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Recombination via tail states in polythiophene:fullerene solar cells
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State-of-the-art models used for drift-diffusion simulations of organic bulk heterojunction solar cells based
on band transport are not capable of reproducing the voltage dependence of dark current density and carrier
concentration of such devices, as determined by current-voltage and charge-extraction measurements. Here, we
show how to correctly reproduce this experimental data by including an exponential tail of localized states into the
density of states for both electrons and holes, and allowing recombination to occur between free charge carriers
and charge carriers trapped in these states. When this recombination via tail states is included, the dependence of
charge-carrier concentration on voltage is distinctly different from the case of band-to-band recombination and
the dependence of recombination current on carrier concentration to a power higher than 2 can be explained.
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I. INTRODUCTION

The most promising candidates for future generations
of low-cost, thin-film solar cells that can be processed on
flexible substrates1–6 in roll-to-roll processes are two very
different material systems: amorphous and microcrystalline,
hydrogenated silicon on the one side and polymer:fullerene7,8

solar cells on the other side. On first sight, the two technologies
seem to be quite different, with the traditional semiconductor
Si with decades of research experience on the one side and
with the emerging field of polymer optoelectronics on the
other side. It has been proposed to distinguish between two
distinct types of solar cells, namely, organic or excitonic solar
cells and conventional bipolar solar cells, from an inorganic
absorber material.9–11 In organic solar cells, photon absorption
first leads to the generation of excitons, which will then be
separated at a heterointerface into free electrons and holes. The
relevance of excitons in the process chain between photons and
free charge carriers is a fundamental difference between or-
ganic materials with their inherently lower dielectric constants
than inorganic absorbers. For optimized organic solar cells,
however, the exciton diffusion process is no longer a limiting
factor.12,13 Instead, the shape of the current-voltage curves
and the efficiencies seem to depend primarily on nonradiative
recombination processes14,15 and on the mobilities of the
charge carriers just as in the case of inorganic solar cells. These
recombination and transport processes are in turn heavily
influenced by the intrinsic disorder in the electronic processes
within organic semiconductor films. To understand, optimize,
and predict the performance of organic bulk-heterojunction
solar cells, a suitable theoretical description of the charge
transport and recombination processes for use in macroscopic
device simulations would be required that takes into account
effects of disorder and charge trapping as well as suitable
recombination processes and that is capable of reproducing
dark and illuminated current-voltage curves. Such a descrip-
tion is currently not available for organic solar cells, but it is
well established for disordered inorganic absorber materials
as the above-mentioned amorphous and microcrystalline,
hydrogenated silicon.

This paper shows that the consideration of trapping
and recombination via exponential tails in the valence

and conduction band of polymer-fullerene solar cells al-
lows us to reproduce experimental data on the current-
voltage curve under illumination and in the dark of a poly
(3-hexylthiophene) (P3HT): 1-(3-methoxycarbonyl)propyl-1-
phenyl-[6,6]-methano fullerene (PCBM) bulk heterojunction
solar cell. In addition, we show the consistency of the
model with charge-extraction16,17 measurements determining
the charge-carrier concentration under illumination and in
the dark. While the inclusion of charge trapping has been
frequently proposed to explain the charge-carrier depen-
dence of mobility18–20 and recombination coefficient21,22 in
organic solar cells, the recombination via tail states has
only recently23–27 been considered to be of relevance for
the description of such devices. Here we show the crucial
importance of tail-state recombination for the description
of experimental data, especially of the ideality factor under
illumination and in the dark.

II. FUNDAMENTAL THEORY

For a macroscopic simulation of a semiconductor diode in
steady state, three coupled differential equations have to be
solved. These equations are the Poisson equation,

�ϕ = −ρ

ε
, (1)

relating the electrical potential ϕ to the space charge ρ and the
dielectric constant ε, and the drift diffusion equations for the
electrons and holes,

− 1

q

dJn(x)

dx
= −Dn

d2n(x)

dx2
− Fμn

dn(x)

dx

= G(x) − R(x,n,p), (2)

1

q

dJp(x)

dx
= −Dp

d2p(x)

dx2
+ Fμp

dp(x)

dx

= G(x) − R(x,n,p), (3)

where x is the spatial coordinate normal to the cell surface,
n and p are the concentrations of free electrons and holes,
respectively, Jn and Jp are the electrical electron and the
hole current densities, and G and R are the generation and
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recombination rates of free charge carriers. The diffusion
constants Dn,p are assumed to be connected via the simple
Einstein relation (Dn,p = μn,pkT /q) to the electron and hole
mobilities μn and μ and the thermal voltage kT/q. We will
later discuss the implications of deviations from the Einstein
relation.

The boundary condition for the electrical potential is

ϕ(d) − ϕ(0) = Vbi − V, (4)

defining the potential difference between the potential ϕ(d) at
the back contact and ϕ(0) at the front contact as a function of
the built-in voltage Vbi and the applied voltage V. The boundary
conditions for the currents and the carrier concentrations at
both contacts are

Jn(0) = qSnf [n(0) − n0(0)] , (5a)

Jp(0) = qSpf [p(0) − p0(0)] , (5b)

Jn(d) = qSnb [n(d) − n0(d)] , (5c)

Jp(d) = qSpb [p(d) − p0(d)] , (5d)

where Snf,b is the surface recombination velocity for electrons
at the front or back, respectively, while Spf,b is the analogous
quantity for the holes. Equations (1)–(5) allow us to calculate
the local carrier concentrations and the electrostatic potential
as a function of applied voltage V and incident photon flux.
From the carrier concentrations, the currents follow either by
using Eq. (5) or by integrating Eqs. (2) and (3), such that a
complete current-voltage curve under illumination or in the
dark is simulated.

Up to now, we reviewed the features of most of the available
drift-diffusion simulators that are commonly used for solar-cell
modeling in general. Effective-medium models based on the
theory outlined above have been routinely used to model not
only inorganic thin-film solar cells but also organic bulk hetero-
junction solar cells. In the case of the bulk-heterojunction solar
cell, the lowest unoccupied molecular orbital (LUMO) of the
acceptor and the highest occupied molecular orbital (HOMO)
of the donor are considered in an analogous way to the
conduction and valence band in an inorganic solar cell. Despite
the fact that the bulk heterojunction architecture consists
of a blend of two different materials, drift-diffusion-based
effective-medium approaches are still very useful to interpret
device measurements, as has been shown numerous times.28–35

The basic differences between the models typically used
for disordered inorganic solar cells, on the one hand, and
organic solar cells, on the other hand, are the choice of
generation rate G and recombination rate R. While for
inorganic solar cells, the generation rate simply follows
from the optical properties of the device such as absorption
coefficient and thickness, the generation rate for free carriers
in organic solar cells is often assumed to be field dependent,
according to different models as described in Refs. 36–40.
This electric-field-dependent generation rate is rationalized
with the field-dependent dissociation of the charge-transfer
(CT) state exciton at the heterointerface between a donor and
acceptor molecule in a bulk heterojunction solar cell. However,
recent experimental data shows that for typical organic bulk
heterojunction solar cells based on P3HT:PCBM, the field
dependence of free carrier generation cannot have a major
effect on the current-voltage curve,41–43 while Monte Carlo

simulations showed that in good cells the field dependence
of geminate recombination is small in the relevant range
of electric fields.44 Thus, in our simulations we neglect the
field dependence of the generation rate and use a spatially
independent rate.

Despite the complexity of the generation rate usually
assumed in device simulations of organic solar cells, the
recombination rate, however, is mostly assumed to follow very
simple equations, namely, direct electron-hole recombination
with a prefactor given by the Langevin theory. These assump-
tions lead to a recombination rate given by39

R = q(μn + μp)

ε

(
np − n2

i

)
, (6)

where ni is the intrinsic carrier concentration. The form of
the recombination rate in Eq. (6) ensures that there is no
recombination when there are no (optically or electrically
created) excess carriers available, i.e., when np = n2

i . The
field-dependent generation rate combined with the simple
Langevin recombination rate was sufficient to reproduce the
experimental results for the current-voltage (J-V) curve under
illumination. However, the J-V curve in the dark cannot be
reproduced with these assumptions. The dark current density
Jd is a direct measure of the spatially integrated recombination
rate, and it can be written as

Jd = q

∫ d

0
R(x)dx + qSnn(0) + qSpp(d) (7)

for the case when the electron contact is at x = d and the hole
contact is at x = 0. The dark ideality factor,

nid = q

kT

dV

d ln(Jd )
, (8)

follows from the slope of the dark J-V curves in the voltage
range where they are neither dominated by shunt or series
resistances. Typical values are in the range 1 < nid < 2.
However, the values for nid are typically considerably larger
than 1, meaning that they cannot be explained anymore by
simple direct recombination as assumed in Eq. (6), which
would lead to nid = 1. Recently, various measurements of
the carrier-concentration-dependent recombination rate16,45–50

have suggested an empirical form of the recombination rate
according to

R = k(n)np = k0n
λnp, (9)

with λ > 0. Such a recombination rate resembles Auger
recombination, which leads to dark ideality factors nid < 1
(see Appendix A).

The failure of all recombination models typically used
for the simulation of organic solar cells to reproduce the
observed dark ideality factors motivates the search for more
appropriate models. One possible source for such models is the
literature51 on disordered inorganic solar cells. As shown in
Fig. 1, the above-mentioned amorphous and microcrystalline
silicon solar cells have similar J-V curves in the dark and
similar dark ideality factors as a typical organic solar cell
with a P3HT:PCBM absorber layer. The reason why models
developed for thin-film silicon solar cells are capable of repro-
ducing the experimental dark ideality factors is the inclusion of
localized subband-gap states that are due to defects or disorder
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FIG. 1. (Color online) Comparison of experimental dark current-
voltage curves (symbols) of an organic solar cell based on a
P3HT:PCBM absorber with two representative thin-film silicon solar
cells. All three cells show a clear diode behavior with noninteger
dark ideality factors. The solid lines for the two silicon solar cells are
one-diode fits to determine the ideality factor, and the solid line in
the case of the P3HT:PCBM cell is a simulation using the parameters
detailed in Table I, column 2.

and that are actively involved in recombination.52–54 Thus,
even in completely defect-free organic solar cells, the inherent
disorder in molecular packing and molecular environment
should lead to subband-gap states that could contribute to
charge-carrier recombination. In the following, we will show
how inclusion of exponential tail states occupied by nonmobile
or trapped charge carriers and recombination via these states
allows us to reproduce experimental data that cannot be
reproduced by only assuming free carriers in bands.

In addition to an exponentially decaying tail, in thin-film
silicon solar cells it is common to include a distribution of
deep trap states and to allow recombination between free
carriers and such deep states. This is also a possible mechanism
for organic solar cells, as suggested, e.g., by Street et al.55

However, it is not taken into account here, since it increases the
number of parameters, and since it can be shown easily that any
data that can be modeled by including both tail recombination
and recombination via deep states can also be reproduced by
a model including tail recombination only.

Figure 2 presents an overview over the effect of tail states
on transport and recombination. There are four processes that
take place. For the valence-band tail states, we have (i) the
capture of an electron by a trapped hole (or a positively charged
valence-band tail state) with a capture rate coefficient given by
β+

n ([β] = cm3/s), (ii) the capture of a hole by an unoccupied
(i.e., neutral) valence-band state with a capture rate coefficient
given by β0

p , (iii) the capture of a hole by a negatively charged
conduction-band state with a capture rate coefficient given by
β−

p , and (iv) the capture of an electron by an unoccupied (i.e.,
neutral) conduction-band state with a capture rate coefficient
given by β0

n .
The idea behind the tail recombination model is that the

recombination of free carriers via tails is modeled with an
effective recombination rate that takes the rate equations for
recombination, trapping, and detrapping into account and
calculates the net recombination rate. The transport model
is a multiple trapping model, i.e., transport is affected by the
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FIG. 2. Schematics visualizing the definition of the four capture
rate coefficients for capture and recombination via tail states. From
left to right, the capture rate coefficients describe (i) recombination of
an electron with a trapped hole in the valence-band tail, (ii) trapping
of a hole by a neutral valence-band tail state, (iii) recombination of a
free hole with a trapped electron in a conduction-band tail state, and
(iv) trapping of an electron by a neutral conduction-band tail state.
Note that the unit of all capture rate coefficients is cm3 s−1.

trapping and detrapping processes. The effect of the multiple
trapping model on the effective mobility is that it becomes
implicitly carrier concentration dependent since only a small
part of the total charge carriers contribute to the transport. The
terminology of free carriers is traditionally used in disordered
inorganic solar cells, however, it might be misleading in the
case of the transport via localized states in organic semicon-
ductors. Here, free means that these carriers are sufficiently
far away from midgap that the Boltzmann approximation can
be used to calculate their concentration for the whole range of
voltages studied (V < Voc at 1 sun) and that their mobility is
nonzero. All other states are tail states, which are assumed to be
completely localized and whose occupation probability has to
be calculated with the Shockley-Read-Hall (SRH) formalism
and not with Boltzmann approximation. The approximation
involved is that the transition between free and trapped carriers
is abrupt. Reference 56 shows that this approximation only
affects the temperature dependence of the current-voltage
curve, while it has only the effect of a constant scaling factor
for the mobility when temperature is kept constant.

The recombination rate used to simulate semiconductors
with exponential tail states follows from SRH statistics57,58 as
a function of the electron and hole capture rate coefficients βn,p,
of the energy-dependent density NCBT/NVBT, of conduction-
valence band states, given by the exponential decay of the tail
defined by the Urbach energy EUC and EUV for both tails.
Note that SRH statistics imply that recombination requires
at least one free carrier, i.e., there will be no recombination
between trapped electrons and trapped holes. Instead, one
recombination process consists of trapping of a free electron
and recombination of this trapped electron with a free hole or
vice versa of a trapped hole with a free electron. The recombi-
nation rate is expressed as an integral from valence-band edge
EV to the conduction-band edge EC over the density of tail
states and the recombination efficiency ηR, which follows from
the detailed balance between capture and emission processes.
The complete equation for the recombination rate RCBT via
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conduction-band states is given by59

RCBT =
∫ EC

EV

NCBT(E)ηR(E)dE

=
∫ EC

EV

NC0 exp

(
E − EC

EUC

)
np − n2

i

(n + NC exp[(E − EC)/kT ])/β−
p + (p + NV exp[(EV − E)/kT ])/β0

n

dE, (10)

where NC0 is the density of tail states per energy interval
at the conduction-band edge. The total recombination rate to
be inserted in Eqs. (2) and (3) is then R = RCBT + RVBT,
where the recombination rate RVBT via valence-band tail states
follows from a similar equation as given by Eq. (10). Note that
the capture rate coefficients β−

p , β0
n for the conduction-band tail

and β0
p , β+

n for the valence-band tail are often expressed as the
product of thermal velocity vth and capture cross sections σn,p.
However, to consider thermal velocity vth and capture cross
section as individual parameters does not have any benefit60

for the description of thin-film solar cells. Thus, we only use
capture rate coefficients in the following, which have the unit
cm3 s−1.

Note that the recombination via these tail states is expected
to be predominantly nonradiative, as indicated by the low
luminescence yield measured by Vandewal et al.14,61 However,
the measured light emission may very well originate from
recombination via tail states, which has implications for the
modeling and interpretation of luminescence as shown for the
case of microcrystalline silicon.62

Recombination rates as given by Eq. (10) are known
to reproduce typical dark ideality factors 1 < nid < 2, as
observed in both organic and inorganic p-i-n type solar
cells. Thus, in contrast to the commonly used Langevin
recombination according to Eq. (6), the mathematical form of
Eq. (10) has the potential to describe dark J-V curves of organic
solar cells. However, it is not necessary to completely abandon
the picture of diffusion-limited recombination. Instead, the
capture rates that involve the capture of a hole by an electron
trapped in a conduction-band tail state or the capture of an
electron by a hole trapped in a valence-band tail state are
expected to follow a similar relation as the recombination
between a free electron and a free hole. Thus, the Langevin
theory would predict the capture rate coefficients,

β+
n = qμn

ε
, (11)

for the capture of a free electron by a hole trapped in a valence-
band tail state and

β−
p = qμp

ε
, (12)

for the capture of a free hole by an electron trapped in a
conduction-band tail state.

III. TAIL-STATE RECOMBINATION VERSUS
RECOMBINATION OF FREE CARRIERS

While the influence of disorder on transport in organic
semiconductors is well known, the influence of disorder on
recombination is less frequently discussed. Thus, we want to
show in the following how the dark ideality factor changes

when we go from a situation dominated by recombination
between carriers far away from the quasi-Fermi levels to a
situation dominated by recombination via tail states. To visu-
alize the effect of the capture rates on the voltage-dependent
recombination in organic solar cells, we make simulations
using the model described above and the parameters as given
in the first column of Table I. We vary the two capture rate
coefficients β+

n and β−
p which are responsible for recombina-

tion and keep the value of the capture cross sections for carrier
trapping constant. In addition to tail-state recombination, we
also allow for direct recombination between free carriers with
a recombination rate R = k(np − n2

i ). We simulate both dark
and illuminated current-voltage curves and determine the dark
ideality factor from the slope of the dark J-V curve using
Eq.(8) at every voltage. We then average the dark ideality
factors for voltages 0.1 V < V < 0.6 V and call the resulting
value the apparent dark ideality factor.

Figure 3 shows the open-circuit voltage Voc and the apparent
dark ideality factor resulting from these simulations. The
open-circuit voltage for low capture rates is limited by direct
recombination and approaches an arbitrary value of Voc that
is given by the chosen generation rate and recombination
coefficient for direct recombination (Voc = 857 mV). For
higher capture rates, the tail-state recombination becomes
dominant and decreases Voc.

FIG. 3. (Color online) Simulated open-circuit voltage and dark
ideality factor of a cell with tails (tail slope EU = 80 meV for both
tails) to show the influence of the two capture rate coefficients for
recombination. If these rates are low, there is only trapping but no
recombination via the tail states. It is obvious that in this case the
dark ideality factor approaches 1 again, since in this case direct
recombination would take over. For higher capture rate coefficients,
open-circuit voltage decreases and ideality factor increases up to
nid = 1.6. For higher capture rate coefficients, the true ideality factor
is difficult to determine since the series resistance becomes dominant
at higher forward voltages.
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TABLE I. Parameters used for the simulations, presented in Fig. 3 (first column) and in Figs. 4, 6, and 7. Note that the mobilities given
are band mobilities and apply only to the untrapped fraction of the charge-carrier population. The value of the drift mobility that applies to the
general charge-carrier population is substantially smaller than the band mobility, when a multiple trapping model is used. A multiple trapping
model is used, when the capture rate coefficients β, the Urbach energies EUC,V, and the densities NC0, NV0 of tail states per energy interval at
the mobility edge are all nonzero, as in the second column.

Cell in Fig. 3 Cell with tail rec. Cell with dir. rec. Cell with Auger rec.

μn (cm2/V s) 10−3 7.3 × 10−4 1.7 × 10−4 8 × 10−5

μp (cm2/V s) 10−3 7.1 × 10−4 3 × 10−5 1.6 × 10−5

NC (cm−3) 1020 1020 1021 1021

NV (cm−3) 1020 1020 1021 1021

NC0 (cm−3 eV−1) 1020 3.5 × 1020 0 0
NV0 (cm−3 eV−1) 1020 4.7 × 1018 0 0
EUC (meV) 80 47 0 0
EUV (meV) 80 115 0 0
β+

n (cm3 s−1) Variable 1.1 × 10−11 0 0
β0

p (cm3 s−1) 10−10 2.3 × 10−10 0 0
β−

p (cm3 s−1) Variable 5.2 × 10−13 0 0
β0

n (cm3 s−1) 10−10 2.6 × 10−10 0 0
Eg (eV) 1.1 1.1 1.1 1.1
d (nm) 150 150 150 150
k (cm3 s−1) 2.2 × 10−14 0 7.7 × 10−13 0
Cauger (cm6 s−1) 0 0 0 2.7 × 10−30

S (cm/s) 0 105 105 105

ϕb (meV) 0 0 0 0
G (cm−3 s−1) 1.8 × 1022 3.85 × 1021 3.85 × 1021 3.85 × 1021

εr 3.8 3.8 3.8 3.8
Rs (
 cm2) 0 6.8 5.8 4

The apparent dark ideality factor approaches unity for low
capture rates as expected for a solar cell where recombination
is limited by direct recombination. The dark ideality factor
increases to a value ∼1.6, which is the true dark ideality
factor (not influenced by series resistances) for tail-state
recombination with the assumed Urbach energy EU = 80 meV.
For even higher capture rates, the charge transport is hindered
and the finite resistance of the absorber layer leads to a voltage
drop already at voltages below 0.6 V. Thus, the apparent dark
ideality factor is now influenced by the series resistance from
the absorber layer itself and starts to increase above 2. This
value, however, is no longer an indication of the recombination
mechanism. Note that the dark ideality factor rises above 1 for
much lower capture rates than the Voc decreases below the limit
given by direct recombination. This is due to the fact that the
recombination mechanism with the higher dark ideality factor
(i.e., tail-state recombination) becomes relevant at lower bias
voltages first and affects the open-circuit voltage only for even
higher capture rates.

In this example, using the Langevin theory to determine the
capture rates leads to a low open-circuit voltage Voc = 460 mV
as compared to the band-gap energy Eg = 1.1 eV, which is an
indication that the Langevin theory is indeed too pessimistic,
also for the definitions given by Eqs. (11) and (12).

IV. SIMULATION OF CURRENT-VOLTAGE CURVES

It is well known from experimental and theoretical work on
thin-film silicon diodes that SRH recombination via tail states
produces noninteger dark ideality factors in the observed range

1 < nid < 2.63,64 Thus, given the relatively large amount of
unknown parameters the tail-recombination model contains, it
is hardly surprising that it is possible to fit experimental dark
J-V curves of a P3HT:PCBM bulk heterojunction device.65

A more meaningful test of the potential appropriateness
of the model is to compare dark and illuminated J-V curve
as well as the illumination-dependent open-circuit voltage
in experiment and simulation using always the same set of
parameters. Thus, we simulated these three characteristics
using the software ASA66 and three different models for
recombination, namely, the model with tails, a model with
direct recombination, and a model with Auger recombination.
ASA was chosen for this purpose due to its numerical robustness
and speed and because it is easily controlled by external
software. In this case the parameter optimization was done
with MATLAB using a downhill simplex algorithm67,68 that
calls ASA with a different set of parameters in each loop
of the algorithm. The algorithm simultaneously minimizes
the error in light and dark J-V curves as well as the dark
charge-extraction measurements, which will be discussed in
Sec. V. The parameters determined in this way are detailed
in Table I and are the same for all Figs. 4(a)–4(c). Obviously
the parameters should all be determined experimentally and
not by fitting to J-V curves. However, our intention is not to
determine an adequate parameter set for a certain type of solar
cell but to test the consistency of the discussed models with
experimental data.

Figure 4(a) shows the experimentally determined dark
current-voltage curve (open squares) and the fit by the three
models. As expected, models based on Auger recombination
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FIG. 4. (Color online) Comparison of experimental and simulated
data on (a) the dark current-voltage curve, (b) the illuminated current-
voltage curve, and (c) the illuminated current at reverse bias vs the
open-circuit voltage measured at different illumination intensities.
The simulations are preformed using three models with different
assumptions for the recombination mechanism (tails, direct, Auger).
Only recombination via tail states explains the two semilogarithmic
plots (a), (c) from which the dark and light ideality factors follow.
The light J-V curve at one intensity (b) is well reproduced by all
models, so only the tail recombination model is shown to improve
clarity. Parameters for the simulations are detailed in Table I.

or direct recombination are not capable of reproducing dark
ideality factors nid > 1 and fail to reproduce the experimental
data for low voltages, where the diode behavior is visible. For
higher voltages, where the curves are dominated by the series
resistance, all models fit the experiment well.

Figure 4(b) shows the experimental dark and illuminated
J-V curve (open symbols) on a linear scale. The solid lines
represent the fit of the tail-recombination model only. Such a
good fit to the illuminated J-V curve is reproduced similarly
well by all three models, and thus only the fit from one model
is shown.

Figure 4(c) shows the illumination-dependent open-circuit
voltage from experiment and as simulated by all three models.
As a measure of the illumination intensity, the current density
at V = −2 V is plotted on the ordinate. Such a depiction allows
determining the light ideality factor nid,l, which we define here
in analogy to Eq. (8) by

nid,l = q

kT

dVoc

d ln [J (−2V )]
. (13)

The result for the light ideality factor and in the dark is
practically identical. The experimental light ideality factor
nid ≈ 1.6 is well reproduced by the simulation with SRH
recombination via tail states, while direct or Auger recom-
bination models cannot produce light or dark ideality factors
nid > 1 (see Appendix A).

V. ANALYSIS OF CHARGE-EXTRACTION
MEASUREMENTS

During dark charge-extraction measurements a voltage is
applied to a solar cell before the device is short circuited and
the current transient is measured.16 The integral of the current
transient is then the extracted charge, which consists of all
trapped and free excess charge carriers that can be extracted
before they would recombine. Charge extraction (CE) can also
be measured under illumination. In this case, the device is held
at a certain voltage, e.g., the open-circuit voltage, and the light
is switched off at the same time as the device is short circuited.

In Ref. 16, CE measurements under illumination and in the
dark are presented. The cell used for these measurements was
the same as the one used for Fig. 4. The first main conclusion
of Ref. 16 was that, both in the dark and under illumination,
the current density scales with

J ∝ nδ
av, (14)

with δ ≈ 2.6, where nav is the average carrier concentration
obtained from the CE experiment. In addition, the experiments
showed a dependence of carrier concentration versus voltage
that followed the relation

nav = n0 exp (γV ) , (15)

with γ = 9.3 V−1 under illumination and γ = 7.4 V−1 in the
dark. Of course, for self-consistency, the factors δ and γ must
be consistent with the observed light or dark ideality factor nid.
So for voltages where the J-V curve shows a diode behavior
and is not limited by series resistance effects,

d ln (J )

d ln (nav)

d ln (nav)

dV
= δγ = q

nidkT
(16)

must hold. Note that current density J and voltage V in Eq. (16)
can be interpreted either as dark current density and applied
voltage or as the saturated current density under illumination
and reverse bias and the corresponding open-circuit voltage.
For the value γ = 9.3 V−1 under illumination, δ ≈ 2.6, and
kT/q = 25.8 mV, the resulting light ideality factor is nid,l =
1.6, showing the self-consistency of this data. Any reasonable
macroscopic model describing the device physics should be
able to explain all three slopes, nid, γ , and δ.

On first sight, the values nid > 1 and δ > 2 seem to
be inconsistent (cf. Appendix C). While δ > 2 suggests,
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for example, a recombination mechanism with a functional
dependence of recombination rate on carrier concentration
similar to Auger recombination, Auger recombination or also
direct recombination between free carriers is inconsistent with
the observed dark and light ideality factors. If both nid and
δ seem to be inconsistent, it is advisable to have a closer
look at the remaining factor γ , which defines the product
of nid and δ. The dependence of carrier concentration and
voltage must therefore deviate from our expectations. In a
p-i-n device with a built-in field, the general dependence
is difficult to obtain except by numerical simulations, since
the carrier concentration is strongly position dependent. The
electron concentration, e.g., is high at the electron extracting
contact and decreases strongly toward the opposite contact
due to the built-in electric field in the device. However, this is
only true for low voltages and not for open-circuit conditions
at reasonably high light intensities. In this case, the built-in
voltage is low and the voltage drops mainly in the region close
to the contacts, where the space charge, i.e., q |n − p| is large.
However, in the largest part of the absorber, n ≈ p and the
carrier concentrations will only weakly depend on position.
Thus, our first expectation would be that both electron and
hole concentrations are proportional to exp(qV/2kT). At room
temperature, this leads to a slope γ = 19.3 V−1, which is a
factor of 2 higher than observed.

To understand why the slope γ is reduced compared to
expectations, we carried out simulations of the average excess
carrier concentration as a function of open-circuit voltage for
a model with direct recombination and for a model with tail
recombination and trapping in tails. The parameters are the
same as used for Fig. 3 (first column in Table I), except that
the capture rate coefficients for recombination, which were
varied for Fig. 3, are kept constant at β = 1011 cm3/s for
both carrier types and that the generation rate is varied. The
average excess carrier concentrations are calculated such that
the equilibrium carrier concentration is subtracted from the
carrier concentration under illumination. In case of the model
with trapping in tail states, the trapped carriers are included in
this calculation. Thus, we assume here that most excess carriers
from tail states are extracted faster than they recombine.

Figure 5(a) shows the average carrier concentration as
a function of open-circuit voltage for both models in a
semilogarithmic plot. The main difference between both
models is that the model with tails seems to have a rel-
atively constant slope, while the slope for the model with
direct recombination is increasing toward higher open-circuit
voltages. Figure 5(b) shows the slope γ , revealing that the
direct recombination model indeed leads to a monotonously
increasing slope that converges at γ = 1/2kT ≈ 19.3 V−1,
while the tail recombination model leads to a relatively
constant slope with 6 V−1 < γ < 8 V−1. The constant increase
of the direct recombination model follows from the position
dependence of the carrier concentration, which is more
pronounced for the case without trapping. The additional
trapped charge allows the bands to bend more strongly at
the periphery of the absorber so that the carrier concentrations
are more homogenous throughout the absorber also for lower
voltages. More importantly, however, the trapped charge has
a different dependence of carrier concentration on voltage,
which mostly depends on the value of the tail slopes. For

FIG. 5. (Color online) (a) Simulated average carrier concentration
(free and trapped) as a function of voltage for a simulation with
and without tail states and (b) the corresponding derivatives γ =
d ln (nav)/dV oc. Without tails, the slope γ saturates at γ = 1/(2kT),
as expected for the case n ≈ p and both having a weak position
dependence. Due to the different voltage dependence of the trapped
charge, the slope is relatively constant for the simulation with tails
and considerably lower than without tails.

high Urbach energies EU � kT , the increase of the sum of
trapped and free carrier concentrations with voltage will be
slow, leading to a slope γ<10 V−1 as observed. The main
conclusion of our investigations up to now is that light and
dark ideality factors considerably larger than 1 are explained
only assuming SRH recombination (for instance via tail states),
while a relatively constant and slow increase of the logarithm
of carrier concentration with voltage with γ<10 V−1 requires a
considerable amount of trapped charge. Both features together
automatically lead to a current scaling with average carrier
concentration nδ

av with δ > 2. However, this should not be
misinterpreted as a recombination rate according to Eq. (9),
where n and p denote free carrier concentrations.

Figure 6 shows the CE experiments on the P3HT:PCBM
cell in the dark plotted both as (a) carrier concentration versus
voltage and as (b) current density versus carrier concentration.
The tail recombination model fits relatively well in both cases.
It should be noted that in this case one of the two plots is
redundant since a good fit of the dark J-V and either Figs. 6(a)
or 6(b) automatically implies a good fit of the other part. With
the same reasoning it becomes clear that a model with direct
or Auger recombination can only reproduce one of the two
depictions of the CE experiments well. Since it is impossible
to reproduce the carrier density versus voltage plot in Fig. 6(a)
and the current density versus carrier density plot in Fig. 6(b) at
the same time, the fit for Auger and direct recombination was
only done with the current density versus carrier density plot.
Here, the fit is relatively accurate, with Auger recombination
coming close to the expected slope.
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FIG. 6. (Color online) Comparison of experiment (symbols) and
simulation for the CE measurements in the dark. For the simulations,
again three recombination models have been used. Only the tail
recombination model is capable of reproducing the (a) voltage
dependence of the carrier concentration, while all models reproduce
the (b) carrier dependence of the dark current density well.

Figure 7 shows a similar picture for the CE experiment
under illumination. These experiments were not part of the
fitting routine because this would have led to an enormous
increase in computing time. Nevertheless, the simulations
in case of the current density versus carrier density plot
(b) fit relatively well in all cases, while the carrier density
versus open-circuit voltage plot (a) shows strong deviations
for direct and Auger recombination. Again, this is an expected
outcome since Figs. 7(a) and 7(b) are connected by the
intensity-dependent open-circuit voltage as shown in Fig. 4(c).

VI. ANALYTICAL APPROXIMATIONS
AND POLARONIC EFFECTS

Since this paper focuses on recombination at open-circuit
conditions, where the carrier concentrations are reasonably
homogenous, zero-dimensional simulations help to better
understand the relation between the observable slopes when
plotting current density, carrier concentration, and voltage
against each other and the tail slope. If the tail slope is
larger than kT, the concentration of trapped carriers scales
approximately with69

nt ∝ n
kT

EUC . (17)

Thus, for the simplified case of a totally symmetric device,
when both electron and hole concentration increase with half

FIG. 7. (Color online) Experimental vs theoretical CE data
obtained under open-circuit conditions under different illumination
levels. Similar as for the dark CE measurements (Fig. 6), the carrier
density vs voltage relation is only reproduced assuming trapped
charge and recombination via tail states, while the slope of current
density as a function of carrier density is roughly reproduced by all
three recombination models.

of the voltage or quasi-Fermi level splitting, the concentration
of trapped carriers scales with

nt ∝ exp

(
qV

2EU

)
, (18)

where EU = EUC = EUV is the tail slope of conduction- and
valence-band tail. The parameter γ is subsequently given by

γ = 1/(2EU). (19)

Thus, typical values of γ of slightly below 10 for P3HT:PCBM
indicate tail slopes of approximately EU ≈ 2kT.

If we assume that recombination takes place between free
electrons and trapped holes or the other way round, then
recombination scales with

R ∝ npt ∝ exp

(
qV

2kT

)
exp

(
qV

2EU

)

= exp

(
qV

kT

[
1

2
+ kT

2EU

])
. (20)

With the definition of the ideality factor, we arrive at63

nid =
(

1

2
+ kT

2EU

)−1

. (21)
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From the scaling of the recombination rate with carrier
concentration,

R ∝ npt = nEU/kT ntpt = n
EU/kT +1
t , (22)

we determine the analytical approximation for the slope δ =
EU/kT + 1. Thus, it becomes clear that δ > 2 as observed in
various experiments is easily explained by tail recombination
with EU > kT . For recombination via any type of deep states
(be it tail states or deep defects), we can state that, according
to Eq. (16), slopes δ > 2 can be explained by tail slopes EU >

kT nid.
All the analytical relations detailed above are only valid for

a perfectly symmetric device. If we calculate the tail slope from
the measured values of γ and nid using Eqs. (19) and (21), we
obtain different values, namely, ∼50 meV from γ = 9.3 V−1

and ∼100 meV from nid = 1.6. One possible explanation for
this discrepancy is that the tail slopes are strongly asymmetric
implying that the analytical relations do not hold anymore.
This explanation has been used for the fits (cf. Table I), but
it does not have to be the correct explanation. Other possible
explanations might be (i) a more complicated density of states
with additional deeper states that affect recombination and
increase the ideality factor but that are too deep to be extracted
during the CE experiment, or (ii) polaronic effects.

To analyze the impact of polaronic effects on the slopes
γ and nid, we combined the idea of the SRH statistics with
a rate equation according to Marcus theory. The processes
at the basis of SRH statistics are CT reactions. Consider the
electron trapping process labeled β0

n in Fig. 2. In the traditional
application of SRH statistics, this represents the capture of a
free electron by an immobile trap state. In this context the
capture rate coefficient is related to the thermal velocity of the
free charge carrier. In the context of organic semiconductors,
where charges are significantly more localized, it is more
helpful to imagine this process as the transfer of an electron
from a site with high energy to a site with a lower energy. This
sort of CT reaction is often described using rate equations
from Marcus theory.70 This does not fundamentally affect the
relevance of SRH statistics, but it does change the rates used to
describe electron capture and electron emission. In particular,
in traditional SRH the downhill processes (electron capture
and hole emission) are independent of the energy difference
between the trap level and the respective band edge, whereas
the uphill processes (electron emission and hole capture) are
decelerated by the factor exp(−�E/kT) to comply with a
detailed balance, where �E is the energetic difference between
the trap and the respective band edge. The rates in classical
SRH theory are thus basically Miller-Abrahams hopping rates.
In Marcus theory uphill and downhill processes are described
by the same equation,

β = β0√
λkT

exp

(
− [�E − λ]2

4λkT

)
, (23)

where β0 is a prefactor depending on the wave-function overlap
of the two states and λ is the reorganization energy. Note that
Eq. (23) is detailed balance compatible as well, because it can
be written as

β = β00(λ,�E2) exp

(−�E

2kT

)
, (24)

FIG. 8. (Color online) (a) Ideality factor nid and (b) slope
γ = d ln (nav)/dV as a function of tail slope EU (same for the
conduction- and valence-band tail) for normal SRH statistics (solid
line), for Marcus-type hopping rates combined with SRH statistics
(dashed lines, for two different reorganization energies λ), and for
the analytical approximations Eqs. (19) and (21) (open circles).
While the ideality factor is considerably larger at a given tail
slope for the Marcus-type hopping rates than for the normal SRH
statistics, the slope γ is roughly the same. Note that the analytical
approximations are only valid for EU > kT and give unreasonable
values for EU < kT .

i.e., the ratio of uphill to downhill rates is proportional to
exp(−�E/kT) as for the normal SRH statistics.

Figure 8 compares the normal SRH statistics with the one
with Marcus-type rates and the analytical approximations
[Eqs. (19) and (21)]. The simulations were done in zero
dimensions using symmetric parameters for electrons and
holes. Here transport is not relevant, but the zero-dimensional
simulation with normal SRH statistics fit very well to
one-dimensional drift diffusion simulations at open circuit.
Figure 8(a) compares the ideality factor as a function of
tail slope for conduction- and valence-band tails. While the
simulation with the normal SRH statistics fits very well to
the analytical approximation of van Berkel et al.63 [Eq. (21)],
the simulation with the combination of Marcus theory and
SRH statistics produces higher ideality factors. In addition, the
lower the reorganization energy λ, the higher are the ideality
factors.

Figure 8(b) shows that the voltage dependence of the carrier
concentration is hardly affected by the choice of the rates or
the value of the reorganization energy. For typical tail slopes
of 50 meV needed to explain the voltage dependence of carrier
concentration (γ ), the experimentally observed ideality factor
of 1.6 is reached for reorganization energies ∼0.4 eV.

Thus, there are several possible explanations for the ex-
perimental observations that all share some common features:
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(i) There have to be states below the interfacial band gap
which affect transport and recombination. (ii) SRH statistics
can be used to calculate the recombination rates, which implies
that recombination takes place between a more mobile carrier
and trapped carriers. However, current-voltage curves and CE
measurements alone are not sufficient to exactly determine
the density of states. Thus, other methods for a more detailed
determination of the subgap density of states are necessary.

VII. ALTERNATIVE INTERPRETATIONS OF nid > 1

The reasoning of this article is based heavily on the
explanation of the dark and light ideality factor of the
P3HT:PCBM solar cell under investigation with SRH re-
combination. This conclusion could be questioned if there
are alternative, plausible explanations for the larger-than-1
ideality factor. One explanation that has been suggested for
higher ideality factors71,72 in disordered semiconductors is the
Einstein relation,

Dn,p = μn,pkT /q, (25)

which does not hold anymore, when the Fermi energy Ef

comes close to the peak of the energy-dependent charge
concentration. In the case of a Gaussian density of states or
exponential band tails, a large amount of charge may be well
below the peak of the Gaussian density of states or below the
band gap in the case of the exponential tails. In these cases
Eq. (25) has to be replaced by a generalized Einstein relation
that reads (e.g., for electrons)73

Dn = μn
n

q dn
dEf

= μn
1

q d ln n
dEf

. (26)

Reference 71 describes the calculation of d ln n/dEf

or d ln n/dV for a Gaussian density of states and for
exponential bands. As in the case of SRH recombination,
the ideality factor increases above unity in case the electron
concentration does not increase as in a perfect (not disordered
or degenerate) crystal with n ∝ exp(qV /kT ) (for n � p) or
n ∝ exp(qV /2kT ) for n = p. So as illustrated in more detail
in Appendix B, both SRH recombination and the approach
described in Ref. 71 result in ideality factors above 1, since in
both cases the concentration of either electrons or holes scales
with voltage in a different way as a nondegenerate carrier
population in a band would do. The differences of both models
are then rather minor and deal with the question of how to
treat the thermalization of carriers below the band gap. While
Ref. 71 assumes the same Fermi level for all states, the SRH
theory includes the calculation for the occupation of tail states,
which leads to an occupation function having a mathematical
form that is similar to a Fermi-Dirac distribution with two
quasi-Fermi levels for electrons in the conduction-band tail
and two Fermi levels for holes in the valence-band tail.74

VIII. LIMITATIONS OF THE MODEL AND DIRECTIONS
FOR FURTHER WORK

Since all simulations were carried out with a commercial
solar-cell simulator (ASA), the model is restricted to the options
available in this software. Thus, there are a number of effects
that are not taken into account and simplifications that have

to be made. The shape of the density of states for the trapped
charge is assumed to decay exponentially into the band gap.
Drift-diffusion simulations with Gaussian band tails cannot be
made with ASA.

In addition, the model is completely one dimensional and
does not explicitly take the morphology of the device into
account. A particular problem is that trapping of carriers
may happen everywhere in the device, while recombination
only takes place at the donor-acceptor heterointerfaces. This
can be taken into account by choosing different capture rate
coefficients for trapping and for recombination.

The model distinguishes between free and trapped carriers,
where the free ones have a constant band mobility and the
trapped carriers are completely immobile. Thus, the effective
mobility depends implicitly on the ratio of free to trapped
carriers. The assumption of an abrupt mobility edge is certainly
wrong for any disordered solar cell. However, in the case
of amorphous silicon it does not affect the result since the
transport of the mobile carriers is much more efficient than the
transport of the carriers close to the Fermi level. For organic
solar cells this difference might not be large enough, and the
effect of a nonabrupt mobility edge might have to be included
in future work.

Although the model can reproduce ideality factors 1 <

nid < 2, any larger ideality factors that are sometimes observed
cannot be explained directly. One possible explanation of
this behavior is the recombination of two carriers that are
both trapped. In this case the concentrations of both partners
involved in recombination have a voltage dependence that is
not described by Boltzmann approximations. Such tail-to-tail
or tail-to-defect recombination is not taken into account in
ASA, assuming that recombination involving one free carrier
should be dominant because the free carrier will more easily
find a trapped one for recombination. For p-i-n type solar cells
with ideality factors nid > 2 this assumption is possibly wrong,
which means that tail-to-tail recombination should be included
in drift-diffusion models.

Another shortcoming of the present interpretation of the
CE data is the assumption that all charge in the tails is
collected. To investigate this assumption further, it would be
necessary to develop experimental methods to determine the
energy-dependent lifetime of the carriers in the tails in order to
calculate a demarcation energy that separates collected from
uncollected carriers.

IX. CONCLUSIONS

The disordered nature of organic solar cells requires a more
complex approach to model recombination in these devices
than would be necessary for crystalline semiconductors. Here,
we find that a recombination model typically used for thin-
film silicon solar cells is sufficient to reproduce the voltage
dependence of carrier concentration and recombination current
in a P3HT:PCBM solar cell. The main feature of the model
is the inclusion of SRH recombination via a distribution of
states in the band gap. Effectively, the recombination no longer
takes place between two free carriers whose concentrations
are determined by Boltzmann approximations, but instead, the
recombination takes place between free electrons and trapped
holes or vice versa. The concentration of trapped electrons or
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holes is then no longer determined by Boltzmann statistics but
instead by SRH statistics, and has a distinctly different voltage
dependence than expected for free carriers. This voltage
dependence of carrier concentration is the key to explain both
the charge extraction measurements and the observed ideality
factors above unity. In particular, the inclusion of disorder
provides a simple explanation why recombination increases
with more than the square of the carrier concentration while the
ideality factor is above unity at the same time. These two results
are contradictory in the absence of disorder. Future work
needs to address the detailed experimental determination of the
unknown parameters describing trapping and recombination
in subband-gap states and especially of the density of states
below the interfacial band gap.
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APPENDIX A: IDEALITY FACTOR IN CASE OF DIRECT
AND AUGER RECOMBINATION

In the following, we will show analytically why the ideality
factor for direct recombination is always 1 and for Auger
recombination 2/3 < nid < 1. The ideality factor is always
determined from the dark J-V curve in the voltage range
where low mobility and series resistance effects have no effect
on the dark J-V curve, or from the illumination-dependent
open-circuit voltage. In the latter case it is not important
whether mobilities and external series resistances are high
or low, since there is no current flowing (except for the
surface recombination current75–77). Thus, in order to derive
the ideality factor, we can assume that the quasi-Fermi levels
are flat, because we restrict ourselves to low voltages or open-
circuit situations. Direct recombination is the recombination
of free electrons and free holes in the definition of “free” used
in the paper, which is that the concentration of free electrons
and holes is calculated with the Boltzmann approximation,
meaning that np ∼ exp(qV/kT). For direct recombination, the
recombination current density is then

J = q

∫ d

0
k

(
np − n2

i

)
dx = qkn2

i d

[
exp

(
qV

kT

)
− 1

]
.

(A1)

Thus, the ideality factor is 1, i.e., J scales with exp(qV/kT),
because both the electron and hole concentration scale with
voltage according to Boltzmann statistics.

In the case of Auger recombination, we distinguish between
the case where one of the carrier concentrations is much larger

than the other, and the case where they are roughly identical.
For n � p, e.g., the recombination current density is

J = q

∫ d

0
C(n2p + p2n) dx ≈ qCn2

i nd

[
exp

(
qV

kT

)
− 1

]
.

(A2)

Usually, the voltage dependence of the majority-carrier con-
centration (here n) is small, so the ideality factor will be
nid � 1. For the case n ≈ p, the Auger recombination current
density is

J = q

∫ d

0
2Cn3 dx ≈ q2Cn2

i d

[
exp

(
3qV

2kT

)
− 1

]
, (A3)

leading to an ideality factor nid = 2/3. The case described
by Eq. (A2) corresponds to a typical dark J-V curve, while
the latter case better explains the behavior under open-circuit
conditions.

APPENDIX B: IDEALITY FACTOR FOR SRH
RECOMBINATION EXPLAINED AS DUE TO THE

DIFFERENT VOLTAGE DEPENDENCE OF TRAPPED
CARRIER CONCENTRATIONS AS OPPOSED TO FREE

CARRIER CONCENTRATIONS

To illustrate the fact that the ideality factor for SRH
recombination is solely due to the voltage dependence of
carrier concentrations involved in recombination, let us con-
sider the simple example of a semiconductor with free carrier
concentrations n and p that follow Boltzmann statistics. The
semiconductor has a single trap sufficiently deep in the band
gap that emission processes can be neglected. Then the electron
recombination rate is

R = βnnNt(1 − f ), (B1)

where 1 − f is the probability that the defect with concen-
tration Nt is occupied by a hole and βn is the capture rate
coefficient for electrons. So the concentration pt of holes on
the defect level would be pt = Nt (1 − f ). Thus, the SRH
recombination rate R = βnnpt looks practically the same as a
direct recombination rate, with the only difference being that
the hole concentration pt involved in the recombination pro-
cess is not a concentration of holes in a band where Boltzmann
approximations are valid, but instead it is the concentration of
holes in a localized state. This concentration depends on the
concentration in the bands via 1 − f = pβp/(nβn + pβp).78

Thus, we obtain the typical SRH recombination rate,

R = βnβpNt
np

nβn + pβp
. (B2)

For n ≈ p as in the middle of p-i-n junction solar cells
or in the space-charge region79 of p-n junction solar cells,
the recombination rate R ∝ n ∝ exp (qV /2kT ), leading to
the typical ideality factor of 2. Here we assumed that np ∝
exp (qV /kT ), i.e., that the Boltzmann approximation and the
effective density of states approach are both appropriate for
the carriers in the bands. The ideality factor of 2 arises only
from the fact that the hole concentration on the defect does
not scale with voltage the same way as the carriers in the
bands do.
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APPENDIX C: MONOMOLECULAR VERSUS
BIMOLECULAR RECOMBINATION

Recent publications55,80 on recombination in organic bulk
heterojunction solar cells discussed the question whether
the dominant recombination mechanism is bimolecular or
monomolecular. If monomolecular and bimolecular are de-
fined in terms of how the recombination rate scales with
carrier concentration (monomolecular: R ∝ n1; bimolecular:
R ∝ n2), then results from CE hint at recombination rates
R ∝ nδ with δ > 2, i.e., bimolecular or higher order. In
contrast, ideality factors nid > 1 on first sight hint at a
bimolecular or lower order. An ideality factor nid = 2, e.g.,
is (in the Boltzmann approximation) consistent with R ∝√

np ∝ exp (qV /2kT ), i.e., monomolecular recombination.
This apparent discrepancy is resolved when you take into
account that the carrier concentration scales with voltage not
according to the Boltzmann approximation but much slower
depending on the slope of the tail states. Then it is possible that

the recombination rate R ∝ exp (qV /2kT ) and at the same
time R ∝ nδ holds with δ > 2. The question, whether such
recombination via tail states is monomolecular or bimolecular,
is then purely a matter of definition of these two terms.
Thus, any future discussion on nongeminate recombination
using the terms bimolecular and monomolecular will benefit
from a proper definition of these terms that takes both the
proportionality of recombination rate and measured charge
density as well as the ideality factor into account.

Note that in some publications46,81,82 the terms bimolecular
and monomolecular are defined in a mechanistic sense and
do not define a rate order. In this case, bimolecular means
that an electron on one molecule recombines with a hole on
another molecule, which makes bimolecular recombination a
synonym for nongeminate recombination. Monomolecular is
then used as a synonym for geminate recombination. Within
this terminology, all recombination discussed in this paper is
bimolecular.
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