Relationship between Electronic Structure and Cytotoxic Activity of Tropolones

TERUO KURIHARA¹, HIROKO MINE¹, YOSHIMASA SATOH¹, HIDETSUGU WAKABAYASHI¹, NOBORU MOTOHASHI² and HIROSHI SAKAGAMI³

¹Department of Chemistry, Faculty of Science, Josai University, Sakado, Saitama; ²Meiji Pharmaceutical University, Kiyose, Tokyo; ³Meikai University School of Dentistry, Saitama, Japan

Abstract. A structure-activity relationship of the cytotoxic activity of tropolone derivatives was discussed, using theoretical calculations. In order to clearly divide the tropolones into two structurally analogous groups, four different dipole moments (μG, μESP-G, μW and μESP-W) and heats of formation (ΔHf) of the tropolones [1-21] were calculated in the gas-phase and in water-solution by the conductor-like screening model/parametric method 3 (COSMO/PM3). The cytotoxic activities of the tropolones and 2-methoxytropones seem to be related to the three QSAR parameters ΔHf, HOMO energy (E_H) and μw. The cytotoxic activity of the five tropone derivatives [17-21] might depend on the QSAR parameters ΔHf, LUMO energy (E_L) and μESP-G. The results of the present study suggest the applicability of theoretical calculations such as frontier molecular orbital, dipole moments and ΔHf in the prediction of the cytotoxic activity of tropolone derivatives.

Hinokitiol (compound [1] in Figure 1) and its related compounds with a tropolone skeleton (1-3) have shown a broad spectrum of biological activities, including antimicrobial (4), antifungal (5) and phyto-growth-inhibitory activities (6, 7), a cytotoxic effect on mammalian tumor cells (8, 9) and an inhibitory action on catechol-O-methyltransferase (10) and metalloproteases (4). Hinokitiol acetate did not show the cytotoxic activity (9), antimicrobial activity or metalloprotease inhibition (4), suggesting that the biological effects of hinokitiol-related compounds may result from the metal chelation between the carbonyl group at C-1 and the hydroxyl group at C-2 in the tropolone skeleton. However, no study of cytotoxicity induction by tropolone derivatives has yet been performed. Recently, the cytotoxicity of 27 tropolone derivatives against three human normal cell lines and three human oral tumor cell lines was reported by our group (11). The tropolone derivatives with a phenolic OH group, hinokitiol and its tosylate and methyl ethers, were found to have a relatively higher tumor specificity. 5-Aminotropolone [6] showed the highest tumor specificity, whereas 2-aminotropone [19] and its derivatives showed little or no tumor specificity. 5-Aminotropolone [6] induced apoptotic cell death, as evidenced by internucleosomal DNA fragmentation and caspase-3 activation in human promyelocytic leukemia HL-60 cells (11). Based on a molecular orbital calculation using the physicochemical property and the cytotoxic activity of the tropolone derivatives, the possible relationship between the electronic structure and cytotoxic activity of tropolone derivatives was investigated.

Materials and Methods

Chemicals. All 21 tropolone derivatives [1-21] were synthesized as described previously (11) (Figure 1).

Theoretical calculations. The molecular orbital calculation using parametric method 3 (PM3) was performed by applying the winMOPAC program (12). The geometries of the tropolones [1-21] were optimized with respect to all geometrical parameters using the Broyden-Fletcher-Goldfrab-Shanno algorithm incorporated in the program. The geometries of tropolones [1-21] in water-solution were compared with values in gases by the conductor-like screening model orbital (COSMO) and electrostatic potential (ESP) calculations. The COSMO procedure generates a conducting polygonal surface around the system at Van der Waal’s distance. The standard values used were the number of the geometrical segments per atom (NSPA)=60 and the dielectric constant =78.4 at 25°C (water). The values of the dipole moment (μG and μW) in the gas-phase and in the water-solution of tropolones [1-21] were calculated by the ESP/PM3 and COSMO/PM3 methods. For this calculation, an IMB Intellistation M Pro personal computer was used (12).
Results and Discussion

Structure and activity relationship. The relationship between the cytotoxicity of 21 tropolone derivatives [1-21] against two human normal cells (HGF, HPLF) and two human oral tumor cell lines (HSG, HSC-2) and their electronic properties were investigated.

A partition coefficient logP is used as an index of the structure-activity relationship analysis in new drug design. A stereohydrophobic parameter dGW was obtained by the PM3 method. The dGWs were defined by their free-energy changes for the association in aqueous solution and in the gas-phase (12). The structure-activity relationship analysis revealed that the hydrophobicity of the whole molecule (ΔΔHf) and dipole moment (μ) might affect the cytotoxic activity. Recently, we reported the theoretical quantitative structure-activity relationship (QSAR) analysis of 3-benzazepine derivatives (13) and azulene derivatives (14).

The value of the dipole moment (μESP-G) in the gas-phase also increased in the following order: [20] (0.56 D)<[7] (1.06 D)<[16] (1.55 D)<[13] (2.08 D)<[4] (2.10 D).

On the other hand, the cytotoxic activity of [18] against the HGF cells was the highest (CC50=0.0076 mM), followed by that of [16] (CC50=0.027 mM), [13] (CC50=0.11 mM) and [7] (CC50=0.13 mM). However, against the HSC-2 cells the cytotoxic activity of [16] was the highest (CC50=0.008 mM), followed by that of [18] (CC50=0.027 mM), [7] (CC50=0.046 mM) and [6] (CC50=0.058 mM). The cytotoxic activity observed might not be related to the individual QSAR parameters, ΔΔHf / M.W., HOMO energy and μESP-G.

The multiple correlation coefficient (r²) and the Fisher statistic (F) are important in assessing the "correctness" of a regression fit. In order to obtain a more quantitative characteristic of the "correctness" of a model, QSAR uses the well-known Fisher's statistic value, F. For HGF cells, the correlation coefficient (r²) and F value between CC50 values of the tropolone derivatives [1-21], using the three QSAR parameters ΔΔHf / M.W., ΔEH-L and μw, were calculated as
0.220 and 1.602, respectively. For HSC-2 cells, the r^2 and F value between CC50 values of the tropolone derivatives [1-21], using the three QSAR parameters ΔH_f/M.W., $\Delta \text{E}_{\text{H-L}}$, and μ_w, were calculated as 0.192 and 1.351, respectively. $\Delta \text{E}_{\text{H-L}}$ represents the differences in energy between the HOMO and LUMO orbitals. Since the F values of these derivatives [1-21] for this model were lower than the 5% critical value, the hypothesis was not acceptable. Therefore, the tropolone derivatives [1-21] can be conveniently divided into two groups: tropolones [1-9] together with 2-methoxytropone derivatives [10-16] and tropone derivatives [17-21].

Relationship between cytotoxic activity and QSAR parameters for normal (HGF and HPLF) and tumor cells (HSG and HSC-2). Of the 16 tropolone [1-16] derivatives, 2,4,6-tribromo-7-methoxytropone [16] was highly cytotoxic against normal human cells (Table I). In order to obtain a quantitative correlation between the cytotoxic activity and electronic properties, the coefficient of the multiple determination and F value were calculated. The structure-activity relationship analysis suggested that the hydrophobicity of the molecule (ΔH_f), $\Delta \text{E}_{\text{H-L}}$ in the water-solution and the dipole moment (μ_w) in the water-solution might greatly contribute to the cytotoxic activity. The following correlation equations 1 and 2 were obtained for the HGF and HPLF cells, respectively:

$$CC_{50} = -33.989 + 2.037 \times \Delta \text{H}_f / \text{M.W.} + 4.238 \times \Delta \text{E}_{\text{H-L}} + 0.195 \times \mu_w \quad \text{(equation 1)}$$

$$CC_{50} = -34.089 + 3.595 \times \Delta \text{H}_f / \text{M.W.} + 4.257 \times \Delta \text{E}_{\text{H-L}} + 0.105 \times \mu_w \quad \text{(equation 2)}$$

Of the 16 tropolone derivatives, 2,4,6-tribromo-7-methoxytropone [16] showed the highest cytotoxic against the HSG and HSC-2 cell lines. The following correlation equations 3 and 4 were subsequently obtained for the HSG and HSC-2 cells, respectively:

$$CC_{50} = -34.285 + 3.231 \times \Delta \text{H}_f / \text{M.W.} + 4.321 \times \Delta \text{E}_{\text{H-L}} - 0.0118 \times \mu_w \quad \text{(equation 3)}$$

$$CC_{50} = -72.166 + 1.203 \times \Delta \text{H}_f / \text{M.W.} + 9.224 \times \Delta \text{E}_{\text{H-L}} - 0.148 \times \mu_w \quad \text{(equation 4)}$$

0.220 and 1.602, respectively. For HSC-2 cells, the r^2 and F value between CC50 values of the tropolone derivatives [1-21], using the three QSAR parameters ΔH_f/M.W., $\Delta \text{E}_{\text{H-L}}$, and μ_w, were calculated as 0.192 and 1.351, respectively. $\Delta \text{E}_{\text{H-L}}$ represents the differences in energy between the HOMO and LUMO orbitals. Since the F values of these derivatives [1-21] for this model were lower than the 5% critical value, the hypothesis was not acceptable.

Therefore, the tropolone derivatives [1-21] can be conveniently divided into two groups: tropolones [1-9] together with 2-methoxytropone derivatives [10-16] and tropone derivatives [17-21].

Relationship between cytotoxic activity and QSAR parameters of tropones. 2,7-Dibromotropone [18] showed the lowest cytotoxicity against normal cells of the tropone derivatives (11) (Table II). However, the multiple linear-regression analysis for the tropone derivatives [17-21] using the above equations 1-4 did not correlate with the QSAR parameters ΔH_f/M.W., $\Delta \text{E}_{\text{H-L}}$, and μ_w. Since the F values of the derivatives [17-21]
for this model were less than the 5% critical value, the hypothesis was not acceptable. Then, we defined that $\Delta \Delta H_f$, E_{HOMO} and $\mu_{\text{ESP-G}}$ in the gas-phase were used instead of $\Delta \Delta H_f / \text{M.W.}$, $E_{\text{H-L}}$ and μ_W.

The following correlation equations 5 and 6 were obtained for the HSG and HSC-2 cell lines, respectively:

\[
\text{CC}_{50} = 17.471 + 0.096 \times \Delta \Delta H_f + 2.553 \times E_{\text{HOMO}} + 0.550 \times \mu_{\text{ESP-G}} \quad \text{(equation 5)}
\]
\[
\text{CC}_{50} = 13.488 + 0.038 \times \Delta \Delta H_f + 1.561 \times E_{\text{HOMO}} - 0.150 \times \mu_{\text{G}} \quad \text{(equation 6)}
\]

CC$_{50}$ = 13.488 + 0.038 $\Delta \Delta H_f$ + 1.561 E_{HOMO} - 0.150 μ_{G} \hspace{1cm} \text{n=5 (17-21), } r^2=0.999, F=340.7.

In the case of the HGF and HPLF cells, the QSAR parameters were not consistent. Using the $\Delta \Delta H_f$, LUMO energy (E_{LUMO}) and μ_G in the gas-phase as QSAR parameters, the following correlation equation 7 was obtained for the HGF cells:

\[
\text{CC}_{50} = 1.046 + 0.086 \times \Delta \Delta H_f + 4.988 \times E_{\text{LUMO}} + 0.260 \times \mu_G \quad \text{(equation 7)}
\]

\[
\text{CC}_{50} = 34.418 + 0.037 \times \Delta \Delta H_f - 4.459 \times E_{\text{H-L}} + 0.053 \times \mu_G \quad \text{(equation 8)}
\]

\[
\text{CC}_{50} = 34.418 + 0.037 \times \Delta \Delta H_f - 4.459 \times E_{\text{H-L}} + 0.053 \times \mu_G \quad \text{(equation 8)}
\]

\[
\text{CC}_{50} = 34.418 + 0.037 \times \Delta \Delta H_f - 4.459 \times E_{\text{H-L}} + 0.053 \times \mu_G \quad \text{(equation 8)}
\]

The CC$_{50}$ values estimated from the corresponding equation are shown in Table II.

The results of the present study suggest the applicability of theoretical calculations, such as frontier molecular orbital, dipole moments and $\Delta \Delta H_f$, for the prediction of the cytotoxic activity of tropolone derivatives.

References

12 PM3 semi-empirical MO calculations were performed by MOPAC version 6 on an Intellistation M Pro personal computer.

