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Abstract

In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity
of particle transport in a competitive molecular environment. These key parameters are the concentration of particles,
solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are
explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at
the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain
maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives
the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to
competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel
affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species
increases if its in-channel binding enhances the species’ translocation probablity when compared to that of the other
species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent
experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a
paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the
cost of the transport of inert molecules.
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Introduction

Understanding of molecular or particle transport through

channels and pores is of paramount interest in many field, ranging

from nanotechnology to life sciences [1–5]. In addition, such

channel transport also serves as a paradigm for general linear

transport processes like enzymatic catalysis with a 1-D reaction

coordinate [6]. Optimal function of a channel in either a technical

or biological setting often requires a high transport rate, which

demands an adjustment of particle-channel- and interparticle

interaction as well as particle concentration in the baths adjacent

to the channel ends. The flow-facilitating role of a in-channel

particle trapping, either by a binding site or an entropy trap, which

prolongs the residence time and by this the translocation

probability, has been recognized early [7–9]. When particles

interact, however, this trapping hampers flow as it impedes access

of other particles from the baths to the channel. This implies the

existence of an optimum binding strength providing maximum

flow [5,10,11], which depends on particle concentration, width

and location, e.g. asymmetry, of the binding site [5,12].

Despite of this previous work, many issues remain to be solved.

How are the particle in-channel and interparticle interaction

related to the occupation probability, i.e. a parameter observable

in experiments? What is the exact mechanism responsible for an

asymmetric binding site to favor transport selectively when located

near the exit the flow is directed to? In which way is the optimum

binding strength related to exchange dynamics at the channel

ends? May also repulsive particle-channel interaction be favorable

for transport? Which parameters determine the transition from a

flow-facilitating binding site to a flow-facilitating repulsive

interaction, and what is the mechanism behind? In a typical

environment particles also compete with particles of other species

for channel transport, each of them having their individual

characteristics as in-channel affinity. The question arises how

interspecies competition affects flow and how selectivity may be

achieved e.g. by appropriate choice of in-channel interactions.

In this paper we will derive particle flow as a function of

exchange dynamics and energetics at the channel ends, in-channel

affinity, and interparticle interactions for single- and multi-species

transport. The theory relates in-channel interaction directly to

occupation probabilities of channel states, i.e. parameters

accessible by experiments. A simple relation between exchange

dynamics at the channel ends and particle concentration predicts

whether a binding site or a repulsive force inside the channel

facilitates transport. For the case that different species, each of

them having its specific interaction profile, compete for channel

transport, we analyze the influence of these interactions on flow of

each species. Results are compared with recent experimental data

[4] on transport through nuclear pores. Our model explains

qualitatively and quantitatively the efficiency and selectivity of this
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transport process, which is of supreme importance e.g. for

regulation of genomic activity.

Methods

The model
We consider particle transport through a channel connecting

two baths, labeled as (A) and (B), with respective particle

concentrations cA and cB. Particle motion in the channel is

described as a 1-D diffusion process, and the dynamics of particle

density r x,tð Þ is given by the Smoluchowski Equation [13,14],

Ltr(x,t)~LxD(x) Lx{F (x)½ �r(x,t) , ð1Þ

where x is the channel coordinate, giving the position of the

molecule related to the channel, 0ƒxƒL, and D(x) is the local

diffusion coefficient, which is assumed to be constant, D(x):D.

Particle-channel interaction is quantified by the force F (x) that

can always be derived from a potential in the 1-D case,

F (x)~{LxW(x). All energetic quantities are given in multiples

of kBT , with kB the Boltzmann constant.

The exchange rates of particles, entering or leaving either

channel end are k
(i)
z and k(i)

{, i~A, B (Fig. 1). So the full transport

process is described by the reaction-diffusion schematic

bath A 0 L bath B: ð2Þ

The free energy levels of the baths are assumed to be equivalent,

which makes flow vanish for equal concentrations cA~cB. With

gi~{ln(k
(i)
z

.
k(i)

{) ð3Þ

as the standard free energy of the reaction at the channel end i,

this condition is fulfilled when W(0)~W(L) and gA~gB~g. The

more general condition for equivalent free energy levels of the

baths, {gAzW(0)~{gBzW(L), may always be transformed to

the latter by appropriate gauging of g and W (see Appendix S1).

Note that the rates kz and k{ in Eq. 3 describe particle exchange

between a three-dimensional space (bath) and one-dimensional

space (channel) with corresponding 3D and 1D particle concen-

trations c and r respectively. This is accomplished by assuming

that the 3D particle concentrations at the channel entrances x~0
and x~L are practically constant perpendicularly to the channel

(x) axis, i.e. r(x~0)~Ar3D(x~0,y,z), with A as the area of the

channel opening. Hence, the equilibrium constant kz=k{, and

consequently exp({g), have units of an area, which we assume to

be normalized by the channel opening area A.

Results

Interacting Particles of one Species
As a simple form of particle-particle-interaction it is assumed

that a particle within the channel blocks access of particles from

outside, a situation which is realistic especially for transport of

large long molecules. Since this ansatz depends on a reduction of

state space rather than on the neglect of correlations, we do not

consider it a mean field type approximation. Now particles require

an empty channel to enter some end, implying that the rate of

particles entering the channel from the bath i is not simply k
(i)
zci,

as it would be for non-interacting particles. Instead when we

consider an ensemble of channels, particle transitions occur only in

the fraction of empty channels. So when P0 denotes the steady

state probability that a channel is empty, we obtain that the

ensemble averaged transitions per unit time from the bath to the

channel end i is P0 k
(i)
zci. In the steady state particle density

becomes stationary r(x,t)?rs(x) and flow J is constant

throughout, i.e. reactive fluxes at the channel end and diffusive

flow are equivalent,

P0 k
(A)
z cA{k(A)

{ rs(0)

{D½Lx{F (x)� rs(x)

k(B)
{ rs(L){P0 k

(B)
z cB

9>=
>;:J: ð4Þ

To solve the above equations it is useful to study first particle

transport in the absence of particle-particle interaction, which is

realized by setting P0~1. Here flow J0 is derived as a macroscopic

Fick’s diffusion law (see Appendix S2 and Refs. [5,9]),

J0~
n

t
(cA{cB)

~
D

L

cA{cB

SegzW(x){W(0)Tz D
L

1

k
(A)
z

z 1

k
(B)
z

 ! , ð5Þ

where

n~L=2 Se{g{(W(x){W(0))T ð6Þ

is the symmetrized specific particle number, which is a norma-

lized measure of the number of particles occupying the channel,

and t is the symmetrized first passage time, (see Appendix

S2, Eqs. (S2-6)). The brackets denote the spatial average

S T~L{1

ðL

0

dx. Flow J0 and its corresponding diffusive

Figure 1. Free energy profile of a channel of length L with
reactive ends. The particle in-channel interaction W(x) is here
repulsive, with a barrier height W0. The reaction rates kz, k{ comprise
the exchange dynamics at the channel ends, g~{ln(kz=k{) is the
standard free energy of this reaction process.
doi:10.1371/journal.pone.0015160.g001
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conductivity, n=t, are directly related to the translocation

probability (see Appendix S2), i.e. the conditional probability that

a particle starting at one end of the channel is absorbed by the

bath located oppositely

p
0?B

~
n

t

1

k
(A)
z

, p
L?A

~
n

t

1

k
(B)
z

: ð7Þ

It is important to stress that flow J0, and hence translocation

probabilities, increase with binding strength, and that they are

invariant under permutations of the potential values W(x), since

they solely depend on the mean value of exp +W(x)½ �. In

particular any asymmetry of particle in-channel interactions is

not reflected in flow, as long as particles are non-interacting.

The Eqs. (4) imply that switching from non-interacting to interacting

particles is formally accomplished by replacing concentrations by

their probability weighted values (cA, cB)?(P0cA, P0cB) i.e. steady

state flow derives formally as

J~P0 J0: ð8Þ

For the determination of P0, one applies conservation of

probability,

P0z

ðL

0

dx rs(x)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
~probability for occupied channel~P1

~1 : ð9Þ

which gives (see Appendix S2)

P0~
1

1zn (cAzcB)zDn (cA{cB)
, ð10Þ

where Dn is the asymmetric counterpart of n, (see Appendix S2,

Eqs. (S2-7)), i.e. it is a normalized measure of asymmetric

occupation capacity which vanishes for symmetric interactions.

Equation (8) relates flow of interacting particles to flow of non-

interacting ones, weighted by the probability P0 to find an empty

channel. For low concentrations particle-particle interactions become

negligible. This is reflected by P0 approaching unity (P0?1), and

flow approaching that of non-interacting particles J?J0. Since J0 is

invariant under permutations of the potential W(x) and interchange

of exchange rates k
(A)
{,z'k

(B)
{,z, the Eqs. (8, 10) make clear that any

asymmetry of flow is related purely to the asymmetry of channel

blocking, i.e. to the asymmetry in the probability to find an

open channel P0. When asymmetry of flow is quantified by the

difference of unidirectional flows at the same concentration

c, DJ~ JA?Bj j{ JB?Aj j~ J cA~c, cB~0ð Þj j{ J cA~0, cB~cð Þj j,
one obtains

DJ~DP0 J0 :, ð11Þ

with DP0 given in Eq. (S2-32) in Appendix S2. Asymmetry of flow

depends either on asymmetry of the potential W(x), or on the

difference between the exchange rates at the channel ends. We

first discuss the case of equivalent exchange dynamics at both

channel ends. Then a binding site located near that bath to which

the flow is directed implies a higher probability to find the channel

open than a binding site at the bath located oppositely, see also

Appendix S2. Consequently, a binding site located in trans

position of the concentration gradient implies a higher flow than in

cis position. Next we consider that the potential W(x) is symmetric,

but the exchange rates at the channel ends differ. In this situation

flow is lower when directed to the channel end with the lower exit

rate, than in reverse direction. This is not a trivial observation!

One might argue that identical free energies g at the channel ends

imply that a lower exit rate is accompanied by a lower access rate

as well. Therefore, reversing the concentration gradient should not

alter flow. However, it turns out that the lower exit rate implies a

higher occupation probability of the channel, which impedes flow.

Asymmetry of the potential and of the exit rates may work

synergistically, whenbinding site and low exit rate are located at

opposite channel ends, or competitive, when both located at the

same end.

Experimental Determination of Parameters. According

to Eqs. (5,8,10) unidirectional flow as a function of concentration

exhibits a saturation kinetics, equivalent to that obtained from the

Langmuir or Michaelis-Menten Equation, in molecular adsorption

or enzymatic kinetics, respectively. For facilitated carrier transport

this kinetics has been suggested by Noble [15]. For channel

transport it was observed in experiments on DNA transport

through nanotubes [16]. The Langmuir or Michaelis-Menten

constant, i.e. the concentration for which flow takes half the value

of its saturation value, is

Km~(n+Dn){1 , ð12Þ

for unidirectional flow A?B, and B?A, respectively. So

kinetic experiments should provide the symmetrized and anti-

symmetrized specific particle numbers n, Dn respectively. With

channel length L, the free energy of particle channel interaction,

F~{lnSexp½{g{(W(x){W(0))�T, is then obtained from

Eq. (6).

Alternatively, these parameters derive with Eq. (10) from ratios

of occupation probabilities, obtained for unidirectional transport

at identical concentrations

P1

P0

� �
A?B

z
P1

P0

� �
B?A

~2cn

~Lc Se{g{(W(x){W(0))T

ð13Þ

P1

P0

� �
A?B

{
P1

P0

� �
B?A

~2c Dn: ð14Þ

The last equations have a strong impact: Ratios of occupation

probabilities are equivalent to ratios of corresponding lifetimes of

channel states (see Appendix S2). The latter may be obtained

experimentally by conductance measurements. From a more

theoretical point of view it is of interest that symmetrized ratios of

occupation probabilities, determined in the steady state, i.e. under

non-equilibrium conditions, are equivalent to the Boltzmann

factor corresponding to the free energy of the particle channel

interaction, which, as well known, is equivalent with the ratio of

the equilibrium occupation probabilities.

Optimal Transport. To determine the in-channel inter-

action for maximum transport we restrict ourselves to interactions

Thermodynamics of Competitive Channel Transport
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corresponding either to wells or barriers and do not consider

potentials oscillating around zero. The probability P0 to find an

empty channel increases monotonically with increasing W(x), from

zero for strong binding, blocking all channels, and approaches

asymptotically some value below unity. Concomitantly, J0

decreases from some value below the finite upper threshold

determined by W(x):{? in Eq. (5), and reaches zero for

infinitely high barriers. So, flow for interacting particles, J~J0P0,

vanishes for strong binding as well as for high barriers, which

implies the existence of some maximum at an intermediate

interaction W(x)max.

The Eqs. (5,10) imply that J0, P0, and, hence, J remain

invariant under renormalization of the interaction W(x)?
g{ln(c)zW(x). This property has interesting consequences for

the value of W(x)max. With increasing activity e{g c, W(x)max must

increase to compensate for channel blocking and may become

repulsive (positive) above some threshold, see (Figs. 2, 3). The

value of W(x)max further depends on the exchange dynamics at the

channel ends, i.e. on particle mobility and energetic or entropic

barriers in this region (Fig. 1).

To analyze this in more detail we next study the variation of

flow, dJs, at the transition from attractive to repulsive in-channel

interaction, W(x):0, for a small positive variation of in-channel

interaction dW(x)§0. A negative dJ implies the existence of

maximum of flow at an attractive interaction, Wmaxv0. Vice

versa, a positive dJ implies some maximum for a repulsive

interaction, Wmaxw0. Since P0 is independent of the exchange

dynamics, dJ~d(J0P0), is influenced by it only via J0, Eq. (5). For

sufficiently slow dynamics, i.e. when k{ is very small, exchange at

the channel ends becomes the time limiting step. In that case J0

scales at W(x):0 with k{, and its variation dJ0 with k2
{, i.e. the

latter becomes negligibly small. So the variation of J fulfills

½dJ�W(x):0~½ dJ0|{z}
*k2

{&0

P0z J0|{z}
*k{

dP0|{z}
w0

�W(x):0

& J0 dP0½ �W(x):0w0 ,for dW(x)w0,

ð15Þ

where we exploited the monotony of the function P0½W(x)�. Hence, in

the limit of slow exchange dynamics at the channel ends the switching

on of a small repulsive interaction, dW(x)w0, leads to an increase in

flow, an effect that is somewhat counterintuitive at first. However, the

reason for that effect is that the channel blocking is reduced to such an

extent (dP0w0) that it dominates the flow impeding effect of the

repulsive interaction on translocation probability *dJ0.

Explicit evaluation of the variation, Eq. (15), by its functional

derivative then provides the relation between channel end activity

and exchange dynamics determining the value of Wmax,

ce{g D

k{

~(Lce{g)2 1

2

te

t0

v1 [ Wmaxv0

~1 [ Wmax~0

w1 [ Wmaxw0

8><
>: : ð16Þ

Here we introduced the mean time the channel stays empty te,

related to the time scale of mobility within the channel, as given by the

mean first passage time t0 of a particle freely diffusing a distance L,

te~1=(kzc), t0~L2=(2D) : ð17Þ

The relation determining the exit rates at which the optimal

potential switches from attractive to repulsive, resulting from Eq.

(16), is given by

te,cross~
2t0

(Lce{g)2
, ð18Þ

Figure 2. Flow through a channel with symmetric rectangular
shaped potential (relative width w~1=2, depth or height W0,
normalized by flow at vanishing interaction. Different chemical
activities and exchange dynamics at channel ends are studied
(c e{g, te=t0~(kz c){1=(L2=2D). Maximum of flow shifts toward
weaker binding strength, and may even appear at repulsive interactions
(Wmaxw0), when chemical activity increases (red lines), or exchange
dynamics slows down (blue lines).
doi:10.1371/journal.pone.0015160.g002

Figure 3. Channel-particle interaction at maximum flow W0,max,
as a function of the activity c e-g , and exchange dynamics te

(insert). Other parameters are as in Fig. 2.
doi:10.1371/journal.pone.0015160.g003
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with tewte,cross leading to a repulsive optimal barrier, Wmaxw0.

As a paradigm we study a symmetric rectangular shaped

potential W(x) of relative width w,

W(x)~
W0, L=2(1{w)ƒxƒL=2(1zw)

0, else

�
, ð19Þ

which acts as a well, for W0v0, or barrier when W0w0. The

interaction determining maximum transport is obtained from the

condition J ’(W0,max)~0 for 0vwƒ1 as

W0,max~
1

2
ln 1{

1{(Lce{g)2 te=2t0

1zLce{g(1{w)=2

 !
, ð20Þ

with corresponding maximum flow

Jmax~
t{1

0

wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lce{g te

t0
z1{w

� �
2

Lce{g
z1{w

� �s !2
: ð21Þ

Increasing activity of particles c e{g, or slowing down exchange

dynamics at channel ends shift W0,max toward weaker binding

(Figs. 2, 3). One can easily verify that the threshold determining

the transition from attractive to repulsive optimal interactions in

the rectangular well in Eq. (20) is given by the general results of the

variational approach, Eqs. (16,18).

Competition of Different Species: Comparison with
Experimental Results in Nuclear Pore Transport

In this section we consider different species of molecules, labeled

by the superscript i, with concentrations c
(i)
A , c

(i)
B in respective

baths, which compete against each other for channel transport

(Fig. 4). Each of the species may have its specific channel affinity.

We assume the intra- and interspecies interaction of molecules as

above, i.e. a channel occupied by one molecule blocks channel

access of any other molecule. This implies that steady state flow

J (i) at the channel ends is proportional to the probability P0 to find

the channel non-occupied as given by Eqs. (4). However, the

probability P0 now depends on the concentration and on the

binding properties of all species. Based on the conservation of

probability one derives for m different species, similarly to Eq. (10)

(see Appendix S2, Eq. (S2-20))

P0~
1

1z
Pm

i~1 n(i) (c
(i)
A zc

(i)
B )zDn(i) (c

(i)
A {c

(i)
B )

h i : ð22Þ

Flow of the i-th species is the product of the probability P0 times

the flow in the absence of any intra- and interspecies interaction of

molecules J
(i)
0 , i.e.

J (i)~P0 J
(i)
0 , with J

(i)
0 ~

n(i)

t(i)
(c

(i)
A {c

(i)
B ) : ð23Þ

Equation (22) states that all species contribute to the reduction

of probability to find an empty channel proportional to their in-

channel affinity and concentration. This effect uniformly hampers

flow in all species, see Eq. (23). Selectivity results solely from the

effects on the translocation probability of the particular species,

which is proportional to n(i)=t(i), see Eq. (7). This implies that the

ratio of flows of two species i, j is independent of interspecies

interactions, since P0 cancels,

J(i)=J (j)~J
(i)
0 =J

(j)
0 ~

n(i)=t(i)

n(j)=t(j)

c
(i)
A {c

(i)
B

c
(j)
A {c

(j)
B

: ð24Þ

Note that this ratio also does not depend on permutations of the

respective interactions.

We assume in the following that the species are similar in their

exchange dynamics at channel ends (kz, k{), and in their

diffusion properties (D). The conductivity of unidirectional

transport, J=c, of a binding species j always exceeds transport of

a non-binding species i, since (see Eq. (5))

J (j)(W(j)
v0)=c(j)

J(i)(W(i):0)=c(i)
~

1z D
L

1

k
(A)
{

z 1

k
(B)
{

� �
SeW

(j)(x)Tz D
L

1

k
(A)
{

z 1

k
(B)
{

� �w1 : ð25Þ

Note that we gauged for simplicity the interaction at the channel

ends to zero, i.e. W(0)(i)~W(L)(i)~0 for all species. This is not a

restriction, as finite variations of the interaction at singular points

do not affect the diffusive process.

Increasing the binding strength of a particular species j, i.e.

W(j):W(j)
0 ?W(j)

vW(j)
0 , implies that the probability to find the

channel empty decreases. This has the effect that flow of all other

species i=j decreases proportionally as

Figure 4. Two species competing for transport through
channels. One has the capability of in-channel binding (green-red
binding sites), the other is inert. The binding species dominates in-
channel sojourn, and by this increases translocation probabilit. Hence,
transport of the binding species is increased on the cost of the inert
species, the channel access of which is hampered.
doi:10.1371/journal.pone.0015160.g004
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J (i)(W(j)
vW(j)

0 )

J (i)(W(j):W
(j)
0 )

~
P0(W(j)

vW(j)
0 )

P0(W(j):W
(j)
0 )

v1 , ð26Þ

see also Fig. 4. The flow ratio of the species with increased binding,

j, behaves more complicatedly. It changes to

J (j)(W(j)
vW(j)

0 )

J (j)(W(j):W(j)
0 )

~
P0(W(j)

vW
(j)
0 )

P0(W(j):W(j)
0 )

n(j)

t(j)

� �
W(j)

vW
(j)
0

n(j)

t(j)

� �
W(j):W

(j)
0

~
P0(W(j)

vW
(j)
0 )

P0(W(j):W(j)
0 )|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v1

|

1z
Se

W
(j)
0

(x)
{eW

(j)(x)T

SeW
(j)(x)Tz

D

L

1

k(A)
{

z
1

k(B)
{

� �
0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
w1

:

ð27Þ

As was the case for single species transport, the increase of binding

strength has different effects on the occupation probability and on

the translocation probability, *n(j)=t(j). While the occupation

probability decreases, the translocation probability increases.

Following the same arguments as for single species transport,

varying the binding strength from infinitely high values to

infinitely low values (corresponding to completely repulsive

interaction), lets the flow vary from zero through some maximum

value to zero again. Figure 5 illustrates this behavior.

To summarize, the flow of a species decreases monotonically with

increasing binding strength of its competitor. If the binding strength for

maximal flow of this competitor is sufficiently strong, i.e. W(j)
maxvW(j)

0 ,

then the flow of the latter increases. In this case facilitated transport of

the binding species on cost of the other species is possible.

To analyze selectivity more closely, we investigate unidirectional

flow of two species of same particle concentration and initially the

same symmetric particle channel interaction ½W(1)(x)~W(2)(x)� initial

and reduce the binding strength of the second one, i.e. W(2) increases

(Fig. 6). With the free energy of particle in-channel interaction,

F (i)~{ln½Sexp({g{W(i)(x))T�~{ln½(2=L) n(i)�, i~1,2, see

Eq. (6), this implies DF~F (2){F (1)
w0, and n(2)

vn(1). So, one

obtains for the flow of the species, when normalized to flow for

initially equivalent interaction, DF~0 (see Eqs. (22–23)),

J (1)(DF)

J (1)(DF~0)
~

1zn(1)c(1)z n(1)c(2)
zfflfflffl}|fflfflffl{as ½n(2)~n(1)�initial

1zn(1)c(1)zn(2)c(2)

w1, and

J (2)(DF )

J(2)(0)
~

n(2)=t(2)

n(1)=t(1)

J(1)(DF )

J(1)(0)
:

ð28Þ

Weakening the binding strength of the second species reduces the

probability that the channel is blocked, and by this, facilitates

transport of the first.

The effect on the second species is more complex. A reduction of

its binding strength reduces its translocation probability, *n(2)=t(2),

see Eq. (5,7). However the flow hampering effect of blocking is

reduced as well. Following the same arguments as in the previous

section there exists a maximum of J(2)(F (1)~const, F (2)) at some

value F (2)
max, when F (2)½W(2)(x)� is varied from infinitely high to low

(repulsive) binding strengths. Hence, the behavior of the flow

Figure 5. Unidirectional flows of two competing species, transparent blue, label (1), and yellow, label(2), as a function of respective
particle-channel interactions W(1) xð Þ and W(2)(x). Flows are normalized to that in the absence of particle-channel interactions. A symmetric
rectangular shaped potential with relative width w~0:9, and potential height/depth W0 is assumed. The activities of species were chosen as
½Lc(1)e{g�=½Lc(2)e{g�~c(1)=c(2)~0:01=0:09, i.e. a 1:9 mixture. A very fast access is considered, te=t0~0.
doi:10.1371/journal.pone.0015160.g005
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J (2)(F (1)~const,F (2)) for increasing values of F (2) depends on the

location of F (2)
max. Flow of the second species decreases with

decreasing binding strength when F (2)
maxvF (1), see the left panel of

Fig. 6, i.e. small variations of the binding strength have a strong

effect on selectivity. Vice versa, when F (2)
maxwF (1), a decreasing

binding strength makes flow first run through some maximum,

before it decreases (right panel Fig. 6). Hence, larger variations of

binding strength are necessary to achieve selectivity. The first

scenario,in which small variations of binding strength of the second

species resulted in transport selectivity, demands that maximal flow

of this species occurs at a sufficient strong binding strength, so that

F (2)
maxvF (1). This condition is best fulfilled when the width of the

binding region is large, and channel-solvent access dynamics is fast,

see Eq. (20).

When we quantify selectivity as the ratio of relative flows of the

two species we get

S~
J(1)(DF )=J(1)(0)

J(2)(DF )=J(2)(0)
~

n(1)=t(1)

n(2)=t(2)

~
SeW2(x)T t0z(Lce{g)te

SeW1(x)T t0z(Lce{g)te

~
Se(gzW2(x))T (t0=te)(Lc){1z1

Se(gzW1(x))T (t0=te)(Lc){1z1

ð29Þ

i.e. it is identical to the ratio of the translocation probabilities, see

Eqs. (5–7). Figure 7 demonstrates that this selectivity increases with

the width of the binding site, as does the translocation probability

for a binding site. Selectivity works better the faster the access

dynamics is in relation to the time scale of channel crossing,

measured by the corresponding time scales te~1=(kzc) and

t0~L2=(2D), respectively. In other words, selectivity works better

the more the species differ in their binding strength, the longer the

channel is, the slower diffusion is within, and the faster the

particles enter the channel from outside.

This theory explains experimental results on selectivity and

competition in artificial nanopores mimicking the nuclear pore

complex [4]. These pores contain nucleoporins which transiently

bind to transport factors plus cargo, and by this control flow of the

latter through the nuclear envelope. The authors investigated

competitive transport of the human nuclear transport factor 2-

gluthatione S-transferase, NTF2-GST (NTF), and of bovine serum

albumin (BSA), which is similar in size and diffusion properties to

NTF. The pores were functionalized either with nucleoporins

(NSP1) or PEG-thiol, which are comparable in size and polymer

properties. However, the NTF binds solely to the NSP1 pore, but

not to the PEG-thiol one. The inert BSA binds to neither of the

functionalized pores. After replacement of the PEG-thiol by the

NTF binding NSP1 pore, BSA flux decreased, whereas that of the

competing NTF increased. This is shown in Fig. 8, where the

binding strength of the NTF is varied. An increasing binding

strength (decrease of W
(NTF)
0 ) monotonously decreases the flow of

the inert molecule (BSA), whereas that of the binding NTF runs

through some maximum. An increasing binding strength of NTF

increases its translocation probability, *(n=t)(NTF). Since ex-

change dynamics at the channel ends is sufficiently fast (see

Appendix S3), this effect of NTF binding dominates that of

reducing P0, implying the existence of some optimal binding

strength, W
(NTF)
0,max v0, at which maximum NTF flux occurs.

Conversely, the translocation probability of the inert BSA,

*(n=t)(BSA), is not affected, and BSA flow is reduced due to the

NTF-binding related decrease of P0, Eq. (26).

Our model does not only describe qualitatively the experiments,

but also provides some quantitative insights into the binding

energetics. From the data of Jovanovic-Talisman et al. one can

determine the ratio of diffusive conductivities of NTF and the inert

BSA, Eq. (25), for a pore functionalized with the nucleoporin

NSP1, i.e. (½J(NTF)=c(NTF)�=½J(BSA)=c(BSA)�)NSP1&4 (see Appendix

S3). The access of transport factors to the channel ends, and hence

exchange dynamics here, may be estimated to be very fast when

compared to transport inside the channel (see Appendix S3). This

implies that the ratio of conductivities of binding NTF

(W
(NTF)
NSP1 (x)ƒ0) and non-binding BSA (W

(BSA)
NSP1 (x):0) in Eq. (25)

simplifies to

J(NTF)=c(NTF)

J(BSA)=c(BSA)

� �
NSP1

~Sexp W
(NTF)
NSP1 (x)

� 	
T{1 &4 : ð30Þ

The observed value of approximately 50% for the reduction of

flow of the inert BSA molecule competing with NTF when

switching from the non-binding PEG-thiol pore to the NTF

binding NSP1 pore determines with Eq. (26) the ratios of

probabilities,

0:5&
J

(BSA)
NSP1

J
(BSA)
PEG{thiol|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

from experiments

~

P0 W(NTF)
NSP1

zfflfflffl}|fflfflffl{v0

, W(BSA)
NSP

zfflfflffl}|fflfflffl{:0
0
B@

1
CA

P0 W
(NTF)
PEG{thiol|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

:0

, W
(BSA)
PEG{thiol|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

:0

0
B@

1
CA

~
1zc(NTF) e{gzc(BSA) e{g

1zc(NTF) e{gSexp {W
(NTF)
NSP

� 	
Tzc(BSA) e{g

ð31Þ

Figure 6. Unidirectional flows of two competing species, labeled
(1) and (2), with symmetric rectangular shaped particle channel
interactions. The free energy of binding F~{lnSexp({g{W(x))T is
held constant for species one at F (1)~{4, whereas that of species
two is varied. Two relative widths of particle channel interaction w,
and two different mixtures of species are considered c(1)=c(2)~
0:01=0:09, ~0:05=0:05. Access of the two species was assumed to be
very fast, te=t0~0.
doi:10.1371/journal.pone.0015160.g006
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where we assumed a symmetric channel. The above equation

reveals after insertion of activities and structural data (see Appendix

S3), the free energy F of in-channel interaction of NTF is

e{F ~Sexp {W
(NTF)
NSP1

� 	
T&5, F&{1:6 |kBT : ð32Þ

The average of the Boltzmann factor and its inverse in Eqs.

(30,32), determined from experimental data, correctly reflect the

Cauchy-Schwartz inequality

SeW(x)TSe{W(x)T~1:2§SeW(x) e{W(x)T~1 : ð33Þ

This product is unity if, and only if the interaction is constant

throughout the channel, i.e. W(x):W0. Hence, a product close to

one, as it is the case above, implies that W(x) is still approximately

constant over a significant domain of the channel. In fact,

approximating particle channel interaction by a rectangular

potential (Eq. (19)), which selfconsistently reproduces the average

Boltzmann factor and its inverse (Eqs. (30,32)), provides a relative

width of w~0:92, i.e. close to unity, and a binding energy of

W0~{1:67|kBT , which is close to the free energy of in-channel

interaction.

Discussion

The model presented here allows us to analyze how interparticle

interactions, particle in-channel energetics, as well as exchange

Figure 7. Selectivity, defined as the ratio of relative flows for two species S~ J (1)(DF)



J (1)(0)
� �


J (2)(DF)



J (2)(0)
� �

, as a function of the
difference of free binding energy DF~F (1){F (2), and relative width of the rectangular potential is shown in the above panel. The
access dynamics is here assumed to be very fast te=t0~0. In the panel below DF and the ratio of time scales of access and transport dynamics,
te=t0~½1=(kzc)=½L2=2D�, are varied. The relative width was fixed to w~0:9).
doi:10.1371/journal.pone.0015160.g007
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dynamics and energetics at the interface of channel and solvent

affect particle transport. Exchange at the interface was simplified

by a two-side exchange process between solvent and channel end,

where the corresponding rates comprise the dynamics of energetic

or entropic barrier crossing. Inside the channel, diffusive particle

dynamics is subject to forces which derive from an in-channel

potential. Our model may also be extended to include entropic

forces/barriers within the channel as presented by Reguera and

Rubi [17]; however the detailed analysis would be beyond the

scope of this article.

Interparticle interaction was approximated by the assumption

that a molecule inside the channel completely blocks the access of

others, i.e. interactions of several particles within the channel

were excluded. This single occupancy condition has been

described very early in literature for discrete and continuous

models in the limit of fast solvent-channel exchange [18,19] and

is meanwhile often applied in models of channel transport [5,10–

12,20,21]. Discrete models which considered multiple occupan-

cies for single file [22–24], or non-single file transport [25–27]

were suggested in the past. However, analytical solutions for

these models require that the discrete model is restricted to very

few sites, or that the interaction force inside the channel takes a

simple form, e.g. it is constant or even vanishes. For the latter

case, which in the continuum limit corresponds to a constant

potential, the effect of interparticle interaction on flow cancels on

average for single species transport within the channel, but is

present at the channel ends [26]. As long as single-file transport is

a valid approximation, our model can be extended to include the

interaction of several particles within the channel by adapting the

condition of conserved probability in Eq. (9) for the maximum

number of particles occupying the channel.

We derived flow explicitly in terms of occupation probabilities,

free energy of particle in-channel binding and exchange dynamics.

This allowed us to determine the free energy of particle-channel

interaction, i.e. a measure of binding strength, from key

parameters of the Michaelis-Menten kinetics, Eq. (12, as well as

to determine the occupation probabilities, Eq. (14). Both quantities

are accessible by experiments.

Flow with interparticle interaction could be factorized into a

term J0 that describes only non-interacting particles, and into the

probability P0 to find a non-occupied channel. Since J0 is

proportional to the translocation probability and independent of

the actual form of the in-channel interaction W(x), the only

influence of the actual form of that interaction potential on flow is

through its effect on P0. An important application of this results is

the asymmetry of transport: When the direction of the

concentration gradient is reversed, flow is higher when the

binding site is located near the channel end of lower concentra-

tion. This result was derived in the past by us [5] and others [12]

from respective models. However, it is now clear that it this result

is related mainly to the asymmetry in the occupation probability.

We analyzed in detail the binding strength for maximal flow. In

the past, scenarios had been discussed in which attractive

interactions favored transport [5,10,12,26,28], explaining exper-

iments e.g. for DNA [1] and nuclear pore transport [4]. Here we

demonstrated that for high chemical activity of particles, or a slow

exchange dynamics at channel ends, maximal transport can occur

also for repulsive interactions. The effect of high activity c e{g was

also reported by Kolomeisky [20]. The effect of slow exchange

dynamics, which, for example, may be due to energetic or entropic

barriers a molecule has to pass at the channel entrance, is new,

and required a kinetic explanation. The flow enhancing effect of

repulsive interactions was not observed in our previous work [5],

where exchange dynamics at the channel ends was assumed to be

much faster than the first passage time to pass the channel. In that

limit only attractive interactions can optimize transport.

We could extend our model straightforwardly to describe

particles of different competing species, each having its own

specific channel affinity. Binding favors flow of one species, if its

effect on increasing the translocation probability exceeds its flow

hampering effect due to increased channel blocking.

Note that only the latter effect, increased channel-blocking,

affects the non-binding species, i.e. its flow is reduced when

compared to vanishing binding. So binding of a species may

enhance its flow on cost of the non-binding species.

We demonstrated for two species, both having initially

equivalent particle-channel interaction, that a reduction of the

binding strength of one species leads to an increased flow of the

other. Flow of the species with reduced binding strength exhibits a

more complex behavior. If the binding strength for maximal flow

of this species is lower than the initially equivalent binding

strength, flow for this species goes through a maximum before it

declines with decreasing binding, see Fig. 5. Otherwise, flow of the

species with reduced binding strength declines promptly and

continuously, which is more favorable to achieve selectivity, see

Fig. 6. This behavior of the flow was also observed in simulations

of a multi-occupancy model for two competing species in [25,27].

Interestingly, that multi-occupancy model revealed some moder-

ate cross-dependence of the translocation probability of one

species on the binding strength of the other. So the translocation

probability of the species with conserved binding strength went

through some maximum while reducing the binding strength of its

competitor [27]. This feature is related to the fact, that the channel

allowed multi-occupancy. A reduction of binding strength implies

less particles of this species in the channel, i.e intra-channel

Figure 8. Competitive transport of bovine serum albumin (BSA,
blue line) and nuclear transport factor (NTF, black line)
through a nuclear pore as a function of the NTF in-channel
interaction. The interaction potential is assumed to have a symmetric
rectangular shape, with height/depth W

(NTF)
0 and relative width w.

Fluxes are normalized to fluxes in a pore functionalized with PEG-thiol,
in which NTF interaction vanishes, W(NTF)

0,PEG{thiol:0. BSA is inert for in-
channel interaction of any functionalized pore, i.e. W(x)(BSA):0.
Experiments revealed that BSA flow through a pore functionalized
with NSP1 is about &50% (blue arrow) of that through a PEG-thiol
pore, whereas NFT flow is about 4 times that of BSA flow (black arrow)
[4]. This determines the relative width as w~0:92, and binding energy
W

(NTF)
0 ~{1:67|kBT , see the main text. Concentrations were

cBSA~1:5mM, cNFT~0:75mM [4], and translated into corresponding
activates Lc{g , see Appendix S3.
doi:10.1371/journal.pone.0015160.g008
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interactions with the competing species, having conserved binding

strength, decrease, which results in an increased translocation

probability. In the single occupancy model, i.e. the model

described here, the translocated particle blocks the channel during

the whole process. So translocation of one species is independent

of interparticle interactions, i.e. in particular independent of

interactions with the other species. So, as discussed above, cross

interactions derive solely from cross dependencies of occupation

probabilities.

Our model also explains the experimental data for competitive

transport of nuclear transport factors through artificial nuclear

pores described in Ref. [4]. There flow of two competing species

through pores was investigated. The two transported species were

inert or potentially binding, respectively, while the pores were

functionalized either with binding or inert sites. As derived from

our model, the flow of the binding (non-binding) species within the

pore functionalized with binding sites increased (decreased) when

related to that of the inert pore. These ratios of flow also allowed a

quantitative estimation of the strength and extent of binding.

Supporting Information

Appendix S1 Herein the interdependence of the particle-

channel interaction potential W at the channel ends and the exit

rates k{ is analyzed, which allows appropriate gauging of both.

(PDF)

Appendix S2 This Appendix derives in detail the dependence of

channel flow on first passage time and channel occupation number

and probability. These parameters are related to the translocation

probability and the lifetime of channel states. In this context the

effect of asymmetry of in-channel binding site on flow is derived.

(PDF)

Appendix S3 The access dynamics of the nuclear transport

factor (NTF) from outside to the nuclear pore is estimated.

Furthermore the diffusive conductivities of bovine serum albumin

(BSA) and nuclear transport factor (NTF) through the nuclear

pores and their activities Lce{g are computed from experimental

data.

(PDF)

Acknowledgments

The authors are grateful to Philipp Schön and Jens Ulmer (BIOLAB
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