute the software roadmap and

the breakdown of this roadmap into components, including

timelines, procurable elements, and deliverables. This

roadmap would need to take the business case as input and

could be viewed as a practical plan of execution for the

IESP. The monitoring task would monitor progress on the

roadmap, but across disciplines, borders, and agency

domains, and would report and advise the funding agencies.

The funding agencies could then decide on continuation of

funding based on progress. Periodic updates and contin-

gency plans will be needed. We view an approach based

on such defining and monitoring tasks as a plausible and

realistic way to move forward.

7.4 Vendor Interaction

An important aspect of sustainable relationships between

vendors and funding agencies is the classification of soft-

ware components with respect to ownership and ongoing

or long-term support. Vendor perspectives on these issues

are discussed in detail in Section 6. From an agency per-

spective, in the ideal situation, each software component

of the X-stack would be open source. This approach was

strongly advocated, if not firmly posed, as a requirement

by the funding agencies represented in our initial discus-

sions. However, common sense dictates that some relaxa-

tion of this requirement will probably be appropriate if

the software comes closer to the individual hardware com-

ponents (e.g. firmware), because these components are

likely to involve elements proprietary to the vendor. We

also remark that this issue is not directly relevant if a ven-

dor is not funded for the development of that component.

The open-source discussion has at least two facets. Firstly,

if X-stack R&D is to be funded by the government with

public funds, funding agencies take the view that the results

of such publicly funded research results should be open

(source) to the people who paid for it. Secondly, the view

that scientific experiments must be described in all detail

and be reproducible is now being expressed by the commu-

nity with increasing strength; to achieve this goal in

research that uses exascale systems, all details of the soft-

ware will have to be known. This requirement is indepen-

dent of the IP rights discussion. It is more a matter of

principle with respect to what constitutes valid scientific

research. Licensing and IP issues are obviously related to

practical questions about how valid scientific methods can

58 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

be implemented and pursued in the coming era of exascale

science. Although all details on these matters are not avail-

able yet, it clearly makes sense to try to anticipate the con-

sequences of different rule sets and to plan accordingly, at

an early stage of the IESP. We plan to work with the results

from the discussions of IESP vendor partners (Section 6) to

begin fashioning such a plan.

7.5 Timeline

The timeline for the process will depend on the end point(s),

the funding models, and the levels of national and interna-

tional cooperation and organization within the IESP. The

end point(s) will be a function of the long-term requirements

and goals of the different funding agencies involved in the

process. At this time the first planned deployments are

anticipated to be by the U.S. DOE. This first deployment sets

the initial timeline for the overall software process.

In addition, there is clearly a need for a test and integra-

tion process and an intermediate-scale facility to prepare

for the initial deployment, which is likely to occur in

2015. Given these two points in the process and the current

status, we can construct an initial timeline for the overall

process. The early part of the process and the final state can

be reasonably defined. The intermediate stages are still sub-

ject to considerable uncertainty.

The timeline in Table 21 does not address other impor-

tant issues about which discussions have already begun:

security (rely on community-developed software compo-

nents), testing and integration facilities, practical aspects

of co-design, and funding of multiple approaches for

similar software components. These items are slated for fur-

ther development and will be included in future timelines.

Acknowledgments

The International Exascale Software Project was organized

by and has received ongoing support from a variety of

national agencies: In the United states, the Department of

Energy Office of Advance Scientific Computing Research

(DOE-ASCR) and the National Science Foundation Office

of CyberInfrastructure (NSF-OCI); In France, the Commis-

sariat à l’énergie atomique et aux énergies alternatives

(CEA), Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique (CERFACS), Agence

nationale de la recherche (ANR), INRIA and Teratec; In

the United Kingdom, Engineering and Physical Sciences

Research Council (EPSRC); In Japan, The University of

Tsukuba, RIKEN, Kyoto University, Tokyo University and

the Tokyo Institute of Technology. Corporations contribut-

ing to the staging of different IESP meetings have included

Cray, EDF/EESI, IBM, Intel, Fujitsu Ltd., and NVIDIA.

Notes

1. Science Prospects and Benefits of Exascale Computing, ORNL/

TM-2007/232, December 2007, page 9, http://www.nccs.gov/

wp-content/media/nccs_reports/Science%20Case%20_012808%

20v3__final.pdf.

2. Estimates of today’s vendor-supplied system software contain

between 3 and 18 million lines of code. If one assumes that

each line of code generates 10 machine instructions, that is

30–180 million instructions and further assume that OS func-

tions use 1/30th of a second (and applications the rest), there

are 1–6 million instructions per second in every node. Today’s

machines have 1000–10,000 OS images, with some having

closer to 100,000. A simplistic complexity value might be con-

sidered as number of instructions � number of images. Today

Table 21.

Timeframe Targets and milestones – overall IESP/X-stack R&D

2010 � Initial mission-based software solicitations by DOE NNSA and Office of Science in the fall,
with an expected emphasis on conservative technology choices

� Creation of software roadmap, including requirements-based prioritization, critical paths, funding
and software clearinghouse, support models developed among the group of international
agencies involved

2011 � Initial solicitations for software development programs based on the software roadmap for
international partners

2012–2013 � Initial software deliveries and evaluations
2014–2015 � Delivery of final components of software stack, integration and testing in process on

non-exascale platforms
� Early technology delivery of a mini-exascale system of *200 PF with a minimal but

functional software stack
2016–2017 � Ability to handle observation of hundreds of million-way concurrency

� Characterization of performance of exascale hardware and software for application
enablement

2018–2020 � Initial delivery of full system with a full, integrated software stack
� Ability to handle observation of billion-way concurrency
� At-scale testing, debugging, and early scientific runs

2020 � Exascale systems in production

Dongarra et al. 59

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

this is 6 � 1014. At exascale, there may be 10,000,000 nodes.

If the code complexity only doubles for exascale, the complex-

ity is 1.2 � 1014, four orders of magnitude more complex in

the simplest case.

References

Department of Energy (2008a) Challenges in Climate Change

Science and the Role of Computing at the Extreme Scale.

Washington, DC: Department of Energy, 98.

Department of Energy (2008b) Scientific Challenges for Under-

standing the Quantum Universe and the Role of Computing

at Extreme Scale – Summary Report. Menlo Park, CA: Depart-

ment of Energy, 129.

Department of Energy (2009a) Architectures and Technology for

Extreme Scale Computing. San Diego, CA: Department of

Energy.

Department of Energy (2009b) Cross-cutting Technologies for

Computing at the Exascale. Washington, DC: Department of

Energy, 99.

Department of Energy (2009c) Discovery in Basic Energy

Sciences: The Role of Computing at the Extreme Scale.

Washington, DC: Department of Energy.

Department of Energy (2009d) Forefront Questions in Nuclear

Science and the Role of High Performance Computing Sum-

mary Report - Summary Report. Washington, DC: Department

of Energy.

Department of Energy (2009e) Fusion Energy Science and the

Role of Computing at the Extreme Scale. Washington, DC:

Department of Energy, 245.

Department of Energy (2009f) Opportunities in Biology at the

Extreme Scale of Computing. Chicago, IL: Department of

Energy, 69.

Department of Energy (2009g) Science Based Nuclear Energy

Systems Enabled by Advanced Modeling and Simulation at

the Extreme Scale. Washington, DC: Department of Energy,

94.

Department of Energy (2009h) Scientific Grand Challenges in

National Security: The Role of Computing at the Extreme

Scale. Washington, DC: Department of Energy, 190.

Department of Energy (2010) Exascale Workshop Panel Meeting

Report. Washington, DC: Department of Energy, 46.

Garcia ML and Bray OH (1997) Fundamentals of Technology

Roadmapping. Sandia National Laboratory, 34.

Kogge PM et al. (2008) ExaScale Computing Study: Technol-

ogy Challenges in Achieving Exascale Systems. Washing-

ton, DC: DARPA Information Processing Techniques

Office, 278.

National Research Council Committee on the Potential Impact of

High-End Computing on Illustrative Fields of Science and

Engineering (2008) The Potential Impact of High-End Capa-

bility Computing on Four Illustrative Fields of Science and

Engineering. Washington, DC, 142.

Sarkar V, Amarasinghe S, Campbell D, et al. (2009a) ExaScale

Software Study: Software Challenges in Extreme Scale Sys-

tems. Washington, DC: DARPA Information Processing Tech-

niques Office, 159.

Sarkar V, Harrod W and Snavely AE (2009b) Software challenges

in extreme scale systems. Journal of Physics: Conference

Series 012045.

Stevens R, Zacharia T and Simon H (2008) Modeling and

Simulation at the Exascale for Energy and the Environment

Town Hall Meetings Report. Washington, DC: Department

of Energy Office of Advance Scientific Computing

Reserach, 174.

60 The International Journal of High Performance Computing Applications 25(1)

 at Forschungszentrum Julich Gmbh on May 13, 2013hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

