Simulations of thermophoretic nanoswimmers

Mingcheng Yang* and Marisol Ripoll†
Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
(Received 5 August 2011; revised manuscript received 5 September 2011; published 6 December 2011)

We consider a nanodimer in solution with asymmetric thermal properties that shows self-propelled motion. One monomer of the nanodimer can be heated to a fixed temperature producing a radially symmetric temperature gradient. The thermophoretic properties of the second monomer produce then a propulsion against or toward the heated particle, such that the nanodimer becomes a puller or pusher nanoswimmer. We combine our simulation measurements with a theoretical analysis that satisfactorily characterizes the self-propelled velocity with the temperature gradient, and the thermophoretic properties of the bead.

DOI: 10.1103/PhysRevE.84.061401
PACS number(s): 82.70.–y, 66.10.cd, 87.17.Jj, 05.70.Ln

I. INTRODUCTION

Molecular motors are ubiquitous in biology, with examples ranging from motor proteins moving along filaments [1], to swimming bacteria [2]. In such systems self-propulsion is mostly achieved by using chemical energy released from adenosine triphosphate (ATP) hydrolysis [3]. Recently, synthetic microscale and nanoscale motors have attracted considerable attention due to their potential practical applications and related theoretical open questions [4,5]. A relatively simple and effective strategy to design artificial nanomotors has already been found in employing phoretic effects. Phoresis refers to the drift motion of a suspended particle produced by the mechanical force that arises from an inhomogeneous fluid environment. Such inhomogeneities can be gradients of electric potential (electrophoresis), concentration (diffusiophoresis), or temperature (thermophoresis) [6]. These gradients are frequently a consequence of external contraints, but interestingly, in the case that one particle is able to produce a local gradient field by itself, self-propulsion may occur. The theoretical basis of this phenomenon has been discussed by different authors [6,7]. Following this line and by means of simulations [8] and experiments [9,10], a chemical reaction catalyzed asymmetrically on a particle’s surface has shown to translate into a diffusiophoresis motor. More recently, a Janus particle has been shown to display self-propelled motion due to thermophoresis [11]. In their experiments, Jiang et al. employ a half-metal coated colloidal sphere and heat it with a defocused laser. The higher heat absorption of the metal side produces a temperature gradient on the nonmetal side, which translates into a self-propelled motion.

In this work we perform computer simulations of nanodimers that swim due to thermophoresis at low Reynolds numbers. Two strongly bonded monomers are immersed in a hydrodynamic solvent as depicted in Fig. 1. The heated bead h can have a temperature higher than the surrounding fluid. This accounts for a monomer of material as gold that absorbs heat, for example, from a laser. If the average temperature T of the system is kept constant, the surrounding solvent will sustain a steady temperature gradient with radial symmetry. The nonheated bead can generate a thrust due to thermophoresis, which will translate into a directed motion of the nanodimer along the bond direction. We will therefore refer to the nonheated bead as the propelling monomer p. In the case where p bead is thermophilic, it will tend to go to higher temperatures, and the nanodimer will behave as a pusher. Reciprocally, in the case where the p bead is thermophobic, the nanodimer will behave as a puller [12]. The propulsion velocity v_p is measured in our simulations and theoretically satisfactorily explained. Our system nicely mimics the recent experiments by Jiang et al. [11] with a simpler geometry of the temperature profile.

II. SIMULATION MODEL

Simulations are performed with a hybrid scheme. The solvent is described by a particle-based mesoscopic simulation technique known as multiparticle collision dynamic (MPC) [13], while monomers and their interactions with the solvent are simulated by standard molecular dynamics (MD). MPC consists of alternating streaming and collision steps. In the streaming step, the solvent particles of mass m move ballistically for a time h. In the collision step, particles are sorted into a cubic lattice with cells of size a, and their velocities relative to the center-of-mass velocity of each cell are rotated around a random axis by an angle α. In the collisions, mass, momentum, and energy are locally conserved. This allows the algorithm to properly capture hydrodynamic interactions, thermal fluctuations, and the sustainability of temperature inhomogeneities [14]. MPC has already been shown to be successful in the simulation of other self-propelled particles [8,15,16]. A detailed description of the method can be found, e.g., in Refs. [17–19]. We employ the standard MPC parameters $\alpha = 130^\circ$, $h = 0.1$, and the mean number of solvent particles per cell $\rho = 10$. Simulation units are chosen to be $\rho = a = 1$, and $k_B T = 1$, where k_B is the Boltzmann constant and T is the average system temperature. Time and velocity are consequently scaled with $(ma^2/k_B T)^{1/2}$ and $(k_B T/m)^{1/2}$, respectively.

The solvent particles interact with the nanodimer beads through Lennard-Jones (LJ) type potentials. They can be attractive or repulsive, with the general form

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] + C_k, \quad r \leq r_c, \quad (1)$$

* m.yang@fz-juelich.de
† m.ripoll@fz-juelich.de

DOI: 10.1103/PhysRevE.84.061401
PACS number(s): 82.70.–y, 66.10.cd, 87.17.Jj, 05.70.Ln
The spherical symmetry of the temperature distribution around the bead, together with the energy conservation, and the Fourier’s law implies a temperature field $T(r) = A_1/r + A_2$ with r the distance to the h-bead center. The constant factors A_1 and A_2 are determined given the imposed temperatures T_h and T. In Fig. 2 a typical temperature profile around the h bead as measured from the simulations is plotted together with the predicted profile. The small deviation is due to the approximations made in the analytical calculation.

III. RESULTS AND DISCUSSION

The steady state temperature gradient leads to a thermophoretic force on the p bead that will tend to move along the nanodimer bond direction. The resulting self-propelled velocity v_p can then be positive (towards the heated particle), or negative (against the heated particle), depending on the sign of the Soret coefficient of the p bead. During its motion the nanodimer can freely rotate, which implies that the directed motion will change orientation, which will effectively give rise to an enhanced diffusive behavior [9,11]. Figure 3 depicts the trajectories of the nanodimer center of mass projected on the xy plane. It is found that the self-propelled nanodimer can explore a larger area with increasing thermophoretic force, which suggests that the self-propelled nanodimer has indeed a larger effective diffusion coefficient.

To characterize the self-propelled velocity v_p, the nanodimer center-of-mass velocity v_{cm} is projected in the bond

![FIG. 1. (Color online) Schematic diagram of the simulated nanodimer solution. The h monomer can be heated to a fixed temperature and it is strongly linked to a second monomer p. The system has then a radially symmetric temperature gradient.](Image)

![FIG. 2. (Color online) Temperature at a distance r from the center of the h bead in units of the bead radius σ, with $T_h = 1.2T$. Symbols correspond to the simulation measurements and the line to the analytical prediction.](Image)

![FIG. 3. (Color online) Trajectories of the center of mass of the nanodimer projected on xy plane with increasing self-propelled velocity for a fixed total time. Reference bars indicate the nanodimer size. (a) No temperature gradient and $v_p = 0.$, (b) $T_h = 1.2T$ with increasing v_p. (b) Repulsive U_p ($C_p = \epsilon, n_p = 6$). (c) Attractive U_p ($C_p = 0, n_p = 24$).](Image)
direction \(\mathbf{n} = \mathbf{r}_{hp}/|\mathbf{r}_{hp}| \), such that \(v_p = \langle \mathbf{v}_{cm} \cdot \mathbf{n} \rangle \). In Fig. 4, \(v_p \) is averaged over a long time and clearly determined values are shown. The employed repulsive interaction is known to display a directed velocity \(v_p \); Fig. 3: circles to (a), squares to (b), and triangles to (c). Swimming characteristic behaviors are illustrated in the insets [12].

In order to gain deeper insight into the phenomenon, we now explain the measurements of the self-propelled velocity in terms of the passive thermophoresis. It is well accepted that there is no thermophoretic force exerted on the bead. Simultaneously, the self-propelled velocity as stated in this work. In Fig. 6, direct measurements of \(v_p \) and consequently of the self-propelled behavior treated in this does not influence the existence of the thermophoresis, and consequently of the self-propelled velocity as stated in Eq. (4). A fit to the data allows us to determine \(D_p \) and \(v_p \) with good accuracy, which for the displayed example are \(D_p = 0.0033 \) and \(v_p = 0.0023 \) (repulsive), and \(D_p = 0.0028 \) and \(v_p = -0.0068 \) (attractive), respectively. Note that the values of \(v_p \) nicely agree with the direct measurements shown in Fig. 4.

The quantities \(\alpha_T \) and \(S_T \) have been extensively measured from experiments and simulations [23–29] for various systems. MD simulations with single colloidal particles have been performed by Gallié and Volz [28]. For the particular model and potentials chosen in this work we employ the values obtained from simulations by Lüsebrink [14] for a single colloidal particle in a linear temperature gradient. It is known that MPC solvent has an ideal gas equation of state, however this does not influence the existence of the thermophoresis, and consequently of the self-propelled behavior treated in this work. In Fig. 6, direct measurements of \(v_p \) are presented for different temperature gradients and potential interactions (different \(\alpha_T \)). The temperature gradient has been locally estimated at the center of the bead. Simultaneously, the values of \(v_p \) indirectly obtained by computing the right-hand side of Eq. (3) are presented for comparison. The agreement is satisfactory, though the indirect evaluated \(v_p \)
FIG. 6. (Color online) Self-propelled velocity as a function of the temperature gradient in (a) and of the thermal diffusion factor in (b). Bullets correspond to direct simulation results, diamonds to the evaluation of Eq. (3), and lines to linear fits. (a) The values systematically overestimate the directly measured ones.

The overestimation of v_p, obtained with the right-hand side of Eq. (3) can be attributed to several factors. (i) The employed values of α_T are obtained from single-particle simulations. In the nanodimer environment, the existence of the h bead and the radial temperature gradient will have certain influence in the distribution of the solvent near the p bead, and therefore in α_T. (ii) The temperature gradient generated by the h bead near the p bead is, as shown in Fig. 2, rather large and decreases rapidly with the distance. Thus the local linear temperature gradient at the center of the p bead is just an approximation. (iii) The Einstein relation assumed to calculate μ_p is not necessarily valid for a system far beyond equilibrium [20,30]. (iv) The temperature dependence of α_T [31] has not been considered in our estimations. (v) Equation (2) is based on the linear response theory, which is only the lowest-order approximation under large temperature gradients as those presented here. The clear linear behavior observed in Fig. 6 indicates that the main contributions might be in the determination of α_T and ∇T, and μ_p as indicated in (i)–(iv). Nevertheless, the relative importance of the different contributions should be further investigated. Reciprocally, in systems where a better agreement can be achieved, the self-propelled velocity could be employed to determine α_T [11,32].

IV. CONCLUSION

In summary, we present a simulation model of the swimming motion caused by thermophoresis that can be theoretically well supported. The required local temperature gradient can be experimentally created by inhomogeneous absorption of external light [11] or by internally released heat from chemical reactions. The directed motion is achieved by the transformation of thermal energy of the nonequilibrium fluid environment into kinetic energy of the nanodimer. Thermophoresis appears then as a promising mechanism to design synthetic nanomachines.

ACKNOWLEDGMENTS

We want to thank D. Lüsebrink for discussions and the availability of his results prior to publication. We acknowledge interesting discussions with H. R. Jiang.