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Abstract 

Due to compact design, cost-effectiveness and shorter development time, a nanosatellite constellation 

is seen as a viable space-based data-relay asset to collect data from remote places that are rather impractical 

to be linked by terrestrial means. While nanosatellites have these advantages, they have more inherent 

technical limitations because of limited space for subsystems and payloads. Nanosatellite S&F 

communication systems are notably challenging in this respect due to requirements on antennas, 

transceivers, and signal processing. Although nanosatellites can be scaled up for better resources and 

capabilities, smaller platforms (i.e., ≤6U CubeSat) tend to be used for cost-effectiveness and lower risk. 

This thesis dealt with the problem of designing a nanosatellite S&F communication system for delay-

tolerant remote data collection applications considering: (a) technical constraints in hardware, processing 

capabilities, energy budget and space in both the nanosatellite and ground sensor terminal (GST) sides; (b) 

physical communication layer characteristics and constraints such as limited available bandwidth, LEO 

channel Doppler, attenuation and fading/shadowing effects, low transmit power and data rate, and multi-

user interference among asynchronously transmitting terminals. We designed, developed, and operated an 

amateur radio payload with S&F communication and APRS-DP capabilities, and performed a post-launch 

communication failure investigation. We also investigated suitability of E-SSA protocol for IoT/M2M 

terminals to nanosatellite communication by analyzing performance and energy efficiency metrics.  

The thesis comprises nine chapters. Chapter 1 describes the research background, problem, 

objectives, state of research, potential contributions of this thesis, and a gist of methodology detailed in 

later chapters. Chapter 2 and 3 provide an extensive literature review. Chapter 2 reviews the previous 

research works on using nanosatellites for S&F communication for remote data collection, and the 

previous nanosatellite S&F missions. Such research works and nanosatellite missions were undertaken 

primarily in the context of non-commercial/civil applications. Then, Chapter 2 surveys the recent 

commercial nanosatellite IoT/M2M players and examines their proposed systems in terms of satellite 

platform, constellation design, communication technology, targeted applications, requirements, and 

performance. Chapter 3 presents a literature review on communication system architecture, physical 

layer and random-access schemes, protocols, and technologies relevant to satellite IoT/M2M systems. 

In the context of IoT/M2M applications, the constraints in energy budget, transmit power and available 

bandwidth limit the system’s capacity in terms of amount of data that can be received and number of 

GSTs that can be supported. In both nanosatellite and GST sides, there are stringent limitations in 

hardware complexity, processing capabilities and energy budget. Addressing these challenges requires 

a simple, spectrally and energy efficient asynchronous random-access communication protocol. This 

research investigated using the enhanced spread spectrum Aloha (E-SSA) protocol for satellite 

IoT/M2M uplink (terminal to satellite) communication and analyzed its performance and suitability for 

the said application. 

Chapter 4 discusses the BIRDS-2 CubeSat S&F remote data collection system, payload design, 

development, tests, and integration with the BIRDS-2 CubeSats. Chapter 5 discusses the investigation 
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on communication design issues of BIRDS-2 CubeSat S&F payload, tackling both the methodology and 

findings of investigation. It is noted that there are only a few satellites that have carried an APRS-DP 

payload but even some of these failed due to communication, power, or software issues. In BIRDS-2 

Project, considering tight constraints in a 1U CubeSat equipped with other subsystems and payloads, we 

developed a S&F/APRS-DP payload and integrated it with each of the three 1U CubeSats of 

participating countries. After launching the CubeSats from the ISS, several amateur operators confirmed 

reception downlink beacon messages, but full two-way communication failed due to uplink 

communication failure. Thus, this research not only studied the design and development of a 

S&F/APRS-DP payload suitable for a CubeSat platform, but also systematically investigated the causes 

of communication failure by on-orbit observation results and ground-based tests. We found that uplink 

failure was caused by two design problems that were overlooked during development, namely, the poor 

antenna performance and increased payload receiver noise floor due to satellite-radiated EMI coupled 

to the antenna.  

Chapter 6 first describes the enhanced spread spectrum Aloha (E-SSA) based nanosatellite IoT/M2M 

communication model implemented in Matlab and derives the mathematical definitions of packet loss rate 

(PLR), throughput (THR) and energy efficiency (EE) metrics. Then, it tackles the formulated baseband 

signal processing algorithm for E-SSA, including packet detection, channel estimation, demodulation and 

decoding. Chapter 7 presents the simulation results and discussion for Chapter 6. Chapter 8 tackles the 

S&F nanosatellite constellation design for global coverage and presents the results and findings. Chapter 

9 describes the laboratory setups for validating the E-SSA protocol and then presents the findings. Finally, 

Chapter 9 also gives the summary, conclusions, and recommendations.  

Simulation results showed that for E-SSA protocol with the formulated algorithm, THR, PLR and EE 

metrics are more sensitive to MAC load G, received power variation 𝜎𝐿𝑁 and 𝐸𝑏/𝑁0, due to imperfect 

detection and channel estimation. With loose power control (𝜎𝐿𝑁 = 3 dB), at Eb/N0=14 dB, the system can 

be operated up to a maximum load of 1.3 bps/Hz, achieving a maximum THR of 1.25 bps/Hz with 

PLR<0.03. Without power control (𝜎𝐿𝑁 = 6dB, 9dB), at Eb/N0=14 dB, maximum load is also 1.3 bps/Hz, 

but achievable THR is lower than ~1 bps/Hz and PLR values can be as high as ~0.23. Worse PLR results 

are attributed to misdetection of lower power packets and demodulation/decoding errors. Both are caused 

by the combined effects of MUI, channel estimation errors, imperfect interference cancellation residue 

power, and noise. The PLR and THR can be improved by operating with higher 𝐸𝑏/𝑁0 at the expense of 

lower energy efficiency. Then, laboratory validation experiments using a SDR-based platform confirmed 

that with G=0.1, 𝐸𝑏/𝑁0 = 14dB, 𝜎𝐿𝑁 = 6dB, the formulated algorithm for E-SSA protocol can still work 

even with inaccurate oscillator (±2 ppm) at GSTs, obtaining experimental PLR result of 0.0650 compared 

to simulation result of 0.0352. However, this requires lowering the detection thresholds and takes 

significantly longer processing time. For the S&F nanosatellite constellation design, it was found that to 

achieve the target percent coverage time (PCT) of more than 95% across all latitudes, a 9x10 Hybrid 

constellation or a 10x10 Walker Delta constellation would be required.
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Chapter 1:  Introduction 

1.1 Background 

Traditional satellite missions and programs prioritized reliability, which normally demands long 

delivery time, high project cost, very big and complex spacecrafts, as well as conservative development 

and management approaches. Hence, development of space technologies and engagement in space-related 

activities had been previously afforded only by a few space agencies and private companies with large 

budget and resources. This began to change in the past three decades when the infusion or adoption of what 

many now refer to as “lean satellite development” philosophy in space programs has reduced the entry 

barrier.  

As defined in [0], “a lean satellite is a satellite that utilizes non-traditional, risk-taking development 

and management approaches to provide value of some kind to the customer at low-cost and without taking 

much time to realize the satellite mission.” A small satellite size arises as a result of “seeking low-cost and 

fast-delivery”, which, in addition, are achieved by cost/waste-cutting approaches such as use of non-space-

graded commercial-off-the-shelf (COTS) components, acceptance of certain level of risks, keeping team 

size smaller, etc. [0]. Small satellites of various sizes and shapes – including minisatellites (100-500 kg), 

microsatellites (10-100 kg), nanosatellites (1-10 kg) and picosatellites (0.1-1 kg) – subsequently emerged 

and their adoption progressively democratized access to space technologies and activities by government 

agencies, research institutes, non-profit organizations and universities in both developed and developing 

countries. Many organizations around the world have built small satellites for various 

scientific/technological, research and development (R&D), academic/educational, and public purposes. 

These include, among others, addressing a myriad of needs for remote sensing data, telecommunications, 

disaster risk mitigation and response, climate change studies, etc.  

In more recent years (after 2010), we have seen a surge of new players in the private sector – including 

many start-up companies – engaging in space enterprises [1]. Miniaturization and advances in electronics, 

power, computing, signal processing, mechanical, manufacturing, and other relevant technologies have 

enabled small satellites to carry out more complex missions. Thus, small satellite utilization experienced a 

significant paradigm shift from primarily research/academically motivated or program/institution-centered 

(for some) to more focus on practical and commercial applications. Also, standardization of interfaces for 

intra-satellite subsystems and between satellite and launcher systems, coupled with growing number of 

small launchers accessible at lower prices, has enabled shorter project timelines, easier collaborations, and 

remarkable growth of the small satellite industry. The proliferation of small satellites across different 

sectors of the space industry may be attributed to these factors, among others.  

Since around 2012, there has been a rapid growth in the number of launched satellites within the 1-10 

kg. mass range, while slow growths in the 11-50 kg. and 51-100 kg. mass ranges [2]. As of April 19, 2020, 

66 countries have launched nanosatellites and the total number of nanosatellites launched is 1317, from 

which 1210 are CubeSats [1] (note: broader definition of nanosatellites in [1]). Although there is no 
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universally set definition for a “nanosatellite”, many authors refer it to the 1-10 kg. mass range. From here 

onwards in this document, the term “nanosatellite” is loosely used, to also include larger CubeSats that can 

exceed 10 kg. (e.g., 8U, 10U, 12U, 16U, etc.). These bigger CubeSats are not commonly used but 

sometimes appear in missions requiring additional resources. 

While nanosatellites have been utilized by several start-up companies aiming to revolutionize earth 

observation [1], there has also been increasing interests in using nanosatellites to address communication 

requirements, for civil and commercial purposes. Due to compact design, cost-effectiveness and shorter 

development time, a nanosatellite constellation is seen as a viable space-based data-relay asset to collect 

data from stations deployed in remote places that are rather impractical to be linked by terrestrial means. 

In such scenarios, each nanosatellite in the constellation collects sensor data or other data types from 

ground terminals (GTs) in remote locations and then downloads it to an accessible station later. This data 

collection approach is generally referred to as a store-and-forward (S&F) mechanism.  

S&F nanosatellite constellations have increasing commercial potential and actual use cases related to 

the Internet-of-Things (IoT) and Machine-to-Machine (M2M) paradigms [4]. In fact, many start-up 

companies have been getting traction by offering nanosatellite-based solutions for IoT/M2M 

communications, typically using CubeSat platforms, at a fraction of the cost in traditional satellite 

solutions. The latter are not only prohibitive in terms of subscription cost, GT device cost and  power 

consumption, but are also not designed to support a large number of terminals that generate very low data-

rate burst transmissions – which are typical characteristics of many emerging IoT/M2M applications. With 

a much lower cost of establishing a nanosatellite constellation and the limitations of traditional satellite 

systems, nanosatellites can help extend the capabilities and potential addressable IoT/M2M market of 

satellites [4].  

Even before the excitement on IoT/M2M paradigms, S&F nanosatellites had been considered for 

similar scenarios such as in satellite-integrated wireless sensor networks (WSNs). In the context of non-

commercial applications, many universities and non-profit organizations have launched nanosatellites, 

commonly CubeSats, with some communication capabilities for amateur radio community use. This is 

because of strong support from the international amateur radio community in frequency coordination, use 

of the service and promotion of activities. Recently, there have been proposals and actual implementations 

of CubeSats supporting a message/packet repeating application known as Automatic Packet Reporting 

System Digipeater (APRS-DP). The idea proposed in [5] is for present and future APRS-DP satellites in 

orbit to share a common channel (145.825 MHz) and a generic digipeater alias (APRSAT and ARISS) to 

accumulate all user traffic on an Internet server, hence integrating all worldwide users and stations. 

Although an APRS-DP application normally re-transmits any received packet, the underlying physical and 

link communication layers can be used for S&F type of communication. Therefore, it would be useful to 

develop an amateur radio payload for CubeSats that can support both APRS-DP and S&F communication 

capabilities. 
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1.2 Research Problem 

Due to compact design, cost-effectiveness and shorter development time, a nanosatellite constellation 

is seen as a viable space-based data-relay asset to collect data from remote places that are rather impractical 

to be linked by terrestrial means. While nanosatellites have these advantages, they have more inherent 

technical limitations because of limited space for subsystems and payloads. Nanosatellite S&F 

communication systems are notably challenging in this respect due to requirements on antennas, 

transceivers, and signal processing. Although nanosatellites can be scaled up for better resources and 

capabilities, smaller platforms (i.e., ≤6U CubeSat) tend to be used for cost-effectiveness and lower risk. 

This thesis dealt with the problem of designing a nanosatellite S&F communication system for delay-

tolerant remote data collection applications considering: (a) technical constraints in hardware, processing 

capabilities, energy budget and space in both the nanosatellite and ground terminal sides; (b) physical 

communication layer characteristics and constraints such as limited available bandwidth, LEO channel 

Doppler, attenuation and fading/shadowing effects, low transmit power and data rate, and multi-user 

interference among asynchronously transmitting terminals. 

1.3 Overview of the State-of-the-Field 

In the past, government/research, academic and civil organizations have launched microsatellites and 

nanosatellites with S&F communication capabilities. Since 1990s, there have been several publications 

related to successfully working S&F microsatellites utilizing traditional communication protocols. With 

the emergence of nanosatellites and CubeSats, since 2005s, there have been publications on S&F 

nanosatellite application concepts, studies discussing communication constraints and random-access 

protocols. There have been several works describing initial implementations and successful demonstrations 

of nanosatellite S&F systems, including the HumSat Project [34], Irazu Project [35], TriCOM-1 [36], and 

TriCOM-1R [38][39]. These nanosatellite missions were undertaken primarily to achieve research 

objectives, exploring for instance, environmental monitoring applications (temperature, pressure, soil 

moisture, water level, etc.).  

However, there are not many publications discussing details, challenges, and results of operation. 

There are still many things that can be contributed to the practical aspects. Also, there is a lack of 

publications completely tackling from nanosatellite S&F payload design, development to post-launch 

failure investigation. It is well noted that communication system issues remain one of the most common 

causes of post-launch CubeSat failures, along with power system issues [6]. Many university CubeSats 

failed to even establish communication with a ground station. Besides S&F communication, as mentioned, 

recently there have been proposals and actual implementations of CubeSats supporting a message/packet 

repeating application known as Automatic Packet Reporting System Digipeater (APRS-DP), which re-

transmits received packets in a more real-time fashion. There have been a handful of satellites with APRS-

DP payload, including the Amateur Radio on the ISS (ARISS), PCSAT (10 kg, 2001), LAPAN-A2 (68 kg, 

2015), Diwata-2 (56 kg, 2018), PSAT-1 (1.5U, 2015), PSAT-2 and BRICSAT-2 (1.5U, 2019). However, 

even some of these failed or only partially operated due to communication, power, or software issues. 
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In the context of more recent IoT/M2M applications, considering the disadvantages of traditional 

satellite-based solutions (mentioned above), nanosatellites have a potential to cater to newly emerging 

IoT/M2M applications which are latency-tolerant, price-sensitive, demanding very low data rates, and 

involving remotely deployed, simple, low energy-consuming ground terminals (GTs). Overall, the system 

must also support a large number of simultaneous connections. The constraints in energy budget, transmit 

power and available bandwidth naturally limit the system’s capacity in terms of the amount of data that 

can be received and number of GTs that can be supported.  

Also, in both nanosatellite and GT sides, there are stringent limitations in hardware complexity and 

processing capabilities. Because GTs normally operate only on batteries and/or solar panels, energy 

constraint can also limit their operational lifetime. Thus, to maximize GTs’ operational lifetime, 

transmissions should be kept as infrequent and low-energy as possible. On the nanosatellite side, it is very 

challenging to design a compact and low-power payload that can be accommodated on a nanosatellite 

platform. The system must also be able to decode overlapping packets from many transmitting GTs, which 

cause a high level of multiuser interference (MUI). Furthermore, the high propagation loss, dynamic LEO 

channel characteristics due to Doppler effect, and power imbalance, can degrade the quality of received 

signals and make decoding packets difficult. Figure 1 summarizes the technical challenges in a 

nanosatellite S&F communication system. 

 

Figure 1. Technical challenges in a nanosatellite S&F communication system 

Key to addressing these challenges is that a suitable satellite IoT/M2M system must employ a 

communication protocol that is optimized for spectral efficiency (i.e., scalable throughput) and energy 

efficiency while achieving a reasonably low packet loss rate (e.g., PLR<5%). It also requires a simple 

communication system design on GTs and a signal processing algorithm with random access resolution 

capability implemented satellite-onboard or on-ground (for nanosatellite platforms). Even with high multi-

user interference and power imbalance, the signal processing algorithm must be able to detect the packets, 
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accurately estimate their individual channel parameters (amplitude, phase, frequency shift and rate) and 

demodulate/decode the whole packet.  

Compared with traditionally employed multiple access control (MAC) schemes according to fixed 

assignment (e.g., TDMA, FDMA, CDMA) or demand-based adaptive assignment, random access (RA) 

scheme is more suitable for a satellite IoT/M2M system servicing a very large population of burst-

transmitting GTs sharing a common channel. However, ordinary RA schemes such as pure Aloha (PA), 

time-slotted Aloha (SA), and even modified forms such as diversity slotted Aloha (DSA), exhibit low 

efficiency and attains low packet collision rates only at very low MAC loads. Moreover, time-asynchronous 

RA is preferable over time-slotted RA since it avoids the latter’s need for maintaining accurate time-slot 

synchronization among terminals. 

Various modulation schemes supporting RA capability, which are applicable to satellite IoT/M2M 

systems, have been proposed and investigated in literature. These include time- and frequency-

asynchronous Aloha (TFAA) [154][155], chirp spread spectrum (CSS) Aloha [150][151][152], and direct-

sequence spread spectrum (DSSS) Aloha [7][8][9]. Previous works in all three types of schemes either 

ignored the impact of imperfect packet detection and channel estimation or did not consider any contention 

resolution algorithm. It is noted that imperfect packet detection and channel estimation significantly 

impede packet demodulation/decoding while contention resolution can greatly increase performance in 

presence of high MUI.  

In [7], the authors proposed to apply a Recursive Successive Interference Cancellation (R-SIC) 

algorithm to DSSS Aloha (or SSA) and showed that this overcomes performance degradation of 

conventional SSA due to power imbalance in satellite channel. Hence, the protocol has been dubbed as 

Enhanced Spread Spectrum Aloha (E-SSA). By combining SSA with a rate 1/3 Turbo code for forward 

error correction and R-SIC, E-SSA can achieve a higher throughput with more received signal power 

variation, although with higher floor PLR [7][8]. E-SSA has also been successfully validated in laboratory 

and actual satellite payload [9]. E-SSA is particularly attractive for our application because it requires only 

a simple GT transmitter design. Although it involves computationally intensive signal processing to decode 

many packets [8][9], for delay-tolerant applications, it is acceptable to perform on-ground processing on 

baseband samples. This delay-tolerant MAC approach is a practical turnaround for micro/nanosatellite-

based IoT/M2M systems to still take advantage of advanced RA schemes (as also proposed in [132]). 

The previous works in [7][8][9] were done in the context of a GEO satellite and involving a shorter 

packet duration (<250 ms, due to higher data rate (5 kbps)) that makes it less susceptible to channel 

estimation errors. In the scenario we are concerned with, we consider a LEO nanosatellite constellation. 

And, to maintain enough average bit-energy to noise spectral density (𝐸𝑏/𝑁0) with limited transmit power, 

an ultra-low* data rate (target: <500 bps) should be used, but this makes packet duration comparable to 

coherence time due to channel estimation errors. Therefore, considering greater extent of Doppler effect in 

LEO, it is crucial to employ a very accurate channel estimation algorithm. Also, the previous works did 
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not sufficiently tackle the impact of power imbalance and MUI on the signal processing algorithm 

performance (packet detection, channel estimation, and demodulation/decoding). These issues have not 

been sufficiently studied for E-SSA within the said context and to our knowledge, an investigation on using 

E-SSA for nanosatellite IoT/M2M uplink communication has not been previously reported. 

*Note that considering the characteristics of more recent IoT/M2M communications technologies, for 

the purpose of this thesis, we can extend the definition in [117] as follows: 

Table 1. Categories and definitions of data rates 

Data Rate Category Range of Data Rates  Other Terminologies 

High r > 500 kbps “broadband” 

Medium 50 kbps < r < 500 kbps  

Low 5 kbps < r < 50 kbps “narrowband” 

Very Low 500 bps < r < 5 kbps  

Ultra-Low r < 500 bps “ultra-narrowband” 

 

1.4 Research Aim and Objectives 

This thesis aims to contribute to the development of nanosatellite S&F communication systems by (a) 

developing a CubeSat-onboard S&F payload considering technical constraints (hardware, processing 

capability, space and energy constraints), and (b) investigating a physical communication layer protocol 

with asynchronous random-access resolution capability that is suitable for nanosatellite IoT/M2M 

communications. Specifically, this thesis aims to accomplish the following smaller objectives: 

1. Design and develop a low-cost and compact amateur radio payload with S&F communication 

and APRS-DP capabilities that is suitable for a CubeSat platform. Then, integrate it with each 

of the three 1U CubeSats of the BIRDS-2 Project. 

2. Evaluate the on-orbit performance of the S&F/APRS-DP payload and systematically investigate 

communication design issues by a combination of on-orbit observation results and ground-based 

tests. 

3. Investigate suitability of E-SSA protocol for nanosatellite-based IoT/M2M uplink 

communication (terminals to nanosatellite) by analyzing its packet loss rate (PLR), throughput 

and energy efficiency at different MAC load, 𝐸𝑏/𝑁0 and received power imbalance conditions 

expected in LEO. 

4. Formulate the details and assess the performance of a baseband signal processing algorithm for 

E-SSA, including packet detection, channel estimation, and demodulation/decoding. 

5. Experimentally validate in a laboratory setup the performance of E-SSA protocol with the 

formulated algorithm. 

6. Elucidate the relationship between LEO nanosatellite constellation design parameters and 

communication coverage by applying the findings on E-SSA protocol simulation. 
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It is noted that store-and-forward mechanism consists of the “store” phase (uplink communication, 

i.e., data collection from terminals nanosatellite and storage) followed by “forward” phase (download of 

stored data from nanosatellite to a mission ground station). This thesis focuses only on the store phase 

because it already faces formidable challenges and constraints (the download phase, which can be done 

with a very high data rate downlink communication system such as an X-band transmitter, has its own 

challenges). However, the signal processing algorithm is performed on the digitized baseband samples of 

received signal after they have already been completely downloaded to a ground facility. 

1.5 Potential Research Contributions 

This doctoral thesis has the following potential research contributions: 

• Unlike the previous nanosatellites carrying an amateur radio payload with only either APRS-DP 

or S&F communication capability, we developed a CubeSat-onboard payload with both APRS-DP 

and S&F communication capabilities. Since we dealt with the tight constraints of a 1U CubeSat 

hosting other subsystems and payloads, this research will be relevant especially to other university-

based nanosatellite projects undertaking similar missions. 

• Note that many previously launched nanosatellites also failed due to communication design-related 

problems, but a systematic investigation of failure after launch is rarely documented in literature. 

Therefore, by describing our work from payload design, development, to post-launch failure 

investigation, this research could help enlighten similar issues commonly faced especially in 

university-based nanosatellite projects. 

• This serves as an extension to the previous works [15][16][17] by evaluating not only throughput 

and PLR but also energy efficiency at various MAC load, 𝐸𝑏/𝑁0 and received power imbalance 

conditions expected in a low-earth orbit (LEO), instead of geostationary earth orbit (GEO). 

• While there have been a few research works discussing the idea of using nanosatellites for store-

and-forward remote data collection applications, as well as papers describing technology 

demonstration and Aloha-based random-access protocol, there is very limited research on jointly 

optimizing the physical communication layer and random-access scheme for nanosatellite-based 

IoT/M2M communication. Such topics have only been recently emerging and gaining attention of 

some researchers. Also, most companies offering nanosatellite-based solutions use proprietary 

technologies (as surveyed in Section 2.5) so there still a lack of reports and publications on how 

effective real systems and technologies are for the said application. This dissertation would be one 

of those first few research works on this topic. Specifically, since an investigation on using E-SSA 

protocol for nanosatellite IoT/M2M uplink (terminal to satellite) communication has not been done 

before, this would provide results and findings relevant to the said application. 

• We considered different Doppler frequency shifts, rates, and amplitudes among received packets 

by accounting for terminals’ spatial distribution. 

• We derived an appropriate energy efficiency (EE) metric based on average energy per successfully 

received information bit. 
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• We formulated and described details and performance of the baseband signal processing 

algorithms used (packet detection, channel estimation, decoding), thus providing insights for 

implementation to researchers. 

• We considered a data rate (333.33 bps) that is lower than in previous works (5 kbps or higher) to 

maintain enough 𝐸𝑏/𝑁0 with low transmit power, but long packet duration inadvertently exposes 

it symbol phase rotations (or reversals) caused by channel frequency shift and rate estimation 

errors. The conditions described here are different from those in [15][16][17], where packet 

duration is shorter (<250 ms). Since we deal with a long packet duration comparable to coherence 

time due to estimation errors, so it crucial to employ a very accurate channel estimation algorithm. 

• We experimentally validated the formulated E-SSA protocol in a laboratory setup involving 

software-defined radio (SDR) transmitter and receiver. 

1.6 Overview of Research Methodology 

Objectives (1) and (2) were accomplished by practical research and experimental activities performed 

in parallel with the BIRDS-2 Project, including satellite design, development, integration, verification, and 

operation. The APRS-DP/S&F payload was designed considering the constraints and interfaces of the 

BIRDS-2 1U CubeSat, which hosts other subsystems and mission payloads that may have conflicting 

requirements and compete for space and resources. It was developed and integrated to the satellites within 

a 15-month time frame from December 2016 to February 2018 – about 11 months for engineering model 

and four months for final assembly, integration, and test of flight models. Details are described in Chapter 

4. On-orbit performance evaluation was based on operation results and communication tests between 

ground radio and the satellite payload. Investigation of communication issues was done by a comparing 

on-orbit operation results and ground-based tests including wired (cable) test, wireless tests inside anechoic 

chamber and long-range test. Overview is given in Figure 2 and details are described in Chapter 5. 

 

Figure 2. Overview of methodology for objectives 1-2 
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Objectives (3) and (4) were concerned on evaluating the performance and energy efficiency of E-SSA 

(which is a direct-sequence spread spectrum modulation scheme with asynchronous random-access 

capability) for the said application as well as formulating detailed signal processing algorithm to obtain as 

high performance as possible. To do this, a communication system model was implemented in Matlab, 

emulating the packet generation behavior of many terminals, LEO channel Doppler and attenuation effects, 

and baseband signal processing algorithm. At the receiver, arriving packets are modeled as Poisson traffic 

with random phase offsets, amplitudes, Doppler frequency shifts and rates expected in a LEO channel, 

combined with complex additive white gaussian noise (AWGN). Details of communication system 

modeling and baseband signal processing are discussed in Chapter 6.  We focused on assessing the E-SSA 

protocol with the formulated signal processing algorithm in terms of three defined metrics (THR, PLR and 

EE) through simulations of the model that closely emulate the actual physical communication layer design 

envisaged. Overview of simulation model is given in Figure 3. 

 

Figure 3. Overview of methodology for objectives 3-4 

For objective (5), we used a laboratory setup involving one SDR acting as transmitter and another 

SDR acting as receiver. Received baseband signal generated by the MATLAB simulation program was 

allowed to go through the whole chain: from digital filter, digital-to-analog converter (DAC), analog 

baseband filter, RF transmitter mixer, cables, attenuator, RF receiver mixer, analog baseband filter, to 

analog-to-digital converter (ADC) and digital filter at the receiver. The MATLAB simulation program was 

then used to post-process the recorded received baseband signal. Details are described in Chapter 9. 
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For objective (6), we utilized AGI’s System Tool Kit (STK) to model and simulate communication 

system parts, constellation and also to compute the coverage. Overview is given in Figure 4 and details are 

described in Chapter 8. 

 

Figure 4. Overview of methodology for objective 6 

1.7 Thesis Structure 

This thesis comprises of nine chapters. Chapter 1 (this chapter) discussed the research background, 

research problem, state of research, and potential contributions of this thesis, and provided a gist of research 

methodology detailed in later chapters. Chapter 2 and 3 provides an extensive literature review to elaborate 

on the state of research. Chapter 2 reviews the previous research works on using nanosatellites for S&F 

communication for remote data collection, and the previous nanosatellite S&F missions. Such research 

works and nanosatellite missions were undertaken primarily in the context of non-commercial applications. 

It also surveys the recent commercial nanosatellite IoT/M2M players and examines their proposed systems 

in terms of satellite platform, constellation design, communication technology, targeted applications, 

requirements, and performance.  

Chapter 3 presents a literature review on communication system architecture, physical layer and 

random-access schemes, protocols, and technologies relevant to satellite-based IoT/M2M system. Chapter 

4 discusses the BIRDS-2 CubeSat S&F remote data collection system, payload design, development, tests, 

and integration with the BIRDS-2 CubeSats. Chapter 5 discusses the investigation on communication 

design issues of BIRDS-2 CubeSat S&F payload, tackling both the methodology and findings of 

investigation. Chapter 6 first describes the enhanced spread spectrum Aloha (E-SSA) based nanosatellite 

IoT/M2M communication model and derives the mathematical definitions of packet loss rate (PLR), 

throughput (THR) and energy efficiency (EE) metrics. Then, it tackles the formulated baseband signal 
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processing algorithm for E-SSA, including packet detection, channel estimation, demodulation and 

decoding. Chapter 7 presents the simulation results and discussion for Chapter 6.  

Chapter 8 tackles the S&F nanosatellite constellation design for global coverage and presents the 

results and findings. Chapter 9 describes the laboratory setups for validating the E-SSA protocols and then 

discusses the results and findings.  Finally, Chapter 9 also gives the summary, conclusions, and 

recommendations. 
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Chapter 2:  Nanosatellite S&F Research, Missions and Applications 
 

There are varying definitions of the Internet of Things (IoT) [10] but it may be described as a paradigm 

envisioning a giant network of uniquely identified “things” (such as objects, devices, physical or virtual 

machines, or even sensors attached to animals or people) that can sense (by sensors) their environment or 

interact (by actuators) with their environment (or entities to which they are attached) and can communicate 

with one another (by wire or wireless means). Data obtained from these things can be used to extract 

pertinent information about how they are used  and the environment around them (or attached entities) and 

to induce an appropriate response, thus supporting the automation or optimization of processes or 

operations.  

On the other hand, Machine-to-Machine (M2M) [11] simply refers to the communication or exchange 

of data between devices without human intervention. M2M can be a relatively closed network that may be 

considered part of the IoT. In this thesis, for brevity, we use “IoT/M2M” when referring to a broad range 

of scenarios, systems or technologies involving interconnected or communicating things within the context 

of IoT and M2M.  

Store-and-forward (S&F) is a communication technique in which data from a source node arrives at 

a final destination node through one or more intermediate nodes that keep and send data at a later time, 

following a route that leads to a final destination. A “node” refers to a point in a communication path and 

is in practice associated with a computing device or station located somewhere. S&F communication is 

applied in networks with intermittent connectivity, such as in delay-tolerant and disruptive-tolerant 

networks. For instance, data from sensing stations deployed in remote locations can be collected through a 

satellite acting as a relay node. Remote data collection is one application of a satellite-based S&F system 

that may be part of a bigger IoT/M2M system and this is a niche use for nanosatellites explored in this 

work.  

This chapter reviews the previous research works on using nanosatellites for S&F communication for 

remote data collection, and the previous nanosatellite S&F missions. Such research works and nanosatellite 

missions were undertaken primarily in the context of non-commercial applications. Then, it surveys the 

recent commercial nanosatellite IoT/M2M players and examines their proposed systems in terms of 

satellite platform, constellation design, communication technology, targeted applications, requirements, 

and performance. 

 

2.1 S&F Small Satellites and Microsatellites 

The LEO microsatellites developed in the 1980s and 1990s by research and amateur radio 

organizations, which were capable of S&F communication, have demonstrated their use as simple, small-

size, efficient and low-cost space-based asset for remote data collection and messaging [12]. The first 

digital S&F microsatellite, UoSAT-2, was launched in March 1984, and then followed by a series of other 

experimental and operational S&F microsatellites [13]. These S&F microsatellites served complementary 
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roles to those of ‘big’ LEO systems (whose focus had been to provide global mobile communications) 

including [12][13]: 

• Enable non-real-time communication, low data transfer rate and volume (~up to a few tens of 

kbps), 

• Provide personal communication services to amateur community such as email and file 

forwarding, messaging, and broadcasts, 

• Form the basis of both experimental and operational microsatellite missions for remote site data 

collection and messaging 

The succeeding commercial S&F satellite systems had higher data capacity to support various markets, 

including tele-learning, file-transfer on-demand, data transfer to/from remote sites (e.g., remote 

environment monitoring and automatic sensor reading), tele-control of remote instrumentation and tele-

medicine [14]. After year 2000, there were other S&F satellites for remote data collection or messaging 

which were built by government, research, or academic institutions. A good example is Sina-1, a 160 kg. 

satellite and the first satellite of Iran [15] which was launched in 2005. In addition to its main imaging 

payload, it carried a S&F payload that provides the handling of exchanging packet type messages via 

satellite between two ground terminals, which may not be on the same footprint at the same time. A 

message received from one ground terminal is stored in the onboard memory and then delivered as the 

satellite passes over the destination ground terminal. Communication is done using phase-shift keying 

modulation, VHF and UHF radio links, and split channel reservation multiple access (SRMA) protocol 

(one random access channel for transmitting a slot reservation request and a reserved mode channel for 

data transmission).  

Paper [15] analyzed the effect on channel efficiency performance of different parameters such as 

number of users, packet length and visibility time. Another example is the 38 kg. microsatellite, ANUSAT, 

which was used for amateur radio service to transfer electronic mail among ground terminals in the 

footprint in non-real-time (or immediately if the source and destination terminals are simultaneously in the 

footprint) [16]. Then, S&F microsatellites Hodoyoshi-3 and 4 [17] were developed in Japan to demonstrate 

the use of small-size satellites for remote data collection. For a simplified onboard payload, the satellites 

demonstrated the use of ground signal processing instead of onboard demodulation, and this was shown to 

improve the signal demodulation rate. 
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Table 2. Some S&F small satellite and microsatellite missions 

Satellite 
Launch 

Year 
Orbit Mass 

S&F User 

Uplink 

S&F User 

Downlink 

 

Mission Data 

Downlink 

SSTL/UoSAT series 

[13] (e.g., UoSAT-

2, -3, -5, S-80/T, 

KITSAT-1, PoSAT, 

HEALTHSAT-2, 

etc.) 

1980s – 

1990s  

~700-

800 km, 

SSO, 

i=~98°-

99° 

~50 kg 

class 

VHF 

(amateur/ex

perimental, 

licensed); 

1200, 4800, 

9600, 38400 

bps; AFSK, 

FSK; up to 

10W TX 

VHF/UHF 

(amateur/ex

perimental, 

licensed); 

1200, 4800, 

9600, 38400 

bps; AFSK, 

FSK, up to 

5W TX 

(not for S&F 

data 

downlink to 

GS) 

Maroc-Tubsat 

(Zarkae Al 

Yamama) [18][19] 

2001 

986/1014 

km, SSO, 

i=99.7°  

47 kg 

144 MHz 

VHF band, 

1200 bps, 

AFSK, 5W 

TX 

144 MHz 

VHF band, 

1200 bps, 

AFSK, 

3.5W TX, 

(for ACK 

DL) 

436 MHz 

AFSK, 

1200/2400 

bps, 5W TX;  

2208 MHz, 

BPSK, FEC, 

max 250 

kbps, 2W TX 

Sina-1 [15] 2005 

700 km, 

SSO, 

near 

polar 

160 kg 

146 MHz, 

4.8 kbps, 

BPSK, 5W 

TX, ½ rate 

conv. 

coding, 

Viterbi 

decoding 

435 MHz, 

4.8 kbps, 

BPSK, 5W 

TX 

(not for S&F 

data 

downlink to 

GS) 

ANUSAT [16]  2009 

402/552 

km, 

i=41.2°, 

polar 

38 kg 

VHF 

(amateur), 

9.6 kbps, 

FSK, turbo 

coding 

UHF 

(amateur), 

9.6 kbps, 

FSK, turbo 

coding 

(not for S&F 

data 

downlink to 

GS) 

Hodoyoshi-3 & 4 

[17] 
2014 

612/665 

km; 

612/650 

km; 

SSO, 

i=97.97° 

56kg; 64 

kg 

400 MHz 

licensed 

band, 1W 

TX, no 

onboard 

demodulatio

n, BPSK 

used for 

testing, 

10/40 kHz 

A/D 

sampling 

frequency 

- 

X-band, 10 

Mbps, 2W 

(download 

recorded S&F 

signal to GS) 
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Table 2. Some S&F small satellite and microsatellite missions (part 2) 

Satellite 
Multiple Access Scheme 

(for S&F user uplink) 
Link Layer 

 

Upper or Application 

Layer 

SSTL/UoSAT 

series [13] (e.g., 

UoSAT-2, -3, -5, S-

80/T, KITSAT-1, 

PoSAT, 

HEALTHSAT-2, 

etc.) 

ALOHA-type (pure, 

slotted, SRMA); some 

satellites in this series have 

multiple receivers 

AX.25 protocol, 

ARQ with FEC 

PACSAT protocol 

suite – transaction-

oriented (file server, 

file 

transfer/messaging, 

broadcast, email 

networking, etc.) 

Maroc-Tubsat 

(Zarkae Al 

Yamama) [18][19] 

Purely random (ALOHA) 

Stop-and-Wait 

ARQ, likely AX.25 

protocol 

MCU program 

Sina-1 [15] 

SRMA  

(1 RA UL for slot request, 

1 reserved mode TDM UL 

for data transmission, 1 DL 

for data transmission) 

Only simple ACK 

of received packet 

None described 

ANUSAT [16]  
Polling and reservation 

scheme 

Sliding window, 

go-back-N ARQ, 

HDLC 

3 phases: Directory 

broadcast, allocation, 

data transfer; file & 

memory handling; 

RTOS for multi-

tasking 

Hodoyoshi-3 & 4 

[17]  
None None 

 

None 

 

2.2 The Rise of Nanosatellites and CubeSats for S&F Communications and 
Wireless Sensor Networks 

In recent years, with the rise of even smaller classes of satellites, including nanosatellites and 

picosatellites, especially the popular CubeSat standard [24] platforms, there have also been ideas to utilize 

them as space-based data relay for remote data collection. The value proposition is that a S&F nanosatellite 

or nanosatellite constellation can be launched at relatively low cost to serve a niche practical use as relay 

for collecting data from stations deployed in remote or isolated sites – those usually not served by regular 

communication infrastructure or where access by humans is challenging.  

An example of a mission concept utilizing a nanosatellite for remote data collection is the WAPOSAT 

[25], which aimed to retrieve water pollution parameters from sensors (pH, oxygen concentration, 

temperature, fluidity, etc.) distributed over Peruvian lakes and rivers. The mission concept is shown in 

Figure 5. 
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Figure 5. Mission concept of WAPOSAT and block diagram of autonomous multi-sensor system. Data 

from polluted water is sent to a Central Hub in Lima (Peru) through 2U cubesat constellation (source: 

[25]) 

Since many remote data collection scenarios also involve low-volume data, low-data rate and latency 

is tolerable, a S&F nanosatellite or nanosatellite constellation can be considered as a practically suitable 

solution (the size of constellation depends on application requirements). Previous work on this topic range 

from academic research, actual satellite missions by academic/research/civil organizations (typically non-

constellation), and those by companies aiming to provide commercial services and are in the process of 

realizing their envisioned constellations. Commercial nanosatellite IoT/M2M solutions are surveyed in 

Section 2.5. This section focuses on the academic, research and non-commercial work.  

Several published work in literature have tackled S&F nanosatellites/picosatellites as an important 

component of satellite-connected wireless sensor networks (WSN) [26], intermittent and disruptive/delay-

tolerant networks (DTN) [27], Internet of Remote Things (IoRT) [28] and sparse network of tiny satellites 

supporting store-and-forward routing [29]. Paper [30] presents a futuristic idea in which terrestrial and 

space based WSNs may be seamlessly integrated, consisting of distributed systems of smaller space and 

ground nodes.  

In [26], the authors considered a WSN scenario depicted in Figure 6 in which ground relay nodes 

(RNs) transmit data to a nanosatellite during a duration-limited pass using a slotted ALOHA (SALOHA) 

random access protocol with a re-transmission scheme for collided packets. The nanosatellite sends an 

acknowledgment for every successfully received packet, and if no acknowledgment is received, collision 

is assumed, and each colliding RN re-transmits after a random back-off time. By assuming employment of 

a very simple payload, whereas all the complexity is brought back to the relay nodes (RNs), the RNs are 

expectedly equipped with synchronization clocks for SALOHA to properly work.  
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The paper [26] calculated the energy consumption and lifetime of each RN (which takes into account 

all parameters involved for determining the lifetime of a RN, such as current consumption and duty cycle 

of each operation mode and average re-transmission rate) and a discrete-event simulation showed the 

maximum number of RNs that can be served at the same service area of the nanosatellite without reaching 

traffic saturation. Since the energy consumption depends heavily on the average re-transmission rate, which 

is influenced by the number of deployed RNs within a service area (due to collision rate), this work showed 

that a lower number of RNs should be decided to optimize the RN’s battery lifetime (in addition to traffic 

saturation limit). An earlier work also investigated slotted ALOHA in a small S&F satellite-based remote 

data collection system [31]. 

 

Figure 6. Wireless sensor network using store-and-forward nanosatellite (source: [26]) 

A succeeding work by the same authors [32] presents a modified random-access protocol, called 

slotted ALOHA with collision avoidance (SALOHA-CA), to improve the throughput and energy efficiency 

compared to the traditional SALOHA. In SALOHA-CA, RNs listen to the activity of the channel through 

the acknowledgment packet meant for another RN. If an acknowledgment for another RN is received, the 

RN waits for a random number of time slots and checks the channel again. In this way, occurrence of 

collisions is reduced. If the channel is vacant, an RN transmits a packet and the reception of first 

acknowledgment serves as a reservation allowing the RN to transmit a set number of packets in the 

succeeding slots. In case two or more RNs transmit after observing a vacant channel, those colliding RNs 

back-off from transmission and check the channel at the later time.  

With SALOHA-CA, numerical results showed that the improvement can be substantial and the 

maximum throughput approaches 100% (compared to 36% in traditional SALOHA) when the relay nodes 

have several packets of data to send during the visibility period but at the expense of the number of RNs 

on the ground. On the other hand, un-slotted ALOHA is more desirable for a simpler ground terminal at 

the expense of half the throughput of slotted ALOHA (or 18%). A previous work [33] studied unslotted 
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ALOHA performance for a single microsatellite data collection system with ground terminals, considering 

channel throughput, network capacity, packet transmission delay (which impact terminal queue size). 

A few works have implemented nanosatellite-based S&F systems, including the HumSat system [34], 

Irazu project [35] and TriCOM project [36]. HumSat (Humanity Satellite) project [34] was an ESA-

supported educational initiative allowing university students to participate in an international collaboration 

for implementing a swarm of CubeSats providing worldwide communication capabilities to those areas 

without infrastructure, especially in developing countries. The HumSat S&F system was designed to 

provide free, non-guaranteed non-commercial data-relay services to one-way and bidirectional sensors 

built by users according to their desired applications.  

 

Figure 7. The HumSat architecture composed of three parts: space segment, ground segment and user 

segment (source: [34]) 

The HumSat architecture, shown here on Figure 7, consists of the space segment, ground segment and 

user segment, which to be built by collaborators following a defined set of communication protocols and 

interfaces. Sensor stations in the user segment send data to the onboard payload of any member satellite 

(space segment), and the collected data are subsequently downloaded through the GENSO ground station 

network. All radios of the HumSat communication system operate in various amateur radio bands (VHF, 
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UHF, S-band) [34]. The HumSat-D satellite payload developed by the University of Vigo consists of four 

receivers, which makes it capable to receive four simultaneous packets from different sensor stations [37]. 

The Irazu project [35] of Costa Rica Institute of Technology (TEC) operated an environmental data 

collection system using a 1U CubeSat (deployed last April 2018), with a concept of operations shown here 

on Figure 8. The Irazu CubeSat served as a data relay to obtain data from an experimental environmental 

station consisting of distributed sensors for measuring tree growth (dendrometers and ultrasonic sensors) 

and environmental parameters (temperature, humidity, pressure). The project reported a successful 

demonstration of the CubeSat-based S&F data collection system by being able to obtain relayed data from 

the station. The payload communication utilized a frequency in the 430 MHz band as secondary service.  

 

Figure 8. Irazu project concept of operations. The overall system consists of three segments: remote 

station, flight and ground segments. The experimental station measured monitoring data that relate to 

carbon sequestration, including tree growth and environmental parameters (source: [35]) 

 The TriCOM project of the University of Tokyo aims to build and operate 3U CubeSats carrying a 

S&F payload that relays data from beacon-transmitting remote stations (temperature, soil moisture, water 

level, etc.) and download the data to a main ground station in Japan [36]. The S&F payload onboard the 

TriCOM-1 CubeSat consists multiple LoRa modules that support a total of 16 channels, thus it is capable 

of receiving up to 16 simultaneous transmissions from different stations (with specified receiver sensitivity 

within -132 to -145 dBm depending on data rate). The remote stations transmit a maximum of 20 mW at 

the 920 MHz ISM band at very low data rates (45/146/293/488/976 bps).  

Data download is done at a licensed frequency within the 460 MHz band. After the launch failure of 

TriCOM-1 in January 2017, an identical CubeSat, TriCOM-1R was built and launched in February 2018 

[38][39]. The payload operated well and the team reported that through tests from various locations around 

the world (e.g. Chile, Costa Rica, Japan, Rwanda), successful uploading of data from the sensors to the 

payload was demonstrated with a signal power as low as 8mW, well below the original target of 20mW. 

Then, another 3U CubeSat named RWASAT-1 carried the same S&F payload to perform the S&F mission. 
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It is first satellite of the Republic of Rwanda, co-developed with the University of Tokyo based on the 

modified TriCOM bus design (TriCOM-2), and was deployed from the ISS in November 2019. 

Table 3. Some nanosatellite S&F missions for academic, research and civilian (non-commercial) 

purposes 

Satellite 
Launch 

Year 
Orbit Mass 

S&F User 

Uplink 

S&F User 

Downlink 

 

Mission Data 

Downlink 

Humsat-D 2013 
596 × 639 km, 

i=97.80° 
1U 

437 MHz, 

amateur, 4 

receivers 

Not yet 

implemented 

on this mission 

145 MHz 

amateur, SP-

L, 9600 bps 

Irazu 2018 

400 km, 

i=51.64° (ISS 

release) 

1U 

437 MHz, 

amateur, 9600 

bps, GRUH 

FSK, up to 

50W TX 

-  

437 MHz, 

amateur, 

9600 bps, 

GRUH FSK 

TriCOM-1R; 

RWASAT-1 

2018; 

2019 

183/2010 km; 

400 km, 

i=51.64° (ISS 

release)  

3U 

920 MHz ISM 

band, LoRa 

modulation, 20 

mW TX, 16 

receivers, 45-

976 bps 

- 
460 MHz,  

(3) BIRDS-2 

CubeSats 
2018 

400 km, 

i=51.64° (ISS 

release) 

1U 

145.825 MHz, 

amateur, 1200 

bps, AFSK, up 

to 5W TX 

145.825 MHz, 

amateur, 1200 

bps, AFSK, up 

to 0.5W TX 

(for ACK) 

437.375 

MHz, 

amateur, 

9600 bps, 

GMSK, 0.8 

W 

 

Table 3. Some nanosatellite S&F missions for academic, research and civilian (non-commercial) 

purposes (part 2) 

Satellite 
Multiple Access Scheme  

(for S&F user uplink) 
Link Layer 

 

Upper or 

Application Layer 

Humsat-D 
custom MAC  

(not described in detail) 
CCSDS protocol 

- 

Irazu 
None  

(single remote ground terminal) 
AX.25 protocol 

 

CSP 

TriCOM-1R; 

RWASAT-1 

LoRa – chirp spread spectrum 

(can receive up to 16 

simultaneous packets at 

different data rates) 

- 

 

- 

(3) BIRDS-2 

CubeSats 
Purely random (ALOHA) AX.25 protocol 

 

Simple S&F MCU 

program 
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2.3 CubeSats with APRS-DP Payloads 

A since 2000s, a few satellites (mostly non-CubeSats ranging from 10kg to 70kg) have carried an 

Automatic Packet Reporting System (APRS) digipeater payload for global amateur community use, 

including the Amateur Radio on the ISS (ARISS), PCSAT [40], LAPAN-A2 [41], Diwata-2 [42]. More 

recently, with the rise of even smaller classes of satellite, especially the standardized CubeSat platforms, 

there have also been proposals and actual implementations of CubeSats carrying an APRS-DP. These 

include, among others, PSAT-1 (1.5U, 2015) [43], PSAT-2 [44] and BRICSAT-2 (1.5U, 2019) [45].  

APRS originated as a terrestrial amateur radio-based real-time packet communication protocol that 

enabled operators to exchange various situational information in their local area (e.g., weather reporting, 

object/vehicle position tracking, messaging, and emergency response). Later on, with stations having been 

interconnected by the Internet (called IGates) through the APRS Global Internet System (APRS-IS), global 

monitoring of local activities and two-way end-to-end messaging between any two APRS users have been 

supported [46]. Due to a satellite’s capability to provide a geographically broad coverage directly below 

its moving footprint, an APRS digipeater (APRS-DP) onboard a satellite would subsequently play a 

significant role of covering remote areas not reached by terrestrial means.  

With a satellite-onboard APRS-DP, using an APRS-capable radio, a “ham” (a common term for 

amateur radio operator) sends an APRS packet (message, position, beacon, telemetry, etc.) to the satellite 

and then the payload retransmits it immediately (and can be set to re-transmit automatically at a later time), 

allowing other hams or amateur stations on the footprint to receive it (Figure 9). This also works for fixed 

and mobile amateur stations, such as weather/telemetry/environmental stations, buoys, and GPS-equipped 

vehicles of remote travelers [50]. The idea proposed in [50] is for existing and future APRS-DP satellites 

in orbit to share a common channel (145.825 MHz) and a generic digipeater alias (APRSAT and ARISS) 

to accumulate all user traffic on an Internet server, hence integrating all worldwide users and ground 

stations. 

 

Figure 9. Operational concept of APRS satellites [44] 
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In the BIRDS-2 Project, we developed an amateur payload consisting of mostly commercial-of-the-

shelf components and supports both APRS-DP and S&F communication, which are considered 

complementary applications. The payload was carried as a technology demonstration mission of a 1U 

CubeSat constellation (BHUTAN-1 of Bhutan, MAYA-1 of Philippines and UiTMSAT-1 of Malaysia) 

developed at the Kyushu Institute of Technology under the BIRDS-2 Project. The payload design, 

development, testing, and integration with the CubeSats are detailed in Chapter 4.  

Other inexpensive implementations of nanosatellite-onboard APPRS-DP/S&F payload have been 

described in literature [164]-[166]. In [164], the communication program, modem, packet handling and 

onboard data handling are handled by one MCU on a single board, and a half-duplex COTS VHF amateur 

transceiver is used for transmitting and receiving RF signal. This integrated approach results in a more 

compact onboard system, although it requires more programming work on the part of the developer to 

implement the APRS application, AX.25 protocol, and AFSK modulator/demodulator (modem) on the 

MCU.  

On the other hand, in BIRDS-2, we used a compact COTS module (supporting APRS-DP functions, 

AX.25 protocol and AFSK modem) was used in combination with 0.5 W VHF transceiver from another 

company and an MCU implementing the S&F communication program. This allowed the developer to 

focus more on the S&F program development and payload integration. The payload developed for PSAT-

1, PSAT-2 and BRICSAT-2, albeit developed only for supporting APRS-DP, evolved from a complete 

APRS packet transponder (including the radio) product commercially available but modified to fit in a 

standard CubeSat form factor [47][48]. 

2.4 Survey of Recent Commercial Nanosatellite IoT/M2M Communications 
Solutions 

The surveyed commercial nanosatellite solutions for IoT/M2M communications are given in Table 4. 

As almost all companies utilize patented communications technology, it is not possible to obtain details on 

physical and MAC layers. From the surveyed information, the following trends may be stated: 

• Since most of these companies are recent start-ups founded in the past five years or so, only a few 

of them have reached preliminary or pilot commercial services to customers. These more advanced 

companies have already rolled out development kits including modems to communicate with 

satellites. Others (most) have only recently launched a few experimental/demonstration satellites 

or payloads to their communications technologies or expected to launch demonstration missions 

in 2020. 

• Most target to utilize the CubeSat-based platforms of various sizes, depending on the complexity 

of the mission or service, and perhaps on the developed payload. Predominant are 3U and 6U 

CubeSats. 

• In terms of satellite orbit, most target polar LEO orbits between 500 km. and 800 km. 
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• In terms of communication topology, most support only direct-to-satellite mode. One supports both 

direct-to-satellite solution and gateway solution (end device to ground gateway to satellite), and 

another supports only gateway solution. 

• Among those direction-to-satellite solutions, a significant portion adopt the originally terrestrial 

LPWAN technologies such as the proprietary protocols LoRa/LoRaWAN and SigFox, as well as 

the open standard cellular technology NB-IoT. The idea is to provide connectivity to existing 

regular end devices (originally equipped with capabilities for terrestrial networks) and integrate 

them to existing terrestrial infrastructure, or even allowing capability to seamlessly connect to 

either terrestrial or satellite network, whichever is available. The design of satellite-onboard base 

station receiver or transceiver remains proprietary and hence serves as the company’s leverage. 

Meanwhile, those providing gateway solutions focus on supporting LoRaWAN protocol, but also 

open to supporting other protocols such as WiFi and Bluetooth. Still, a significant number of others 

have developed their novel proprietary communications protocols and technologies. 

• Some support only one-way (uplink) communication while others support two-way (uplink and 

downlink) communication. Operators supporting both types are significantly numbered. 

• In terms of frequencies, both licensed and ISM bands are utilized or planned to be utilized: For 

ISM bands: the ~433 MHz and ~860/920 MHz bands; for licensed bands: VHF (137/148 MHz 

bands), UHF (~400 MHz), L-band (~1500 to ~1600 MHz), S-band, Ku-band. 

 

Table 4. Commercial nanosatellite solutions for IoT/M2M communications 

Satellite 

Operator 

Satellite 

Platform 
Constellation Channels 

Communication 

Architecture and 

Schemes  

Targeted Markets 

or Highlighted 

Application Cases 

Status/Targets 

Astrocast SA, 

formerly ELSE 

SA 
(Switzerland) 

[51]-[54], in 

partnership with 
Thuraya 

3U CubeSat 

-Originally 64 

satellites  

(8 planes, 8 

satellites each) 

-Changed to 80 

satellites 
-500 km to 600 

km orbit 

-Polar and 
equatorial orbits 

-L-band 

-Bidirectional, 

“highly secure 
connection” 

-Direct-to-satellite 

solution 
-Uplink message 

sizes up to 160 Bytes 
-Downlink message 

sizes are either 8 or 

40 Bytes  

-Multiple messages 

(few kB)/day 

-Average end-to-end 
latency of 5-7 

minutes  

-No info on 
modulation and 

MAC 

-Peak power 
consumption of 

modem = 0.45W 

-Maritime 

applications and 

tracking; 

environmental 

monitoring; mining, 
oil and gas 

(equipment/infrastr

ucture monitoring) 

-Currently doing 

pilot programs 
with our pre-

commercial 

service 
-Have 2 

operational 
satellites in orbit 

-Set to launch 30 

by late 2021 
-Full 

constellation by 

2023/2024 
-Developed 

terminal comm. 

module 
(Astronode™ S), 

full commercial 

development kit 
will be released 

in 2020 

Hiber, formerly 

Magnitude 

Space 

(Netherlands) 

[55]-[58], in 

partnership with 
Iridium 

3U & 6U 

CubeSats 

-600 km, polar 

SSO 
-Consists 

initially of 18 to 

24 satellites, 
later to 

expanded to 48 

or 50 

Direct-to-

satellite (D2S) 

-One-way 
(uplink) S&F 

communicatio

n  
-399.90-

400.05 MHz 

(sensor 
uplink) 

-Supports direct-to-

satellite and gateway 
(LoRa/LoRaWAN) 

solutions 

-144 bytes/message 

-Up to 4 

messages/day for 

direct-to-satellite 
solution and 100 

messages/day for 
gateway solution 

-Maritime tracking; 

environmental 

monitoring; smart 

agriculture (e.g. soil 

moisture, crop 

monitoring); animal 
tracking 

-Launched first 2 

satellites in 2018 
-Launched 

commercial IoT 

satellite trials 

worldwide in 

November 2019 

-Expects to 
launch 2 more 

satellites in early 
2020 
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-400.15-

401.00 MHz 

(downlink, 
perhaps for 

ACK?) 

communicatio
n only 

 

Gateway 
(GW) 

-433/868/915 

MHz 

-Current 

consumption of 

modem in 
transmission mode = 

4.13W (D2S) 

-GW: 8-channel 
LoRa concentrator, 

can support up to 500 

devices 
-5.3 dBi RHCP 

antenna 

-No info on 
modulation and 

MAC 

-Developed 

Hiber LPGAN 

modem, a low-
power 

communication 

front-end 

Kepler 

Communications 

(Canada) [59]-
[63] 

3U & 6U 

CubeSats 

-575 km polar 
orbit  

-140 satellites 

to provide 
“total global 

coverage” 

-Bidirectional 

communicatio

ns for data 
acknowledgm

ents and 

firmware 
updates 

-Ku-band 

(14.0-14.5 
GHz uplink, 

10.7-12.7 

GHz 
downlink) 

-Direct-to-satellite 
solution 

-Uplink capability: 2 

kB/day or 60 
kB/month 

-Flexible SDR 

communications 
payload 

-Antenna array 

onboard satellite for 
creating highly 

directional RF beam 

-Its 
everywhereIOT™ 

service provides a 

“cellular-quality” and 
standardized 

connection for IoT 

devices; aiming to 
support hundreds of 

millions of low-cost 

devices globally 
-No info on 

modulation and 

MAC 
-In addition, its 

Global Data 

Service™ provides a 
secure non-time 

sensitive backhaul 

service for 
transferring large 

data files between 

remote sites and the 
Internet 

-Tracking antenna 

needed to 
communicate with 

satellites 

-Logistics and 

transportation; fleet 

tracking; asset 
monitoring; energy 

and natural 

resources 
monitoring; smart 

agriculture; 

environmental 

monitoring  

-Operates two 
satellites 

currently in orbit 

(Kepler 1 & 2 
launched in 

2018) 

-Demonstrated 
the capabilities 

of its technology 

by delivering a 
high-speed 

internet data 

connection to the 
North Pole in late 

2019 [60] 

-Kepler 3 to be 
launched 2020 

-Rolled out 

development test 
kit (Kepler IoT 

DevKit™) 

Fleet Space 

Technologies 

(Australia) [64]-
[67] 

First four 

are 1.5U 
and 3U 

CubeSats, 

will launch 
6U/12U 

CubeSats in 

future 

-580 km SSO 
orbit 

~100 satellites 

-LoRa™ 

Supported: 
902-928 MHz, 

863-870 MHz, 

433 – 434 
MHz 

-S-band and 

L-band 

-Gateway 
(LoRaWAN) solution 

-GW supports up to 

500 devices (for 8-
channel) or 1000 

devices (for 16-

channel) within 15 
km range 

-In addition, GW 

supports a range of 
IoT protocols 

developed for 

terrestrial 
infrastructures, 

including Bluetooth 

4.0 and 802.11ac Wi-
Fi 

-Supported message 

types: Confirmed 
Uplink, Confirmed 

Downlink, Un-

Confirmed Uplink, 
Un-Confirmed 

Downlink 

-Demands from 

customers in 

energy, natural 
resources, and 

mining applications 

(asset tracking and 
asset management) 

-Also agriculture 

(e.g. herd 
management), 

environmental 

monitoring, 
logistics 

-4 CubeSats 
launched in 2018 

-Developed and 

made available 
Fleet Portal, an 

Edge Server, a 

LoRaWAN™ 
gateway and a 

satellite modem 

and antenna all 
wrapped into one 

fully integrated 

module. It is 
optimized for 

remote scalable 

IoT applications 
-Currently uses 

Iridium and 

Inmarsat services 
while 

establishing their 

own constellation 
-Likely to launch 

another 4 
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-GW RF output: 24 

dBm 

-GW power 
consumption: 10-15 

W 

-No info on satellite 
communication 

CubeSats by late 

2020 

Kinéis, a spin-

off from CLS, 

CNES 
subsidiary which 

was responsible 

for Argos 
(France) [68]-

[69], in 

partnership with 
Thales Alenia 

 

16U 

CubeSats/ 
Microsats 

-25 CubeSats, 

in addition to 

existing Argos 
satellites 

-650 km orbit 

-Two-way 

communicatio
n 

-Likely to use 

the same 
frequency 

band as Argos 

satellites 
(UHF) 

-Direct-to-satellite 

solution 

-Draws on the Argos 

system legacy (6 

Argos satellites in 

orbit) 
-Likely, pure 

ALOHA MAC 

-Objects connected 
through Kineis will 

be geo-located 

-Secondary AIS 

payload for ship 

tracking 

-Outdoor sports, 

agriculture, 

artisanal fishing, 
logistics, boating, 

security, science 

-Angels 

prototype 

nanosatellite 
launched in 2019 

-Planned full 

constellation by 
2022 

-Keneis supplies 

radio chipset to 
provide satellite 

network 

connectivity to 

any mobile 

device 

Myriota 
(Australia) [70]-

[74] 

CubeSats 

(5kg) 

-600 km SSO 

orbit 

-50 satellites 
planned 

-Two-way 

communicatio
n 

-Uplink: UHF 

(399-403 
MHz) or VHF 

(156-165 

MHz) 
-Downlink: 

UHF (400-401 
MHz) 

-ISM (433-

435 MHz) 
 

-Direct-to-satellite 

solution 

-TX RF power: 27 
dBm (UHF/VHF), 14 

dBm (ISM) 

-Uplink message of 
20 bytes 

-Agriculture, 
transport and 

logistics, maritime, 

defense, 
environment, 

mining, utilities 

-Developed 

Myriota Module, 
a sophisticated 

edge computing 

and modem 
device 

-First tested 

transmission of 
IoT data directly 

to nanosatellite 

in 2013 
-System 

deployed by 

some customers 
and delivered 

data and service 

-Offers 

Developer 

Toolkit 
-Four satellites 

currently in orbit 

(1 own, 3 from 
others) 

Swarm 
Technologies 

(US) [75]-[79] 

~0.25 U 

(SpaceBEE) 

-150 satellites 

planned 
-300-550 km, 

equatorial and 

polar orbits 

-Two-way 

communicatio
ns 

-VHF bands: 

148-149.95 
MHz (uplink), 

137-138 MHz 

(downlink) 

-Direct-to-satellite 
and gateway (LoRa, 

WiFi) solutions 

-Maritime shipping, 

agriculture, energy, 

ground 

transportation, 
global development 

(e.g., air and water 

quality monitoring, 
emergency comms, 

weather/climate 

changes) 

-Launched 9 

satellites in 2018 
-Developed a 

communications 

modem 

Lacuna Space 

(UK) [80]-[82] 

3U, 6U 

CubeSats 

-500 km orbit 

-32 planned 
satellites 

-One-way 

(uplink) 
communicatio

n 

-Sub-GHz 
ISM bands 

-Direct-to-satellite 

(satellite-onboard 

LoRaWAN™ 
gateway) 

-Receives signals 

from ordinary LoRa-
based devices 

through the LoRa™ 

RF communication 
protocol 

-Pure ALOHA 

-Works seamlessly 
with terrestrial 

networks 

-Applications that 
involve sending 

short messages 

-E.g., maritime 
tracking, wildlife 

and marine 

monitoring, asset 
tracking, 

environmental 

monitoring 

-Hosted payload 

on one launched 

nanosatellite 
M6P (LacunaSat-

1, BTD-1) and 

on several to be 
launched 

nanosatellites 

-Expected launch 
of own satellite, 

LacunaSat-1, in 

2020 
-Announced 

successful global 

test campaigns 
with on-orbit 

satellite payload 

Helios Wire, 

acquired by 
EchoStar in 

October 2019 

(Canada) [83]-
[85] 

6U, 16U 

CubeSats 

-30 planned 
satellites 

(during Helios 

Wire time) 

-S-band (30 

MHz) 

-“To receive tiny data 

packages from huge 
number of sensors” 

 

-Launched 2 

satellites 

-To launch three 

satellites in 2020 
-Conducting tests 

across the 

network probably 
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by late 2020, and 

certainly by the 

first quarter of 
2021 

Eutelsat LEO for 
Objects (ELO) 

[86]-[94] in 

partnership with 
SigFox 

3U 

CubeSats, 
8-kilogram 

payload on 

80-kg multi-
customer 

condosats 

-25 planned 

nanosatellites 
-600-700 km 

SSO orbit 

-One-way 

(uplink) 

communicatio
n 

-Sub-GHz 

ISM bands 

-Direct-to-satellite 

solution (satellite-
onboard SigFox base 

station receiver) 

-Receive signals from 
ordinary SigFox-

based end devices 

-15-20 mW power 
-Eutelsat acts as a full 

Sigfox Network 

Operator, while 
Sigfox seamlessly 

integrates the satellite 

network to its 
existing terrestrial 

infrastructure and 

connectivity services 
(i.e., end-devices’ 

transmissions can be 

captured by both the 
satellites and any 

terrestrial networks). 

-Asset tracking in 

oceans and other 
remote locations 

-Applications that 

involve sending 
short messages/ 

Beacons 

-Transportation, 
agriculture, and oil 

and gas industries 

-Demo satellite 

will be launched 
in 2020, to 

confirm the 

technical 
performance of 

various 

waveforms 
between a 

satellite in low 

Earth orbit and 
objects on the 

ground 

-4 ELO satellites 
will be launched 

between 2020 

and 2021 for 
commercial 

service 

-Full 
constellation by 

2022 

Sky & Space 

Global 

(Australia, UK, 
Israel, Poland) 

[95]-[100] 

-8U, 6U and 

3U 
CubeSats 

-200 planned 
satellites 

-500-800 km 

orbit 
-Five orbital 

planes: one 

equatorial and 
four inclined 

near equatorial 

orbits 

-S-band and 

L-band 

-Voice, data and 

M2M 
communications 

service with ISL 
-Constellation creates 

a mesh topology 

where each satellite 
serves as both a base 

station and a router  

-Utilizing unique IP-

nanosat network 

software protocol 

-Considered 

narrowband 
communication 

-Communication 
service (voice, data, 

personal messaging 

and IoT/M2M) 

-Launched 3 

satellites (the 3 
diamonds) 

-Delayed 

financing, 
planning to 

launch only 8 

satellites by end 

of 2020 

Sateliot (Spain) 

[101]-[104] 

-3U 

CubeSats, 

also 
Microsats? 

-500 km orbit 
-70 satellites 

planned 

-Two-way 
communicatio

n 

-Direct-to-satellite 

solution: acts like a 

satellite-onboard 5G 
NB-IoT base station 

-Support NB-IoT 

standard with the 
formalization of the 

non-terrestrial 

component expected 
in Release 17 of the 

3GPP standard in the 

2021-2022 timeframe 

-Will use the SDR 

technology 

(TOTEM) designed 

by Alén Space for 
R&D of new 

protocols and 

modulations on small 
platforms, that enable 

connection of objects 

in any remote place 

-Aims to offer 
global continuous 
connectivity to all 

elements regarding 

the IoT under a 5G 
architecture 

-IoT/M2M, direct-

to-phones  
-E.g., asset tracking, 

logistics, 

agriculture, remote 
infrastructure 

monitoring and 

control  

-To launch first 
test CubeSat by 

middle of 2020 

-Aims to launch 
16 satellites by 

end of 2021 

OQ Technology 

(Luxembourg) 

[105]-[108] 

-Strategy is to use existing 
small satellites such as 

CubeSats to upload software or 

hosted payload, or if necessary, 
to build and launch their own 

satellites 

-No info on how many payloads 
or satellites to be launched 

-Two-way 

communicatio

n 

-Direct-to-satellite 

solution: acts like a 

satellite-onboard 5G 
NB-IoT base station 

-Support NB-IoT 

standard with the 
formalization of the 

non-terrestrial 

component expected 
in Release 17 of the 

3GPP standard in the 

2021-2022 timeframe 

-Global 5G NB-IoT 

connectivity 

 

-During TIGER 

mission, 

performed testing 
of 

communications 

protocol using 
GOMX-4A and-

4B (6U 

CubeSats) 

-Expecting to 

launch their own 

1U CubeSat, 
Finch-1, in 2020 

for IoT 

demonstration 
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Lynk, formerly 

Ubiquitilink 
(US) [109]-[111] 

Hosted 

payload, 
CubeSats 

-Envisioned 

1000 satellites 

-Two-way 

communicatio
n 

-Connect regular 
mobile phones from 

everywhere on the 

planet, especially 
those without 

terrestrial cellular 

coverage 

-Global IoT/M2M, 

direct-to-phone 
connectivity (data 

and text messaging) 

-“Cell tower in 
space” 

-Launched 

hosted payload in 

2019 
-Successfully 

transmitted a text 

message from 
space to an 

unmodified 

mobile phone on 
Earth in February 

2020 

-To commence 
service in 2020 

with 24-36 

satellites 
-Verifying GSM 

(2G) operations 

and plans 
expansion to 

include LTE (4G) 

Blink Astro, a 

subsidiary of 
SpaceWorks 

(US) [112]-[115] 

-Likely 3U 
CubeSats 

? 

-One-way 

(uplink) 
communicatio

n 

-Direct-to-satellite 
solution 

-Precision 
agricultural 

applications (e.g., 

soil moisture, 
ambient 

temperature and 

humidity, GPS 
location) 

-Rolled out the 

BlinkRTM Series 
1000 ground 

terminal device 

in November 
2017 

-Technology 

demonstration 
payload flown on 

M6P in 2019 
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Chapter 3:  Satellite S&F Communication Systems and Protocols 
 

This chapter presents a literature review on communication system architecture, physical layer and 

random-access schemes, protocols, and technologies relevant to satellite-based IoT/M2M system. 

 

3.1 Communication System Architecture, Configuration and General 
Considerations 

Wireless sensor network (WSN) is simply defined as a network of tiny devices (“sensor nodes”) 

spatially distributed and cooperatively communicate information gathered from the monitored field by 

wireless links [116], without necessarily infusing the ideas of device-to-device communications (machine-

type, without human intervention) and “all things being interconnected through the Internet” in the IoT and 

M2M and IoT paradigms. Nonetheless, several concepts and practical considerations of WSN have been 

applied to M2M/IoT. Sensor nodes in a WSN are typically constrained in terms of hardware and energy 

resources, complexity, computational power, and sensing rate, and due to bandwidth and power constraints, 

a WSN is usually characterized by low data rate.  

Even before the rise of IoT/M2M, several works in literature had already described integration of a 

terrestrial wireless-sensor network (WSN) to a satellite network. When communication aspects are 

concerned, works on satellite-integrated WSN find relevance in satellite-integrated IoT/M2M, although the 

unique requirements of the emerging IoT/M2M applications should be differentiated (as will be discussed 

below).  

Reference [117] surveyed the architectural and system design aspects of satellite-connected WSNs 

and matched the requirements of common WSN applications to the characteristics of various satellite 

systems. The satellite systems described therein, however, were mainly for global mobile personal 

communication services, including narrowband and broadband, real-time, and S&F types, LEO, MEO, 

HEO and GEO satellites. Five kinds of WSN applications were studied: surveillance and monitoring of 

remote areas; emergency communications; support for SCADA (supervisory control and data acquisition) 

systems; critical infrastructures (CIs); and environmental monitoring. Traffic volume was classified into 

low (<50 kbps), medium (50 to 500 kbps) and high (>500 kbps) while disruption tolerance is classified 

into low (interactive/responsive services), medium (timely services) and high (non-critical services). 

Among these, environmental monitoring applications were considered to have low traffic rate and high 

disruption tolerance (non-critical) while surveillance of remote areas were considered low traffic and 

medium disruption tolerance.  

It identified two configurations of satellite-connected WSN for environmental monitoring, as 

illustrated in Figure 10: direct (sensors -> satellite communication), and indirect (sensors -> sink node + 

sensor gateway -> satellite communication). Three broad classes of sensor network applications were 

identified in terms of traffic generation: time-driven (sensor nodes periodically send their data to the sink 

node), event-driven, demand-driven (network queries the nodes for data). Two main types of network 
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architecture/topology were identified depending on application requirement: star (communication between 

devices and a satellite only) and mesh (communication among devices also supported). Standards for 

terrestrial WSN (ZigBee, 6LoWPAN and IEEE 802.15.4) and satellite technologies (DVB-RCS, GMR and 

GSPS) were reviewed and it was pointed out that the ETSI BSM SI-SAP can be used as the convergent 

technology for the integration of WSNs with heterogeneous satellite technologies. The paper [117] 

concluded that the traffic volume, disruption tolerance and architectural requirements of future WSNs can 

be met by the diverse existing satellite systems. 

   

  

Figure 10. Two types of satellite-WSN configuration (examples): (left) direct sensor to satellite 

communication, (right) sensor gateway to satellite communication (source: [117]) 

However, newly burgeoning and traditional but evolving applications have led to different 

requirements that are not met by the current implementations of M2M via satellite, which provide low data 

rate and access to a few nodes via proprietary standards [118]. Reference [118] focused on the use of 

satellite communication systems for “Internet of Remote Things” (IoRT), which relates to IoT scenarios 

where smart objects are remote or dispersed over a wide geographical area. Unlike [117], which had 

focused on WSN scenarios, [118] provided an integrated view of satellite-based IoT, dealing with various 

topics such as MAC protocols for satellite-routed sensor networks, efficient IPv6 support, heterogeneous 
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networks interoperability (terrestrial and satellite), quality of service (QoS) management, and group-based 

communications.  

Three IoRT scenarios where the use of satellites is of paramount importance were considered: (1) 

smart grids, (2) environmental monitoring, and (3) emergency management. Reference [118] considered 

that existing satellite-based M2M services cannot meet latency and bandwidth requirements for smart grids 

and the latency requirements for emergency management applications. Meanwhile, it considered 

environmental monitoring applications can be supported, although critical issues should be addressed 

including the need for more energy efficient multiple access, the varying topology and high number of 

nodes in several applications. Reference [118] also cited other previous works on MAC schemes and noted 

the importance of delay-tolerant networking (DTN) for low-cost small satellites (<50 kg) which are prone 

to intermittent and disruptive communication links due to limitations of such platforms (hardware 

constraints and non-optimized orbital plan and coverage).  

For enabling interconnection between satellite and sensors/actuators, two modes of interoperability 

were also compared: direct access and indirect access. The indirect access mode, wherein a wireless 

sensor/actuator communicates with a satellite through a sink node, has the advantage of lower number of 

complex satellite terminals required for the same number of sensors/actuators. When several sensors are 

needed in a deployment location, indirect approach decreases system costs and installation complexity. In 

indirect access mode, a gateway attached/connected to the sink node forwards the aggregated traffic to 

satellite. There are many possible scenarios for implementation, but a good example would be an 

interconnection between a satellite system and a terrestrial LPWAN performing the sensor sink + gateway 

functions for a set of sensors nodes in a remote local vicinity. This deployment approach may also be 

considered a “hybrid terrestrial-satellite network”, where the satellite and ground communication 

components are interconnected, but operate independently (in contrast to “integrated satellite-terrestrial 

network”, where ground components are complementary to the satellite components) [119].  

Of course, proper implementation of the gateway requires interfaces to be coordinated and managed 

between the LPWAN and satellite operators. A good practical example is the partnership between Inmarsat 

(a GEO satellite operator) and Actility (LPWAN operator) to deliver an end-to-end global LoRaWAN IoT 

network empowering business applications by combining Inmarsat’s global L-band satellite connectivity 

platform with Actility’s ThingPark IoT management platform [120]. By exploiting the respective 

advantages of an LPWAN system (suitable for connecting large number of very low-end, low-power, low 

data rate nodes) and an existing satellite platform (suitable for connecting more expensive/complex 

terminals sending higher data rates, as in a gateway node), the hybrid network deployment circumvents the 

previously mentioned limitations of existing satellite systems in catering emerging IoT/M2M applications. 

Reference [121] presents an architecture for a hybrid IoT-satellite network, which includes a terrestrial 

LoRaWAN (LPWAN) network for data collection and an Iridium satellite system for backhaul 

connectivity. 
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However, in a lot of other scenarios, it might not even be practical (i.e., either too costly to establish, 

or infrastructure-less deployment required or inapplicable such as in mobile wildlife tracking) or 

beneficial/profitable (e.g., only one or very few nodes in a vicinity so no need to aggregate traffic) to install 

an LPWAN gateway. Thus, in such cases, a direct access mode might be the better, if not the only possible, 

approach. Moreover, while the indirect access approaches (e.g., use of ground LPWAN gateway) can 

leverage existing satellite and LPWAN protocols, direct access approach better exemplifies the idea of 

connecting remote and ubiquitous IoT devices.  

A research funded by EU Horizon 2020, called IoTEE project (“Internet of Things Everywhere on 

Earth”), envisages a solely space-based IoT system for bringing connectivity to sensors/devices in very 

remote and inaccessible places of the world which occupy most portion of the globe [122]. Thus, 

complementary to terrestrial LPWAN and to hybrid terrestrial LPWAN-satellite network deployments, this 

space-based LPWAN is the realization of a truly ubiquitous global coverage. For this approach, a new 

communication protocol and corresponding satellite receiver and ground transmitting devices that address 

the above-mentioned unique requirements of satellite-based M2M (i.e., can simultaneously receive low-

power low-data rate burst packets from a large number of devices) should be developed.  

In relation to this, SAT4M2M (the coordinator of IoTEE project) has been developing a 

receiver/emitter chip implementing a unique communication protocol for satellite-based LPWAN that 

operates on the same frequency bands as Sigfox and Lora, and utilizing the ISS as a testbed and “sentinel” 

for initial services [122]. SAT4M2M announced successful initial test results, partnership with Fujitsu 

Electronics on delivering preliminary services, and development of TELDASAT (“a novel technology 

platform, network and architecture based on Space IoT”), but because they use patented technology, no 

technical information on the system is available [122][123]. Recently, synonymous terminologies were 

created to refer to such systems as LP(U)WAN (Low Power Ultra-Wide Area Network) and LPGAN (Low 

Power Global Area Network). 

Other papers in literature have also recognized the advantages and challenges of direct-access mode. 

Reference [124], for one, provides a state-of-the-art survey on “Direct-to-Satellite-IoT” (DtS-IoT), 

mentioning some challenges and future research efforts on revising/adapting existing protocols to support 

this idea. Topics tackled in [124] and the references therein include physical layer aspects (frequency 

spectrum, multi-beam antennas, spread spectrum modulation vs narrowband modulation), link layer 

multiple access scheme and upper layers (IPV6 addressing support, transport and application protocols 

such as MQTT and CoAP). It stated that a survey among relevant technologies showed LoRa is an 

appealing approach towards DtS-IoT but imposes severe challenges such as extremely low data rate and 

lack of knowledge on satellite channel effects on the behavior of the proprietary technology.  

Meanwhile, Lacuna Space, a start-up nanosatellite IoT company, has developed a satellite-onboard 

LoRaWAN gateway in collaboration with Semtech Corporation (inventors and owners of LoRa) [125]. 

Like that of IoTEE project, Lacuna Space’s system also exemplifies direct-access to satellite, allowing 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 49 

normal LoRa-equipped devices to transmit signal directly to a passing satellite. In addition, the devices on 

the Lacuna Network will seamlessly integrate with any LoRaWAN infrastructure on the ground within 

reach. Thus, this may also be considered as an example of an integrated satellite-terrestrial network (in 

contrast to hybrid satellite-terrestrial network). 

It must be noted that the direct-access and indirect-access modes have their own advantages and 

disadvantages and the correct choice would depend on the application scenario, resources, and 

requirements. There are application scenarios where only direct-access mode would be possible and other 

scenarios where indirect-access mode would offer a more effective solution such as simpler sensor node 

design. Naturally, direct access would put most burden of complexity on the satellite segment (if ground 

sensor/device design is simple), while indirect access would bring some of the burden to the ground 

terminal (gateway) segment. Reference [126] compares the direct and indirect access modes as means of 

connecting LPWAN-based IoT ground devices, and focuses on the open technical challenges and research 

directions in integrating/interoperating satellite and LoRaWAN networks by indirect access method. It 

tackles issues in the context of LoRaWAN standard such as gateway and end-devices synchronization 

(given satellite condition), gateway selection and replicas cancellation, cross-layer (physical, MAC and 

application layers) optimization. 

While there are works that adopt proprietary LPWAN technologies operating in ISM band such as 

LoRa (either in direct access or indirect access mode), there are also those that adopt the Narrowband-IoT 

(NB-IoT), which is an open standard cellular LPWAN technology (i.e., operating in the licensed band) 

developed by the 3GPP. It targets IoT applications that require very wide coverage of low-cost, low-power 

(20/23 dBm) and low-throughput devices. NB-IoT, first specified in the 3GPP Release 13 (LTE Advanced 

Pro) in June 2016 [127], supports smaller bandwidth (down to one single subcarrier transmission of 3.75 

or 15 kHz) and provides 20 dB high link budget than legacy LTE for low throughput terminals. Reference 

[128] discusses coverage extension of a LPWAN using a LEO satellite constellation, considering device 

uplink transmissions (unidirectional) that comply with the NB-IoT standard. In terms of implementation, 

OQ Technology, a Luxembourg-based satellite IoT/M2M service company, announced it has successfully 

tested NB-IoT waveforms and synchronization schemes using GomSpace’s GOMX-4A and GOMX-4B 

satellites during its Tiger mission [129]. 

Satellite constellation design aspects fundamentally affect satellite IoT coverage and communication 

performance so these also must be carefully considered. Reference [130] provides an overview of the 

architecture of the LEO satellite constellation-based IoT including the following topics: LEO satellite 

constellation structure, efficient spectrum allocation, interference analysis and mitigation approaches, 

heterogeneous networks compatibility (between LEO constellation-based and terrestrial IoT systems), and 

access and routing protocols. It also tackles two types of network architecture in terms of presence of inter-

satellite link (ISL): (1) Earth ground station-centralized network architecture (without ISL, for delay-

tolerant applications) and (2) dynamic satellite topology network architecture (with ISL, for delay-sensitive 

applications). 
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3.2 Physical Layer 

3.2.1 Channel Model 

The propagation channel between a ground device and a satellite physically affects the characteristics 

of the signal arriving on both sides of communication – in terms of amplitude/power level attenuation, 

phase, frequency, multi-path and other distortion effects, as well as noise and interference from other 

transmitters. As the received signal quality fundamentally determines the communication reliability 

performance in terms of bit-error rate (BER) or other similar metrics – in addition to signal processing (e.g. 

modulation and channel encoding), link layer and multiple access schemes – it is of outmost importance to 

accurately model the propagation channel characteristics. The propagation channel characteristics, which 

depend on certain physical and statistical assumptions of the channel, are necessary to properly perform 

link budget analysis.  

Reference [131] provides an overview of the existing satellite communications channel models in 

literature, which mostly consider land mobile satellite (LMS) communication systems (see Table III of 

reference [131]). Among these models, Loo’s model is the most well-known statistical models used for 

LMS systems and has shown agreement with measurement results in rural environment. While this model 

does not consider the Doppler effect usually present in LEO satellites, it suffices to represent the received 

signal amplitude distribution. Doppler effect can be separately accounted during demodulation by 

incorporating the Doppler shift and rate in the received signal’s mathematical model. Loo’s model is 

planned to be used in our work. In Loo’s model, the amplitude of the line of sight (LoS) signal is modeled 

by using a log-normal probability density function (PDF), while the multi-path signals are modeled using 

a Rayleigh PDF. The distribution of the signal envelope in Loo’s model is given by 

𝑓(𝑟) =
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µ𝑠 and 𝜎𝑠
2 are the mean and variance of the shadowing component, respectively, and 𝐼0(∙) is the zero-order Bessel 

function. 

3.2.2 Modulation and Coding Schemes 

For the satellite-based IoT communication scenario being considered, there are constraints on energy 

(due to requirements to maximize the operation lifetime of small-size low-cost devices, as well as 

regulatory constraints on transmission power) and available bandwidth. With both energy and bandwidth 

constraints, the system should be able to receive as many packets as possible from devices wanting to 

transmit data at any time. To prolong operation lifetime, not only should transmit power be lowered but 

more importantly, energy efficiency should be maximized. On the other hand, for greater communication 

system performance, the achievable throughput must be maximized. With a limited available bandwidth, 
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the throughput normalized to the available bandwidth, in terms of effective information rate per bandwidth 

(in bps/Hz), is a quantification of spectral efficiency. Furthermore, energy efficiency and throughput must 

be traded-off in the context of supporting as many transmitting devices as possible.  

Reference [132] reflected on energy efficiency and spectral efficiency issues related to nanosatellite 

IoT networks and found that maximizing one efficiency is conflicting to maximizing the other efficiency. 

In [132], energy efficiency was simply defined as 𝜂𝐸𝐸 = 𝑅𝑏/𝑃𝑟 ≈ 𝐸𝑏 (= average transmission energy per 

bit), but this does not account for the circuitry energy consumption (i.e., mainly from RF power amplifier) 

in the expended energy for communication  and any reception errors. Paper [133] accounted for circuit 

power consumption, DC-DC converter efficiency, active mode duration and channel bandwidth in 

calculating the energy consumption of various modulation schemes (M-MFSK, M-QAM, OQPSK, OOK) 

without coding. For energy efficiency analysis, one can adopt the insights and approaches in WSN research 

literature for evaluating the energy efficiency of a modulation + coding scheme.  

A more appropriate energy efficiency metric can be defined based on the average energy per 

successfully received bit (ESB) [134], which considers circuit energy consumption, demodulation errors 

and coding. In many WSN research works, it has been important to minimize ESB. Since the metric in 

[134] was applied in the context of finding an optimal relay distance (i.e., in short-range mesh-topology 

WSN) and did not consider any multiple access, our work will have to define a modified metric accordingly. 

Overall, attaining spectral and energy efficiency requires careful joint design of the physical and data 

link layers of communication. For the physical layer, we are referring to the hardware aspects and 

techniques of effective signal transmission in a propagation channel marred with various degradation 

effects (noise, attenuation, interference, distortion, and Doppler effects). The physical layer covers the 

modulation (as well as symbol-waveform representation and waveform shaping such as filters), channel 

coding, transmit power, transmission rate, hardware design, among others. For the data link layer, we are 

referring to the logical link control sublayer (i.e., the protocol followed by two ends of communication in 

handing packet errors or losses, handshaking, re-transmission request, etc.) and multiple access control 

(MAC) sublayer (i.e., the protocol for sharing channel spectrum and time resources among multiple users 

based on rules of priority, fairness, delay, possibility of coordination, channel access efficiency 

optimization, etc.).  

The choice of modulation and coding scheme is a trade-off among several factors including energy 

efficiency, spectral efficiency, transceiver, and processing complexity, as well as programmatic, 

interoperability and compatibility constraints. Channel coding scheme has been traditionally employed in 

communication systems to improve data transmission reliability (in terms of bit-error-rate, BER or packet-

error rate, PER) in power-limited scenarios in the presence of channel impairments. To do this, redundancy 

bits are included in the transmitted packet, which can be used at the receiver to recover the packet even 

when some bits are received in error (i.e., forward error correction (FEC)) or simply to detect packet error 

for further action (such as repeat request). So, if transmit power is constrained but the BER is unacceptable, 

channel coding can lower the BER to the target value. Or, for a target BER, the minimum required transmit 

power can be lowered compared to the case without coding. However, transmission of extra (coding) bits 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 52 

consumes more bandwidth, hence resulting in a spectral efficiency loss. Nonetheless, this is worth doing 

in exchange for getting better energy efficiency because increased reliability of packet transmission can 

avoid or reduce the required number of re-transmissions before successfully receiving the packet. Therefore, 

to properly trade-off energy efficiency and performance in an energy-constrained and bandwidth-

constrained communication system, it is necessary to derive the relationship among energy efficiency, 

spectral efficiency, reliability (PER or BER), and input physical layer parameters: modulation scheme and 

order, channel coding scheme and order, transmit power, packet length, etc.  

In addition, as mentioned, this must be done in the context of satellite-based IoT scenario where a 

large number of devices must share access to the channel with limited available bandwidth and 

communication time. Because nanosatellites have very limited hardware, energy, and computational 

resources, it is unimaginable for it to support a bidirectional logical link control scheme that requires 

downlink packet transmission to each device in a large population. Fortunately, for many IoT applications 

we are interested in, a guaranteed end-to-end connection is unnecessary and a reasonable level of packet 

loss rate (in uplink) is tolerated. Thus, even without a downlink channel to support both data downlink and 

logical link control, many applications can be supported by CubeSats as long as a reasonable level of packet 

loss rate can be achieved (depends on application, a good example would be PLR<5%). Furthermore, for 

multiple access, a purely random-access scheme (time-unslotted, frequency-unslotted) is the most suitable 

knowing the impracticality of maintaining time and frequency synchronization among large number of 

low-end devices operating in a satellite propagation channel. 

Previous works on modulation and coding schemes for CubeSat communication normally aimed to 

improve reliability (in terms of BER or PER) and throughput (in terms of achievable data transfer rate in 

bps) given limited link budget (i.e., limited transmit power, very long propagation distance, limited antenna 

gains and pointing capability, etc.) or available bandwidth. However, there are not significant research 

works that aim to optimize or trade-off both spectral and energy efficiencies.  

Reference [131] cited some related works on modulation and coding schemes for CubeSat 

communications. It is said in [131] that if there is wide available bandwidth (i.e., higher frequency bands 

like X-band), binary (low-order) modulation methods along with low rate channel codes with high error-

correction capabilities are preferable over higher-order modulation schemes with high rate forward error 

correction (FEC) codes. The low-order modulation scheme reduces the required transmit power while more 

redundant data in the latter increases error correction effectiveness, thus overall leading to higher power 

efficiency. On the contrary, if available bandwidth is narrow, higher-order modulations with high rate 

channel codes are preferable, although this assumes link budget is not constrained and throughput is to be 

optimized [131]. 

The BER performance of different modulation and coding schemes in the context of CubeSat 

communication were compared in [135], where the channel model used is a mixture of log-normal fading 

and Rician fading channel (Corazza-Vatalaro Model). Among M-FSK, M-QAM, QPSK, MSK and GMSK 

modulation schemes that were initially evaluated based on BER vs Eb/N0 performance curves, only the 

QPSK, MSK and GMSK are considered suitable for CubeSat due to balance of (less) complexity and 
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performance. While π/4-QPSK is better than classical QPSK because its signal envelope has no zero 

crossings and thus reduces the performance degradation impact of amplifier non-linearities, the possibility 

of 180° phase jumps will have negative impact on spectral characteristics. Offset QPSK (OQPSK) provides 

a solution to avoid this problem while having the same BER performance as QPSK. GMSK is also 

considered a good alternative for having a significantly improved spectral characteristics (occupies less 

bandwidth) compared to QPSK/OQPSK, but with slightly worse (~1-2 dB) BER performance curve. 

According to [135], combining Viterbi decoding algorithm with GMSK results in a better BER 

performance than QPSK especially at higher SNR (>6 dB), albeit with added complexity. Since OQPSK 

and GMSK have constant envelope, both can be operated with a nonlinear amplifier, hence this increases 

power efficiency compared to QPSK. Then, [135] evaluates the BER performance of QPSK/OQPSK in 

conjunction with Reed-Solomon (RS) and convolutional codes with respect to uncoded case. It 

recommends a rate 2/3 convolutional code or a RS (255,243) code for the uplink in light shadowing, and a 

rate ½ convolutional code for strong shadowing, and stronger coding schemes for downlink (since the 

study assumed less constrained uplink budget).  

The CCSDS standard [136] recommends using a filtered OQPSK implemented using a linear phase 

modulator (OQPSK/PM) to improve the spectral shape of OQPSK. CCSDS standard also recommends 

using residual carrier for phase modulation for Earth-to-Space communication; PCM/PM/bi-phase-L, 

BPSK modulation for telecommand; and 8PSK TCM/GMSK/OQPSK modulations for high data rate 

transmissions, and GMSK (BTS=0.5)/GMSK/OQPSK modulations for high-coded transmissions for 

telemetry. However, it is important to note that the CCSDS standard was not created for satellite IoT/M2M 

communication scenarios, so the said standard is not fine-tuned for such application scenarios. 

Hybrid modulation schemes, wherein carrier phase and frequency are simultaneously modulated, were 

studied in [137], offering a possibility of increasing spectral and energy efficiencies while also suitable for 

implementation and adaptation in CubeSat communications. The authors focused on the hybrid M-

FSK/QPSK modulation scheme, in which the basic idea is to perform QPSK modulation on M subcarriers 

at the transmitter side. This is illustrated on Figure 11 for a 4-FSK/QPSK modulation, in which every 

transmitted symbol is selected from a total of 16 possible symbols, comprising of 4 frequencies, 4 phases 

each. Thus (for the same occupied bandwidth as 4-FSK?), each transmitted symbol contains 4 bits, 

compared to only 2 bits in either 4-FSK or QPSK. According to [137], this scheme combines the benefits 

of increasing energy efficiency of M-FSK as M increases and the spectral efficiency of QPSK. The authors 

also proposed memory-stored samples-based modulator, an FFT analysis-based demodulator (frequency 

component for M-FSK and phase component for QPSK), as well as advance modifications such as M-

FSK/DQPSK (D=differential), DM-FSK/DQPSK.  

Differential-phase encoding avoids the need for coherent phase demodulation while differential-

frequency encoding makes it robust to Doppler shift compensation error (if the difference of Doppler 

frequency shift between two symbols is much smaller than the MFSK frequency spacing). Various hybrid 

(D)M-FSK/(D)QPSK schemes were modeled in Matlab Simulink and the performance in terms of spectral 

efficiency (calculated for the null to null frequency bandwidth) and energy efficiency (in terms of required 
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Eb/N0 for a target BER) were evaluated. The results from [137] showed their proposed hybrid modulations 

have better energy and spectral efficiencies, and with more significant enhancement for lower order FSK 

modulations. Among the limitations of [137] are performance evaluation only in AWGN channel and 

neglecting Doppler effect. It is interesting to extend their works considering satellite propagation channel. 

 

Figure 11. Signal space of hybrid 4-FSK/QPSK modulation (source: [137])  

In [138], highly spectrally efficient but power-inefficient modulation schemes – such as high-order 

M-QAM and M-PSK – were jointly designed with orthogonal frequency division multiplexing (OFDM) 

and one of three error-correcting coding schemes (convolutional code, trellis-coded modulation, and Turbo 

code) to achieve coding gain, hence improving the power efficiency. The authors in [138] concluded that 

Turbo Coded OFDM outperforms the other two coding schemes (CC and TCM) for all modulation schemes 

considered, although at the expense of more decoding complexity. However, due to high-order modulation 

to start with, this scheme will naturally require much more complex transmitter and receiver 

implementations to achieve the promised performance gains.  

Nonetheless, in relation to bandwidth-efficient schemes for space missions, CCSDS recommends 

several low-order and high-order modulation schemes combined with coding [139]. Again, it must be noted 

that while CCSDS standards were created for space missions, these are not specifically optimized for 

satellite-based IoT/M2M communications. 

• For Category A – GMSK (BTs=0.25) with precoding, filtered OQPSK with various baseband filter 

options;  

• For Category B – GMSK (BTs=0.5) with precoding.  

 

For EECS – 4D 8PSK TCM, SRRC-QPSK, SRRC-OQPSK, SRRC-8PSK, SRRC-16APSK, SRRC-

32APSK, and SRRC-64APSK, filtered OQPSK with various baseband filter options. 

Recently, concurrent with the expanding deployments of LPWAN technologies, there have been 

commercial and research interests to utilize some of the long-range low-data rate RF communication 

technologies – originally developed for terrestrial LPWAN but have interesting modulation features – for 

satellite IoT communications specifically in the context of satellite-onboard LPWAN gateway (as in direct-
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access mode). The specifications of some of the most well-known LPWAN technologies [140] are given 

here in Figure 12. Broadly speaking, the modulation schemes may be categorized into: (1) ultra-

narrowband modulation or (2) spread spectrum modulation. Ultra-narrowband (UNB) means that the 

modulated carrier signal occupies about the same or the minimum necessary bandwidth to transmit data at 

a certain low data rate, but some articles describe UNB as a modulation scheme in which the occupied 

bandwidth is in the same degree as the uncertainty in the carrier oscillator frequency. The latter may be a 

result, though, of using low-cost oscillators in practical implementations. A perfect example is that of 

SigFox, whose 100 bps DBPSK modulation in the uplink is known to occupy only roughly 100 Hz 

bandwidth.  

On the other hand, spread spectrum (SS) modulation intentionally occupies much wider bandwidth 

than essentially required to transmit at a given data rate, and this is purposefully done to attain 

enhancements such as interference immunity, lower spectral density of each RF transmission, and in some 

cases achieve more receiver sensitivity or support multiple access among users. There are various SS 

techniques, but some representative techniques are direct-sequence spread spectrum (DSSS), frequency-

hopping spread spectrum (FHSS), and chirp spread spectrum (CSS). In DSSS, the digital data is modulated 

(or multiplied) by a much higher rate pseudo-noise (PN) sequence (each element in the sequence is called 

a “chip”), and the resulting occupied bandwidth is about the bandwidth of the original data multiplied by 

the ratio of the chip rate to the symbol rate. Ingenu’s uplink employs a proprietary random-phase multiple-

access (RPMA) DSSS; the random phase allows numerous users to transmit on the same channel.  

In Chirp Spread Spectrum (CSS), a set of symbols is mapped to a set of unique chirp waveforms which 

inherently occupy wider bandwidth, e.g. linearly increasing/decreasing frequency with time with different 

slope or starting point [141]. LoRa employs a proprietary CSS modulation, which also permits a few 

number of devices to simultaneously transmit on the same channel, as long as they utilize different 

spreading factors (or effectively, different data rates, up to 7 spreading factors can be supported on each 

channel). Other standardized IoT communication protocols and their technical specifications are given in 

Figure 13. 
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Figure 12. Technical specifications of various LPWAN technologies (source: [140]) 

 

Figure 13. Technical specifications for standardization bodies and special interest groups for IoT 

solutions. ETSI, European Telecommunications Standards Institute (source: [142]) 

The aforementioned modulation schemes and technologies were originally intended for terrestrial IoT 

communications. These have not been extensively studied and tested for the satellite channel, which, in 

addition to much longer communication distance, introduces further impairments such Doppler effect. 

Nonetheless, as mentioned, there have been interests to utilize some of them for satellite IoT 

communications, as well as ground-based and space-based communication experiments. In particular, 

Lacuna Space has developed a satellite-onboard LoRaWAN gateway that would allow normal LoRa-

equipped devices to transmit signal directly to a passing satellite [125]. For this, Lacuna Space, in 

collaboration with Semtech, announced that they had modified the LoRaWAN gateway to become capable 

of receiving larger number of simultaneously transmitting devices, though these are proprietary 

engineering designs.  
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Research articles [143][144], which described an experimental laboratory study on the suitability of 

LoRa modulation for CubeSat communications, concluded that LoRa modulation can be used in the radio 

communication between a ground station and a satellite in a circular orbit more than 550 km. altitude 

without any restrictions. Moreover, it was concluded that at lower orbits, the immunity of LoRa modulation 

from Doppler rate degrades more when higher spreading factor (SF) is used, although there is significant 

immunity to both Doppler shift and rate for all orbits up to as low as 200 km as long as SF of 11 or lower 

is used. However, only higher bandwidths (125 kHz and 250 kHz, corresponding to data rates higher than 

440 bps) were considered in the study. Paper [145] reported results on communication tests between on-

ground LoRa transmitters and LoRa receivers onboard TRICOM-1R CubeSat, which demonstrated 

successful uploading of data with a signal power as low as 8mW, although no information on which bit 

rates worked was mentioned.  

Meanwhile, Eutelsat, in partnership with Sigfox, is set to launch 25 nanosatellites for IoT by 2022, 

called ELO constellation [87]-[91]. The ELO constellation, flying on around 600-700 km. orbit, is intended 

to provide global IoT coverage enabling end-devices to transmit data from anywhere (within 15-20 mW 

power), including asset tracking in oceans and other remote locations. In this partnership, Eutelsat acts as 

a full Sigfox Network Operator (i.e., each satellite carries a Sigfox base station receiver), while Sigfox 

seamlessly integrates the satellite network to its existing terrestrial infrastructure and connectivity services 

(i.e., end-devices’ transmissions can be captured by both the satellites and any terrestrial networks). A test 

satellite is targeted for early 2020 launch to investigate the performance of various waveforms [87]-[91].  

In [128], the authors investigated the impact of Doppler effect on demodulating the NB-IoT waveform 

(QPSK on SC-FDMA) in terms of PER performance, as well as proposed a ground-based processing 

algorithm for signal synchronization/detection, channel estimation and demodulation. OQ Technology 

experimented NB-IoT waveforms and synchronization schemes [129]. Compared to Sigfox’s UNB RF 

technology that supports 100 bps DBPSK within ~100 Hz bandwidth, NB-IoT supports the lowest data 

rate of 3.5 kbps QPSK within 3.75 kHz, so it would not be adversely affected by Doppler drift as much as 

the SigFox system.  

The characteristics of common modulation schemes are summarized here in Tables 5 and 6. In Table 

5, 𝛼 is the parameter for RF amplifier overhead power such that the RF amplifier power consumption is 𝛼 

times the actual RF output power 𝑃𝑇𝑋. Then, total power consumption expended by the transmitter for 

transmission is given by (4) and (5). The value of 𝛼 is determined based on the type of RF power amplifier 

required for the type and order of modulation used. In Table 6, 𝑆𝐸𝑚𝑜𝑑 is the modulation spectral efficiency 

as normally defined in textbooks, indicating the transmission bit rate 𝑅𝑏 that can be achieved over an 

occupied bandwidth 𝐵𝑇, as expressed in (6). Note that since 𝐵𝑇 itself is determined by 𝑅𝑏 (proportionally) 

and modulation type and order, 𝑆𝐸𝑚𝑜𝑑 represents the characteristic spectral efficiency corresponding to a 

modulation type and order.  
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Another spectral efficiency metric can be defined, the spectral efficiency of reception, 𝑆𝐸𝑟𝑒𝑐, which 

is expressed simply as the product of modulation spectral efficiency 𝑆𝐸𝑚𝑜𝑑 , coding rate 𝑅𝑐 , and bit-

success-rate (BSR) after FEC processing (1 − 𝑃𝑏𝑒,𝑎𝑐), as expressed in (7). The coding rate 𝑅𝑐 equates to 

coding efficiency, accounting for the reduction in spectral resource utilization efficiency due to 

transmission of redundant bits for the FEC coding scheme, while the BSR reflects the effectiveness of 

FEC. Since both ESB and SE are both related to 𝑃𝑏𝑒,𝑎𝑐, then we can draw a relationship between the SE 

and ESB (this will be dealt with later). Also, a more objective technical definition of occupied bandwidth 

(e.g. 90% power, 99% power, etc.) must be used so more accurate 𝑆𝐸𝑚𝑜𝑑  values will be used. MAC 

scheme is not yet considered in these metrics. ESB and SE will be reconsidered in a multiple access 

scenario. 

𝑃𝑅𝐹𝐴 = 𝛼𝑃𝑇𝑋 (3) 

𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑃𝑇𝑋 + 𝑃𝑅𝐹𝐴 + 𝑃𝑐  (4) 

𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = (1 + 𝛼)𝑃𝑇𝑋 + 𝑃𝑐  (5) 

𝑆𝐸𝑚𝑜𝑑 =
𝑅𝑏

𝐵𝑇
   [bps/Hz]  (6) 

𝑆𝐸𝑟𝑒𝑐 = 𝑆𝐸𝑚𝑜𝑑  𝑥 𝑟𝑐  𝑥 (1 − 𝑃𝑏𝑒,𝑎𝑐) [bps/Hz]  (7) 

 

Table 5. Symbol error probabilities and RF amplifier parameters of different modulation schemes 

(sources: [133][134][146][147]) 

Modulation Scheme P𝑠𝑒 in AWGN Channel 

Corresponding RF 

Amplifier Parameter 

𝛼 =
𝜉

𝜂
− 1 

BPSK P𝑠𝑒 = 𝑄 (√
2𝐸𝑠,𝑅𝑋 

𝑁0

) = 𝑄 (√
2𝐸𝑏,𝑅𝑋 

𝑁0

) 
𝜉 = 1,  𝜂 = 0.35 

𝛼 = 1.8571 

QPSK P𝑠𝑒 = 2𝑄 (√
𝐸𝑠,𝑅𝑋 

𝑁0

) − [𝑄 (√
𝐸𝑠,𝑅𝑋 

𝑁0

)]

2

 
𝜉 = 1,  𝜂 = 0.35 

𝛼 = 1.8571 

MPSK 

P𝑠𝑒 = 2𝑄 (√
4𝐸𝑠,𝑅𝑋 

𝑁0
sin (

𝜋

𝑀
))   [133] 

P𝑠𝑒 = 2𝑄 (√
2𝐸𝑠,𝑅𝑋 

𝑁0
sin2 (

𝜋

𝑀
))  [146] 

P𝑠𝑒 ≈ 2𝑄 (√
4𝐸𝑠,𝑅𝑋 

𝑁0
sin (

𝜋

2𝑀
))  [147] 

𝜉 =? ,  𝜂 = 0.35 

𝛼 =? 

Coherent BFSK 

(Sunde’s FSK) 
P𝑠𝑒 = 𝑄 (√

𝐸𝑠,𝑅𝑋 

𝑁0

) = 𝑄 (√
𝐸𝑏,𝑅𝑋 

𝑁0

) 
𝜉 = 1,  𝜂 = 0.75 

𝛼 =0.3333 
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Non-coherent BFSK 

(NC-BFSK) 
P𝑠𝑒 = 0.5e

−(
𝐸𝑠,𝑅𝑋 
2𝑁0

)
= 0.5e

−(
𝐸𝑏,𝑅𝑋 
2𝑁0

)
 

𝜉 = 1,  𝜂 = 0.75 

𝛼 =0.3333 

Coherent MFSK 

P𝑠𝑒 ≤ (𝑀 − 1)𝑄(√𝛾𝑏 log2 𝑀)    [146] 

𝛾𝑏 = 𝐸𝑏/𝑁0 

𝐸𝑠 = 𝑏𝐸𝑏 

P𝑠𝑒 ≤ (𝑀 − 1)𝑄 (√
𝐸𝑠,𝑅𝑋

𝑁0

) 

 

Non-coherent MFSK 

P𝑠𝑒 ≤
𝑀−1

2
e−

1

2
𝛾𝑏 log2 𝑀

    [146] 

P𝑠𝑒 ≤
𝑀−1

2
e
−

1

2

𝐸𝑠,𝑅𝑋
𝑁0    

 

GMSK 

(e.g., 𝛽=0.65) 
P𝑠𝑒 = 𝑄 (√

2𝛽𝐸𝑠,𝑅𝑋 

𝑁0

) = 𝑄 (√
2𝛽𝐸𝑏,𝑅𝑋 

𝑁0

) 
𝜉 = 1,  𝜂 = 0.75 

𝛼 =0.3333 

MQAM 

P𝑠𝑒 = 1 − (1 − 2 (1 −
1

√𝑀
)𝑄(𝑎𝑟𝑔))

2

 

𝑎𝑟𝑔 = √
3

𝑀−1

𝐸𝑠,𝑅𝑋 

𝑁0
    [133] 

P𝑠𝑒 ≈ 4(1 −
1

𝑀
)𝑄 (√

2𝐸𝑎𝑣𝑒 

𝑁0
)   [147] 

𝐸𝑎𝑣𝑒 = average signal energy 

𝜉 =? ,  𝜂 = 0.35 

𝛼 =? 

 

Table 6. Modulation spectral efficiency of different modulation schemes (source: [146]) 

Modulation Scheme Rough Estimate of 𝑆𝐸𝑚𝑜𝑑  [
bps

Hz
] 

BPSK ≈ 1 

QPSK ≈ 2 

MPSK ≈ log2 𝑀 = 𝑏 

MFSK ≈
2log2 𝑀

𝑀
=

2𝑏

2𝑏
 

GMSK ≈ 2 

MQAM ≈ 2 log2 𝑀 = 2𝑏 

 

3.3 Random Access Schemes 

Earlier satellite systems, such as those in the mobile satellite service, traditionally employed multiple 

access control (MAC) schemes according to fixed assignment (e.g., TDMA, FMDA, CDMA) and in some 

cases in conjunction with a random access (RA) protocol to perform demand-based adaptive assignment. 

However, due to a massive number of terminals with burst transmission, it is more efficient to use RA 

schemes in satellite-based IoT. Reference [148] presents a survey and review of RA schemes for satellite 

networks while reference [149] evaluates the suitability of different MAC protocols for application to 

nanosatellites considering both performance and complexity. It presents a taxonomy of the RA schemes 
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which are categorized into slotted and unslotted RA. Unslotted RA schemes are better suited for the 

application considered due to impracticality to time-synchronize a massive number of low-end ground 

terminals. The Table 2 in [149] evaluates several RA protocols in terms of performance: maximum 

throughput (Smax) and packet loss rate (PLR, CPLR) at corresponding MAC load (Csmax), as well as 

complexity, energy efficiency and topology impact on performance. The Figure 14 in [149] shows a 

relative comparison among the various schemes. Overall, higher performance can be achieved at the 

expense of more complexity while less complex schemes can achieve lower performance. The suitable 

choice depends on the application scenario and what implementation complexity can be afforded at the 

transmitter (terminal) and receiver (satellite) sides. 

As previously mentioned, low-end terminals in a satellite-based IoT/M2M have limited capabilities 

in terms of digital processing, modulation, coding, RF blocks implementation, oscillator accuracy/stability 

and must operate for long duration (up to years) even with limited power generation/storage capacity. Thus, 

wasteful RF transmissions (i.e., those that do not result in successful reception) must be avoided. In other 

words, an energy-efficient asynchronous RA scheme with reasonably good performance but can be 

implemented on a low-cost terminal hardware must be employed in the uplink. However, the RA protocols 

that can meet this requirement are those that entail very high computation complexity at the receiver that 

is too challenging, if not impossible, to implement on normal nanosatellite platform. One approach to 

circumvent this limitation is to perform on-ground digital signal processing (filtering, detection, channel 

estimation, demodulation, decoding, etc.) later after downloading the signal samples. This approach, in 

which the nanosatellite only receives the signal and stores the samples on its onboard memory for later on-

ground processing, is in line with what is recently called “delay-tolerant MAC protocol”, like those referred 

to in [132][17]. The research then would be directed to addressing the challenges of storage capacity and 

stored data downlink capacity.  

Our research is leaning toward a delay-tolerant MAC protocol. In a delay-tolerant MAC protocol, 

since there is no immediate response to the terminals, such as in the form of acknowledgement packet, it 

is crucial to achieve a reasonably low PLR within the context of applications wherein intermittent 

connection and packet losses below some defined PLR threshold are acceptable (i.e., non-critical missions). 

Moreover, even when sending a delayed acknowledgment, or negative acknowledgement or re-

transmission request packet can be envisaged for some delay-tolerant applications, it is hardly possible for 

a nanosatellite to support downlink transmissions to thousands of terminals. Therefore, we should concede 

to this fundamental limitation and resort to exploring novel schemes for achieving reasonably good PLR 

and throughput even without downlink. These include, for example, employing a very robust low-rate FEC 

scheme, diversity and contention resolution schemes (i.e., transmitting a packet multiple times within a 

frame and canceling the interference after resolving one of the copies), and so-called physical layer network 

coding (i.e., schemes that divide a packet into sub-packets and enable recovery of the whole packet even 

with some lost sub-packets). 

Unslotted or pure ALOHA (PA) is the simplest conventional RA scheme wherein users 

asynchronously transmit on a single common frequency channel without any coordination among them. 
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The maximum throughput (the ratio of channel resource (in this case, time) that is successfully utilized to 

the available resource) is very low (18%) and this is achieved at 50% MAC load (percentage of channel 

resource that is actively utilized). Also, the PLR is high for PA due to collisions, which not only result in 

low throughput but also wasted transmission power.  

With Spread Spectrum ALOHA (SSA), each transmitter’s signal is spread throughout a much wider 

frequency band than originally necessary through a spectrum spreading technique, such as direct-sequence 

spread spectrum (i.e., multiplying each bit in the original data with a known pseudo-noise (PN) sequence). 

With a fixed signal power, the resulting power spectral density (PSD) becomes much lower (high spreading 

factor results in wider bandwidth and lower PSD). The spread signal has noise-like appearance and may 

have a PSD lower than the background or thermal noise. At the receiver side, the received signal is de-

spread by multiplying it with the same PN sequence, so the original signal can be recovered. To compensate 

for the much wider band used, multiple users can asynchronously transmit their spread signal at the same 

band, and by employing a low-rate forward error correction (FEC) scheme, the multiple signals can be 

decoded successfully up to some MAC load limit. In other words, SSA combines spectrum spreading and 

FEC to support multiple access. Unlike code division multiple access (CDMA), wherein a unique PN 

sequence must be used by each user, a common PN sequence can be used by all users in SSA (the PN 

sequence used must exhibit low time-offset autocorrelation), thus simplifying implementation.  

SSA achieves a maximum throughput of 0.62 bps/Hz at MAC load = 0.70 bps/Hz with PLR of 10-1. 

A PLR of 10-3 and throughput of 0.50 bps/Hz can be achieved at MAC load = 0.50 bps/Hz. In fact, the 

throughput vs MAC load plot of SSA is linear up to 0.60 bps/Hz MAC load. While SSA can provide a 

significantly improved performance compared to PA, its Achilles heel lies in its abrupt performance 

degradation when there is power imbalance among received signals. Unfortunately, power imbalance is 

naturally expected in a LEO satellite channel even when employing a power control mechanism.  

Paper [156] proposed an enhanced SSA (E-SSA) scheme which benefits from power imbalance. E-

SSA applies a recursive successive interference cancellation (R-SIC) algorithm: it removes each decoded 

packet from the signal memory in every successive decoding steps, starting with the higher power signals. 

When higher power signals have been removed, the lower power signals may be possibly decoded. Paper 

[156] provides performance analysis and simulation of E-SSA and reports a maximum throughput of 1.9 

bps/Hz at MAC load = 1.9 bps/Hz with PLR = 10-3 can be achieved in a lognormal channel model with 

signal power variance 𝜎=3 dB. While E-SSA has a promising performance as shown in previous studies, 

its performance in LEO satellite channel has not been investigated. Also, the performance of E-SSA 

considering the difficulties of channel (amplitude, frequency shift and rate, phase) estimation, 

demodulation and decoding in high MAC load scenario, the design of effective signal processing 

algorithms (channel estimation, demodulation, decoding), and optimization of physical layer parameters 

(e.g. packet length, FEC scheme, coding rate) should be extensively studied to fully take advantage of the 

promised performance within the LEO satellite IoT/M2M scenario. In this dissertation research, we focus 

on investigating and addressing these challenges.  
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Some other more recent publications proposing or tackling novel modulation + coding + MAC 

schemes for satellite IoT/M2M are given in Table 7. Most of these publications have not been included in 

the surveys in [148][149]. 
 

Table 7. Publications investigating modulation, coding and random access schemes for satellite 

IoT/M2M communications 

Authors 

(Publication 

Year) 

Modulation FEC Scheme MAC Scheme 
Contributions & 

Limitations 

Y. Quian, et. 

al. [150]-[152] 

(2018, 2019) 

Chirp Spread 

Spectrum (CSS) 

[20]: LoRa Chirp 

Signal (LCS), 

Symmetry Chirp 

Signal (SCS), 

Asymmetry Chirp 

Signal (ACS)  

- 

CSS-PA: 

Multiple CSS 

transmitters transmit on 

one common frequency 

channel using PA 

 

-Modified waveform 

from LCS to improve 

correlation 

characteristics for better 

MAC support (SCS and 

ACS) 

-Analyzed the BER 

performance impact of 

Doppler shift, but not 

Doppler rate 

-Investigated Extended 

Matched Filter Method 

(EMFM) for fast 

acquisition 

-No analysis on 

maximum number of 

terminals, spectral 

efficiency, energy 

efficiency  

C. Hoffman, 

A. Knopp 

[153] (2019) 

M-DPSK with 

Unipolar Coded 

(CDMA-like) 

Chirp-Spread 

Spectrum (UCSS) 

rate 1/2 BCH 

(not a focus of 

the study) 

UCSS-PA: 

Multiple UCSS 

transmitters transmit on 

one common frequency 

channel using PA 

-Presents UCSS as a 

novel modulation and 

signaling scheme in 

close combination with 

the synchronization 

concept to allow direct 

RA of large number of 

users 

-Detection of signals 

from a single user in 

AWGN has been 

investigated theoretically 

and the required SNR a 

given probability of 

detection 

-Analysis of the 

detection probability in a 

MA 

scenario is performed by 

Monte Carlo simulations 

-Throughput and frame 

loss rate analysis over 

lognormal fading 

-Did not deal with 

Doppler effect, energy 

and spectral efficiencies 

Zamora, et. al. 

[154][132] 

(2017) 

Ultra-narrowband 

modulation (UNB-

BPSK) 

Low-rate 

convolutional 

coding (with 

hard-decision 

TFAA: 

Multiple UNB 

transmitters transmit at 

random frequencies 

-Analysis of TFAA 

performance (throughput 

and PLR) under collision 

channel, capture channel, 

detailed channel model 
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Viterbi 

decoding) 

within a wide frequency 

band using TFAA 

considering PHY layer 

design (BPSK 

modulation, pulse-

shaping filter bandwidth 

or roll-off parameters, 

modulation order, FEC) 

-To improve 

performance, proposed 

and analyzed 

Contention-Resolution 

TFAA (CR-TFAA) 

-Trading delay for MAC 

performance and energy 

efficiency using 

transmission control and 

packet-layer erasure 

coding 

-Analyses do not 

consider Doppler effect 

-Assumed perfect signal 

detection & 

demodulation and no 

details on signal 

processing 

M. Anteur, et. 

al. [155] 

(2018) 

Ultra-narrowband 

modulation 

(BPSK) 

3GPP Turbo 

Code (rate 1/3) 

TFAA: 

Multiple UNB 

transmitters transmit at 

random frequencies 

within a wide frequency 

band using TFAA 

-Proposed a semi-

analytical model to 

derive the PLR and 

throughput of random-

access protocols (PA, 

SA, STFA, TFAA) 

considering Doppler drift 

(shift and rate) 

-Showed that the 

Doppler effect 

experienced with LEO 

satellite communications 

increases the 

performance of TFAA 

with UNB signals 

-Did not consider impact 

of Doppler effect on 

signal detection and 

demodulation 

-Did not consider 

Contention Resolution 

O. del Rio 

Herrero, R. De 

Gaudenzi 

[156] (2012) 

BPSK + Direct 

Sequence Spread 

Spectrum (DSSS) 

3GPP Turbo 

Code (rate 1/3) 

E-SSA: 

Multiple DSSS 

transmitters transmit on 

one common frequency 

channel using PA 

(Spread Spectrum 

ALOHA with Recursive 

Successive Interference 

Cancellation or SSA-

RSIC or E-SSA) 

-Proposed to combine 

Iterative Successive 

Interference Cancellation 

with SSA to overcome 

the performance 

degradation of 

conventional SSA in 

power imbalance 

condition in satellite RA 

communication 

-Derived the PLR and 

throughput equation of 

SSA and E-SSA in 

lognormal shadowing 

process  

-Performed simulations 

with and without power 
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imbalance which showed 

robustness of E-SSA to 

power imbalance 

-Study in the context of 

GEO orbit so did not 

consider higher LEO 

channel Doppler effect  

-Did not consider packet 

detection and channel 

estimation (assumed 

perfect channel 

estimation) 

O. del Rio 

Herrero, R. De 

Gaudenzi, G. 

Gallinaro 

[157] (2014) 

BPSK + Direct 

Sequence Spread 

Spectrum (DSSS) 

3GPP Turbo 

Code (rate 1/3) 
E-SSA (same as above) 

-Proposed physical layer 

design for E-SSA based 

on 3GPP WCDMA RA 

channel physical layer 

with some adaptation 

-Considered preamble 

design for packet 

detection and data-aided 

channel estimation 

-Considered enhanced 

channel estimation prior 

cancellation by 

exploiting the detected 

payload bits in a decision 

directed mode. 

-Study in the context of 

GEO orbit so did not 

consider higher LEO 

channel Doppler effect  

-Limited treatment on 

the performance of 

channel estimation in 

various Doppler 

conditions 

-Did not consider 

performance of channel 

estimation when there is 

Doppler rate 

M. 

Andrenacci, G. 

Mendola, F. 

Collard, et. al. 

[158][159] 

(2014) 

BPSK + Direct 

Sequence Spread 

Spectrum (DSSS) 

3GPP Turbo 

Code (rate 1/3) 
E-SSA (same as above) 

-E-SSA demodulator 

implementation based on 

combined SDR with 

processing via 

commercial graphics 

processing 

units (GPUs) 

-Software architecture of 

the ESSA demodulator is 

composed of the 

following DSP modules: 

preamble detection, 

channel estimation 

(timing, phase and 

frequency), 

descrambling/de-

spreading, turbo 

decoding, SIC 

-Validation tests 

performed both in 

laboratory conditions 

and directly on the GEO 
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satellite EUTELSAT 

10A are presented 

-Traffic and channel 

emulator generates 

thousands of messages, 

each with its 

independent channel 

realization (amplitude, 

phase and frequency), 

thus testing the 

estimation algorithms 

-[159] showed that PLR 

starts increasing at 

increasing frequency 

error after 1.5 kHz  

M. Zhao, et. 

al. [160] 

(2018) 

16-QAM + non-

orthogonal 32-

multicarrier 

modulation 

Not considered Not considered 

-Presents a new non-

orthogonal multi-carrier 

modulation scheme for 

satellite-based M2M 

communication system 

-Did not clearly deal 

with the impact of 

Doppler effect 

-Does not consider 

spectral and energy 

efficiencies 

T. Xu, I. 

Darwazeh 

[161] (2018) 

BPSK + 

bandwidth-

compressed non-

orthogonal 

frequency division 

multiplexing (Fast 

OFDM) 

Not considered Not considered 

-Study’s context is 

terrestrial NB-IoT but 

included here because 

other researches have 

proposed to use NB-IoT 

for satellite-based 

IoT/M2M 

communications 

-Proposes a novel signal 

waveform solution, 

Fast-OFDM, that 

compresses the occupied 

bandwidth of each 

device to 50% without 

compromising 

data rate and bit error 

rate performance 

-SDR-based test bed 

developed 

-Results indicate the 

same BER performance 

of Fast-OFDM with that 

of single-carrier FDMA, 

but with 50% bandwidth 

saving 

-Does not consider 

Doppler effect 

Our research 

work  

BPSK and other 

potential 

modulation 

schemes 

Turbo and 

other potential 

FEC schemes 

E-SSA 

-Study performance of 

E-SSA considering LEO 

channel with Doppler 

effects (shift and rate) 

and imbalance of 

amplitudes among 

received packets by 

accounting for terminals’ 

spatial distribution 
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-Evaluating the energy 

efficiency (ESB), 

throughput indicating 

spectral efficiency (i.e., 

achievable throughput 

over available 

bandwidth), and packet 

loss rate 

-Formulated the details 

and performance of the 

complete baseband 

signal processing 

algorithms used, 

including packet 

detection, channel 

estimation and 

demodulation/decoding 

-Considered an ultra-low 

data rate (333.33 bps, 

compared to 5 kbps or 

higher in previous 

works) to maintain 

enough Eb/N0 with low 

transmit power, but 

longer packet duration 

(about 1 order of 

magnitude) inadvertently 

exposes it to channel 

estimation errors 

-Target satellite platform 

is nanosatellite so the 

necessity of delay-

tolerant MAC and on-

ground processing 

algorithm (to circumvent 

technical limitations) is 

highlighted;  

-Aside from considering 

applications with lower 

data rate requirement 

(~100-1000 bps), with 

nanosatellite, we cannot 

really support higher 

data rates due to link 

budget and hardware 

constraints (e.g., only 

low gain antennas, no 

beamforming 

technology, etc.) 

-Limitation: no 

experimental validation 

yet 
PA = pure ALOHA (time-asynchronous, single common frequency channel) 

SA = slotted ALOHA (time-synchronous, single common frequency channel) 

STFA = slotted time and frequency ALOHA (time-synchronous, frequency-synchronous, wide common frequency band) 
TFAA = time and frequency-asynchronous ALOHA (time-asynchronous, frequency-asynchronous, wide common frequency band) 
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Chapter 4:  BIRDS-2 CubeSat S&F Data Collection System, Payload 
Design and Development 

 

This chapter discusses the BIRDS-2 CubeSat S&F remote data collection system, S&F/APRS-DP 

payload design, development, tests, and integration with the BIRDS-2 CubeSats. 

 

4.1 System Architecture 

The S&F/APRS-DP mission payload onboard the BIRDS-2 CubeSat constellation provides both 

APRS-DP and S&F communication capabilities using a common hardware and amateur radio frequency 

of 145.825 MHz. The APRS-DP mission supports real-time packet (message, position, beacon, telemetry, 

etc.) repeating between amateur radios and stations located on the same footprint, as illustrated in Figure 

14. The satellite-based APRS-DPs of the BIRDS-2 constellation were aimed to complement the existing 

terrestrial APRS network, as well as an addition to other APRS satellites previously launched into orbit. 

Using an APRS-capable radio, a “ham” sends an APRS message or packet to the satellite and then the 

payload retransmits it immediately, allowing other hams or amateur stations to receive it. 

 

Figure 14. Conceptual operation of the APRS-DP mission 

On the other hand, the system architecture of the BIRDS-2 S&F CubeSat constellation-based remote 

data collection system (RDCS) is given in Figure 15. It consists of three main segments: (1) Ground Sensor 

Terminal (GST) Segment, (2) CubeSat-onboard S&F Payload (“Payload”) Segment, and (3) Mission 

Control and Data Management (MCDM) Segment. Each GST consists of one or more sensors, a 

microcontroller unit (MCU), a VHF half-duplex transceiver, an antenna with rotator (for satellite tracking) 

mounted on a mast, and solar-battery power system for autonomous operation. In “store” phase, the payload 

receives sensor packet from any GST that transmits during satellite pass and saves them in an onboard 

flash memory. In “forward” phase, after receiving an uplink command, gathered data are downloaded to a 
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BIRDS ground station. Downloaded data are transferred to an online storage, processed at the mission 

control center, and distributed to data users. Mission operation control, data download, storage, processing, 

and distribution to users are handled by the MCDM. By employing a CubeSat constellation, the upload 

data throughput will be roughly a multiple of that of single CubeSat case. Also, by using a network of 

ground stations, more data download flexibility and frequency can be achieved. The onboard payload, 

GSTs and handheld radios operate in the VHF amateur radio band at 145.825 MHz to achieve a low-cost 

system that is easily available for use by the amateur community (like in [31][165]). 

 

Figure 15. System architecture of the BIRDS-2 S&F CubeSat constellation-based remote data 

collection system 

4.2 Payload Design Considerations and Implementation on the BIRDS-2 
CubeSat 

Since APRS radios typically use a traditional modulation scheme (AFSK/FM) and communication 

link layer protocol (AX.25), it follows that for payload implementation, the main consideration was not 

novelty but the wise selection of commercial-off-the-shelf (COTS)  components suitable for the electrical 

and mechanical constraints/interfaces in the BIRDS-2 1U CubeSat. When designing the payload, the 

following factors were considered: (a) utilizing low cost COTS components, (b) simple design requiring 

short development time for hardware and software, (c) having low energy consumption and small form 

factor so it can be accommodated on a CubeSat. These factors were crucial because the payload had to be 

accommodated on the BIRDS-2 1U CubeSat that was expected to carry other subsystems and mission 

payloads sharing in the satellite resources. The payload had to be built, tested, and integrated with the 

satellite within the project’s original development timeline of about one year and three months, from 

mission planning to completion of flight models. The use of COTS components was possible due to 

availability of transceivers and modules supporting the modulation and communication protocol commonly 

used for amateur radio.  
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Inexpensive implementations utilizing COTS components have been described in previous works, for 

the satellite-onboard payload [165][166] and ground terminals [20][33]. In [165] and similarly in [166], 

the modulator/demodulator (modem), AX.25 link layer protocol, APRS or S&F application program, 

packet handling and onboard data handling are all handled by one MCU on a single board. A half-duplex 

COTS VHF amateur transceiver is used for transmitting and receiving RF signal. This integrated approach 

results in a more compact onboard system, although it requires more programming work on the part of the 

developer to implement the APRS or S&F application, AX.25 protocol [167], and AFSK 

modulator/demodulator (modem) on the MCU. 

The block diagram of our own APRS-DP/S&F payload implementation is shown in Figure 16 and the 

flight model boards are shown in Figure 17. Figure 18 shows an overview of the communication system 

layers and protocols. The payload is made by integrating individual COTS components – including a VHF 

FM transceiver (Radiometrix’s BIM1H), a stand-alone APRS-DP module (Byonics’ TT4), a MCU running 

the S&F program (Microchip’s PIC16F1788), a multiplexer (ADI’s ADG774) and a 64-Mbyte flash 

memory (Cypress’ S25FL512S). Aside from being very low cost, these components were selected based 

on size, power consumption, ease of interfacing and little programming work required for the development. 

The VHF transceiver has an output RF power of 0.5 W, dimensions of 33 mm (L) x 23 mm (W) x 12 mm 

(T) and operates at 145.825 MHz for both uplink and downlink, in half-duplex mode. A VHF monopole 

antenna with nichrome wire heating deployment mechanism is connected to the VHF transceiver. The TT4 

is a stand-alone module providing all necessary functionalities – APRS digipeater, AX.25 protocol terminal 

node controller (TNC) with KISS protocol support for UART communication between it and the S&F 

MCU, and a 1200 bps AFSK modem. Taking advantage of TT4’s features, the developer could focus on 

rendering the S&F program on the S&F MCU within a short time. Note that TT4 already implements the 

APRS-DP application so the developer only needs to test the functionality (no need to develop it). The 

original TT4 package was altered and soldered to the mission board using a customized adaptor board.  

The US Naval Academy (NA) had adopted a similar approach in developing their APRS CubeSats 

(including the BRICSAT-2). Their APRS-DP payload evolved from the Byonics’ MTT4B, a complete 

module consisting of both the TT4 and a built-in VHF transceiver, which they modified to fit a standard 

CubeSat platform [45]. Using MTT4B was found inappropriate for the BIRDS-2 CubeSat due to higher 

power consumption (e.g., higher output RF power) and difficulty of interfacing with other subsystems. 

Instead, as mentioned above, a lower power-consuming transceiver (Radiometrix’s BIM1H) was used. 

Also, it is not clear whether the payload of US NA supports S&F communication capability (received 

packets are stored and downloaded later to a ground station) in addition to APRS-DP functionality (which 

immediately re-transmits received APRS packets). In the BIRDS-2 implementation, both APRS and S&F 

packets are stored in onboard memory, but S&F packets are distinguished by a different packet format 

because the S&F MCU implements a specific S&F communication application program as described 

below. 
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Figure 16. Block diagram of the BIRDS-2 APRS-DP/S&F payload and communication subsystem 

 

Figure 17. BIRDS-2 APRS-DP/S&F payload flight model boards: mission board hosting the APRS-

DP/TNC module, S&F MCU and flash memory; VHF transceiver board; assembled with other 

internal boards (lower right) 
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Figure 18. Communication layers and protocols 

The payload directly interacts with the GSTs (or with APRS-DP users’ handheld radios) during the 

“store” phase. Whenever it receives a valid packet from any GST, it saves the packet in the flash memory 

and automatically sends an ACK packet. As an added feature, upon receiving a special request packet from 

any GST to download the two-line elements (TLE), it transmits a packet bearing the satellite’s latest TLE 

information (which is sent from the command ground station). The S&F onboard memory has a total size 

of 512 Mbit (64 Mbyte) and is organized according to Table 8. It has 256 sectors, each containing 256 

kbytes.  The S&F program keeps a pointer to where the next data will be saved. The pointer is a 32-bit (4-

byte) address of the next vacant location and it is saved from 0x00000000 to 0x00000003. Whenever a 

new packet is received from the TNC, this pointer is read and after saving the data, the pointer is 

incremented accordingly. The latest satellite TLE is saved starting from 0x00040000 and it is overwritten 

whenever an updated TLE is received. Every received packet from the TNC is fully saved as it is received 

(in KISS format) to allow further processing at the ground station. This means that all received packets, 

whether APRS-type or S&F-type, are saved in memory. The KISS header and footer (0xC0) serve as 

delimiters between packets. A total of 254 sectors are available for storage. The S&F packet types are given 

in Table 9 and packet formats are provided in the Appendix. 

 The S&F MCU runs the S&F program sequence including packet generation (in transmit side) and 

parsing (in receive side). In reception, it decomposes the packet into separate fields and recognizes the 

GST’s identification callsign, packet header and footer, packet type and sensor data. In transmission, it 

does the reverse to compose the appropriate downlink packet to send to the GST. The program flow 

diagram of the S&F MCU is very simple, as illustrated in Figure 19. The stored data are downloaded to 

the Mission Control Center (or any BIRDS ground station) through the UHF communication transceiver 

at the rate of 9600 bps (GMSK modulation, AX.25 protocol). The same UHF transceiver receives uplink 

command from the ground station, including the commands to download the stored data and to upload the 

latest satellite TLE. 
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Table 8. S&F onboard memory organization 

Sector Number Address Content 

0 0x00000000 Start address where the next 

data will be saved 

1 0x00040000 Latest satellite TLE 

 

2 to 255 0x00080000 to 0x03FFFFFF Collected Data 

Table 9. S&F packet types 

Packet type Description Sent by Total length (bytes) 

0 Sensor data packet 

 

Any GST Up to 175 

1 TLE request packet 

 

Any GST 21 

4 Acknowledgment 

(ACK) packet 

 

Payload (satellite) 23 

6 TLE packet 

(compressed TLE 

information of 

satellite) 

Payload (satellite) 109 

 

 

Figure 19. Program flow diagram of the S&F payload’s MCU 
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For better context on how the payload is integrated with the whole satellite, satellite drawings are 

given in Figure 20. Overall, the components of the payload occupy about ¼ of the space on the mission 

board (which also hosts ADCS, the COM96 MCU portion of the communication subsystem, and other 

mission payloads such as camera, GPS receiver, and magnetic field sensor), except for the VHF transceiver 

that is placed on a separate board. The payload alone, when powered by a 5V supply, consumes only about 

0.29 W while in receive or standby mode and 1.4 W during active RF signal transmission. 

 

 

Figure 20. BIRDS-2 1U CubeSat drawings showing the internal and external boards 

Table 10 shows the energy budget for operating the satellite in APRS-DP/S&F mission mode, 

assuming the payload is operating for 45 minutes in one orbit (~50% of one orbit duration) and RF 

transmission is active 25% of this time. Indeed, the energy budget is tight due to limited energy generation 

capacity from the solar cells for a 1U CubeSat and so a practical way to deal with this limitation is to 
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activate the payload within a specified duration and timing (delay of turning on from receipt of command) 

through a ground station in one country before passing over the desired operation location in another 

region. The energy budget will be greatly improved by utilizing a 2U or 3U CubeSat platform for a full-

time operational mission. 

Table 10. Energy budget of the satellite operating in APRS-DP/S&F mission 

mode 

Parts Current 

(A) 

Power  

(W) 

Duration/Orbit 

(h) 

Energy/Orbit 

(Wh) 

Non-mission operation 

(OBC/EPS board, mission 

board, CW beacon TX, 

command RX) 

0.0160 0.632 1.5 0.948 

S&F payload (RX/standby) 0.080 0.316 0.5625 (75%) 0.178 

S&F payload (TX) 0.390 1.541 0.1875 (25%) 0.289 

Total for running APRS-

DP/S&F payload on 

- - - 1.415 

Average energy 

generation/orbit 

(estimate) 

- - - ~1.2 

(conservative 

estimate) 

 

4.3 Antenna Design and Deployment Mechanism Implemented on the BIRDS-
2 CubeSat 

The BIRDS-2 satellite consists of two deployable monopole antennas, as illustrated in Figure 21. One 

is a UHF antenna covering the UHF amateur band (430-440 MHz) and is used for uplink command 

reception, CW covering the UHF amateur band (430-440 MHz) and is used for uplink command reception, 

CW beacon transmission, and telemetry and mission data downlink. The other is a VHF antenna operating 

at 145.825 MHz and is used for both user uplink and downlink of the APRS-DP/S&F mission. These 

antennas are expected to have omnidirectional radiation patterns because the satellite only has a passive 

stabilization mechanism. The antenna elements are made up of carbon tool steel (SK85(SK5) [168]) with 

thickness of 0.3 mm, width of 4 mm and quarter-wave lengths of 17.5 cm (UHF) and 50.1 cm (VHF). 

These elements are separately attached to a 3D printed plastic on the external side of +Y panel, secured to 

the plastic by tiny screws and carefully soldered to the inner conductors of MMCX connectors mounted on 

the panel’s internal side. Then, short RF cables connect the antennas to respective transceivers. The whole 

structure is electrically connected to the satellite system ground. There are no matching networks in the 

BIRDS-2 design. 

On the way to and during deployment from the ISS, antenna elements are stowed around mounting 

screws. Their ends are tied to a single fishing string (GOHSEN PE Hunter Lock No. 8 [169]) made of 

polyethylene (PE) material, which is securely tied to two lower mounting screws. The string passes through 

a coiled nichrome wire that will be heated up by a burner circuit 30 minutes after satellite deployment to 
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burn the string and release the elements. The burner circuit draws high current from the battery through the 

EPS’s unregulated voltage output. The nichrome wire resistance (i.e., number of turns) and burner circuit 

electrical settings were optimized for shorter burning time and higher deployment reliability.  

 

Figure 21. Monopole antennas of the BIRDS-2 satellite in deployed condition (left); external side of 

antenna board showing the stowed elements (upper right); internal side showing the antenna 

connectors and burner circuit (lower right) 

After successful antenna deployment in cold vacuum condition had been demonstrated previously, to 

demonstrate the reliability of the antenna deployment mechanism, four units of burner circuit each attached 

to antenna assembly were tested inside a non-vacuum thermostatic chamber in different cold temperatures 

from -40°C to -20°C. Doing the test in  a non-vacuum condition enabled more test runs to be done quickly 

and effectively without the risk of undertest considering more severe environment for the burning 

mechanism (due to presence of convection). The recorded deployment times at 80% charged battery are 

summarized in Table 11, suggesting that antenna can be expected to deploy within 13-18 seconds in these 

temperature conditions. Further tests showed that deployment is possible even as low at 30% charged 

battery. 

Table 11. Recorded deployment times at different temperatures 

Burner 

Circuit 

Temperature 

(°C) 
Current (A) 

Deployment 

Time (s) 

Battery Voltage 

(Vi/Vf) 

1 -30 2.068 15.8 4.02 / 3.83 

2 -25 2.154 15.9 3.99 / 3.90 

3 -40 2.045 17.8 4.00 / 3.79 

4 -20 2.007 13.2 4.02 / 3.83 
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4.4 BIRDS-2 Project Timeline Overview 

The APRS-DP/S&F payload was designed, developed, and integrated to the satellites within a 15-

month time frame from December 2016 to February 2018 – about 11 months for engineering model and 

four months for final assembly, integration, and test of flight models. Figure 22 shows an overview of the 

BIRDS-2 project timeline. During BIRDS-2 satellite development, the functionality of payload was 

developed and tested by communicating with a handheld radio and a dummy GST setup at Kyutech. Tuning 

and radiation pattern testing of antennas were done separately from other payload parts during PDR and 

CDR stages, but there were unnoticed mistakes in the procedure and undetermined design problems during 

development. 

Integration of APRS-DP/S&F payload with antennas and other satellite parts was done late (after 

CDR), so were the verification tests with the whole satellite assembled. Wireless communication tests were 

performed with a flight model spare in the anechoic chamber to confirm the link budget, but the results 

were not as good as we expected. Also, at a time when we were debugging several other problems occurring 

on the flight models, we could not manage to obtain conclusive and replicable results in the anechoic 

chamber. Due to time constraints (as this was already during flight model AIV phase and we had to 

prioritize other activities), we were not able to fully determine the condition and test the performance of 

the payload when completely integrated with the antenna and whole satellite. 

 

Figure 22. BIRDS-2 project timeline 

4.5 APRS-DP/S&F Payload Functionality Tests 

Before wireless communication tests in anechoic chamber, payload functionalities were developed 

and confirmed in the workplace in BIRDS room. APRS-DP communication functionalities, such as 

exchanging messages and beacon with the payload acting as relay, were confirmed inside the BIRDS room 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 77 

and outdoor, using two handheld radios as shown in Figure 23. In outdoor tests, the satellite was placed 

between two users distanced far enough so that direct communication between their handheld radios (with 

attenuators attached) could not be established. Digipeating was confirmed because the message/beacon 

could only be received by the other side when the payload was on. The S&F functionalities were confirmed 

with a dummy GST sending a sensor packet to the payload and checking if the GST could receive 

acknowledgment packet from the payload, as shown in Figure 24. 

The integrity and functionality of the APRS-DP/S&F payload was confirmed before integrating it 

with the whole satellite. Both APRS-DP and S&F communication functionalities were verified with a 

handheld radio. As for the payload’s VHF transceiver, the output RF power, bandwidth, and spectrum were 

measured using a spectrum analyzer. The spectrum measurements are given in Figures 25, 26 and 27 and 

tabulated in Table 12. The output RF power are within the product specification value of 27 dBm ± 1dB. 

The -30 dB and -50 dB bandwidths do not exceed the 15 kHz coordinated license. The measured payload 

power consumption was 0.29 W during receiving or idle and 1.40 W during active RF transmission. 

 

Figure 23. Basic APRS-DP communication tests performed with an APRS-capable Kenwood 

handheld radio 

Table 12. Payload VHF transmitter output RF signal spectral measurements 

Satellite 
-30 dB bandwidth 

(kHz) 

-50 dB bandwidth 

(kHz) 

Channel Power 

within 30 kHz 

(dBm) 

BIRD-BT (BHUTAN-1) 5.1 9.4 26.5 

BIRD-PH (MAYA-1) 5.1 9.2 26.6 

BIRD-MY (UiTMSAT-1) 5.0 9.2 27.1 
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(a) 

 

(b) 

 

(c)  

Figure 24. Testing communication between the payload and dummy GST: (a) simple setup inside the 

BIRDS room, (b) sensor packet received by payload from GST, (c) (b) ACK packet received by GST 

from payload 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 79 

 

Figure 25. Spectrum measurement on BIRD-BT (BHUTAN-1) VHF transmitter’s RF output after 

putting a 20 dB attenuator, indicating an total output power of 26.5 dBm 

 

 

Figure 26. Spectrum measurement on BIRD-PH (MAYA-1) VHF transmitter’s RF output after 

putting a 20 dB attenuator, indicating an total output power of 26.6 dBm 

 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 80 

 

Figure 27. Spectrum measurement on BIRD-MY (UiTMSAT-1) VHF transmitter’s RF output after 

putting a 20 dB attenuator, indicating an total output power of 27.1 dBm 

4.6 EM and FM Satellite Assembly, Integration and Verification 

During the flight models’ assembly, integration, and verification (AIV) stage, the BIRDS-2 project 

members were grouped into respective country teams, each assigned a workstation (some photos of AIV 

activities are shown in Figure 28). Thermal vacuum and vibration tests were conducted on the fully 

integrated satellite to demonstrate the satellite would operate properly in space environment and would 

satisfy the launcher’s safety requirements. Thermal vacuum tests were done on both the engineering model 

and flight models to verify the functionality of the whole satellite and subsystems, including the APRS-

DP/S&F payload, under vacuum condition and extreme cold and hot temperatures of space. This test would 

also confirm if the satellite and its parts can withstand the thermal stress under vacuum condition. This test 

was performed directly on the integrated satellite and unit level and subsystem level tests were skipped to 

save time and effort.  

In engineering model test, the satellite was subjected to -25°C worst cold and +55°C worst hot 

temperatures (control temperature is defined as the average of the six external panels’ temperatures) for 

four thermal cycles. The actual control temperature and VHF transceiver temperature are shown in Figure 

29. The payload was confirmed to be functional and survived the thermal cycling. In flight model test, the 

satellites were subjected to -25°C worst cold and +65°C worst hot temperatures for two thermal cycles. 

Flight model thermal vacuum test setup is shown in Figure 30. 
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Figure 28. BIRDS-2 flight model assembly, integration and verification 

 

Figure 29. Actual temperatures of the APRS-DP/S&F payload during thermal vacuum test on the 

engineering model 
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Figure 30. Thermal vacuum test on BIRDS-2 flight models: (left) thermocouples attached assembled 

satellite; (right) test setup with flight models inside the large vacuum chamber in Kyutech CENT 

      

Random vibration (20-2000 Hz, 6.53 Grms for QT, and 4.83 Grms for AT) and sine-burst vibration 

(18.1 G for QT) tests were performed on the engineering and flight models to demonstrate structural 

integrity of the satellites in rocket launch environment and to satisfy the launcher requirements. These were 

done as part of JAXA’s acceptance process. The vibration test setup for the flight models are shown in 

Figure 31. The random vibration test profile used followed the combined envelopes for HTV and SpaceX 

launch vehicle profiles. The natural frequencies in all three axes were shown to be way higher than the 

minimum requirement of 100 Hz. During vibration test, the stowed antennas did not inadvertently deploy 

and there were neither dislocated nor removed parts. Thus, the satellites passed both qualification and 

acceptance vibration tests. The three BIRDS-2 flight models ready for delivery are shown in Figure 32. 

Photos of satellite hand-over to JAXA, rocket launch and satellites’ deployment from the ISS are given in 

Figures 33, 34 and 35. 
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Figure 31. Actual vibration test setup for flight models 

 

Figure 32. BIRDS-2 CubeSat flight models inside the cleanroom at Kyutech CENT 
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Figure 33. Photos of BIRDS-2 CubeSat flight models delivered to JAXA facility and assembly with the 

pod (photos courtesy of JAXA) 

 

Figure 34. Rocket launch to the ISS in June 29, 2018 through the SpaceX Falcon 9 

    

Figure 35. Deployment of BIRDS-2 CubeSats from the ISS in August 10, 2018 (photos courtesy of 

Alexander Gerst) 

4.7 Overview of Ground Sensor Terminal (GST) Segment 

The block diagram of the GST segment is given in Figure 36. It consists of a control and 

communication unit (CCU), real time clock (RTC) for time information in UTC, a half-duplex VHF 

transceiver, an SD card for sensor data storage, an antenna with rotator mounted on a mast (needed in the 

case of a directive GST antenna), and a solar-battery power system for autonomous operation even in an 

isolated location. The CCU performs data logging at regular time interval, implements the communication 

sequence and protocol with the payload, and hosts an orbital calculation software. The use of an orbital 

software to predict satellite passes is adopted to calculate the time of satellite passes. This enables an 
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intelligent automation of the GST, avoiding unnecessary RF emissions, and saving energy. Before any 

satellite pass, the orbital calculator computes the time of arrival (TOA or acquisition of signal (AOS)) and 

time of departure (TOA or loss of signal (LOS)) of each CubeSat using the GST’s position (latitude, 

longitude and altitude which are programmed prior to deployment), accurate time information from RTC 

and the satellite’s updated TLE. Initial TLE information of all CubeSats will be saved in the SD card, but 

these will be updated regularly because the GST is programmed to send a TLE download request packet 

to the payload when the last saved TLE is older than five days.  

 
 

Figure 36. Block diagram of ground sensor terminal (GST) segment 

The VHF transceiver is a low-cost COTS product, MTT4B, from Byonics. It has an FM transceiver 

with adjustable transmit power (up to 8W), programmable transmit and receive frequencies that were set 

to 145.825 MHz, internal 1200 bps AFSK modem and AX.25 protocol TNC support. Because the GSTs 

operate within the VHF amateur radio band, they must be registered as amateur stations to an amateur 

operator at the respective national telecommunication ministry. GST prototypes developed at Kyutech and 

by collaborators at the University of the Philippines – Diliman (UPD, Philippines) and the Universiti 

Teknologi Mara (UiTM, Malaysia) are shown in Figures 37 and 38. For Bhutan, the target application is 

weather monitoring with stations sensing temperature, pressure, humidity, wind speed and direction, rain 

gauge. For Malaysia, the target application is ground-based magnetic field measurements with anisotropic 

magnetoresistance sensor. For the Philippines, the target application is soil monitoring for agriculture with 

temperature and humidity sensors. Figure 39 shows data logging activity of the Kyutech GST prototype as 

displayed by serial monitor. 
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Figure 37. GST prototypes developed by collaborators in UPD (Philippines) and UiTM  (Malaysia) 

 
 

Figure 38. GST prototype developed at Kyutech 
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Figure 39. Kyutech GST prototype actual data logging activity as displayed by serial monitor 

4.8 On-orbit Operation Results 

Two weeks after the satellites’ deployment from the ISS, command uplink from ground station to all 

BIRDS-2 satellites could still not be established. As programmed, the APRS-DP/S&F payload was 

automatically activated by the OBC in all three satellites (automatic mission mode). At Kyutech GS, we 

received the beacon signals regularly transmitted by the payloads, but we could only decode those from 

BIRD-BT and BIRD-MY as shown in Figure 40. Radio amateurs around the world also reported their 

reception of the beacon messages but only one amateur reported to have decoded from BIRD-PH. 

Downlink signal from BIRD-PH was weaker according to some amateurs. Beacon transmissions from 

BIRD-PH apparently stopped early so it was likely its VHF transmitter failed. Recorded RF power 

measurements on beacon signals (shown in Figures 42 and 43) indicate that the threshold downlink 

reception power for decoding is about -105 dBm. Unfortunately, full two-way communication with the 

payload, i.e., digipeating functionality, did not work because of uplink communication problem. The 

payload could not receive and decode uplink packets from users on the ground even with a highly directive 

antenna. 
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Figure 40. APRS-DP regular beacon message packets received at Kyutech GS: (left) using UISS 

software on PC; (right) using Kenwood handheld radio 
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Figure 41. APRS-DP regular beacon message packets received by some amateurs around the world 
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Figure 42. RF power measurements of BIRD-BT’s APRS-DP beacon message signal through Kyutech 

BIRDS GS 

 

Figure 43. RF power measurements of BIRD-MY’s APRS-DP beacon message signal through 

Kyutech BIRDS GS 
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Chapter 5:  Investigation on Communication Design Issues of 
BIRDS-2 CubeSat APRS-DP/S&F Payload, Results and 
Discussion 

Although we had performed a few communication tests during development, it was only in hindsight 

we realized that our test approach had limitations and that we committed serious mistakes in executing the 

test procedures. Some important aspects of communication verification test had been overlooked during 

development due to other pressing design issues, assembly, integration, and test activities. Moreover, since 

the antenna design had undergone two iterations before being finalized, the team members working on the 

payload and antenna design did not have ample time to detect the antenna matching, grounding, and 

electromagnetic interference (EMI) problems during integration.  

The failure to identify the real design issues was complicated by the fact that our existing measurement 

results at that time on antenna gain and reflection coefficient were incorrect, as well as the fact that we 

overlooked the satellite-radiated EMI. Also, between UHF and VHF communication subsystem 

verification tests, the team had to prioritize and dedicate more time for UHF communication subsystem 

because of its criticality for the whole satellite operation. Later it turned out, however, that both 

communication subsystems were facing similar problems. 

In this chapter, we discuss the process and results on the investigation conducted after the satellite had 

been delivered to the launch provider (and mostly after confirming failure of uplink communication after 

deployment from ISS). The presentation below reflects the improved and more systematic communication 

verification test procedure to address the limitations and mistakes from our previous communication tests 

during the satellite development. 

5.1 Determining the Actual Payload Receiver Sensitivity by Cabled 
Communication 

Applying the SNR method [170], assuming a receiver bandwidth of 12 kHz and effective receiver 

noise temperature of 606 K, the estimated thermal noise power in the band is about -130 dBm. Then, for a 

threshold SNR of 21 dB (for AFSK/FM modulation at 10-4 BER), the minimum receiver input power 

required is roughly -109 dBm. On the other hand, according to the product’s datasheet, the receiver 

sensitivity is -120 dBm for 12 dB SINAD (signal-to-noise and distortion ratio, referring to analog signal 

quality). Thus, we can approximate that the 21 dB SINAD is 9 dB above -120 dBm or equal to -111 dBm, 

which is not far from the theoretical value (-109 dBm). 

To determine the actual optimum sensitivities of uplink and downlink receivers, communication test 

between a Kenwood TH-D72 handheld radio (representing an APRS user or GST) and payload was 

performed in a cabled test condition. Figure 44 shows the test setup wherein the received RF power at the 

input of payload receiver was controlled by varying the attenuator value. The packet success rate was 

characterized for different values of receiver input power. The satellite (a flight spare) was placed inside 
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an RF shield box to reduce the effect of possible leakage from the handheld radio transmitter to the payload 

receiver and vice-versa. 

The packet downlink success rate (PDSR) and packet uplink success rate (PUSR) are plotted in Figure 

45 for the case of matched frequencies and in Figure 46 for case of mismatched frequencies. In the figures, 

L is the total length in bytes of the test packet sent. To facilitate the discussion below, a threshold success 

rate of 80% is considered for sensitivity. For the case of matched frequencies, the optimum (cabled 

condition) uplink receiver sensitivity is within the range of -110 dBm to -114 dBm while the optimum 

downlink receiver sensitivity is within the range of -109 dBm to -111 dBm, depending on packet length. 

For the case of mismatched frequencies, a 5 kHz Doppler shift (only about 3 kHz is expected in practice) 

would result in a 4-7 dB worse receiver sensitivities – uplink receiver sensitivity of about -105 dBm and 

downlink receiver sensitivity of about -106 dBm, for a 100-byte packet length.  

 

 
Figure 44. Cabled communication test setup to determine the optimum uplink and downlink receiver 

sensitivities: (top) diagram, (bottom) photo of actual setup 
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Figure 45. Measured uplink and downlink receiver sensitivities in cabled test condition (matched TX 

and RX frequencies, representing no Doppler shift) 
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Figure 46. Measured uplink and downlink receiver sensitivities in cabled test condition (mismatched 

TX and RX frequencies, representing 5 kHz Doppler shift, L=100 bytes) 

5.2 Locating EMI Sources in the Satellite 

In one of the communication tests in anechoic chamber performed after satellite delivery, it was 

accidentally found that the noise floor measurement of spectrum analyzer (with satellite’s antenna 

connected) increased when the satellite was turned on compared when it was turned off. This observation 

led to a suspicion that the satellite might be emitting electromagnetic interference (EMI). To locate the 

EMI sources in the satellite, we probed different parts of the satellite and boards using a small loop antenna 

connected to a spectrum analyzer for EMI signal detection. The test setup is shown in Figure 47. The test 

points and corresponding power spectral density (PSD) measurements are given in Table 13. This test 

demonstrated that areas near some inductors of the switching power supplies (on the OBC/EPS board), a 
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level converter IC chip in mission board and power pins in the 50-pin connector (GND and SUP_5V routes) 

were emitting significantly higher EMI levels compared to other parts of the board and the satellite.  

 

Figure 47. Test setup for locating the EMI-emitting sources in the satellite 

 

 

Figure 48. Some test points for determining EMI sources in the satellite 
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Table 13. EMI sources determination test points and corresponding PSD 

measurements 

Component/Part Label 

PSD in dBm/Hz at 145.825 

MHz (increase from DVREF 

in dB) 

L540 – inductor of buck-boost 

converter for FMR5V 
A -151 (+3) 

L520 – inductor of buck-boost 

converter for SUP_5V0 

(supplying Addnics TRX) 

B -139 (+15) 

L510 – inductor of buck-boost 

converter for OBC3.3 

(supplying OBC) 

C -135 (+19) 

L500 – inductor of buck-boost 

converter for GPS3.3 and 

SUP_3.3 (MCUs and GPS) 

D -146 (+8) 

L220 – inductor of BCR for 

PWR_SCY 
E 𝐷𝑉𝑅𝐸𝐹  (0) 

L200 – inductor of BCR for 

PWR_SCZ 
F 𝐷𝑉𝑅𝐸𝐹  (0) 

L240 – inductor of BCR for 

PWR_SCX 
G 𝐷𝑉𝑅𝐸𝐹  (0) 

Near 50-pin connector pins 

#13, 14, 15, 16 (GND and 

SUP_5V routes) 

H -142 (+12) 

Near 50-pin connector pins 

#35 and 36 (GND_ROOT) 
I -142 (+12) 

Near MCUs of CAM modules J -145 to -150 (+4 to +9) 

Trace near CAM MCU 

(Atmega) 
K -141 to -146 (+8 to +13) 

Near MAX3378 (3.3 V to 5 V 

converter) 
L -135 to -140 (+14 to +19) 

Below power supply pin of 

TNC board 
M -151 (+3) 

Near 50-pin connector pins 

#13, 14, 15, 16 (GND and 

SUP_5V routes) 

N -132 (+22) 

Near 50-pin connector pins #4, 

5 (MCU_3V3) 
O -142 (+12) 

Lower part of transceiver left 

part 
P 𝐷𝑉𝑅𝐸𝐹  (0) 

Other parts of transceiver Q 𝐷𝑉𝑅𝐸𝐹  (0) 

Other pins of MB 50-pin 

connector 
- 

Generally about  

-147 (+7) 

𝐷𝑉𝑅𝐸𝐹 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑛𝑜𝑖𝑠𝑒 𝑓𝑙𝑜𝑜𝑟 𝑃𝑆𝐷 𝑜𝑓 𝑆𝐴) = −154 ~ − 155 dBm/Hz 
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5.3 Design Improvements Implemented on the BIRDS-2S CubeSat’s APRS-
DP/S&F Mission Payload 

When the APRS-DP/S&F payload of the BIRDS-2 CubeSats were automatically activated about a 

week after deployment from the ISS, it was found that downlink communication was working. We 

confirmed this at Kyutech ground station by being able to receive and decode the APRS beacon messages 

regularly transmitted by the payload (except for MAYA-1, which worked only a few times). Several reports 

from amateur operators around the globe submitted through an online submission platform of BIRDS-2, 

as well as received packets forwarded to Internet servers, supported this result. However, full digipeating 

and two-way communication with users failed due to uplink communication problem. The payload receiver 

could not properly receive and decode packets from users. The causes of failure uncovered from ground 

communication tests are: 

1) satellite’s VHF monopole antenna has poor matching and low gain due to improper RF 

grounding; 

2) satellite’s OBC/EPS board emits electromagnetic interference (EMI) that is captured by the 

antenna, thereby increasing the noise floor of payload receiver. 

To address these problems, we explored two main changes targeted to be implemented on the BIRDS-

2S satellite (an educational satellite project at the University of the Philippines-Diliman using a modified 

BIRDS-2 CubeSat design): 

1) To minimize the dependence on grounding, a new antenna board was designed, consisting of a 

UHF dipole antenna for communication with GS and another VHF dipole antenna for the APRS-

DP/S&F payload; 

2) To reduce the EMI captured by the antenna, we tried shielding the satellite’s OBC/EPS board 

with copper plate connected to ground. However, since this was determined to be ineffective, in 

future work, we plan to use an EMI absorber and shielding sheet commercially available. 

The drawing and photos of the new antenna design for BIRDS-2S CubeSat are given in Figure 49, 

consisting of UHF and VHF dipole antenna elements that are purposefully oriented perpendicular to each 

other. Due to space constraint on the antenna board, the two respective elements of both dipole antennas 

could not be positioned directly beside each other. Thus, as shown in the antenna board layout drawing on 

Figure 40, they are fed by striplines routed on the second layer of the board through pads that are accessible 

on the top and bottom layers. A jumper wire is attached to each element – one end of jumper wire is 

tightened by screw to the element while the other end is inserted into and soldered the pad on the back side 

of the board. (Note: the actual EM board in Figure 49 slightly differs from the PCB layout drawing on 

Figure 50, in which we adopted some modifications). Each stripline leads to the balanced input of either 

VHF or UHF balun. The unbalanced output of each balun is connected to a low-pass type L-matching 

network, which in turn is connected to a connector (SMA for UHF and MMCX for VHF) to which a cable 

going to respective transceiver will be connected. Due to limitation on available space, only the striplines 
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of UHF dipole could be made equally long (which is more sensitive to phase offset than those of the VHF 

dipole). 

 

Figure 49. New antenna design for BIRDS-2S CubeSat consisting of VHF and UHF dipole antennas: 

drawing (left), photos of actually implemented antennas for engineering model (right) 

 

To reduce the EMI captured by the antenna, copper plates were attached to the front and back sides 

of the satellite’s OBC/EPS board using Kapton tape, as shown in Figure 51. The copper plates were placed 

on a portion of the board in a way that would cover the inductors of switching power supplies and were 

electrically connected to the ground pins of the board by soldering jumper wires. In terms of electrical 

properties, copper and aluminum are practically the same for this usage. In terms of density, copper is 

about 3-4 times the density of aluminum, so for the same volume, copper plate will be 3-4 times heavier. 

However, only small volume is required, the total mass or weight is not a big concern. The main reason for 

choosing copper plate in BIRDS-2S (over aluminum plate in BIRDS-4) is that it is much easier to solder it 

to the ground using a normal wire. In BIRDS-4, a mechanical way was needed to ensure aluminum plate 

was firmly and electrically connected to a wire soldered to the ground. To evaluate the effectiveness of the 

copper shield, a slightly different procedure was done using the satellite’s own VHF antenna to directly 

measure the captured EMI, and this is described in Section 5.8.  
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Figure 50. PCB layout of the four-layer antenna board for the BIRDS-2S CubeSat 

    
 

Figure 51. Photo of copper plate shielding on the OBC/EPS board of BIRDS-2S satellite: front side 

(left), back side (right) 
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5.4 Design Improvements Implemented on the BIRDS-4 CubeSat’s APRS-
DP/SF-WARD Mission Payload 

The design modifications implemented on BIRDS-4 APRS-DP/SF-WARD mission payload are like 

that of BIRDS-2S. There are two slight differences, though. First, instead of using the already assembled 

product for TT4, a kit version was used so that the components could be soldered directly on the mission 

board (instead of using an adaptor board, which was done in BIRDS-2 and BIRDS-2S). Second, the 

orientation between UHF and VHF dipole antenna elements are different: perpendicular in BIRDS-2S and 

non-perpendicular in BIRDS-4. A perpendicular arrangement is the most ideal, but it was not possible to 

implement in BIRDS-4 due to space constraint (other parts need to be put on the board such as perovskite 

solar cell). Also, the UHF antenna elements’ feed points are beside each other so they are connected to 

UHF balun without stripline. In addition to these two differences, the BIRDS-4 satellite has a modified 

OBC/EPS board design and it implemented an aluminum plate shielding. Figures 52 and 53 show BIRDS-

4 CubeSat’s APRS-DP/SFWARD mission payload and antenna design, respectively. As mentioned above, 

the OBC/EPS board of BIRDS-4 CubeSat was covered with an aluminum plate shielding to reduce the 

possible EMI noise (see Figure 52, lower). 

  

 
Figure 52. BIRDS-4 CubeSat’s APRS-DP/SFWARD mission payload (top) and aluminum plate 

shielding method employed for BIRDS-4 OBC/EPS board (bottom) 
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Figure 53. BIRDS-4 CubeSat’s VHF dipole antenna for the APRS-DP/SFWARD payload 

5.5 Antenna Reflection Coefficient Measurement and Tuning 

The previous approach of measuring the antenna’s reflection coefficient (S11) using a VNA involved 

disconnecting the MMCX male connector of VHF cable from the MMCX female connector on the VHF 

transceiver (TRX) board (refer to Figure 17 bottom left) and connecting it to the VNA probe. This produced 

inaccurate measurement during BIRDS-2 antenna board testing because the VHF TRX board’s ground 

would be part of the satellite’s overall RF grounding in the real operation condition. To measure S11 more 

accurately, this time for the BIRDS-2S antenna board, we utilized a VHF TRX test board that is similar to 

the VHF TRX board but with another MMCX connector mounted at the point where the BIM1H 

transceiver’s RF pin would be soldered (note: VHF TRX not mounted on the test board).  

The test diagram is shown in Figure 55, wherein Zm is the measured impedance just at the point 

representing the RF port of the transceiver. This enabled us to measure the S11 effectively at the 

transceiver’s RF port, with the VNA substituting for the transceiver in the test. Also, the VNA was 

calibrated at the end of the probe cable. A photo of the actual measurement setup for the case of the BIRDS-

2S antenna board is shown in Figure 54. 
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Figure 54. Actual setup for antenna S11 measurement and tuning 

     
 

Figure 55. Setup diagram for antenna S11 measurement and tuning 

   
Figure 56. Circuit representation of the BIRDS-2S VHF dipole antenna parts and measurement setup 

(left) with a closer view of the actual antenna circuit implemented (right) 

To better explain the antenna measurement, tuning and matching procedure, a circuit representation 

is provided in Figure 56 along with the actual circuit mounted on the antenna board. Tuning of the BIRDS-

2S VHF antenna involved two steps. The first step entailed gradually cutting the antenna elements, starting 

from 65 cm on each element, until finding the length with maximum resistance 𝑅𝑚 at 145.825 MHz. All 
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impedance measurements are done only for 𝑍𝑚 because it was difficult to perform direct measurements of 

𝑍𝑖𝑛
′  (impedance after the balun) and 𝑍𝑖𝑛

′′  (impedance after the matching network). This was done without 

the impedance matching network (IMN) components connected (i.e., with L3 pins shorted and C3/C3’ pins 

left open). For every reduced length, the center frequency, reflection coefficient (S11), real and imaginary 

components of input impedance 𝑍𝑚 = 𝑅𝑚 + 𝑗𝑋𝑚  at 145.825 MHz were recorded. As the length was 

reduced, the center frequency increased and 𝑅𝑚 at 145.825 MHz increased, but only until a length 52 cm, 

where a maximum 𝑅𝑚 = 61 Ω was obtained. The 𝑍𝑚 at 145.825 MHz was equal to 61-j45 Ω but the center 

frequency was lower than 145.825 MHz at this length.  

The second step required computing the values of IMN components and soldering them on the board. 

However, since we were left with a length of 50 cm (we cut 2 cm. more from 52 cm before realizing it was 

the best length) with a 𝑍𝑚 = 54.2 − j25.3 Ω  at 145.825 MHz, the values of IMN components were 

calculated for this length. The L3 and C3 obtained were 30.88 nH and 1.64 pF, respectively, but the actual 

components used were 33 nH and 1.8 pF, respectively. 

 
Figure 57. Measured S11 of the BIRDS-2S VHF dipole antenna after tuning 

The 1.8 pF capacitor was mistakenly mounted on C3’ position. Nonetheless, since the calculated 

inductor and capacitor impedances at 145.825 MHz were j30.2 Ω and –j606.3 Ω, respectively, the 

transformed impedance was expected to be 54.6 + j0.1 Ω. Thus, the supposed effect was simply to almost 

eliminate the reactive part and leaving a real part that would result in a very good S11 (<-20 dB). However, 

we actually obtained a 𝑍𝑚 = 67.7 –  j17.0 Ω and S11=-13.9 dB, which implies that the RF cable between 

antenna board and VHF TRX board and the feedline can change the impedance so that 𝑍𝑖𝑛′′ and 𝑍𝑚 are 

actually different. Since our goal was to effectively match at the VHF TRX’s RF port, we adjusted L3 and 

C3’ values and slightly reduced the antenna length to improve the S11. Finally, with 49.5 cm antenna length, 

L3=22 nH and C3’=1.5 pF, we obtained 𝑍𝑚 = 57.9 –  𝑗12.2 Ω and S11=-18.2 dB at 145.825 MHz, which 

are good enough. The resulting S11 plot is shown in Figure 57. 
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5.6 Antenna Radiation Pattern Test 

Radiation pattern and gain measurement of BIRDS-2 antenna board was conducted during BIRDS-2 

development. However, the data were found later to be unreliable because of the following reasons: (1) the 

BIRDS-2 satellite, with mounted antenna board as the antenna-under-test (AUT), acted in receive mode, 

and in order to measure the received power by the antenna, the VHF antenna cable had to be disconnected 

from the VHF TRX board, hence this does not represent the realistic grounding condition (important aspect 

especially for monopole antenna); (2) the internal 10 dB attenuator of dipole antenna used as reference 

antenna was overlooked, so in the calculation of gain, the resulting values were 10 dB higher than the 

actual values; (3) there was not sufficient distance inside the anechoic chamber in Kyutech to achieve far-

field condition for the VHF antenna case, so the measurements were probably still in the near field to far 

field transition region.  

Antenna radiation pattern measurement was conducted again at the UPD’s newly established full 

anechoic chamber facility (FAC) that utilizes a state-of-the-art near-field-to-far-field transformation 

technology (i.e., near-field measurements are transformed into far-field radiation pattern data, so far-field 

distance is not necessary). Also, as previously mentioned, we utilized a VHF TRX test board in this testing 

with another MMCX connector mounted at the point where the BIM1H transceiver’s RF pin would be 

soldered. This allowed us to measure the effective gain that would be seen exactly at the transceiver’s RF 

port. For direct comparison, radiation pattern measurement was performed on both BIRDS-2 antenna board 

and BIRDS-2S antenna board. 

Figure 58 shows the actual radiation pattern measurement setup. On one side, the AUT (antenna under 

test, which refers to the commercial dipole antenna used as reference, or BIRDS-2 antenna or BIRDS-2S 

antenna) was attached to an L-bracket positioner and on the other side, the probe antenna (yagi) was fixed 

to a stand. The probe antenna and the AUT were connected to RF cables leading to the two RF ports of the 

VNA outside chamber, which measured the total attenuation coefficient (S21) in terms of magnitude and 

phase. The system recorded the S21 values while rotating the positioner about the theta and phi axes with 

the probe antenna fixed in co-polarization (horizontal) position in the first scan. This step was repeated in 

the second scan with the probe antenna fixed in cross-polarization (vertical) position.  

After scanning, the system applied a near-to-far-field transformation algorithm and provided the 3D 

far-field data in various elevation (EL) and azimuthal (AZ) planes defined with respect to the AUT. 

However, due to the blocking effect of absorbers on the positioner, the resulting far-field data was 

inaccurate in the region of the AUT facing toward the positioner. Therefore, five strategically selected 

initial AUT positions were tested (following the procedure just described here) and only the far-field data 

on the narrow region facing toward the probe (about 90°) was extracted for each position. Then, the data 

extracted from the five positions were concatenated to obtain the radiation patterns on the antenna’s E-

plane and H-plane. A simple averaging filter was applied near the concatenation points to smoothen out 

the plots. Gain comparison method was used to estimate the gain in various directions, hence the radiation 

pattern in dB. 
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The resulting radiation patterns are presented in Figures 59 and 60 (the +z and other axes are the same 

as defined in Figure 58). Both BIRDS-2 and BIRDS-2S VHF antennas exhibit an omnidirectional pattern 

on the H-plane (perpendicular to the antenna element) and have nulls on the E-plane in the directions where 

the antenna elements are pointing. From the plots, the gain of the BIRDS-2 VHF monopole antenna is 

about -3 dB while the gain of the BIRDS-2S VHF dipole antenna is about 0.5 dB (note that the reference 

dipole antenna gain was assumed to be only 1.2 dB). These results demonstrate better gain performance of 

the new BIRDS-2S antenna design over the previous BIRDS-2 antenna design. 

 
Figure 58. Antenna radiation pattern measurement setup at UPD’s full-anechoic chamber (FAC) 

facility 

 

 
Figure 59. Radiation pattern of BIRDS-2 VHF monopole antenna on E-plane (left) and H-plane 

(right). Gain is shown in dB 
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Figure 60. Radiation pattern of BIRDS-2S VHF dipole antenna on E-plane (left) and H-plane (right). 

Gain is shown in dB 

5.7 Wireless Communication Tests Inside the Anechoic Chamber 

To determine the actual payload receiver sensitivity in satellite-integrated and wireless condition, 

communication test between the satellite (with the payload and BIRDS-2S antenna board) and handheld 

radio (acting as an APRS user) was performed inside the FAC, with test setup shown in Figure 61. The 

distance between the satellite and dipole antenna (attached to attenuators and handheld radio outside the 

chamber) was confirmed to be about four meters. The received RF power at the payload receiver input was 

to be controlled by varying the attenuator value and then the uplink packet success rate would be recorded 

for each resulting receiver input power.  

 
Figure 61. Wireless communication test setup at UPD FAC for testing the payload receiver sensitivity 

using BIRDS-2S dipole antenna (APRS-DP communication test) 

Before communication test, the setup was carefully checked and calibrated by measuring the 

transmitters’ output powers, cable losses and free space path loss, considering the antenna gains obtained 

from previous tests. When the attenuator was initially set to 40 dB, the measured received power from the 

satellite antenna (using spectrum analyzer) was -30 dBm. Considering radio output power of 36 dBm, 1 

dB cable loss, 1.2 dB transmit antenna gain, and 0.5 dB receive antenna gain, the free-space path loss was 

estimated to be about 26.7 dB (compared to theoretical value of 27.8 dB, assuming far-field free-space 
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condition). Nonetheless, as part of the calibration procedure, the received power from the satellite antenna 

(equal to received power at the payload receiver input) was measured and recorded for each attenuator 

value. The measurement values confirmed that the receiver input power could be linearly (in dB) controlled 

by adjusting the attenuator value. To test the uplink communication, an APRS message (total packet length 

of about 50 bytes) was transmitted from the handheld radio. 

The experimental results for uplink success rate are tabulated in Table 14, which suggests an uplink 

receiver sensitivity of about -79 dBm for a packet success rate of 70%. This wireless uplink receiver 

sensitivity result is 35 dB worse than the corresponding cabled test result of -114 dBm (refer to Figure 45). 

This worse payload receiver sensitivity is due to the radiated EMI from the satellite that is captured by the 

dipole antenna and goes into the receiver, thereby increasing the effective “noise” floor. The increased 

noise floor also raises by the same amount the required threshold input RF power for successful 

demodulation. This is explained further in the next section. 

Table 14. Experimental values for APRS packet success rate at different 

payload receiver input power using BIRDS-2S dipole antenna (whole 

satellite assembled) 

Attenuator Value 

(dB) 

Expected Receiver 

Power (dBm) 

Measured 

Receiver Power 

(dBm) 

Uplink Packet Success 

Rate 

40 -30 -30 ~10/10 (full success) 

65 -55 -54 ~10/10 (full success) 

90 -80 -79 7/10 

93 -83 -82 2/10 

96 -86 -86 fail 

99 -89 -88 - 

102 -92 -92 - 

105 -95 -94 - 

108 -98 -97 - 

 

Prior to the wireless communication test at the UPD FAC described above, a similar test procedure 

had been conducted at Kyutech’s full anechoic chamber involving BIRDS-2 satellite flight spare but using 

a commercial dipole antenna. The test setup is shown in Figure 62. Instead of using the handheld radio to 

transmit an APRS message, it was used to transmit a 100-byte S&F packet for 100 trials. The results are 

given in Table 15, indicating a payload receiver sensitivity of about -77 dBm (for a 65% success rate) when 

using a commercial dipole antenna. This is comparable to the payload receiver sensitivity of -79 dBm (for 

a 50-byte APRS packet, 7/10 success rate) when using the BIRDS-2S dipole antenna in the UPD FAC 

communication test. This suggests roughly equal communication performance of the BIRDS-2S dipole 

antenna when benchmarked against the commercial dipole antenna.  
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Even earlier than this, a similar wireless communication test had been conducted at Kyutech’s full 

anechoic chamber using the same commercial dipole antenna but involving only the satellite’s mission 

board, VHF TRX, and an external power supply (other boards not connected). Also, the dipole antenna 

was positioned a little farther away from the satellite and instead of handheld radio, MTT4B transceiver 

was connected on the GST side. The test setup is shown in Figure 63 and the recorded average uplink 

success rate is given in Table 16. The S&F receiver sensitivity obtained in this test was about -95 dBm (for 

~70% success rate), which is better than the other two tests with the whole satellite assembled. Although 

it is possible to say that the better sensitivity might be due to lower EMI, noting that other boards (e.g. 

OBC/EPS board) were not connected and the satellite was a placed a little farther compared to the one in 

Figure 62, there are other significant differences between the test conditions in Figures 62 and 63. Thus, it 

is not right to assert this claim just by comparing the results of the tests in Figures 62 and 63. It would have 

been better if the same test as in Figure 62 was repeated but with only the satellite’s mission board, VHF 

TRX, and an external power supply (the same satellite distance and GST transmitter). 

 
Figure 62. Wireless communication test setup at Kyutech FAC for testing the payload receiver 

sensitivity using a commercial dipole antenna (S&F communication test) 

Table 15. Experimental values for S&F packet success rate at different 

payload receiver input power using a commercial dipole antenna (whole 

satellite assembled) 

Attenuator 

Value (dB) 

Received 

Power (dBm) 

Uplink Packet Success 

Rate (out of 100 trials) 

40 -32 - 

70 -62 - 

75 -67 100% 

81 -73 98% 

83 -75 96% 

85 -77 65% 

87 -79 39% 
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89 -81 12% 

 

 
Figure 63. Wireless communication test setup at Kyutech FAC for testing the payload receiver 

sensitivity using a commercial dipole antenna (S&F communication test, with only mission board, 

VHF TRX and external power supply) 

Table 16. Experimental values for S&F packet success rate at different 

payload receiver input power using a commercial dipole antenna (with 

only mission board, VHF TRX, and external power supply) 

Received Power 

(dBm) 

Average Packet Success Rate (over 100%) 

L=50 bytes L=100 bytes L=150 bytes 

-84 96.5 98.5 95 

-87 98 96.5 95.3 

-90 98 97 97 

-94 85.5 86.5 92.3 

-97 59 55 60 

-101 8 3 18 

-103 0.5 0 1 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 110 

5.8 BIRDS-2S Payload Receiver Noise Level Measurements 

The 35 dB worse uplink receiver sensitivity in wireless (antenna connected to satellite) test condition 

from its optimum value in cabled test condition can be accounted on the increased noise level in the payload 

receiver due to the radiated EMI from the satellite that is captured by the dipole antenna. To confirm this, 

we measured the received signal strength indicator (RSSI) voltage of the VHF TRX (BIM1H transceiver) 

in two conditions (RSSI voltage is an indicator of the receiver RF power estimate that is provided on an 

analog pin of BIM1H transceiver). In the first condition, the BIRDS-2S dipole antenna was disconnected 

from the transceiver RF port (open). Then, in the second condition, the dipole antenna was connected to 

the transceiver RF port. The test was conducted with the assembled BIRDS-2S satellite inside the anechoic 

chamber, as shown in Figure 64. The receiver input RF power level or the noise level in this test, could be 

estimated from the plot of the RSSI voltage vs RF level that is provided on BIM1H datasheet (which we 

had confirmed to be a good indicator of RF power level in a previous calibration test). 

 
Figure 64. Test setup for detecting noise level increase in the payload receiver due to satellite-radiated 

EMI captured by the antenna. This was done inside UPD FAC. 

The first condition represents the case wherein the satellite-radiated EMI is present but does not go 

into the receiver, hence the RSSI voltage indicates only the thermal noise level in the receiver in this 

condition. The second condition represents the case wherein the satellite-radiated EMI captured by the 

dipole antenna is transferred to the payload receiver, hence the RSSI voltage indicates the total noise level 

in the receiver (thermal noise and radiated EMI) in this condition. For comparison, the same procedure was 

performed with the BIRDS-2 monopole antenna. Finally, we put the copper plate shielding previously 

described to test its effectiveness and repeated the whole procedure.  

The measurement results for the case before putting the copper plate shielding are provided in Table 

17. With either antenna board integrated to the satellite but the VHF antenna disconnected from the VHF 

TRX port, an RSSI voltage of about 0.4 V was recorded, corresponding to an estimated noise level of -135 

dBm. This value happens to be the minimum RF level detectable by the RSSI voltage (in the RSSI voltage 

vs RF level plot) and is not far from the theoretically estimated thermal noise power of about -130 dBm. 

Thus, it is very likely that thermal noise is the dominant noise present in the payload receiver when no 
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antenna is connected. When either VHF antenna is connected, however, one can clearly see a large increase 

in RSSI voltage and estimated RF level: 39 dB increase for the case of BIRDS-2S dipole antenna and 53 

dB increase for the case of BIRDS-2 monopole antenna. Note that the 39 dB increase in receiver noise 

level for the BIRDS-2S dipole antenna case may account for the 35 dB worsening of uplink receiver 

sensitivity observed during the wireless communication test. The measurements for the case after putting 

the copper plate shielding are given in Table 18 and demonstrates that this shielding approach is not 

effective in attenuating the satellite-radiated EMI (in the case of the BIRDS-2S). 

Table 17. BIRDS-2S payload receiver noise level from RSSI voltage without copper 

plate shielding 

Condition 

BIRDS-2 VHF Monopole 

Antenna (BIRDS-2 antenna board 

integrated) 

BIRDS-2S VHF Dipole Antenna 

(BIRDS-2S antenna board 

integrated) 

RSSI Voltage 

(V) 

Estimated RX 

Power (dBm) 

RSSI Voltage 

(V) 

Estimated RX 

Power (dBm) 

Satellite and payload 

on, BIM1H RF port 

open 

0.40 -135 0.39 -135 

Satellite and payload 

on, BIM1H RF port 

connected to antenna 

1.55 -82 1.22 -96 

Table 18. BIRDS-2S payload receiver noise level from RSSI voltage with copper 

plate shielding 

Condition 

BIRDS-2 VHF Monopole 

Antenna (BIRDS-2 antenna board 

integrated) 

BIRDS-2S VHF Dipole Antenna 

(BIRDS-2S antenna board 

integrated) 

RSSI Voltage 

(V) 

Estimated RX 

Power (dBm) 

RSSI Voltage 

(V) 

Estimated RX 

Power (dBm) 

Satellite and payload 

on, BIM1H RF port 

open 

0.37 -135 0.38 -135 

Satellite and payload 

on, BIM1H RF port 

connected to antenna 

1.43 -87 1.22 -96 

 

5.9 BIRDS-4 Payload Receiver Noise Level Measurements 

As shown in Figure 65, the test setup for measuring the receiver noise level of BIRDS-4 payload is 

like that of BIRDS-2S but the test was done inside a cleanroom (instead of anechoic chamber). Also, due 

to unavailability of BIRDS-4’s own dipole antenna, a commercially available dipole antenna was used as 

substitute and attached to the satellite’s antenna board. The objective of this test is to measure the RSSI 

voltage of payload receiver – that would correspond to its noise power level – in different shielding 
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conditions with dipole antenna connected/disconnected to/from the payload RF port. The three OBC board 

shielding conditions were: (1) without shielding, (2) Aluminum shielding (Figure 52b), (3) commercial 

EMI shielding/absorber sheet (Figure 66). Before proceeding, calibration was performed by applying a 

CW signal output with settable power from a signal generator and recording the RSSI voltages for different 

input RF powers at 145.825 MHz.  

The RSSI voltage measurements and their corresponding receiver noise level estimates are tabulated 

in Table 19. Without antenna connected to receiver input port, the RSSI voltage is 0.71 V for all three 

shielding conditions. This implies that without antenna, the receiver noise level is -135 dBm (or only the 

normal thermal noise was mainly present). When the antenna was connected, for all three shielding 

conditions, the RSSI voltage increased to about 1.47-1.49 V, corresponding to receiver noise level of -96 

dBm to -93 dBm. Therefore, the results of this test demonstrated that in fact, like the case of BIRDS-

2/BIRDS-2S satellite, receiver noise level is very low when no dipole antenna is connected to receiver port 

but receiver noise increases dramatically when dipole antenna is connected. Also, the increase in receiver 

noise level is neither affected nor mitigated by the two shielding methods. Therefore, all the shielding 

methods or configurations explored so far (copper plate shielding on BIRDS-2S, aluminum plate shielding 

on BIRDS-4, non-metallic EMI absorber/shielding sheet) were determined to be ineffective. 

The test procedure described in this section was performed long after doing the long-range test for 

BIRDS-4 described in Section 5.10. 

 
Figure 65. BIRDS-4 SFWARD payload receiver noise measurement by RSSI voltage 
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Figure 66. BIRDS-4 OBC board wrapped with commercially available EMI shielding/absorber sheet 

Table 19. BIRDS-4 payload receiver noise level from RSSI voltage measurements 

under three shielding conditions 

OBC Board Shielding 

Condition 

Antenna disconnected Antenna connected 

RSSI Voltage 

(V) 

Estimated RX 

Power (dBm) 

RSSI Voltage 

(V) 

Estimated RX 

Power (dBm) 

Without shielding 0.71 -135 1.49 -93 

With Aluminum 

shielding 
0.71 -135 1.49 -93 

With commercial 

EMI absorber/ 

shielding sheet 

0.71 -135 1.47 -96 

 

5.10 BIRDS-4 Range Communication Test (LRT) 

A long-range communication test (LRT) was conducted between a fully integrated BIRDS-4 EM 

satellite (with APRS-DP/S&F payload) and an APRS user radio (Kenwood TH-D72). The same test was 

repeated with a fully integrated BIRDS-4 FM satellite. A similar test will be conducted on the BIRDS-2S 

satellite after a better shielding approach is implemented. The objective of the LRT is to confirm the link 

budget in a test setup emulating ground-satellite distance. It is similar to that of the wireless test inside the 

FAC but since it is done in an outdoor environment, it has the following main differences: (a) the large 

distance between satellite and APRS user radio antennas ensures that the two sides communicate in very 
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far-field condition (much more than what could be achieved inside the FAC); (b) the channel between the 

two sides is not free-space so there are reflections and other propagation effects, but the lumped attenuation 

due to these could be determined during calibration procedure; (c) external devices in the vicinity (e.g., 

noise and interference sources) could impact the test, hence, the satellite is subjected to more noisy 

environment in this condition than inside an FAC or in space. 

 

 
Figure 67. BIRDS-4 long-range communication test setup involving the BIRDS-4 EM satellite 

The BIRDS-4 LRT setup is shown in Figure 67. The satellite and an APRS radio were placed in Mt. 

Sarakura that is located 6.4 km away from Kyutech. At Kyutech, another APRS radio with transmit power 

of 34.5 dBm was connected to the ground station’s yagi antenna with an attenuator in between. The 

attenuator value was gradually increased, and communication was tested for each attenuator value. In the 

LRT involving BIRDS-4 EM satellite, uplink success was achieved up to 130 dB effective attenuation 

(channel, antenna, cable, attenuator), implying a payload receiver sensitivity of about -95 dBm. On the 

other hand, a very close value of -96 dBm was obtained in the LRT involving BIRDS-4 FM satellite. This 

BIRDS-4 payload receiver sensitivity obtained in outdoor long-range wireless condition is 16-17 dB better 

than the BIRDS-2S payload receiver sensitivity (-79 dBm) obtained in wireless communication test inside 

the FAC. However, the BIRDS-4 payload receiver sensitivity of about -95 dBm obtained in long-range test 

does not quite make sense considering that the BIRDS-4 payload receiver noise floor obtained by RSSI 
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method (as discussed in Section 5.9) is about -93 dBm. This puts into question the validity of the BIRDS-

4 receiver sensitivity result obtained in long-range test. At this point, the exact reason for obtaining better 

result is not certainly determined and it is better to perform the long-range test again. Also, it would have 

been better to perform long-range test with the BIRDS-2S satellite (this will be performed by the BIRDS-

2S team in UPD). 

5.11 Communication Link Budget Analysis 

The link margin in uplink and downlink paths were calculated based on the parameters summarized 

in Table 20 for two cases of GS (GST or APRS user) antenna: (a) 16 dBi directive (cross-Yagi) antenna 

with pointing, and (b) 5.6 dBi omnidirectional antenna (“Eggbeater” antenna [27]) with fixed position and 

120º beamwidth. Both GS antennas are circularly polarized. The main lobe of the omnidirectional antenna 

is assumed to be pointing upward (90º elevation) and so the GS antenna pointing error depends on satellite 

elevation. For the link margin calculations, we assumed the experimental uplink receiver sensitivity of -95 

dBm (obtained from BIRDS-4 LRT) and downlink receiver sensitivity of -105 dBm (obtained from actual 

RF power measurements on regular beacon signals received from BIRDS-2 satellites).  

Table 20. Parameters used in link margin calculation 

Parameter Value 

Orbit altitude 400 km 

Center frequency 145.825 MHz 

GS transmit power (uplink) Kenwood TH-D72 handheld radio: 5 W (37 dBm) 

Satellite transmit power 

(downlink) 
0.5 W (27 dBm) 

GS antenna gain 
directive: 16 dB (yagi antenna), 

omnidirectional: 5.6 dB (Eggbeater antenna) 

Cable loss at GS side 2 dB 

GS antenna pointing error, 

APEGS 

directive antenna (with pointing): 5º, 

omnidirectional (fixed): APESC = 90º - elevation 

GS antenna pointing error 

loss (APELGS) 

directive antenna: 1 dB, 

omnidirectional antenna:  

APELGS = -10log (cos(APEGS)) 

Polarization loss 3 dB 

Atmospheric and 

ionospheric losses 
1.8 dB 

Satellite antenna pointing 

error loss (APELSC) 
3 dB 

Satellite antenna gain & 

cable loss 
0.5 dB 
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Free-space path loss 

(FSPL) 
127.8 dB (at EL=90º) to 143.0 dB (at EL=0º) 

Received power (dBm) 

Uplink  

Omnidirectional: -118.2 (at EL=5º) to -94.5 (at EL=90º) 

Directive: -98.2 (at EL=5º) to -85.1 (at EL=90º) 

Downlink 

Omnidirectional: -128.0 (at EL=5º) to -104.5 (at EL=90º) 

Directive: -108.2 (at EL=5º) to -95.1 (at EL=90º) 

Receiver sensitivity (dBm) 
Uplink: -95 (payload receiver),  

Downlink: -105 (GS receiver) 

 

The plots of the uplink and downlink margins vs elevation angle are given in Figure 68, for the two 

GS antenna cases. Although the downlink transmit power is 10 dB lower than the uplink transmit power, 

the required minimum receiver power is 10 dB lower in downlink than in uplink. This is the reason why 

overall, the uplink margin and downlink margin plots for a given GS antenna appear the same. These plots 

indicate the required minimum elevation angles of 15° and 75° for the directive and omnidirectional GS 

antenna cases, respectively. Therefore, only amateur stations with 16 dB or higher gain circularly antennas 

can be expected to effectively communicate with the payload. The uplink margin may be improved once 

the satellite noise problem is more effectively addressed but the limited downlink transmit power will 

remain a bottleneck for the downlink margin. 

 
Figure 68. Uplink and downlink margins for the two GS antenna cases 
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5.12 Lessons Learned and Recommendations from Investigation on 
Communication Issues  

From the investigation we conducted and our experiences in BIRDS-2 Project and succeeding BIRDS 

projects in the matter of communication design for our CubeSat-onboard amateur radio payload (i.e., the 

APRS-DP/S&F payload), we summarize the following lessons learned and recommendations: 

1) Since the antenna characteristics (tuning, grounding, performance) and EMI/EMC aspects 

(coupling, grounding, shielding, etc.) are intricately related to one another, as well as to the whole satellite 

structural and electrical power design considerations, these aspects must be altogether examined and 

verified through practicable methods during the preliminary design phase of satellite development. As the 

parts are closely positioned inside a CubeSat, it is crucial to consider the potential EMI/EMC issues in the 

design of the whole satellite. For the case of BIRDS-2 Project, the design issues related to these aspects 

were overlooked and lately diagnosed (even beyond the development time), so we could not address them 

proactively. On hindsight, the BIRDS-2 CubeSat bus design was adopted from a previous design without 

careful consideration of these issues.  

2) Optimum receiver sensitivity performance must be verified in transceiver unit level, first in a 

cabled condition and then in a wireless (antenna-connected) condition in the early phase of development, 

that is, before integrating with other satellite subsystems. 

3) Also, during the early phase of development, antenna reflection coefficient (and tuning) and 

radiation pattern tests must be done with pre-existing or mock-up satellite structure and boards. Similarly, 

subsystem boards, such as EPS board, must be tested to check if they might contribute significant EMI 

levels, whether conducted or radiated type. In the case of BIRDS-2, we found out later by using small loop 

antenna that the switching inductors on the OBC/EPS board emit significantly higher EMI levels compared 

to other parts of the boards and the satellite. 

4) Then, antenna and EMI/EMC designs must be verified as soon as possible through antenna 

performance and EMI/noise measurement tests with the fully integrated satellite (for example, during 

activities leading to CDR). Aside from design verification, this is also necessary to diagnose potential 

design problems and mechanisms previously unconsidered and to find ways to mitigate these issues (e.g., 

adding EMI absorbers or shielding, filtering, modify signal routing and grounding, etc.). 

5) Antenna tuning, S11 and radiation pattern measurements should be done as close as possible to the 

real operational condition, that is, how the antenna will be connected to a cable, transceiver board, 

grounding, satellite, etc. 

6) In terms of antenna design, if the space constraints allow, dipole antenna is recommended over 

monopole antenna as the former’s tuning and performance characteristics are less vulnerable to grounding 

issues. From our own experience in BIRDS-2 antenna development, we found that a monopole antenna is 

highly sensitive to size and configuration of grounding, which is especially difficult to optimize in a 1U 

CubeSat due to limited space. Also, from our own measurement data, the antenna’s susceptibility to 
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satellite-radiated EMI (or the amount of EMI coupled to the antenna) seems to be intricately related the 

quality of grounding of a monopole antenna. While we could have modified the BIRDS-2 monopole 

antenna design to mitigate the grounding and EMI vulnerability issues, we think that a dipole antenna 

design is the more conservative and less risky design choice to begin with because in principle, its 

performance is independent of a ground plane, unlike monopole antenna. Still, even if one uses a dipole 

antenna, one must still consider (5) because the matching network on the antenna board is connected after 

the unbalanced side of the balun, so the actual impedance itself and the measurement may be affected by 

the grounding and the cable from the antenna board to the VHF TRX board. 

7) Wireless communication test inside a full-anechoic chamber and long-range communication test – 

between the fully integrated satellite and a ground station or user radio – must be done as final confirmation 

of end-to-end performance and the link budget analysis. 
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Chapter 6:  E-SSA-based Nanosatellite IoT/M2M Communication 
System Model and Signal Processing Algorithm 

This chapter first describes the nanosatellite IoT/M2M communication model based on enhanced 

spread spectrum Aloha (E-SSA) and derives the mathematical definitions of packet loss rate (PLR), 

throughput (THR) and energy efficiency (EE) metrics. Then, it tackles the formulated baseband signal 

processing algorithm for E-SSA, including packet detection, channel estimation, demodulation and 

decoding. 

6.1 Communication Scenario Overview 

As illustrated in Figure 69, the communication scenario under investigation consists of K active 

ground sensor terminals (GSTs) in the satellite footprint during a short time window (i.e., several packet 

durations). Note that there may be other terminals in the same footprint but only the K terminals are sending 

data during the said time window. The K terminals independently and time-asynchronously transmit 

packets to the satellite that arrive at the receiver after each experiencing a different propagation channel. 

In notation, the received packet from a terminal 𝑘 has a random time delay 𝜏𝑘, carrier phase offset 𝜙𝑘, 

amplitude 𝐴𝑘 , frequency shift 𝑓𝑘  and frequency (change) rate 𝑑𝑘 . Terminals transmit at a common 

frequency channel centered at 𝑓𝑐 = 402 MHz but because only baseband representation is considered, it is 

assumed 𝑓𝑐 becomes 0 after signal has been converted to baseband. The packets add up and combine with 

a complex additive white Gaussian noise (AWGN). 

 

Figure 69. Satellite IoT/M2M Communication Scenario 

Consider a processing time window defined at the receiver consisting of 11 packet durations [0, 11𝑇𝑝], 

during which the K packets are received. According to a Poisson distribution described in Section 6.4, K 
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is determined in a simulation run and each time delay 𝜏𝑘 is randomly selected within [0, 10𝑇𝑝]. Each carrier 

phase offset 𝜙𝑘 is uniformly distributed within [0, 2𝜋]. Amplitude 𝐴𝑘, frequency shift 𝑓𝑘 and frequency 

rate 𝑑𝑘 values depend on the satellite’s elevation and azimuth angles with respect to terminals’ positions, 

as discussed in Section 6.3. 𝐴𝑘 is considered constant throughout the whole packet duration. Although 𝑓𝑘 

is mainly due to Doppler frequency shift, it can be considered to also account for any carrier frequency 

errors at the terminals and satellite receiver. Packets are generated at the terminals following a format and 

spread-spectrum modulation described in Section 6.2. 

6.2 Packet Generation at Terminal Side and Received Signal at the Satellite 

Preamble and Postamble Parts 

Each terminal asynchronously transmits a packet to the satellite anytime it has data to send, 

independently of others, following the packet format in Figure 70.  Preamble aids the receiver detect the 

presence and start of a packet (i.e., time delay 𝜏𝑘) and to roughly estimate the amplitude, 𝜙𝑘, and 𝑓𝑘 at 

packet start. Similarly, postamble indicates the end of a packet and is used to roughly estimate the amplitude 

and frequency shift at packet end. A coarse estimate for 𝑑𝑘 can be obtained from the difference of end and 

start frequency estimates over packet duration. Preamble and postamble have similar formats shown in 

Figure 71 but use different sequences. Each is a composite of a complex outer sequence and a real inner 

sequence with similar features inferred from the limited descriptions in [9], but not necessarily the same. 

The composite preamble/postamble sequence, consisting of {(±1) + (±1𝑗)} , can be mathematically 

expressed as 

𝑝𝑝𝑟𝑒/𝑝𝑜𝑠(𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠) = 𝑠1 (⌊𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠⌋𝑁𝑐
) 𝑠2 (|𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠|𝑁𝑐

)  (1) 

where: 

⌊𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠⌋𝑁𝑐
= integer{𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠/𝑁𝑐 } 

 |𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠|𝑁𝑐
= 𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠 modulus 𝑁𝑐 

𝑛𝑐,𝑝𝑟𝑒/𝑝𝑜𝑠 = 0, 1, 2, … ,𝑁𝑝𝑟𝑒 · 𝑁𝑐 − 1. 

 

 

Figure 70. Uplink packet format 
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Figure 71. Preamble and postamble formats 

The complex outer sequence can be expressed as 

𝑠1(𝑖) = 𝑧𝑛(𝑖) + 𝑗𝑧𝑛(𝑖 + 256)  (2) 

where 𝑧𝑛(𝑖) is a real-valued Gold sequence with length of 511 chips and 𝑖 = 0, 1, 2, … ,𝑁𝑝𝑟𝑒 − 1. The 

sequence 𝑧𝑛(𝑖) is generated using a built-in Matlab function comm.GoldSequence with the parameters 

summarized in Table 21. The inner sequence is a 128-element complementary Golay sequence consisting 

of  {−1,+1} elements; identical sequences are used for preamble and postamble. Hence, preamble and 

postamble lengths are both equal to 𝑁𝑝𝑟𝑒 · 𝑁𝑐 = 96 · 128 = 12888  chips. The same preamble and 

postamble sequences are commonly used by all terminals. 

Table 21. Parameters for Generating the Gold Sequences for Preamble/Postamble 

using a Matlab Function 

Parameters Preamble Postamble 

First generator polynomial 

(‘FirstPolynomial’) 
Degree n=9: P1 = [9 4 0] 

Second generator polynomial 

(‘SecondPolynomial’) 
Degree n=9: P2 = [9 6 4 3 0] 

'FirstInitialConditions' I1 = [0 0 0 0 0 0 0 0 1] 

'SecondInitialConditions' I2 = [0 0 0 0 0 0 0 0 1] 

'Index' 0 1 

'SamplesPerFrame' 𝑁 = 2𝑛 − 1 = 511 

𝑧𝑛 goldseq = comm.GoldSequence(…); 

𝑧𝑛 = 2 ∗ goldseq − 1  

 

Finer Channel Estimation (CE) and Data (DT) Parts 

Figure 72 shows the block diagram for generating baseband signal on terminal side. The CE and DT 

parts are carried in parallel by two multiplexed channels which follow the preamble and precede the 

postamble. The two channels are I-Q multiplexed using two Orthogonal Variable Spreading Walsh 

sequences 𝐶𝐸 and 𝐶𝐷, each with length equal to spreading factor SF=128 chips and consists of  {−1,+1} 

elements. The sum of 𝐶𝐸 · 𝐶𝐷 over SF chips (or within one modulated symbol) is 0, a property which will 

facilitate separation of CE and DT symbols at the processor (demodulator) side. In the DT part, user 
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payload bits are appended with a 16-bit Cyclic Redundancy Code (CRC) following the CRC-16 method 

for error detection. The CRC-encoded bits are in turn encoded for forward error correction (FEC) using a 

rate ~1/3 Turbo encoder. The encoded bits are converted to BPSK modulated symbols and then each symbol 

is spread (i.e., multiplied) by 𝐶𝐷. In the CE part, all fixed +1 symbols are spread by 𝐶𝐸 and scaled down 

by a channel gain 𝛽𝐶𝐸 = 1/3. Once the DT and CE parts have been I-Q multiplexed, the resulting sequence 

is multiplied by a repeating scrambling code with a period of 255 chips, with the same chip rate as 𝐶𝐸 and 

𝐶𝐷. The scrambling code is a Gold sequence generated by the comm.GoldSequence function but using two 

n = 8 degree polynomials P1 = [8 7 6 5 2 1 0], P2 = [8 7 6 1 0], initial conditions I1 = I2  = [0 0 0 0 0 0 0 

1] and index = 0.  Finally, the spread sequence will be passed to a digital-to-analog converter (DAC) to 

produce the analog input to RF circuitry part, which is omitted in our baseband-only model. To simplify 

the succeeding analysis, the CRC bits will be treated as lumped with the pre-FEC-coded payload bits. 

 

 

Figure 72. Block diagram of baseband signal generation on terminal side 

The preamble and postamble parts of the baseband sequence of terminal k can be expressed as  

𝑥𝑘,𝑝𝑟𝑒(𝑛𝑐,𝑝𝑟𝑒) = 𝐴𝑝𝑟𝑒𝑝𝑝𝑟𝑒(𝑛𝑐,𝑝𝑟𝑒)  (3) 

𝑥𝑘,𝑝𝑜𝑠(𝑛𝑐,𝑝𝑜𝑠) = 𝐴𝑝𝑜𝑠𝑝𝑝𝑜𝑠(𝑛𝑐,𝑝𝑜𝑠)  (4) 

where 𝐴𝑝𝑟𝑒 = 𝐴𝑝𝑜𝑠 = 1/√2𝑇𝑠 makes the symbol energy of the corresponding analog baseband signal 

equal to unity. The DT and CE parts of the baseband sequence of terminal k can be expressed as 

𝑥𝑘,𝐷𝐶(𝑛𝑐,𝐷𝐶) = 𝐴𝑢𝐶𝑠 (|𝑛𝑐,𝐷𝐶|255
) [𝑎𝑘 (𝑛 = ⌊𝑛𝑐,𝐷𝐶⌋𝑆𝐹

)𝐶𝐷 (|𝑛𝑐,𝐷𝐶|𝑆𝐹
) + 𝑗𝑎𝐶𝐸𝛽𝐶𝐸𝐶𝐶 (|𝑛𝑐,𝐷𝐶|𝑆𝐹

)]

 (5) 

where 𝑎𝑘(𝑛)  is the n-th modulated symbol of terminal k, 𝑛 = 0, 1, 2, … ,𝑁𝑠 − 1 , 𝑛𝑐,𝐷𝑇 =

0, 1, 2,… , 𝑆𝐹 · 𝑁𝑠 − 1. Amplitude 𝐴𝑢 = 1/√(1 + 𝑎𝐶𝐸
2 𝛽𝐶𝐸

2 )𝑇𝑠 makes the symbol energy equal to unity. The 

overall baseband sequence of terminal k is composed by concatenating the preamble, DT+CE and 
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postamble sequences 

𝑥𝑘(𝑛𝑐) = [𝑥𝑘,𝑝𝑟𝑒  𝑥𝑘,𝐷𝐶   𝑥𝑘,𝑝𝑜𝑠],  (6) 

𝑛𝑐 = 0, 1, 2, … , (2𝑁𝑝𝑟𝑒 · 𝑁𝑐 + 𝑆𝐹 · 𝑁𝑠 − 1). 

The corresponding analog baseband signal of terminal k, assuming rectangular chip pulse shape, is 

given by  

𝑥𝑘(𝑡) = 𝑥𝑘(𝑛𝑐) · Π(𝑡 − 𝑛𝑐𝑇𝑐) (7) 

Π(τ) ≜ {
1           0 < τ < 𝑇𝑐  

  0        τ < 0, τ >  𝑇𝑐  
 (8). 

Then, the baseband signal arriving at the receiver due to packet from terminal k can be described in 

the form 

𝑟𝑘(𝑡) = 𝑥𝑘(𝑡 − 𝜏𝑘)𝐴𝑘𝑒
𝑗𝜑𝑘(𝑡)  (9) 

𝜑𝑘(𝑡) = 𝜙𝑘 + 2𝜋𝑓𝑘(𝑡 − 𝜏𝑘) +
2𝜋𝑑𝑘(𝑡−𝜏𝑘)2

2
  (10). 

where 𝜑𝑘(𝑡) is the instantaneous phase error due to propagation channel experienced by the packet 

from terminal k. The total received baseband signal is the sum of K packet signals and a complex additive 

white Gaussian (AWGN) noise, 𝑛(𝑡), with independent real and imaginary components each normally 

distributed with zero mean (µ𝑁 = 0) and variance 𝜎𝑁
2/2 (corresponding to an 𝐸𝑏/𝑁0 value): 

𝑟(𝑡) = ∑ 𝑟𝑘(𝑡)

𝑘=𝐾−1

𝑘=0

+ 𝑛(𝑡) = ∑ 𝑥𝑘(𝑡 − 𝜏𝑘)𝐴𝑘𝑒
𝑗𝜑𝑘(𝑡)

𝑘=𝐾−1

𝑘=0

+ 𝑛(𝑡) 

(11). 

6.3 LEO Channel Model 

Consider a satellite flying on a circular LEO orbit with altitude h km above the ground, as illustrated 

in Figure 73. The K active terminals are assumed to be uniformly distributed on the earth’s surface with 

area density 𝜌𝐴 (number of active terminals per unit area). The satellite footprint changes as the satellite 

moves so the terminal population being served at different time windows also changes. We are focusing 
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on a representative short time window during which only the K terminals are sending packets to the 

satellite. Specifically, a footprint is defined as a portion of a spherical surface on which the K terminals are 

located from the satellite at different positions with 𝜀min = 5° to 𝜀max = 90° and from 𝛼 = 0°  to 𝛼 =

360°. Hence, terminal position may be expressed in (𝜀, 𝛼). Note that in the left illustration of Figure 73,  

𝜀, 𝛽 and 𝛾 are actual direction angles, 𝑣𝑠‖⃑⃑ ⃑⃑  ⃑  is in true direction, but  𝑣𝑠⃑⃑  ⃑ and 𝑣𝑠⅃⃑⃑ ⃑⃑  ⃑ may not be in true directions 

(since 𝑣𝑠⃑⃑  ⃑ is generally in a different plane as triangle OTE). In the right illustration, 𝛼 is defined as a 

projection angle (as viewed from the top) and 𝑣𝑠⃑⃑  ⃑ is in true direction. By applying the law of sines and 

noting that 𝛽 = 90° − 𝜀 − 𝛾, it can be shown that  

𝛽 = cos−1 (
RE

RE+ℎ
cos 𝜀) − 𝜀  (12) 

𝑠 =
(RE+ℎ)sin𝛽

cos 𝜀
=

(RE+ℎ)sin[cos−1(
RE

RE+ℎ
cos 𝜀)−𝜀]

cos 𝜀
  (13). 

 

Figure 73. A snapshot of satellite orbit and footprint 

Now we want to determine the spatial distribution function (sdf) of terminals. It is noted that terminal 

sdf is uniform with respect to 𝛼 and non-uniform with respect to 𝜀 because more terminals are located at 

lower 𝜀. By considering a differential area d𝑎 containing d𝑛𝑘 terminals, relations (14) to (23) in Appendix 

1 can be derived. The resulting terminal sdfs in terms of 𝜀 and 𝛼 are given here in equations (22) and (23) 

and plotted in Figure 74 for a 600-km orbit, which shows that 80% of the terminals see the satellite at 

elevations below 26°.  

𝑝𝜀(𝜀) ≜
1

𝐾

d𝑁𝑘

d𝜀
|
∆𝛼=2𝜋

=
2𝜋RE

2

C
sin [cos−1 (

RE

RE+ℎ
cos 𝜀) − 𝜀] 𝛿𝛽(𝜀)  (22) 
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𝑝𝛼(𝛼) ≜
1

𝐾

d𝑁𝑘

d𝛼
= ∫ 𝑝𝜀𝛼(𝜀, 𝛼)d𝜀

𝜀=𝜋/2

𝜀=𝜀min
=

1

2𝜋
   (23). 

 

Figure 74. Terminal spatial and cumulative distribution functions in terms of ε and α (h=600 km) 

The Doppler frequency shift 𝑓 and rate 𝑑 can be derived as follows (see Appendix 2 for derivation 

of 𝑑𝐴/𝑑𝑡): 

𝑓(𝜀, 𝛼) = (𝑣𝑠⃑⃑  ⃑ ·
OT⃑⃑⃑⃑⃑⃑ 

|OT⃑⃑⃑⃑⃑⃑ |
)

𝑓c

c
 =

𝑣𝑠𝑓c

c
cos𝐴 =

𝑣𝑠𝑓c

c
sin𝛾 cos𝛼 =

𝑣𝑠𝑓𝑐 

c

RE 

RE+ℎ
cos 𝜀 cos 𝛼 (24) 

𝑑(𝜀, 𝛼) =
𝑑

𝑑𝑡
(𝑓(𝜀, 𝛼)) =

−𝑣𝑠𝑓c

c
(sin𝐴)

𝑑𝐴

𝑑𝑡
= −

𝑣𝑠
2𝑓c sin2 𝐴

c𝑠
= −

𝑣𝑠
2𝑓c

c𝑠
(1 − (

RE

RE+ℎ
cos 𝜀 cos 𝛼)

2
) (25) 

where 𝑣𝑠 = √GmE/(RE + ℎ), 𝐴 ≜ ∠OT is the direction angle between 𝑣𝑠⃑⃑  ⃑ and OT⃑⃑⃑⃑  ⃑. 

To generate a set of channel values for the K active terminals, first we generate random 𝜀𝑘 , 𝛼𝑘 

following the spatial distributions 𝑝𝜀(𝜀) and 𝑝𝛼(𝛼) in (22) and (23). The corresponding  𝑓𝑘 and 𝑑𝑘 values 

are then computed using (24) and (25). The carrier phase offset values 𝜙𝑘 are randomly selected from 

within [0, 2π]. For generating the 𝐴𝑘 values, we consider two main factors causing the received signal 

amplitudes variation. First, there is amplitude variation in line-of-sight (LOS) condition due to having 

different satellite elevations as seen from terminals. Since the received signal power in LOS condition is 

proportional to 1/𝑠2 , the amplitudes due to satellite elevations are computed by (26) and (27). The 

probability distribution functions (pdfs) for 𝐴𝑘,𝑑𝐵 (LOS condition), 𝑓𝑘 and 𝑑𝑘 are obtained by generating 
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many samples. The resulting pdfs are shown in Figure 75. The standard deviation of LOS amplitudes due 

to elevation differences alone is 𝜎𝐿𝑂𝑆 ≈ 3dB. 

𝐴𝑘,dB
′ = 20 log10 (

𝑠mean

𝑠(𝜀𝑘)
)  (26) 

𝐴𝑘 = 10(𝐴𝑘,𝑑𝐵
′ −𝐴𝑘,dB,mean

′ )/20 (27). 

Second, even among terminals with equal elevations, there will be additional power fluctuations 

around the line-of-sight (LOS) value due to land-mobile satellite (LMS) channel 

fading/shadowing statistics. In [6], it is assumed that the received power fluctuation is caused by 

uplink LMS channel fading/shadowing statistics, conditioned to the terminals transmit power 

control algorithm (based on downlink signal strength). Considering a GEO satellite and a fixed 

elevation, the amplitude variation due to joint effect of shadowing, fading and imperfect power 

control is modeled as a log-normal distribution with mean 𝜇𝐿𝑁 (dB) and standard deviation 𝜎𝐿𝑁 

(dB). Their simulations show that 𝜎𝐿𝑁 is about 2 dB but can be as high as 3 dB with power control, 

and 6.4 dB without power control.  

In this work, assuming a LEO orbit, we model the received amplitude 𝐴𝑘 to be the product of 

LOS amplitude generated by the elevation random variable (RV) with pdf described above and 

another amplitude RV generated by a lognormal pdf with mean 𝜇𝐿𝑁 and standard deviation 𝜎𝐿𝑁. 

Albeit quite simplified, the said lognormal pdf may be considered to account in lump for the 

variations due to LMS fading/shadowing, as well as actual antenna patterns, which will be 

captured by considering 𝜎𝐿𝑁 up to 9 dB. With this model, the resulting pdfs and cdfs are shown in 

Figure 76 for 𝜎𝐿𝑁 = 0, 3, 6, 9 dB. 

We can look at the case with 𝜎𝐿𝑁 ≈ 3 dB as representing the scenario with a rough (non-tight) 

power control. This condition gives amplitudes with overall standard deviation of 4.2 dB. The 

case with𝜎𝐿𝑁 ≈ 6 dB  might represent the situation without power control but with a perfectly 

omnidirectional antenna (overall standard deviation of 6.7 dB). Finally, the case with 𝜎𝐿𝑁 ≈ 9 dB 

can represent the scenario without power control, using practical circularly polarized antennas 

with wide beamwidths (overall standard deviation of 9.5 dB). For the case without power control, 

noting the previous findings in [6], it is expected that more amplitude variation may increase the 

maximum achievable throughput, although this also results in higher PLR. On the other hand, too 

much variation would reduce the throughput due to more frequent occurrence of packets with 

power below the demodulation threshold. 
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Figure 75. Pdfs and cdfs for 𝑨𝒌,𝒅𝑩, 𝒇𝒌 and 𝒅𝒌 due to LEO channel without lognormal 

fading/shadowing or 𝝈𝑳𝑵 = 𝟎𝒅𝑩 (h=600 km, fc=402 MHz, 𝝁𝑳𝑵 = 𝟎𝒅𝑩) 

 

Figure 76. Pdfs and cdfs for 𝑨𝒌,𝒅𝑩 due to LEO channel with and without lognormal fading/shadowing 

for different 𝝈𝑳𝑵 (h=600 km, fc=402 MHz,  𝝁𝑳𝑵 = 𝟎𝒅𝑩) 

6.4 Packet Arrival Model 

We assume packets arrive at the receiver following a Poisson distribution such that the number of 

packet arrivals within one packet duration 𝑇𝑝 is a Poisson RV with intensity 𝜆𝑟𝑝 = 𝐺𝐺𝑝, where 𝐺 is defined 

as the MAC load expressed in information bits/s/Hz. The processing gain 𝐺𝑝  is defined as 𝐺𝑝 =

𝑅𝑐ℎ𝑖𝑝/𝑅𝑏 = 𝑆𝐹/(𝑅𝑐 log2 𝑀), where 𝑅𝑐ℎ𝑖𝑝 is the channel chip rate, 𝑅𝑏 is the information bit rate, 𝑆𝐹 is the 

spreading factor, 𝑅𝑐 is the FEC coding rate, and 𝑀 is the modulation order. The Poisson RV discrete pdf 

is given by 
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𝑝𝑃𝑅𝑉(𝑘𝑟; 𝜆𝑟𝑝) =
𝜆𝑟𝑝
𝑘𝑟𝑒−𝜆𝑟𝑝

𝑘𝑟!
   (28) 

where 𝑝𝑃𝑅𝑉(𝑘𝑟; 𝜆𝑟) expresses the probability of 𝑘𝑟  packet arrivals within one packet duration 𝑇𝑝 given 

𝜆𝑟𝑝, which is also the expected (average) number of packet arrivals within 𝑇𝑝. In the simulation model, the 

number of packet arrivals within every symbol duration 𝑇𝑠 is randomized at every symbol according to an 

equivalent Poisson RV with intensity 𝜆𝑟𝑠 = 𝜆𝑟𝑝/(𝑁𝑝𝑟𝑒 + 𝑁𝑠 + 𝑁𝑝𝑜𝑠) . Any arriving packets within a 

symbol duration assume random delays between 0 and (𝑆𝐹 − 1) chips from beginning of the symbol. All 

arriving packets also assume the channel parameters generated as described above.  

For our analysis and signal processing, we consider a time processing window illustrated in Figure 77 

that has a total duration of 11𝑇𝑝 and wherein packets arriving between 𝑡0 = 0  to 𝑡10 = 10𝑇𝑝 should be 

decoded. Thus, K is a random variable whose value is determined during simulation run (with expectation 

value of 10𝜆𝑟𝑝 packets arriving within 10𝑇𝑝). The simulation parameters are given in Table 22. 

 

Figure 77. Illustration of time processing window with total duration Tw=11Tp (top); an example of 

received baseband signal for 𝑮 = 𝟏. 𝟎 (bottom) 

Table 22. Simulation Parameters 

Parameter Symbol Description/Meaning Value 

ℎ Satellite orbit altitude above the ground 600 km 

𝑁𝑝𝑟𝑒 = 𝑁𝑝𝑜𝑠 Preamble/postamble length in symbols 96 

𝑁𝑏 

Pre-FEC-coded payload length in bits (including 

16-bit CRC with generator polynomial z16 + z15 + z2 

+ 1) 

512 
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𝑁𝑏,𝑐𝑜𝑑𝑒𝑑  
FEC-coded packet length in bits (Turbo code with 

rate 𝑅𝑐 ~1/3) 
1548 

𝑀, type Modulation order and type BPSK (𝑀 = 2) 

𝑆𝐹 (= 𝑁𝑐) Spreading factor 128 

𝑁𝑇𝑠, 𝑁𝑇𝑐 Total packet length in symbols; in chips 1740; 222720 

𝑅𝑏 Information bit rate (including CRC) 333.33 bps 

𝑅𝑠 = 𝑅𝑏/𝑅𝑐 Symbol rate 1000 symbols/s 

𝑅𝑐ℎ𝑖𝑝 = 𝑆𝐹 · 𝑅𝑠 Chip rate (≈signal bandwidth) 128000 chips/s 

𝑇𝑝 = 𝑁𝑇𝑐/𝑅𝑐ℎ𝑖𝑝 (One) packet duration 1.74 s 

𝐺𝑝 Processing gain 384 

𝐺 
MAC load (bps/Hz, or more appropriately bits/chip 

for spread spectrum) 
Variable 

𝜆𝑟𝑝 = 𝐺𝐺𝑝 
Poisson RV intensity for packet arrivals, expected 

(average) number of arrivals per 𝑇𝑝 

Variable (38.4 at 𝐺 = 0.1, 

384 at 𝐺 = 1.0, 768 at 

𝐺 = 2.0) 

𝑇𝑤 
Time processing window (total observation duration 

for signal processing) 
11𝑇𝑝 

𝐾 
Number of packets arriving within 𝑇𝑤 − 𝑇𝑝 (packets 

that should be decoded within 𝑇𝑤) 

Average values: 1920 at 

𝐺 = 0.5,   3840 at 𝐺 =
1.0, 7680 at 𝐺 = 2.0 

𝛾𝑏 =
𝐸𝑏

𝑁0

 
Information bit energy to noise power spectral 

density (defined at the receiver) 
Variable 

𝜇𝐿𝑁 = 0dB, 𝜎𝐿𝑁 

Mean and standard deviation (in dB) of log-normal 

Gaussian distribution accounting for received power 

fluctuations due to LMS channel fading/shadowing 

statistics, imperfect power control, and antenna 

patterns (simplified) 

𝜎𝐿𝑁: 3 dB (with rough 

power control (PC)), 6 dB 

(w/o PC, perfectly 

omnidirectional antenna), 

9 dB (w/o PC & with 

wide beamwidth 

antennas) 

 

6.5 Throughput (THR), Packet Loss Rate (PLR) and Energy Efficiency (EE) 
Metrics 

We define packet loss rate (PLR) as the number of decoded packets 𝑁𝑑𝑒𝑐𝑜𝑑𝑒𝑑 over the total number 

of received packets 𝐾 within the time processing window 𝑇𝑤, as mathematically expressed in equation 

(29). As commonly defined in literature, we define throughput (THR) according to equation (30). 

𝑃𝐿𝑅 = 1 − 𝑃𝑆𝑅 = 1 −
𝑁𝑑𝑒𝑐𝑜𝑑𝑒𝑑

𝐾
   (29) 

𝑇𝐻𝑅 = 𝐺 · 𝑃𝑆𝑅 = 𝐺 · (1 − 𝑃𝐿𝑅)   (30) 
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Here we derive a definition for energy efficiency metric appropriate for later discussion. First, at the 

transmitter, the average energy per successfully transmitted information bit (ESB) is defined by (31). The 

total energy consumption for packet transmission 𝐸𝑇𝑋 , which includes that of RF power amplifier, is 

calculated by (32), where 𝑃𝑇𝑋  is the RF output power and 𝛼 expresses the ratio of amplifier overhead 

power consumption over output RF power. The value of 𝛼 depends on type of amplifier used, that is, 

appropriate for a modulation scheme. For a class-A amplifier normally used for BPSK modulation, 𝛼 =

1.8571  [133]. Packet transmission time 𝑇𝑇𝑋 , neglecting the preamble and postamble overheads, is 

calculated by (33). Considering PLR, equation (34) computes the average number of successfully 

transmitted (decoded) bits per transmission attempt, 𝑁𝑏,𝑎𝑣𝑒. Incorporating (32) to (34) into (31) results to 

equation (35) for 𝐸𝑆𝐵𝑇𝑋. After end-to-end signal attenuation (which can be analyzed separately in detail), 

a corresponding energy per information bit 𝐸𝑏,𝑅𝑋 is obtained at the receiver and equation (36) expresses a 

similar ESB metric at the receiver, 𝐸𝑆𝐵𝑅𝑋.  

Finally, by normalizing 𝐸𝑆𝐵𝑅𝑋 to the noise PSD 𝑁0, and taking the reciprocal, equation (37) defines 

a new energy efficiency metric 𝜂𝐸𝐸 in decoded bits per normalized energy (J/(W/Hz) or unit-less). This 

metric will be useful to evaluate the impact of PHY layer parameters (choice of modulation scheme, FEC 

scheme, etc.) on energy efficiency. In (37), 𝛾𝑏 serves as a shorthand notation for 𝐸𝑏,𝑅𝑋/𝑁0, which indicates 

extent of input energy chosen for a given modulation to achieve a certain 𝑃𝐿𝑅  in the presence of both 

noise and MUI. Note that 𝑃𝐿𝑅 is a confluence of effects of several variables, including PHY layer design 

choices, 𝛾𝑏, extent of MUI due to MAC load G, and the MAC scheme itself. Altogether, 𝑃𝐿𝑅, 𝑇𝐻𝑅 and 

𝜂𝐸𝐸, will be used to assess the performance and energy efficiency trade-offs of the designed PHY-MAC 

scheme. Note that since 𝑃𝑇𝑋 accounts for the transmission of total signal including the CE part, all derived 

parameters (𝐸𝑏,𝑇𝑋, 𝐸𝑆𝐵𝑇𝑋 , 𝐸𝑏,𝑅𝑋, 𝐸𝑆𝐵𝑅𝑋, 𝛾𝑏, 𝜂𝐸𝐸) include the CE symbol energy as part of the energy 

needed to successfully transmit an information bit (preamble and postamble energies, whose sum is about 

1/10 of the total, are neglected). 

𝐸𝑆𝐵𝑇𝑋 ≜
𝐸𝑇𝑋

𝑁𝑏,𝑎𝑣𝑒
   (31) 

𝐸𝑇𝑋 = (1 + 𝛼)𝑃𝑇𝑋𝑇𝑇𝑋 (32) 

𝑇𝑇𝑋 = 𝑁𝑏 · 𝑇𝑏 =
𝑁𝑏

𝑅𝑏
  (33) 

𝑁𝑏,𝑎𝑣𝑒 = 𝑁𝑏 · 𝑃𝑆𝑅 + 0 · 𝑃𝐿𝑅 = 𝑁𝑏 · (1 − 𝑃𝐿𝑅)  (34) 

𝐸𝑆𝐵𝑇𝑋 =
(1+𝛼)·𝑃𝑇𝑋

𝑁𝑏(1−𝑃𝐿𝑅)
·
𝑁𝑏

𝑅𝑏
=

(1+𝛼)·𝐸𝑏,𝑇𝑋

1−𝑃𝐿𝑅
  (35) 

𝐸𝑆𝐵𝑅𝑋 ≜
(1+𝛼)·𝐸𝑏,𝑅𝑋

1−𝑃𝐿𝑅
  (36) 
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𝜂𝐸𝐸 ≜ (
𝐸𝑆𝐵𝑅𝑋

𝑁0
)
−1

= [
(1+𝛼)

(1−𝑃𝐿𝑅)
 ·

𝐸𝑏,𝑅𝑋

𝑁0
]
−1

=
1−𝑃𝐿𝑅

(1+𝛼)𝛾𝑏
  (37) 

6.6 Overview of Signal Processing Algorithm 

We formulated a detailed baseband signal processing algorithm by adopting with modifications the 

basic procedure outlined in [7] and [8]. An overview of our detailed baseband signal processing algorithm 

is shown in Figure 78. The algorithm begins with baseband signal samples within a time processing 

window illustrated in Figure 77. The first step is packet detection which involves correlating a chip-wise 

swept signal portion (with length equal to preamble) to the known preamble sequence, thus determining 

the start of suspected packets. Secondly, channel parameters are roughly estimated from preamble and 

postamble portions of detected packets. Next, by applying the knowledge of the known fixed CE symbols 

(shown in Figure 72), finer channel estimates are obtained, and suspected packets are further screened. At 

every iteration i, 𝐾𝑖  suspected packets are detected (remaining as packet candidates after screening), 

depending on a computed amplitude threshold value. Because there is no prior knowledge of the number 

of transmitting terminals, 𝐾𝑖  is determined upon execution. Then, detected packets are arranged from 

highest power (𝑘 = 1) to lowest power (𝑘 = 𝐾𝑖). Note that in the first E-SSA iteration, only 𝐾1 out of 𝐾 

total received packets are detected, that is, those with relatively higher powers are likely to come out first.  

 

Figure 78. Signal processing algorithm overview 

Once sorted, each packet signal 𝑘  undergoes BPSK demodulation, Turbo-decoding and CRC 

checking process. A completely decoded (error-free) packet is reconstructed using the decoded bits and 
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estimated channel parameters and then it is subtracted from the (running) total signal saved in memory. 

These steps are repeated in the subsequent E-SSA iterations, until the maximum number of allowed 

iterations 𝑖𝑚𝑎𝑥  is reached. The value of 𝑖𝑚𝑎𝑥 was set to five based on the general observation that after the 

fifth iteration, there is only marginal PLR improvement. Details of packet detection, channel estimation 

and decoding algorithms are described below. 

6.7 Packet Detection and Coarse Channel Estimation 

The relevant working equations referred here are placed in Appendix 3. Preamble match-detection is 

performed on every preamble-long signal portion 𝑟𝑝𝑟𝑒,𝜅  expressed in (38), wherein 𝜅 =

0, 1, 2,… , (10𝑁𝑇𝑐 − 1)  indicates the chip-wise offset value. This is done by correlating 𝑟𝑝𝑟𝑒,𝜅  to the 

complex conjugate of preamble sequence and computing the discreate Fourier transform (DFT) of 

correlation, 𝑟𝑝𝑟𝑒,𝜅,𝑐𝑜𝑟𝑟, as in (39) to (40). The DFT result ℛ𝑝𝑟𝑒,𝜅(𝛺𝑙) provides the frequency spectrum of 

𝑟𝑝𝑟𝑒,𝜅,𝑐𝑜𝑟𝑟 such that existence of a peak in the magnitude spectrum |ℛ𝑝𝑟𝑒,𝜅| indicates a likely occurrence 

of a packet. The peak appears at a normalized frequency 𝛺𝑙 = 2𝜋𝑙/(𝑁𝑝𝑟𝑒𝑁𝑐) corresponding to the channel 

frequency shift. Peak magnitude 𝑉𝜅,𝑝𝑟𝑒  estimates the packet signal amplitude in the preamble. When 

𝑉𝜅,𝑝𝑟𝑒 > 𝑉𝑡ℎ, the same calculations are applied on the postamble-long signal portion 𝑟𝑝𝑜𝑠,𝜅 and if 𝑉𝜅,𝑝𝑜𝑠 >

𝑉𝑡ℎ, a positive detection is decided at 𝜏𝑘 = 𝜅. Coarse channel estimates are computed according to the set 

of equations (50a-f). 𝑉th is decided for a good balance between false alarm rate and misdetection rate in 

every E-SSA iteration. Figure 79 provides illustrative plots for detected amplitude 𝐴𝜅 vs time delay in 1st 

to 5th iterations. 
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Figure 79. Packet detection decision, shown for E-SSA iterations 1-5 (red line: detection threshold, 

𝝈𝑳𝑵 = 𝟔𝒅𝑩, 𝑮 = 𝟎. 𝟕) 

6.8 Fine Channel Estimation 

The relevant working equations referred here are placed in Appendix 4. For finer channel estimation, 

the known fixed symbols of CE part are used. The following is the procedure for each detected packet 𝑘.  
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A signal portion after preamble and before postamble is taken from the signal memory, i.e., 𝑟𝑘,𝐷𝐶 in (51). 

Then, equation (52) removes from the signal the effects of coarse channel estimates  𝜙𝑘
(1)

, 𝑓𝑘
(1)

and 𝑑𝑘
(1)

. 

The resulting signal 𝑦𝑘,𝐷𝐶
(1)

, which takes the form of equation (54), still contains the effects of remaining 

channel estimation error 𝜃𝑘,𝑒𝑟𝑟(𝑛𝑐,𝐷𝐶), multiuser interference (MUI) and noise.  

To extract the channel estimation information, the DT part is removed by multiplying 𝐶𝐶 to each of 

real and imaginary components of 𝑦𝑘,𝐷𝐶
(1)

 and taking the average over every 𝑆𝐹 chips (noting sum of 𝐶𝐷 · 𝐶𝐶 

over 𝑆𝐹 chips is 0). These operations are expressed in (55) and (56), wherein 𝑎𝐶𝐸
′ (𝑛) and 𝑎𝐶𝐸

′′ (𝑛) are 

subsequently used in (57) and (58), thereby obtaining very “noisy” cosine and sine plots of the estimate of 

remaining channel estimation error, with resolution of 1/𝑅𝑠. The channel estimation error cosine and sine 

plots are smoothened by a simple moving average function (MAF), as in (59) and (60). However, because 

the plots are still “noisy” due to MUI, candidate frequency 𝜓𝑘 and rate 𝛿𝑘 values within narrow search 

ranges are tried to find the values which give the strongest correlation with the noisy estimate, as in (61). 

The selected 𝜓𝑘 and 𝛿𝑘 values are used in (62a-c) to obtain better channel estimates, 𝜙𝑘
(2)

,  𝑓𝑘
(2)

 and 𝑑𝑘
(2)

. 

These steps are executed recursively three times, obtaining fine channel estimates 𝜙𝑘
(2)

, 𝑓𝑘
(2)

 and 𝑑𝑘
(2)

.  

The broken plot in Figure 80 is an example of candidate channel estimation error cosine plot which 

is derived from the selected 𝜓𝑘 and 𝛿𝑘  values. This plot visualizes the estimate for the coarse channel 

estimation error 𝜃𝑘,𝑒𝑟𝑟 , noting that 𝜓𝑘  and 𝛿𝑘  are used to improve the previous (coarse) estimation. In 

addition, the highest correlation value obtained for each 𝑘 is compared to a threshold to further decide 

whether the suspected packet is considered a valid candidate. Since absence of a packet would give a weak 

correlation with any candidate channel parameters, falsely detected packets in preamble match would be 

filtered out in this screening. After this screening, there would be 𝐾𝑖 remaining suspected packets in the 

current E-SSA iteration, out of 𝐾 total received packets.  

 

Figure 80. Fine channel estimation illustrative example 
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6.9 Demodulation and Decoding 

After fine channel estimation, the 𝐾𝑖 detected packets are arranged from highest to lowest powers and 

they are demodulated and decoded in that order, each according to the following steps. Like (52), equation 

(63) removes from packet 𝑘 signal 𝑟𝑘,𝐷𝐶 the effect of channel parameters 𝜙𝑘
(2)

, 𝑓𝑘
(2)

and 𝑑𝑘
(2)

. Equation (65) 

extracts the DT part information from the resulting signal 𝑦𝑘,𝐷𝐶
(2)

, where 𝑎𝑘
′ (𝑛) are used in (66) to obtain the 

symbol decision statistics 𝑎𝑘,𝑒𝑠𝑡(𝑛), which serve as input to the Turbo decoder. It is noted that in (65), 

cos (𝜃𝑘,𝑒𝑟𝑟
(2)

(𝑛)) ≈ 1 if fine channel estimates are accurate (that is, 𝜃𝑘,𝑒𝑟𝑟
(2)

(𝑛) ≈ 0). However, practically 

there will be small channel estimation errors. Note that even small errors in 𝑓𝑘 and 𝑑𝑘 estimates will cause 

phase reversal of the packet’s latter symbols when packet duration 𝑇𝑝 is comparable to coherence time 

𝑇𝑐𝑜ℎ dictated by channel estimation error (as expressed in (67)). For example, assuming 𝜙𝑘,𝑒𝑟𝑟 is small 

(<0.3 rad), the total frequency error from frequency shift and rate estimation errors must be less than ~0.3 

Hz so that coherence time 𝑇𝑐𝑜ℎ > 𝑇𝑝 = 1.74 s. This means we must, conservatively, target each of  𝑓𝑘 and 

𝑑𝑘 to be accurate within ~0.15 Hz. As we will see in Chapter 7, these channel estimation accuracy targets 

are very difficult to attain even with fine channel estimation method described in Section 6.8. 

Nonetheless, errors due to phase reversals, MUI and noise can still be corrected even if 𝑇𝑝 slightly 

exceeds 𝑇𝑐𝑜ℎ , thanks to rate 1/3 Turbo-code’s powerful error-correcting capability and interleaving 

features. Turbo-decoded bits are CRC-checked and if error-free, correctly transmitted symbols are derived 

by passing the decoded bits to a Turbo coder and BPSK modulator (in the same way as in the terminal 

side). Comparing the received symbols to the correctly transmitted symbols allows compensation, to some 

extent, of remaining instantaneous phase estimation error. The entire packet is reconstructed from the 

preamble, postamble, reproduced symbols and estimated channel parameters. Then, it is subtracted from 

the (running) total received signal. If packet decoding fails using the fine channel estimates, the above 

procedure is repeated reactively for another 𝑓𝑘 and 𝑑𝑘 candidates around the fine estimates (with 0.2 Hz 

and 0.2 Hz/s increments/decrements within ±1.4 Hz and ±1.2 Hz/s in iteration 1; ±2.0 Hz and ±2.0 Hz/s in 

iterations 2-3; ±3.0 Hz and ±3.0 Hz/s in iterations 4-5). After doing these steps on all the 𝐾𝑖  detected 

packets, these are repeated one more time on undecoded packets (to take advantage of resulting lower 

MUI) before proceeding to the next E-SSA iteration. 

𝑦𝑘,𝐷𝐶
(2)

= 𝑟𝑘,𝐷𝐶 · 𝑐𝑘
(2)

· (1/𝐴𝑢) conj(𝐶𝑠)  (63) 

𝑐𝑘
(2)

(𝑛𝑐,𝐷𝐶) = exp(−𝑗 [𝜙𝑘
(2)

+ 2𝜋𝑓𝑘
(2)

(𝑁𝑝𝑟𝑒𝑁𝑐 + 𝑛𝑐,𝐷𝐶)/𝑅𝑐ℎ𝑖𝑝 +
2𝜋𝑑𝑘

(2)
((𝑁𝑝𝑟𝑒𝑁𝑐+𝑛𝑐,𝐷𝐶)/𝑅𝑐ℎ𝑖𝑝)

2

2
])

  (64) 
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𝑎𝑘
′ (𝑛) = average over every 𝑆𝐹 chips of [𝑅𝑒 {𝑦𝑘,𝐷𝐶

(2)
} ∙ 𝐶𝐷] = 𝐴𝑘𝑎𝑘(𝑛) cos (𝜃𝑘,𝑒𝑟𝑟

(2) (𝑛)) + 𝐸𝑅𝑅3

 (65) 

𝑎𝑘,𝑒𝑠𝑡(𝑛) =
𝑎𝑘

′ (𝑛)

𝐴𝑘
1   (66) 

𝜙𝑘,𝑒𝑟𝑟 + 2𝜋𝑓𝑘,𝑒𝑟𝑟𝑇𝑐𝑜ℎ +
2𝜋𝑑𝑘,𝑒𝑟𝑟𝑇𝑐𝑜ℎ

2

2
= ±𝜋  (67) 
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Chapter 7:  Simulation Results and Discussion for E-SSA-based 
Nanosatellite IoT/M2M Communication System 

This chapter discusses the simulation results for packet detection and channel estimation algorithms, 

as well as the packet loss rate (PLR), throughput (THR) and energy efficiency 𝜂𝐸𝐸 of the overall PHY-

MAC scheme with the baseband signal processing algorithm. 

7.1 Target Values for Evaluation Metrics 

PLR serves as a quality-of-service (QoS) metric, which indicates the probability of successfully 

decoding a transmitted packet from a GST. As such, the threshold PLR constraints the maximum MAC 

load G and THR in which the system can be operated. Similarly, maximum EE also follows from the 

threshold PLR. The target PLR really depends on the application requirements so it can be set based on the 

serviced applications. Since we are considering applications where there is no need for high reliability (or 

guarantee of successful uplink), a target value of PLR<5% should be reasonable, thus it is chosen for 

succeeding discussions. Table 22 lists the target values for the evaluation metrics. 

Table 23. Target Values for the Evaluation Metrics 

Metric Target 

PLR <5% 

MAC load G The higher the better – the highest value 

wherein PLR<5% THR 

EE 

7.2 Packet Detection 

Figure 81 shows the iteration false alarm rate (IFAR), iteration misdetection rate (IMDR) and 

cumulative misdetection rate (CMDR) results for different MAC loads at a constant 𝜎𝐿𝑁 = 6dB, while 

Figure 82 shows the results for different 𝜎𝐿𝑁 values at a constant 𝐺 = 1.0. IFAR, IMDR and CMDR results 

are plotted vs E-SSA iteration number to see performance trend as the recursive algorithm progresses. 

Also, results for non-filtered (Section 6.7 method) and filtered (Section 6.8 method) are given, which show 

that further screening by correlation in the CE part effectively filters out most of falsely detected packets 

while keeping most of the correct ones. IFAR progressively drops within 1st to 4th iterations then starts 

increasing in the 4th iteration. This is because in later iterations, only fewer remaining packets – those with 

lower power – are left to be detected. Also, the accumulated residue power from imperfect interference 

cancellations becomes comparable to the lower power desired signal. An exception is noted when 𝜎𝐿𝑁 is 

low (e.g., 3 dB) because having relatively small amplitude variation, most packets can be already detected 

and decoded during 1st to 2nd iterations. IFAR tends to decrease with higher 𝐺 due to greater probability of 

packet occurrence at any instant, rather than MUI + noise. On the other hand, IFAR tends to increase with 

higher 𝜎𝐿𝑁 but we do not have a straightforward or intuitive explanation for this. Again, the exception at 

later iterations when 𝜎𝐿𝑁 = 3dB is noted. 
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Figure 81. IFAR, IMDR and CMDR for different 𝑮 values (𝝈𝑳𝑵 = 𝟔𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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IMDR, and consequently CDMR, tend to be higher with higher MAC load 𝐺 or higher 𝜎𝐿𝑁. With 

higher 𝐺, this is expected due to greater MUI in earlier iterations and greater residue interference power in 

later iterations. Both MUI and residue interference power make it more difficult to detect lower power 

packets. With higher 𝜎𝐿𝑁, IMDR is expected to be higher because more power variation increases chance 

of having packets falling below the detection threshold at a given iteration. Although residue interference 

power accumulates for any given 𝐺 and 𝜎𝐿𝑁, IFAR and IMDR still tend to decrease in succeeding iterations 

because as more and more packets have been already decoded (and cancelled), power variation among the 

remaining packets becomes smaller. Note that it is important to attain as low CMDR as possible in the last 

iteration because it dictates the lower bound for PLR (packets must be detected before they can be 

decoded). 

We can also notice some trends in the IMDR and CMDR vs iteration number. IMDR drops more 

rapidly in successive iterations (i.e., as the E-SSA algorithm progresses) when 𝐺 is lower than when 𝐺 is 

higher. However, when 𝐺 is lower, IMDR starts to increase at an earlier iteration number. Increase in 

IMDR starting from an iteration number indicates a significant number of packets have already been 

decoded in the preceding iterations. Since packets are more quickly decoded in earlier iterations when 𝐺 is 

lower, this explains the earlier increase of IMDR when 𝐺 is lower. The same trend applies for CDMR vs 

iteration number across different 𝐺 values. CMDR drops more quickly in successive iterations when 𝐺 is 

lower than when 𝐺 is higher, but this decreasing trend breaks earlier (i.e., CMDR’s reduction slows down) 

when 𝐺 is lower. The slowdown of CDMR’s decrease occurs when IMDR starts to increase. 

We also examine the trends in the IMDR and CMDR vs iteration number for different σLN values. 

When σLN is only 3 dB (low), IMDR drops progressively in successive iterations. However, when σLN is 

6 dB or 9 dB (high), IMDR also reduces but rather stagnates in successive iterations. Meanwhile, CMDR 

drops more quickly in successive iterations when σLN is lower than when σLN is higher. In the case when 

σLN is 9 dB, the reduction of CMDR in successive iterations is rather very slow and the CMDR value in 

the 6th iteration is still quite high at about 0.12. 
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Figure 82. IFAR, IMDR and CMDR for different 𝝈𝑳𝑵 values (𝑮 = 𝟏. 𝟎, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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7.3 Channel Estimation 

Figure 83 shows the fine channel estimation error results for different 𝐺 values at constant 𝜎𝐿𝑁 =

6dB, while Figure 84 shows the results for different 𝜎𝐿𝑁 values at constant 𝐺 = 1.0. Plots are given for 

mean absolute (mabs) and standard deviation (std) errors. In general, a gap in the data in an iteration means 

that for that specific case, there are no valid (previously undecoded) packets detected (so no data for 

averaging is available for that iteration). The trends described in the following consider the observations 

on other plots (for other 𝜎𝐿𝑁 and 𝐺 values).  

Amplitude estimation mabs and std errors decrease with higher 𝐺 , increase with higher 𝜎𝐿𝑁  and 

increase with later iteration. Frequency shift estimation mabs and std errors increase with higher 𝐺 and 

decrease with higher 𝜎𝐿𝑁 . Frequency rate estimation mabs and std errors increase with higher 𝐺  and 

decrease with higher 𝜎𝐿𝑁. Phase estimation mabs and std errors generally (or slightly) increases with higher 

𝐺, and generally (or slightly) decreases with higher 𝜎𝐿𝑁, although the trends are not so consistent compared 

to those of frequency shift and rate estimation errors. Unlike amplitude estimation error, which apparently 

increases with later iterations, there are not obvious trends for phase, frequency shift and rate estimation 

errors vs iteration number. This is because amplitude estimation accuracy significantly depends on the 

desired signal level relative to the combined levels of MUI, accumulated residue power from imperfect 

interference cancellations and noise. In first iteration, MUI is high but higher power packets come out first. 

In later iterations, MUI is reduced but accumulated residue power (plus noise) becomes comparable to 

lower power packets. The range of mabs and std errors across 𝐺 = 0.1 to 2.5 and 𝜎𝐿𝑁 = 3, 6, 9 dB are 

summarized in Table 24. 

Table 24. Typical range of channel estimation mean absolute (mabs) and 

standard deviation (std) errors across different 𝑮 and 𝝈𝑳𝑵 (5 iterations) 

Parameters  
Rough Channel Estimation Fine Channel Estimation 

mabs  std mabs std 

𝐴𝑘,𝑑𝐵  

0.8~1.2 (it=1); 

1.0~9.0 (it=3); 

1.0~13.3 (it=5); 

0.8~1.2 (it=1); 

1.0~7.2 (it=3); 

1.0~10.3 (it=5); 

same same 

𝜙𝑘 (rad) 0.3~1.7 0.7~2.5 0.03~0.60 0.06~1.30 

𝑓𝑘 (Hz) 3.0~5.1 2.8~4.3 0.09~0.60 0.13~0.94 

𝑑𝑘 (Hz/s) 1.8~2.9 2.1~3.5 0.10~0.64 0.13~0.94 
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Figure 83. Fine channel estimation mean absolute (mabs) and standard deviation (std) errors for 

different 𝑮 values (𝝈𝑳𝑵 = 𝟔𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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Figure 84. Fine channel estimation mean absolute (mabs) and standard deviation (std) errors for 

different 𝝈𝑳𝑵 values (𝑮 = 𝟏. 𝟎, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 

 

7.4 THR, PLR and EE Assuming Perfect Detection and Channel Estimation 

Figure 85 shows the PLR, THR and 𝜂𝐸𝐸  plots vs MAC load 𝐺  for different 𝜎𝐿𝑁  values at fixed 

𝐸𝑏/𝑁0 = 14dB with five iterations, assuming perfect packet detection and channel estimation (i.e., the 

ideal case where packet delays and channel parameters are known exactly). With higher 𝜎𝐿𝑁, that is, more 

received signal power variation, the maximum 𝐺 in which the system can be operated before saturation is 

higher, although at the expense of higher PLR. As a result, the maximum achievable throughput is higher 

with higher 𝜎𝐿𝑁. At 𝜎𝐿𝑁 = 3 dB (representing the case with non-tight power control), the maximum 𝐺 is 

about 1.9 bps/Hz, giving a maximum THR of 1.9 bps/Hz with 𝑃𝐿𝑅 < 10−3. This result is quite close to 

the result in [6] at 𝜎𝐿𝑁 = 3 dB (GEO orbit, fixed elevation).  At 𝜎𝐿𝑁 = 6 dB (representing the case without 

power control, with perfectly omnidirectional antennas), the maximum 𝐺 is about 2.8 bps/Hz, giving a 

maximum THR of 2.6 bps/Hz with 𝑃𝐿𝑅 of about (3~5)𝑥10−2. 

With even more signal variation, that is, at 𝜎𝐿𝑁 = 9 dB (representing the case without power control, 

with wide beamdwidth antennas), the maximum 𝐺 is about 3.4 bps/Hz, giving a maximum THR of 2.9 

bps/Hz with 𝑃𝐿𝑅 of about 10−1. Meanwhile, 𝜂𝐸𝐸 remains constant with increasing 𝐺 below the saturation 

value and only slightly decreases with higher 𝜎𝐿𝑁. Thus, energy efficiency is barely affected by MAC load 

and received power variation when one operates below the saturation region. Operating in the saturation 

region or beyond gives very bad PLR, much lower energy efficiency and THR. This is because the 

extremely high MUI in such condition causes too many symbol errors beyond the error-correction 

capability of Turbo code. 
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Figure 85. Simulation PLR, THR and 𝜼𝑬𝑬 for different G and 𝝈𝑳𝑵 values (𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, perfect 

detection and channel estimation, 5 iterations) 
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7.5 THR, PLR and EE Considering Actual Processing Algorithm  

Figures 86-88 show the plots of iteration PLR (IPLR) and cumulative PLR (CPLR) vs iteration 

number for different 𝐺 values (at constant σLN = 3dB, 6dB, or 9dB, Eb/N0 = 14dB), when applying the 

signal processing algorithm described in Chapter 6. Figures 89-90 show the corresponding plots for 

different σLN values (at constant G = 0.4 or 1.0, Eb/N0 = 14dB).  

It can be noticed that CPLR appears to approach to a final value and reaches very close to this final 

value at a certain iteration number, which generally depends on the values of 𝐺 and 𝜎𝐿𝑁. When 𝜎𝐿𝑁 = 3dB 

and 𝐺 is low, it is possible that all packets can be decoded by the 4th iteration or earlier so that CPLR 

becomes 0 from that iteration (this is the reason for gaps in data in some figures). Otherwise, CPLR 

approaches a non-zero final value. The lower 𝐺 is, the lower is the final CPLR value and the earlier it is to 

get to this value (i.e., CPLR drops more quickly when 𝐺 is lower). Meanwhile, the lower 𝜎𝐿𝑁 is, the lower 

is the CPLR value (at any iteration and the final value) and the faster CPLR drops.  

Considering the CPLR plots across various 𝐺 and 𝜎𝐿𝑁 conditions, it can be fairly said that overall, 

there is only marginal CPLR improvement from 5th to 6th iteration. Comparing with the CMDR plots in 

Figures 81-82 – where it is evident that the reduction of CDMR from 5th to 6th iteration is still rather 

significant –, it can be said that although lower power packets (that have not been previously undetected) 

can be newly detected in the 6th iteration, those packets can no longer be decoded effectively. Therefore, 

five is evidently the optimum maximum number of iterations for running the formulated E-SSA algorithm, 

even without knowledge of 𝐺 and 𝜎𝐿𝑁 conditions or to be able to accommodate various conditions. 
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Figure 86. IPLR and CPLR for different 𝑮 values (𝝈𝑳𝑵 = 𝟑𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Figure 87. IPLR and CPLR for different 𝑮 values (𝝈𝑳𝑵 = 𝟔𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Figure 88. IPLR and CPLR for different 𝑮 values (𝝈𝑳𝑵 = 𝟗𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Figure 89. IPLR and CPLR for different 𝝈𝑳𝑵 values (𝑮 = 𝟎. 𝟒, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Figure 90. IPLR and CPLR for different 𝝈𝑳𝑵 values (𝑮 = 𝟏. 𝟎, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 

 

Figure 91 shows the corresponding PLR, THR and 𝜂𝐸𝐸 plots vs MAC load 𝐺 for different 𝜎𝐿𝑁 values 

at fixed 𝐸𝑏/𝑁0 = 14dB and five iterations, after applying the signal processing algorithm described in 

Chapter 6. With the actual processing algorithm, for a given 𝐺, PLR increases, THR decreases and 𝜂𝐸𝐸 

decreases with higher 𝜎𝐿𝑁. However, here it is noticeable that 𝐺 and 𝜎𝐿𝑁 more adversely affect the three 

metrics. As a result, the linear region, which is the maximum MAC load 𝐺 in which the system can be 

operated before saturation, is much smaller. At 𝜎𝐿𝑁 = 3 dB (representing the case with non-tight power 

control), the maximum 𝐺 decreases to 1.3 bps/Hz, giving a maximum THR of 1.25 bps/Hz with 𝑃𝐿𝑅 <

0.03. For both 𝜎𝐿𝑁 = 6 dB and 9 dB (representing the cases without power control), the saturation value 

for 𝐺 also drops to 1.3 bps/Hz, THR plots have much more limited and less linear region, and PLR values 

are worse compared to those in perfect detection and channel estimation condition.  

Moreover, for all three 𝜎𝐿𝑁 values, PLR, THR and 𝜂𝐸𝐸 are more sensitive to MAC load such that even 

for 𝐺 < 1.3  bps/Hz, we see increasing PLR and decreasing 𝜂𝐸𝐸  with increasing 𝐺  (compared with 

relatively constant plots in Figure 85). Considering the said limits for 𝐺, the maximum THR for 𝜎𝐿𝑁 =

6 dB and 9 dB are about 1.1 bps/Hz and 0.9 bps/Hz, respectively. However, if we consider the target 

PLR<5%, it is impossible to meet this with any G when 𝜎𝐿𝑁 = 9 dB. For 𝜎𝐿𝑁 = 6 dB, it is possible to meet 

PLR requirement when G<0.5. For 𝜎𝐿𝑁 = 3 dB, it is possible to meet PLR requirement when G<1.4. 
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Figure 91. Simulation PLR, THR and 𝜼𝑬𝑬 for different G and 𝝈𝑳𝑵 values (𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual 

algorithm, 5 iterations) 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 154 

Figure 92 compares the corresponding plots for five and six iterations, which suggests that there is 

only very small improvement gained in proceeding to 6th iteration after 5th iteration. Since there is very 

little benefit from six iterations, five iterations can be considered to be the optimum number of iterations 

for running the formulated E-SSA algorithm. The worse PLR and THR results can be explained by the 

imperfect packet detection and channel estimation algorithms whose performance are discussed in Sections 

7.1 and 7.2. Firstly, cumulative misdetection rates (CMDR), even after 5 or 6 iterations, are quite high.  

For example, at 𝐺 = 1.0 and 𝜎𝐿𝑁 = 6 dB, after 5 iterations, CMDR is ~0.08 and PLR is ~0.11. 

Meanwhile, at 𝐺 = 1.0 and 𝜎𝐿𝑁 = 9 dB, after 5 iterations, CMDR is ~0.20 and PLR is ~0.23. On the other 

hand, at 𝐺 = 1.0 and 𝜎𝐿𝑁 = 6 dB, after 6 iterations, CMDR is ~0.03 while PLR is ~0.10. Similarly, at 𝐺 =

1.0 and 𝜎𝐿𝑁 = 9 dB, after 6 iterations, CMDR is ~0.13 while PLR is ~0.20. If we only observed the data 

after five iterations, we might be tempted to say that majority of packet losses are caused by packets being 

not yet detected and the remaining smaller portion are due to demodulation/decoding error. However, since 

we also examined the data after six iterations, we realized that while CMDR can be reduced by proceeding 

to 6th iteration, those lower power newly detected packets can no longer be decoded effectively. Therefore, 

we can say that overall, packet losses can be attributed – in mutually significant proportions – to both 

packet misdetections and demodulation/decoding errors. 

As previously mentioned, two factors cause packet misdetections. First is received amplitude 

variations such that at every iteration, higher 𝜎𝐿𝑁  increases occurrence probability of packets having 

amplitudes lower than detection threshold. Second, although these lower power packets are supposed to be 

detectable in succeeding iterations, a higher MAC load G leads to greater residue interference power whose 

level may be enough to obscure some of the lower power packet signals. In fact, it is observed that re-

detection of already decoded packets becomes more frequent in later iterations, with residual power still 

enough for the previously decoded (and supposedly cancelled) packet to be still decodable.  This is further 

complicated by the worsening amplitude estimation accuracy in later iterations. 

As for demodulation/decoding, although MUI power should decrease after cancelling the decoded 

packets, accumulated residue power from imperfect interference cancellation hampers not only detection 

of lower power packets in later stages (as described above), but also demodulation/decoding of detected 

lower power packets. Therefore, even small channel estimation errors can adversely impact packet 

detection and demodulation/decoding, and consequently the PLR, especially when 𝜎𝐿𝑁 is high.  

The PLR and THR can be improved by operating with higher 𝐸𝑏/𝑁0 (i.e., increasing transmit power) 

as shown in Figure 93, although of course this sacrifices energy efficiency. Plots in Figure 93 show the 

trade-offs between performance and energy efficiency.  
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Figure 92. Simulation PLR, THR and 𝜼𝑬𝑬 for different G and 𝝈𝑳𝑵 values (𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual 

algorithm, 5 vs 6 iterations) 
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Figure 93. Simulation PLR, THR and 𝜼𝑬𝑬 for different 𝑬𝒃/𝑵𝟎 values (𝝈𝑳𝑵 = 𝟔𝒅𝑩, actual algorithm, 

5 vs 6 iterations) 
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Chapter 8:  Nanosatellite Constellation for Global Coverage 

In this chapter, we tackle the problem of designing a S&F nanosatellite constellation that provides a 

global communication coverage to ground sensor terminals (GSTs) deployed in any remote location on the 

planet. We use AGI’s Systems Tool Kit (STK) software to simulate a selection of constellations in terms 

of communication coverage, which is computed based on satisfaction of link budget. Link budget analysis 

applies the results on E-SSA protocol obtained in the previous chapter. The goal is to come up with a small 

constellation size (i.e., low-cost) that only requires a low transmit power from GSTs to meet the link budget 

requirement. 

8.1 Constellation Design Considerations  

There are several interrelated factors that must be considered when designing a communication 

satellite constellation: (a) constellation type or configuration, (b) number of planes, (c) number of satellites 

per plane, (d) orbital altitude, (e) other orbital parameters e.g. inclination, right ascension of the ascending 

node (RAAN), phasing (argument of periapsis and true anomaly), and (f) communication link budget 

constraints. Factors (a) to (e) are orbit-related that have practical implications on the cost and logistics for 

realizing the constellation. Factor (f) is directly related to GST transmit power and has practical 

implications on the cost and complexity of GSTs. Setting the GST transmit power high would normally 

involve a more costly and complex GST design (e.g., RF amplifier, higher capacity electrical power 

system). Doing this would reduce the required number of satellites (since as a result, each satellite can 

cover a wider area due to lower minimum required elevation) or permit higher altitude (which would 

increase coverage area per satellite). On the other hand, with more satellites flying on a lower altitude, a 

lower GST transmit power and thus simpler GST design would be needed. 

The cost of realizing a constellation heavily depends on too detailed project management and logistical 

considerations (e.g., contracts with one or more launch providers, timing of launches, etc.) so it is not 

straightforward to relate the cost to the orbit-related factors. However, it would be reasonable for cost and 

logistical purposes to target a fewer number of planes, then a lower altitude, and lastly, fewer satellites per 

plane. Aside from considering the number of planes and satellites per plane, to achieve a global coverage 

it would be necessary to distribute the satellites in multiple planes which have either different inclinations 

or RAANs or both.  

In terms of constellation type, Walker constellation, wherein all satellites are distributed in multiple 

planes with the same inclinations but different RAANs, is commonly employed for earth observation and 

telecommunications missions. For example, a high-inclination Walker constellation can cover all latitudes 

(and all longitudes at different times depending on the number of planes) but the percent time coverage in 

lower absolute latitude regions (closer to the equator) would be less than those in near polar regions (which 

would enjoy more frequent revisits and access times). Meanwhile, a low-inclination Walker constellation 

would provide better percent time coverage to lower absolute latitude regions than near polar regions (or 

no coverage at all). Nonetheless, with sufficiently high number of planes and number of satellites, a 98° 
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inclination Walker constellation can always provide a fully global coverage. On the other hand, a hybrid 

constellation, that is consisting of multiple planes with different inclinations and RAANs, can provide a 

more balanced (or less skewed) percent time coverage across all latitudes on the planet. 

Again, determining which is the better option would also require very detailed project management 

and logistical plans involving comparison of available options for nanosatellite launches. Recently, already 

operational, soon-to-be-operational and under development commercial small launchers provide customers 

with two possible options: dedicated launch or ride-share launch. Some surveys on the status of operational 

and under development small launchers are given in references [171] and [172]. The burgeoning industry 

in small launchers (or so-called “micro-launchers”) has been driven particularly by the potential offered by 

small satellite deliveries [173][174]. While small launcher development has been happening, more than a 

thousand nanosatellites have been launched. Figures 94 and 95 show the distribution of the number of 

launched nanosatellites in terms of orbit and launchers. For obvious reasons, deployment by release from 

the ISS has been the most predominant means, which explains why the 400 km 51.6° orbit has the largest 

share. Besides that, there is also a significant portion of the population of launched nanosatellites with 

470km-780 km altitude, 97.5°-98.2° inclination. Although less common, there have been nanosatellites 

with lower inclination orbits.  

As for nanosatellites, rideshare launches are likely (and still going to be) the more affordable option 

(being secondary payloads of small launchers primarily booked for mini-satellites or other larger small 

satellite classes). Rather than booking dedicated launches, a nanosatellite project is likely to seek multiple 

rideshare launch opportunities from one or more launch providers. For instance, it is possible to book 

several scheduled rideshare launches from one launch provider: one inclination but perhaps different 

RAANs. One can also imagine booking several scheduled rideshare launches from several launch 

providers: different inclinations and RAANs. In either case, though, it might be difficult to get the desired 

exact inclinations and RAANs. To simplify the constellation design and simulation process in this work, 

we assume the designed inclinations and RAANs are met. If constellation size is quite large, the results 

may still approximate the characteristics of the case with inexact or with-error inclinations and RAANs. 

On the other hand, considering a “constellation” with randomly generated orbital parameters, as done in a 

previous work, will produce results that might be difficult to replicate or make sense of.  

Also, as there is no explicit mathematical relationship between GST transmit power vs GST cost and 

complexity, arbitrarily low transmit powers less than or equal to 100 mW are tried. 
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Figure 94. Nanosatellite approximate orbits after launch (source: www.nanosats.edu) 

 

Figure 95. Nanosatellite launches by launchers (source: www.nanosats.edu) 

8.2 Constellation Simulation Setup and Design Procedure 

In the following, we consider two types of constellations: Walker Delta and Hybrid. The number of 

planes is denoted by 𝑁𝑝, the number of satellites per plane by 𝑁𝑠, and the total number of satellites by  

𝑁𝑠𝑎𝑡 = 𝑁𝑝𝑥𝑁𝑠. In Walker Delta constellation, inclination is fixed to 98° and RAAN is spread between 0° 

and 360° with offset between two consecutive planes. In Hybrid constellation, inclinations and RAANs are 

spread in the ranges of 0°-100° and 0°-360°, respectively. Details for the GST transmitter model, satellite 
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receiver model and satellite orbit are listed in Table 25 below. In addition to meeting the link budget 

requirement, a minimum satellite elevation of 5° must be met to establish communication access from a 

GST to any satellite in the constellation. A 3D illustration of the system model in STK is given in Figure 

96. 

To facilitate the evaluation of communication coverage, representative GSTs are placed at various 

latitudes from -90° to +90° with 10° intervals (longitude fixed to 0°). STK then computes all accesses from 

each GST to any constellation member. There is access from a GST when there is at least one satellite 

meeting the link budget and minimum elevation requirements. The assumed value of 𝐸𝑏/𝑁0  for 

demodulation is set to 15 dB and link margin requirement is set to 5 dB, which means the required threshold 

value for 𝐸𝑏/𝑁0 is 20 dB.  For each test latitude, the percent coverage time (PCT) is evaluated. In addition, 

percent area coverage (PAC) is evaluated. PAC is computed by the software at any time instant as the 

total global area wherein a satellite is visible (not necessarily communicable, i.e., satellite elevation is ≥0°) 

over the total global area, although we look at the minimum, maximum and mean PAC. 

The following summarizes the overall sequence of steps: 

(1) Start with a 3 x 3 Hybrid constellation. Given a fixed 𝑃𝑇𝑋 = 20 dBm (100 mW), compute the 

AD, ATG, PCT at all latitudes and the PAC for different orbit altitudes: 500 km, 600 km, 700 km, 

800 km and 900 km. Do the same for fixed 𝑃𝑇𝑋 = 17 dBm (50 mW) and 𝑃𝑇𝑋 = 14 dBm (25 

mW). For each 𝑃𝑇𝑋, choose the optimum altitude that gives the highest PCT. For a given 𝑃𝑇𝑋, we 

can expect that with low altitude, visibility area is smaller and coverage area is mainly constrained 

by the minimum required elevation; with high altitude, visibility area is bigger but coverage area 

is mainly constrained by the link budget requirement (i.e., GST-satellite distance). With a higher 

𝑃𝑇𝑋, a higher altitude is possible, thus providing a wider coverage area and consequently, when 

scaling up, smaller constellation size would be needed for full global coverage. With a lower 𝑃𝑇𝑋, 

altitude must be lowered, thus providing a smaller coverage area and larger constellation size 

would be needed for full global coverage. While a higher altitude is advantageous for achieving 

full global coverage with a smaller constellation size, it would require higher 𝑃𝑇𝑋 and possibly 

more costly satellite launcher. Therefore, we select a 𝑃𝑇𝑋 and altitude that provides a good balance 

among higher PCT (determines the upscaled constellation size), lower 𝑃𝑇𝑋 and lower altitude (if 

possible, <800 km). 

(2) Fixing the 𝑃𝑇𝑋 and altitude to the selected values in (1), try out bigger size Walker Delta and 

Hybrid constellations. Compute the AD, ATG, PCT at all latitudes and the PAC. 

(3) Determine the minimum constellation sizes for both Walker Delta and Hybrid constellations that 

provide a minimum PCT of 95% across all latitudes and minimum PAC of 100%. 
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Table 25. GST Transmitter, Receiver and Satellite Constellation Models in 

STK AGI 

Parameter Value 

Transmitter (GST) 

Object type and model Complex Transmitter model, Transmitter object attached as 

a child to a Place object 

Center Frequency 402 MHz 

Transmit Power, 𝑃𝑇𝑋 To be determined  

(nominal: 50 mW, unless otherwise specified) 

Data Rate 333 bps 

Antenna λ/2 dipole, right-hand circular polarization 

Modulator BPSK-Conv-3-1-6, with CDMA spreading  

(substitute model for BPSK, rate 1/3 Turbo code, SSA) 

Cable loss 2 dB 

Positions Longitude: 0° 

Latitude: ±90°, ±80°, ±70°, ±60°, ±50°, ±40°, ±30°, ±20°, 

±10°, 0° 

Receiver (onboard satellite) 

Object type and model Complex Receiver model, Receiver object attached as a 

child to a Satellite object 

Center Frequency 402 MHz (auto-track) 

Eb/No threshold for 

demodulation  

15 dB 

Link margin threshold 5 dB 

Antenna λ/2 dipole, right-hand circular polarization 

Demodulator Same as above (auto-select) 

Filter + implementation losses 3 dB 

System noise temperature 1000 K 

Satellite Orbit 

Orbit type circular 

Argument of perigee 0° in all cases 

Altitude To be determined  

(nominal: 700 km unless otherwise specified) 

Inclination 98° (for Walker Delta constellation);  

spread between 0° and 100° (for Hybrid constellation) 

RAAN Uniformly spread between 0° and 360° 

True anomaly Uniformly spread between 0° and 360° 

Minimum elevation 

requirement for 

communication access 

5° 
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Figure 96. 3D illustration of the system model in STK showing the GST and satellite antenna 

radiation patterns and visibility area 

8.3 Selecting Transmit Power and Orbital Altitude  

Figure 97 shows a snapshot of the 3x3 hybrid nanosatellite constellation as simulated in STK. There 

are three planes with three satellites per plane: Plane 1 (inclination = 33°, RAAN = 0°, TA = 0°, 120°, 

240°); Plane 2 (inclination = 67°, RAAN = 120°, TA = 0°, 120°, 240°); and  Plane 3 (inclination = 100°, 

RAAN = 240°, TA = 0°, 120°, 240°).  

 

Figure 97. 3x3 Hybrid constellation simulated in STK 

Figure 98 shows the average PCT (percent coverage time) results plotted vs orbital altitude for PTX 

equal to 14 dBm (25 mW), 17 dBm (50 mW) and 20 dBm (100 mW). For PTX =14 dBm, coverage area is 

constrained by the link budget requirement so access can be made only if satellite altitude is low (<600 

km). Optimum altitude is somewhere below 500 km, giving an average PCT of about 16%. For PTX =17 

dBm, the optimum altitude is 700 km, giving an average PCT of about 28%. Below 700 km, coverage area 
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is limited by the minimum elevation requirement; and above 700 km, coverage is limited by the link budget 

requirement. For PTX = 20 dBm, coverage area is not constrained by the link budget requirement when 

altitude is between 500 km and 900 km; it is limited only by the minimum elevation requirement. Average 

PCT increases linearly with altitude and the optimum altitude is somewhere above 900 km, giving an 

average PCT of more than 35%. For upscaling the constellation, PTX and satellite altitude equal to 17 dBm 

and 700 km, respectively, are selected. 

 

Figure 98. Average percent coverage time (across all latitudes) vs orbital altitude for different PTX 

8.4 Coverage for Larger Constellations 

Table 37 in Appendix 6 provides the orbital parameters of the Walker Delta and Hybrid constellations 

that were simulated. Figure 99 shows the PCT across different latitudes for Walker Delta constellations 

while Figure 100 shows for Hybrid constellations. Figure 101 compares the PCT plots for larger Walker 

Delta and Hybrid constellations. Compared to Walker Delta constellations, Hybrid constellations provide 

more even coverage across all latitudes. For the Walker Delta constellations, because of high inclination 

used, near polar regions (higher absolute latitudes) enjoy more frequent revisits and satellite passes than 

near equatorial regions (lower absolute latitudes). This explains why near polar regions have higher PCT 

than near equatorial regions. A close examination of Figure 101 will reveal that to achieve the target PCT 

of more than 95% across all latitudes, a 9x10 Hybrid constellation or a 10x10 Walker Delta constellation 

would be required (although for the latter, PCT is slightly below 95% at ±10° latitudes). Table 26 provides 

the PAC for different constellations. Both the 9x10 Hybrid constellation and the 10x10 Walker Delta 

constellation meet the 100% minimum PAC requirement. 
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Figure 99. Percent coverage time across different latitudes for Walker Delta constellations (h=700 km, 

PTX=50 mW) 

 

Figure 100. Percent coverage time across different latitudes for Hybrid constellations (h=700 km, 

PTX=50 mW) 
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Figure 101. Percent coverage time across different latitudes for Walker Delta and Hybrid 

constellations (h=700 km, PTX=50 mW) 

Table 26. Percent Area Coverage (PAC) of Different Constellations 

Constellation Size 
Percent Area Coverage 

Min Max Mean 

3 x 3 (Hybrid) 36.16 42.93 39.61 

3 x 3 (Walker Delta) 36.76 41.11 38.91 

4 x 4 (Hybrid) 43.49 69.64 59.64 

4 x 4 (Walker Delta) 50.13 58.33 54.91 

5 x 5 (Hybrid) 74.95 81.31 78.02 

5 x 5 (Walker Delta) 77.87 82.32 79.8 

6 x 6 (Walker Delta) 85.99 91.58 88.84 

6 x 6 (Hybrid) 83.53 96.32 90.76 

6 x 8 (Hybrid) 96.07 100 97.97 

7 x 7 (Walker Delta) 98.38 100 99.12 

8 x 8 (Hybrid) 98.76 100 99.81 

8 x 8 (Walker Delta) 98.09 99.52 99.25 

8 x 10 (Hybrid) 99.56 100 100 

9 x 9 (Hybrid) 99.75 100 100 

9 x 9 (Walker Delta) 100 100 100 

9 x 10 (Hybrid) 100 100 100 

10 x 10 (Walker Delta) 100 100 100 
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Figure 102. 8x8 Hybrid constellation simulated in STK 

 

Figure 103. 9x10 Hybrid constellation simulated in STK 

 

Figure 104. 10x10 Walker Delta constellation simulated in STK 
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Chapter 9:  Experimental Laboratory Validation for E-SSA 
Protocol, Research Summary, Conclusions and 
Recommendations 

The E-SSA protocol simulated as described in Chapter 6 and whose simulation results are discussed 

in Chapter 7 accounts only for the channel attenuations and received amplitudes variation among terminals, 

Doppler frequency shifts, Doppler frequency rates and phase offsets between each terminal and the payload 

receiver. The MATLAB simulation does not account for other impairments such as phase noise, errors in 

transmitters’ and receiver’s LO carrier frequencies (static and dynamic – instabilities), and clock (timing) 

errors. 

In this chapter, we describe our experimental laboratory validation setup for the E-SSA protocol. 

Then, we present the experimental results and compare them with simulation results. The end of this 

chapter also provides the dissertation summary, conclusions, recommendations and plans for future work. 

 

9.1 Four Laboratory Setups for E-SSA Protocol Validation 

In simulation, the MATLAB program generates the received baseband signal at satellite receiver as a 

sum of received signals from numerous GSTs and noise. Then, the MATLAB program executes the 

formulated baseband signal processing algorithm including packet detection, channel estimation, decoding 

and successive interference cancellation. To validate the simulation results while also emulate the 

additional impairments in various degrees (albeit not fully equivalent to the real scenario), four laboratory 

setups were considered, as illustrated in Figures 105 to 108.  

In the laboratory setup, we allow the received baseband signal pre-generated by the MATLAB 

program to be transmitted through the digital, analog baseband, and RF blocks of a real software-defined 

radio (SDR) transmitter. The transmitted signal is then received by RF, analog baseband, and digital blocks 

of an SDR receiver. Finally, digitized samples of the received baseband signal are later post-processed by 

the MATLAB program. In transmit side, the pre-generated received baseband signal’s I and Q components 

are normalized and saved in separate .wav files, which are subsequently read by a GNU Radio software 

running on a computer that is communicating with the SDR transmitter module via USB interface. GNU 

Radio is tasked with exchanging data with the SDR’s FPGA, as well as compiling and loading program 

into FPGA for controlling its computational resources. The FPGA in turn directly communicates with and 

partly controls the transceiver RFIC inside the SDR module. In receive side, the reverse process happens, 

that is, the received baseband signal’s I and Q components are recorded and saved in separate .wav files 

for post-processing.  

Figure 105 shows the Lab Setup 1 diagram, which involves only one PC running the GNU Radio 

software and a single LimeSDR whose transmitter and receiver sections are utilized for our purpose. The 

data and signal flow are described as follows. In the transmit side, GNU Radio first reads the MATLAB 

program-pre-generated received baseband signal I and Q .wav files in the PC and transfers the data to 
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LimeSDR’s FPGA (Altera Cyclone IV) via USB interface. The FPGA interfaces with the LMS7002 

transceiver RFIC – including sending of I-Q data and configuration data for component blocks inside the 

transceiver (e.g., DACs, analog filters, and RF blocks such as TX/RX PLLs, mixers, amplifiers). The FPGA 

sends the I&Q data to the LMS7002 through the Digital IQ Interface, which are then forwarded to the 

Transceiver Signal Processor (TSP). Next, inside LMS7002, digital baseband I and Q data are converted 

to analog baseband signals by two separate DAC channels and passed through low pass filters (LPFs). 

Then, the I and Q LPFs’ outputs are each directly upconverted to the desired RF frequency by mixing them 

with TX LO chain through the I&Q mixers. At this point, the upconverted I and Q outputs are recombined 

and then amplified. External to LMS7002, impedance matching networks are connected to RF input and 

output ports. The final RF output of LimeSDR (TX1_1) is fed into a 20 dB attenuator, which in turn is 

connected to a short cable and another 20 dB attenuator whose output is fed back into the RF input of 

LimeSDR (RX1_H). 

 

(a) Diagram 
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(b) Photo of actual setup 

Figure 105. Laboratory setup 1 for validating E-SSA protocol with aditional impairments 

In the receive side, after passing through the matching network, the input RF signal is amplified by 

LNA before downconverted by I&Q mixers. At this point, the mixers’ outputs constitute the analog 

baseband I and Q signals which then are each fed into two separate branches each consisting of low pass 

filter, analog voltage amplifier and ADC. The ADCs’ outputs now constitute the digital baseband I and Q 

data which are cached in the TSP and forwarded to the FPGA through the Digital IQ Interface. Then, I & 

Q .wav files are created by FPGA and forwarded to the PC via USB interface for later post-processing by 

the MATLAB program.  

Note that the pertinent component blocks of LimeSDR – more importantly those of LMS7002 and 

clock generation – shown in the figure are illustrated based on the descriptions provided in product 

datasheets and documentations. It is important to investigate how the several clocks in the system, 

including those in the DACs/ADCs, TX LO and RX LO, are generated beginning with the built-in reference 

clock (VCTCXO) and any external reference clock. It can be noticed in setup 1 that LimeSDR’s TX PLL, 

RX PLL, Clock PLL and LMK CLK are driven by clocks coming from the same clock buffer. The input 

of this clock buffer is the built-in 30.72 MHz VCTCXO which is either tuned by the TCXO DAC (by 

default) or calibrated by an external reference clock through a phase detector (if selected, but which is not 

selected for Lab Setup 1). This means that in Lab Setup 1, there is only very small additional carrier phase 

offset between TXLO and RXLO within a single RFIC. There can be significant static frequency errors 

and instabilities in the VCTCXO output, and consequently in the individual outputs of TXLO and RXLO 

PLLs. However, since a common clock source drives the TXLO and RXLO PLLs, these LO PLLs’ outputs 

will have small frequency difference. Any small difference in LOs’ frequencies would be due to 
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imperfections in individual PLLs within a single RFIC. Similarly, although there will be significant 

sampling timing errors within the DACs and ADCs themselves – mainly due to inaccurate built-in 

reference clock – their effect will not be noticeable in the received samples (i.e., inexact sampling timing 

with respect to transmitted samples) due to a common clock source triggering the TX DACs and RX ADCs. 

Therefore, in Lab Setup 1, we expect the impairments would be phase noise and small difference between 

TX and RX LOs’ frequencies.  

Figure 106 shows the Lab Setup 2 diagram, which is like Lab Setup 1 but uses another PC and USRP 

B200mini SDR for the transmit side. Lab Setup 2 uses only the receive branch of LimeSDR and only the 

transmit branch of USRP B200mini SDR. Also, notice the use of Agilent N9310 signal generator as a 

common external reference clock for both LimeSDR and USRP B200mini SDR. The 10 MHz 16 dBm 

output from Agilent N9310 is split into two by a 3 dB splitter, whose outputs are separately fed into external 

reference clock inputs of the SDRs. Note that the pertinent component blocks of USRP B200mini SDR – 

more importantly those of AD9364 RFIC and clock generation – shown in the figure are illustrated based 

on the descriptions provided in product datasheets and documentations. By default, without an external 

reference clock, a built-in 40 MHz VCTCXO – which is tuned by a TCXO DAC controlled by the FPGA 

(Xilinx Spartan 6) – is used as the clock source for the data CLKs, sample CLKs and LOs inside AD9364 

and CLK-40M-FPGA for the FPGA. With an external reference clock, although it is not explicitly 

described, it is inferred that the input clock is used for the programmable clock generators inside FPGA 

(which might be subsequently used to control TCXO DAC through some feedback circuit analogous to the 

phase detector in LimeSDR).  

In Lab Setup 2, if the PLLs in both SDRs are properly working, there should be only very small 

additional carrier phase offset between USRP B200mini SDR TXLO and LimeSDR RXLO. The difference 

from setup 1, though, is that a more accurate common external reference clock is used by the PLLs but the 

PLLs’ specifications themselves might deviate more depending on the varying design/component selection 

choices by different SDR and RFIC manufacturers. The different RFICs, built-in VCTCXOs and 

calibration circuits involved in Lab Setup 2 might produce greater overall difference in TXLO and RXLO 

PLL outputs. Meanwhile, due to use of a common external reference clock, the USRP B200mini SDR 

TXLO and LimeSDR RXLO PLL outputs themselves should be individually more accurate that the outputs 

in Lab Setup 1. Still due to use of a common external reference clock, frequency difference between USRP 

B200mini SDR TXLO and LimeSDR RXLO should also be small – due to imperfections in TXLO and 

RXLO PLLs. However, compared to Lab Setup 1, different RFICs, built-in VCTCXOs and calibration 

circuits are involved, which might produce more overall frequency offset. In terms sampling timing 

accuracy, again due to a common external reference clock, the individual ADCs/DACs sampling accuracies 

in TX and RX sides should be better than in Lab Setup 1, but due to separate clocks (that trigger sampling), 

even small sampling timing errors in the RX side ADCs (with respect to the TX side DACs) can lead to 

noticeable errors in the received samples (i.e., inexact sampling timing with respect to transmitted samples). 
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Figure 106. Laboratory setup 2 for validating E-SSA protocol with aditional impairments (diagram) 
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(a) Diagram 
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(b) Photo of actual setup 

Figure 107. Laboratory setup 3 for validating E-SSA protocol with aditional impairments 

Figure 107 shows the diagram for Lab Setup 3, which is very similar to Lab Setup 2 except that another 

signal generator (R&S SMBV100B) is used as external reference clock for the TX side. Unlike Lab Setups 

1 and 2, since the two signal generators are independent, there can be large/small and random (in every test 

trial) additional carrier phase offset between USRP B200mini SDR TXLO and LimeSDR RXLO. If the 

two signal generators are both accurate, the frequency difference between USRP B200mini SDR TXLO 

and LimeSDR RXLO should also be small due to the same errors in Lab Setup 2. Practically, however, 

there is additional small errors due to difference in the signal generators’ output frequencies. The 

ADCs/DACs individual and relative sampling timing errors are like those in Lab Setup 2 but will be 

(slightly) higher due to difference in the signal generators’ output frequencies and the random carriers’ 

phase offset. Note that if there are several samples per chip, then the effect in increased timing error relative 

to setup 2 should only be slightly ‘felt’ in the received samples.  

Finally, Figure 108 shows the diagram for Lab Setup 4, which among the four setups most represents 

the realistic scenario of having inaccurate reference clocks in the GSTs. It involves the greatest extent of 

additional carrier phase offset between USRP B200mini SDR TXLO and LimeSDR RXLO, difference in 

their TX and RX LOs’ frequencies, and sampling timing errors. The differences among the simulation and 

laboratory setups are summarized in Table 28. For a rough quantitative comparison, the specifications of 

the reference clocks involved in the four setups are provided in Table 27. Note that in all four laboratory 
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setups, the baseband and RF gains in the TX and RX sides are adjusted so that the recorded baseband signal 

amplitudes do not saturate the ADCs (not exceeding the ±1 amplitude limits but not too low). Further 

details on SDR TX and SDR RX settings, as well as the RF spectrum measurements, are provided in Tables 

29 and 30 and Figures 109 to 113 (note that the spectrum analyzer used for measurement may also have 

limited accuracy for the purpose). 

 

Figure 108. Laboratory setup 4 for validating E-SSA protocol with aditional impairments (diagram) 
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Table 27. Reference Clocks Accuracies in Different Setups 

Laboratory 

Setup 
Description 

Reference Clocks Settings and Accuracies 

TX Side RX Side 

Lab Setup 1 

(LS1) 

Single internal reference 

clock, single SDR module 

for TX and RX sides 

±1 ppm initial, ±4 ppm stable 

(built-in VCTCXO) 

Lab Setup 2 

(LS2) 

Single external reference 

clock, separate SDR modules 

for TX and RX sides 

~ ±0.2 ppm  

(Agilent N9310A) 

Lab Setup 3 

(LS3) 

Separate external reference 

clocks, separate SDR 

modules for TX and RX 

sides 

±? ppm  

(R&S SMBV100B) 

~ ±0.2 ppm  

(Agilent N9310A) 

Lab Setup 4 

(LS4) 

Internal reference clock on 

TX side, external reference 

clock on RX side, separate 

SDR modules for TX and 

RX sides 

±2 ppm 

(built-in VCTCXO) 

~ ±0.2 ppm  

(Agilent N9310A) 

Table 28. Expected Signal Impairments in Different Setups 

Setup 

Impairments 

Doppler shifts, 

rates, carrier 

phase offset 

between each 

GST TX and 

satellite payload 

RX 

Phase 

Noise 

Additional 

initial carrier 

phase offset due 

to SDR TX and 

RX 

TX and RX LO 

frequency errors 

and instability* 

Sampling 

timing errors 

Simulation Yes No No No No 

Lab Setup 1 

(LS1) 
Yes Yes Small [1]  Small [1] 

Large [2], but 

not noticeable 

effect in 

received 

samples* due to 

common clock 

for TX and RX 

Lab Setup 2 

(LS2) 
Yes Yes 

Small [3]  

(LS2 > LS1)** 

Small [3]  

(LS2 > LS1)** 

Small [4], but 

effect in 

received 

samples* may 

be noticeable 

(LS2 > LS1)** 

Lab Setup 3 

(LS3) 
Yes Yes 

Large/small and 

random in every 

test trial [5] 

(gen. LS3 > 

LS2)** 

Small [6] 

(LS3 > LS2)** 

Small [7], but 

effect in 

received 

samples* may 

be noticeable 

(LS3 > LS2)** 

Lab Setup 4 

(LS4) 
Yes Yes 

Large/small and 

random in every 

test trial [5] 

(gen. LS4 > 

LS2)** 

Large [8] 

(LS4 >> LS3) 

Large [8] and 

noticeable 

effect in 

received 

samples*  

(LS4 >> LS3) 
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[1] Due to imperfect TXLO and RXLO PLLs in TX and RX sides within a single transceiver RFIC 

[2] Mainly due to inaccurate built-in reference clock in a single TX/RX SDR module 

[3] Due to imperfect TXLO and RXLO PLLs in TX and RX sides (in different RFICs), as well as well as 

different built-in VCTCXOs and their calibration circuits (in different SDR modules) 

[4] Due to imperfect sampling clock PLLs in TX and RX sides (in different RFICs), as well as well as 

different built-in VCTCXOs and their calibration circuits (in different SDR modules) 

[5] Due to independent/separate external reference clocks 

[6] Due to imperfect TXLO and RXLO PLLs in different RFICs, different built-in VCTCXOs and their 

calibration circuits (in different SDR modules), and in addition to LS2 are small relative errors between 

SGs RF outputs 

[7] Due to imperfect sampling clock PLLs in TX and RX sides (in different RFICs), different built-in 

VCTCXOs and their calibration circuits (in different SDR modules), and in addition to LS2 are small 

relative errors between SGs RF outputs 

[8] Mainly due to inaccurate built-in reference clock in SDR TX side (among all setups, this most 

represents realistic situation of GSTs having inaccurate reference clocks) 

*With respect to transmitted samples 

**In terms of overall TX-RX difference or net effect 

Table 29. SDR TX and RX Settings for Laboratory Setup 1 

Parameter Value or Setting 

TX Side (LimeSDR) 

Center frequency 402 MHz 

Sampling rate 1.28M samples/sec 

Channel ‘A’ (=TX1_1) 

Oversample Default 

NCO frequency ‘0’ (default) 

Calibration BW 5x106 (default) 

PA Path ‘Auto(Defaut)’ 

Analog filter BW ‘0’ (default) 

Digital filter BW 1.28 MHz (=sampling rate) 

Gain 72 dB 

Allow TCXO DAC control Yes (use DAC tuner with built-in VCTCX0) 

Measured output RF power (by spectrum 

analyzer, for σLN=9dB, G=0.4) 

~-8 dBm to ~-3 dBm (similar reading for 

250 kHz and 500 kHz bandwidth) 

 

RX Side (same LimeSDR module used in TX Side) 

Center frequency 402 MHz 

Sampling rate 1.28M samples/sec 

Channel ‘A’ (=RX1) 

Oversample Default 

Measured input RF power (after 40 dB 

total attenuators, by spectrum analyzer, 

for σLN=9dB, G=0.4) 

~-48 dBm to ~-44 dBm (similar reading for 

250 kHz and 500 kHz bandwidth) 

NCO frequency ‘0’ (default) 

Calibration BW 5x106 (default) 

LNA path ‘H’ (use RX1_H as RF input port) 
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Analog filter BW ‘0’ (default) 

Digital filter BW 1.28 MHz (=sampling rate) 

Gain 60 dB 

Allow TCXO DAC control Yes (use DAC tuner with built-in VCTCX0) 

Wav File Sink 1.28M samples/sec, 16 bits/sample 

Table 30. SDR TX and RX Settings for Laboratory Setups 2-4 

Parameter Value or Setting 

TX Side (USRP B200mini SDR) 

Center frequency 402 MHz 

Sampling rate 1.28M samples/sec 

Sync ‘don’t sync’ 

Mb0 clock source External/Internal 

Mb0 time source Default 

Gain value 68 dB 

Ch0 antenna (RF port) TX/RX 

Ch0 bandwidth ‘0’ (default) 

Measured output RF power (by spectrum 

analyzer, unrecorded σLN and G setting) 

~-12 dBm to ~-9 dBm (similar reading for 

250 kHz and 500 kHz bandwidth) 

 

RX Side (LimeSDR) 

Center frequency 402 MHz 

Sampling rate 1.28M samples/sec 

Channel ‘A’ (=RX1) 

Oversample Default 

Measured input RF power (after 40 dB 

total attenuators, by spectrum analyzer, 

unrecorded σLN and G setting) 

~-52 dBm to ~-49 dBm (similar reading for 

250 kHz and 500 kHz bandwidth) 

NCO frequency ‘0’ (default) 

Calibration BW 5x106 (default) 

LNA path ‘H’ (use RX1_H as RF input port) 

Analog filter BW ‘0’ (default) 

Digital filter BW 1.28 MHz (=sampling rate) 

Gain 60 dB 

Allow TCXO DAC control 
No (use phase detector with external 

reference clock) 

Wav File Sink 1.28M samples/sec, 16 bits/sample 
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Figure 109.  USRP B200mini SDR TX side GNU Radio program for laboratory setups 2-4 
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Figure 110.  LimeSDR RX side GNU Radio program for laboratory setups 2-4 

     

Figure 111.  RF spectrum measurements of SDR TX output (left) and SDR RX input (right) for 

laboratory setup 1 (different σLN, G and gain settings as in Table 27) 

      

Figure 112.  RF spectrum measurements of SDR TX output (left) and SDR RX input (right) for 

laboratory setups 2-4 (same σLN, G and gain settings as in Table 28) 
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Figure 113.  RF spectrum measurements of signal generators’s RF outputs: (left) Agilent N9310A, set 

to 9.999998 MHz, 13 dBm; (right) R&S SMBV100V, set to 10.000000 MHz, 13 dBm 

9.2 Examination of Received Baseband Signal Recorded at RX Side 

To evaluate the impairments in the signal caused by the real propagation medium (in this case, the 

electronics inside SDRs, cables, attenuators) – beyond what have been modeled in MATLAB program for 

artificial generation of received baseband signal –, we need to compare the actually recorded received 

signal 𝑦(𝑡) with that of the originally generated received signal 𝑥(𝑡). As mentioned above, the MATLAB-

generated signal is normalized to a maximum value before it is transmitted so the 𝑥(𝑡) we are concerned 

with from now on is this normalized signal. Also, since here we are not concerned with the attenuation 

caused by the real medium, the recorded signal 𝑦(𝑡) is also a re-scaled version such that its total power is 

equal to that of 𝑥(𝑡).  

In the real medium, the transmitted and received RF signals have carrier frequencies, carrier phase 

errors, and possibly other noises and distortion effects. However, since we only have the pre-RF-

transmitted 𝑥(𝑡) and the recorded down-converted signal 𝑦(𝑡), we can express them in the following: 

𝑥(𝑡) = 𝐴1(𝑡)𝑒
𝑗(𝜔1𝑡+𝜙1(𝑡)) = 𝐴1(𝑡)  (1) 

𝑦(𝑡) = 𝑘𝐴1(𝑡) = 𝐴2(𝑡)𝑒
𝑗(𝜔2𝑡+𝜙2(𝑡)) = 𝐴2(𝑡)𝑒

𝑗(∆𝜔𝑡+∆𝜙(𝑡)) (2) 

𝐴2(𝑡) = 𝑘𝐴1(𝑡) + 𝐸(𝑡) (3). 

Generally, 𝑦(𝑡) contains amplitude noise 𝐸(𝑡) but this should be negligible since the actual RF input 

power at the SDR RX was set to be much higher than SDR RX noise floor. Thus, 𝐴2(𝑡) ≈ 𝑘𝐴1(𝑡). Then, 

the baseband signal 𝑦(𝑡) contains the effects of frequency error ∆𝜔 and phase error ∆𝜙(𝑡). The TXLO and 

RXLO output frequencies will have long-term and short-term instabilities but for ∆𝜔, we assume long-

term stability (throughout the recording duration of ~20 s) so that ∆𝜔 can be considered only as the fixed 

frequency offset between TXLO and RXLO. Time-varying ∆𝜙(𝑡) includes the short-term frequency offset 

changes, as well as the initial carrier phase offset ∆𝜙0 and the random phase errors (so-called, “phase 

noise” or “jitter”).  

We compare 𝑦(𝑡)  with 𝑥(𝑡)  using the following cross-correlation operations (where 𝑥∗(𝑡) is the 

complex conjugate of 𝑥(𝑡)): 
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𝑅(𝑡) ≜ 𝑦(𝑡) · 𝑥∗(𝑡) = 𝑘|𝐴1(𝑡)|
2𝑒𝑗(∆𝜔𝑡+∆𝜙(𝑡)) (4) 

𝑟(𝑡) ≜
𝑅(𝑡)

|𝐴1(𝑡)|
2 = 𝑘𝑒𝑗(∆𝜔𝑡+∆𝜙(𝑡)) (5) 

𝓇(𝛺) = 𝑟𝐹𝐹𝑇 ≜ 𝐹𝐹𝑇{𝑟(𝑡)}  (6). 

Plotting 𝑅(𝑡)  vs time will show not only the dynamic frequency and phase errors, but also the 

amplitude variation inherent in the “message” signal 𝐴1(𝑡). To see only the dynamic frequency and phase 

errors due to the real medium – removing the effect inherent amplitude changes in MATLAB-generated 

signal –, we must instead plot the cross-correlation 𝑟(𝑡)  vs time. Finally, plotting vs frequency the 

magnitude of the result of FFT operation on 𝑟(𝑡),  |𝓇(𝛺)| , will reveal several important things: 

• Center frequency shift (∆𝑓): the frequency where the maximum |𝓇(𝛺)| is located is where the 

power of the signal 𝑦(𝑡) is concentrated. This is also the center-to-center frequency offset between 

TXLO and RXLO. 

• Distribution of frequency errors around the center frequency shift (𝑊1,𝑊2): the power will “leak” 

around the center frequency shift when there are short-term frequency instabilities in TXLO and 

RXLO and phase noise. On the other hand, if these errors are very small, we will see in the 

frequency plot a very narrow “impulse” located at the center frequency shift. 

• Signal-to-phase-noise ratio estimate (𝐴𝑑𝐵 ): This is the |𝓇(Ω)| level at center frequency shift  

relative to the level away from the center frequency shift. Away from the center frequency shift, 

the |𝓇(𝛺)| plot is generally flat across wide frequencies, and this part is attributed to phase noise 

due to random phase errors. The |𝓇(𝛺)| level away from the center frequency shift, relative to the 

level at the center frequency shift, indicates an estimate of the phase noise power relative to the 

frequency-shifted non-phase-noise signal power. Note that the total power of 𝑦(𝑡) is (made) equal 

to that of 𝑥(𝑡), but in the former, phase noise takes some of this power and distributes it across 

wide frequencies away from the center frequency shift. Of course, the dynamic frequency errors 

around the center frequency shift also takes another part of this power. 

In the succeeding figures, for the four laboratory setups, we present and compare the cross-correlation 

time plots and |𝓇(𝛺)| plots after being normalized to their respective maximum value. As reference for 

comparison, we also show the corresponding plots for the reference hypothetical case, that is, wherein 𝑦(𝑡) 

in equation (4) is replaced with 𝑥(𝑡). Note that the minimum level of the normalized |𝓇(𝛺)| plot for the 

reference case is only a pseudo-phase noise level (not  a real phase noise since by default, 𝑥(𝑡) does not 

have phase noise). It only indicates the minimum magnitude limit of the FFT operation. Plots for the 

reference case are shown first – in Figures 114-115. Plots for the laboratory setups are shown next in 

Figures 116-123. Table 31 provides a summary of the observations.  

The actual observations as listed in Table 31 fairly match the expectations laid down in Section 9.1 

(as summarized in Table 28), although there are slight deviations. As for carrier phase offset, the values 

for Lab Setups 3 and 4 are expected to be random for each trial (can be large or small), and the large results 
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for both are consistent with this. For both Lab Setups 1 and 2, the carrier phase offset is expected to be 

low, with that of the latter expected to be greater than that of the former. The observed carrier phase offsets 

for Lab Setups 1 and 2 agree with this expectation, although the actual result for Lab Setup 2 is rather not 

small. As for observed frequency offsets, the trend from Lab Setup 1 to Lab Setup 4 is toward increasing, 

and notably, frequency offset for Lab Setup 4 is much greater that those of other three – these also match 

with the expectations. Again, note that the frequency errors in Lab Setup 1 is actually large but cannot be 

noticed because of common circuitries and clocks in TX and RX sides. 

As for distribution of frequency errors around the center frequency shift, all laboratory setups have 

wider distributions than the reference case, which is expected. It is remarkable, though, that the frequency 

error distributions of Lab Setups 2 and 3 are much greater than those of Lab Setups 1 and 4. Also, Lab 

Setups 2 and 3 produced many frequency shifts during the 20-second transmission and recording duration, 

unlike the single frequency shift in Lab Setups 1 and 4. These can be attributed to the fact that Lab Setups 

2 and 3 both involved an external reference clock for SDR TX, but the other two setups only involved the 

internal reference clock for SDR TX. Thus, there is a basis to believe that for SDR TX (USRP B200mini), 

using an external reference clock would provide a more accurate but less stable (i.e., varies with time)  

frequency output. On the other hand, using internal reference clock would provide a less accurate but more 

stable frequency output. 

The same might be true for SDR RX (LimeSDR), which can be inferred (but not certainly) by 

comparing between results for Lab Setups 2 and 3. Lab Setup 3 involved two independent external 

reference clocks, whereas Lab Setup 2 involved only one common external reference clock. This explains, 

as expected, why there is greater frequency offset in Lab Setup 3. Moreover, as inferred in the preceding 

paragraph, this also explains the wider frequency error distribution in Lab Setup 3 than in Lab Setup 2. 

As for the relative phase noise increase, Lab Setup 1 has the highest signal-to-phase-noise ratio 

(SPNR) of 30 dB, followed by Lab Setups 2 and 3 with roughly equal SPNR of 21/22 dB, and lastly,  Lab 

Setup 4 with the lowest SPNR of 11 dB. Note that these SPNR values are only estimates and should not be 

treated as absolute or direct phase noise measurements. These should only be considered as rough 

indications of the phase noise added introduced to the original signal. The relative increase in phase noise 

(which is not present in the MATLAB-generated signal) should be accounted when evaluating the result 

of E-SSA performance in laboratory setups compared to simulation setup, in which phase noise was not 

included. Note that in E-SSA simulation results, performance of E-SSA has been found to be sensitive to 

to 𝐸𝑏/𝑁0 or equivalently to noise level (or SNR). Although phase noise might be different in nature to the 

AWGN modeled in simulation, phase noise due to random phase errors still raises up the total noise level. 

Therefore, phase noise, along with sampling timing errors, frequency errors and phase offset, will 

increase the difficulty of detecting and/or demodulating/decoding the packets. These additional signal 

impairments will expose the weakness or limitation of the formulated signal processing algorithm. While 

the channel estimation algorithm can compensate for constant frequency offset and phase offset errors, it 
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cannot mitigate the distortions in the signal caused by dynamic frequency errors and phase noise. Lab Setup 

4 has smaller dynamic frequency errors than Lab Setups 2 and 3 but it has higher phase noise. 

Table 31. Observed Additional Signal Impairments in Recorded Received 

Baseband Signal 

Case 𝐴𝑑𝐵 
Frequency Offset 

∆𝑓 

(Hz) 

𝑊1 

(Hz) 
𝑊2 

(Hz) 

Carrier Phase 

Offset 

(radians) 

Sampling 

Timing Errors 

observed in 

chips-level?* 

Reference 33 0 0.1 2 ≈ 0 No (default) 

Lab Setup 1 (1 

SDR for 

TX/RX, 1 

common int. 

ref.) 

30 0 0.1 13 -0.21 No 

Lab Setup 2 (2 

SDRs, 1 

common ext. 

ref.) 

21 
≈ 0 (average); -19; 

-7; -2; 2; 5; 12; 20 
16 280 -0.90  No 

Lab Setup 3 (2 

SDRs, 2 ext. 

refs.) 

22 
≈ 46 (main); -340; 

-140; -20; 10; 38; 

51; 63; 220 

8 700 
-2.35 

(instance of 

random var.) 

No 

Lab Setup 4 (2 

SDRs, 1 int. 

ref. on TX, 1 

ext. ref. on 

RX) 

11 ≈ -854 4 13 
2.20 (instance 

of random 

var.) 

Yes (0, +1, 

+2, +3, +4, +5 

chips) 

*This was evaluated by comparing the observed chip delays of detected packets (applying the packet 

detection algorithm) with the correct chip delays (set within the MATLAB program that generated the 

received baseband signal). Note that timing errors rawly can occur in the samples-level but tedious to 

check. Examined only the data for first iteration of signal processing. 
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Figure 114.  Plot of I and Q components of R(t) vs time for reference case 

 

Figure 115.  Normalized magnitude plot of 𝓻(𝜴) for reference case 
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Figure 116.  Plot of I and Q components of R(t) vs time for Lab Setup 1 

 

Figure 117.  Normalized magnitude plot of 𝓻(𝜴) for Lab Setup 1 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 186 

 

Figure 118.  Plot of I and Q components of R(t) vs time for Lab Setup 2 

 

 

Figure 119.  Normalized magnitude plot of 𝓻(𝜴) for Lab Setup 2 
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Figure 120.  Plot of I and Q components of R(t) and r(t) vs time for Lab Setup 3 

 

 

Figure 121.  Normalized magnitude plot of 𝓻(𝜴) for Lab Setup 3 
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Figure 122.  Plot of I and Q components of R(t) and r(t) vs time for Lab Setup 4 

 

 

Figure 123.  Normalized magnitude plot of 𝓻(𝜴) for Lab Setup 4 
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9.3 Experimental Performance Results For E-SSA Protocol 

Tables 32 and 33 provide the cumulative PLR vs iteration number for G=0.1, 𝐸𝑏/𝑁0 = 14dB, 𝜎𝐿𝑁 =

6dB. Table 32 gives the data for the first attempt in which it was not noticed that there was an error in the 

program so that the threshold level in the 4th iteration was fixed (hardcoded) to 1.3x10-4. Table 33 gives 

the data corresponding to the corrected program. Comparing the data for the mistaken program (Table 32) 

and corrected program (Table 33) let us notice that if we use the same packet detection threshold settings 

as in the simulation, cumulative PLR “stagnates” (or remains roughly the same) at a high value starting 

from 2nd or 3rd iteration. This is because the remaining packets could not be effectively detected as was in 

the simulation case. In Table 32, noting that cumulative PLR significantly dropped in the 4th iteration (in 

which threshold level was fixed to a very low value), gave us an idea that threshold levels must be lowered 

to improve the detection rate and thus lower the cumulative PLR. 

Table 32. Experimental Cumulative PLR for G=0.1, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝐝𝐁, 𝝈𝑳𝑵 =

𝟔𝐝𝐁 (with mistake in iteration 4) 

Setup 
Cumulative PLR 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Simulation 0.6883 0.1491 0.0407 0.0352 0.0352 

Lab Setup 1 0.6938 0.1572 0.0271 0.0244 - 

Lab Setup 2 0.8482 0.8347 0.8347 - (too long) - 

Lab Setup 3 0.8482 0.8455 0.8455 0.2114 0.2114 

Lab Setup 4 0.8347 0.5501 0.4959 0.2304 0.2304 

Simulation: threshold ratios are r1=r2=r3=r4=0.15, r5=0.00  

Lab Setups: threshold ratios are r1=r2=r3=0.15, threshold_iteration4=1.3x10-4 (hardcoded, mistake), r5=0.00 

Table 33. Experimental Cumulative PLR for G=0.1, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝐝𝐁, 𝝈𝑳𝑵 =

𝟔𝐝𝐁 (corrected iteration 4) 

Setup 
Cumulative PLR 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Simulation 0.6883 0.1491 0.0407 0.0352 0.0352 

Lab Setup 1 0.6938 0.1572 0.0271 0.0190 0.0163 

Lab Setup 2 0.8482 0.8347 0.8347 0.8347 0.7534 

Lab Setup 3 0.8482 0.8455 0.8455 0.8455 0.7669 

Lab Setup 4 0.8347 0.5501 0.4959 0.4905 0.3875 

Simulation: threshold ratios are r1=r2=r3=r4=0.15, r5=0.00   

Lab Setups: threshold ratios are r1= r2=r3=r4=0.15 (corrected), r5=0.00 

 

Similarly, Tables 34 and 35 provide the cumulative PLR vs iteration for G=0.1, 𝐸𝑏/𝑁0 = 26dB, 

𝜎𝐿𝑁 = 6dB. However, it seems that no matter what 𝐸𝑏/𝑁0 was set in the Matlab program generating the 

received baseband signal, the phase noise is added on top of the phase noise-less signal. In other words, 
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even if the MATLAB-generated program has zero AWGN, since phase noise is always added on top of the 

generated signal, a very high  𝐸𝑏/𝑁0 value will not matter much in the recorded received baseband signal 

(i.e., in this case, phase noise dominates instead of AWGN). Thus, if we want to control 𝐸𝑏/𝑁0 after phase 

noise, we would have to generate noise-less x(t), allow it to propagate in RF and then add AWGN to 

whatever signal is received at SDR RX based on desired 𝐸𝑏/𝑁0. 

Table 36 provides the cumulative PLR vs iteration for G=0.1, 𝐸𝑏/𝑁0 = 14dB, 𝜎𝐿𝑁 = 6dB after trying 

out two arrangements for lowering the packet detection thresholds. Note that detection threshold value in 

each iteration is normally computed as  threshold_iterationi = low + (high-low)*ratio. Data under Lab 

Setup 4A correspond to the arrangement in which all ratios r1=r2=r3=r4=r5 are set to zero, while data 

under Lab Setup 4B correspond to the arrangement in which the formula for threshold computation is 

changed from from threshold_iterationi = low + (high-low)*ratio to threshold_iterationi = 0.5*low + (high-

low)*ratio. Doing this further lowered the detection threshold, thus allowing more packets (even lower 

powered) to be detected and decoded at earlier iterations, at the expense of higher false alarm rate. This 

resulted in lower cumulative PLR but took significantly longer processing time. 

Table 34. Experimental Cumulative PLR for G=0.1, 𝑬𝒃/𝑵𝟎 = 𝟐𝟔𝐝𝐁, 𝝈𝑳𝑵 =

𝟔𝐝𝐁 (with mistake in iteration 4) 

Setup 
Cumulative PLR 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Simulation - - - - - 

Lab Setup 1 0.7154 0.2276 0.0108 - - 

Lab Setup 2 0.8103 0.7832 0.7832 0.4878 0.4444 

Lab Setup 3 0.8753 0.8699 0.8672 0.3713 - 

Lab Setup 4 0.8455 0.5393 0.4959 0.1924 - 

Simulation: no data for Eb/No=26 dB 

Lab Setups: threshold ratios are r1=r2=r3=0.15, threshold_iteration4=1.3x10-4 (hardcoded, mistake), r5=0.00 

Table 35. Experimental Cumulative PLR for G=0.1, 𝑬𝒃/𝑵𝟎 = 𝟐𝟔𝐝𝐁, 𝝈𝑳𝑵 =

𝟔𝐝𝐁 (corrected iteration 4) 

Setup 
Cumulative PLR 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Simulation - - - - - 

Lab Setup 1 0.7154 0.2276 0.0108 0 0 

Lab Setup 2 0.8103 0.7832 0.7832 0.7832 0.6504 

Lab Setup 3 0.8753 0.8699 0.8672 0.8645 0.7832 

Lab Setup 4 0.8455 0.5393 0.4959 0.4932 0.4011 

Simulation: no data for Eb/No=26 dB 

Lab Setups: threshold ratios are r1= r2=r3=r4=0.15 (corrected), r5=0.00 
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Table 36. Experimental Cumulative PLR for G=0.1, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝐝𝐁, 𝝈𝑳𝑵 =

𝟔𝐝𝐁 (thresholds lowered to improve packet detection rate) 

Setup 
Cumulative PLR 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Simulation 0.6883 0.1491 0.0407 0.0352 0.0352 

Lab Setup 4A 0.7425 0.4309 0.3875 0.3740 0.3713 

Lab Setup 4B 0.7425 0.4309 0.1978 0.1491 0.0650 

Simulation: threshold ratios are r1=r2=r3=r4=0.15, r5=0.00   

Lab Setups 4A: r1= r2=r3=r4=r5=0.00 (ratios lowered to improve detection rate) 

Lab Setups 4B: same as Lab Setup 4A but in iterations 3-5, changed threshold computation formula from 

threshold_iterationi = low + (high-low)*ratio to threshold_iterationi = 0.5*low + (high-low)*ratio 

 

9.4 Summary, Conclusion and Recommendations on APRS-DP/S&F Payload 
Development 

This work developed a CubeSat-onboard amateur radio payload that supports both APRS Digipeater 

and S&F communication for remote data collection. The aim was to leverage on CubeSat platform’s simple 

architecture, short development time and low cost for these applications, while dealing with tight 

constraints on space, power, and link budget. The APRS-DP/S&F payload was designed to operate at the 

VHF amateur frequency (145.825 MHz) to make it easily available for use by the global amateur radio 

community. The reason for choosing an amateur radio payload implementation is practicality: the 

opportunity to develop a payload that would be launched and operated in the context of the hands-on 

BIRDS-2 project and would be easily accessible for use by amateur radio users. Nonetheless, the findings 

will find relevance to nanosatellite communication design issues regardless of frequency or type of service 

– beyond amateur radio.  

This thesis tackled the design, development, and testing of the APRS-DP/S&F payload onboard the 

BIRDS-2 CubeSat constellation, as well as the findings from the investigation on uplink communication 

failure. The developed payload can be accommodated on a 1U CubeSat platform for limited operation time 

or on a 3U CubeSat platform for full-time operation. It consists of very low-cost COTS components 

selected for having small form factor, low power consumption, ease of interfacing and little programming 

work required for the development. Overall, the payload occupies about ¼ of the space on the mission 

board (which also hosts other subsystems and mission payloads), except for the VHF transceiver placed on 

a separate board and the dipole antenna mounted on an external board. The payload itself consumes only 

about 0.29 W while in receive or standby mode and 1.4 W during active RF signal transmission. It 

underwent various functionality, communication, and space environment verification tests during 

development. 

After the satellites’ deployment into 400km 51° inclination orbit, it was confirmed that receiving the 

beacon messages regularly transmitted by the payload was working, but full two-way communication 
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failed due to uplink communication problem. Our post-development investigation through ground-based 

communication tests found that the uplink failure was caused by two design problems that were overlooked 

during development, namely, the poor antenna performance and increased payload receiver noise floor due 

to satellite-radiated EMI coupled to the antenna. The latter problem increased the required receiver input 

RF power by over 50 dB in the original BIRDS-2 design, thus degrading the receiver sensitivity by a 

tremendous amount.  

In efforts to improve the design and performance of the payload for implementation in the next 

iteration of BIRDS projects (BIRDS-2S Project at UPD and BIRDS-4 Project at Kyutech), we (1) changed 

the antenna design from monopole to dipole, and (2) explored on different shielding methods and 

configurations. Reflection coefficient (S11) measurements and radiation pattern tests on the dipole 

antennas of BIRDS-2S and BIRDS-4 satellites EM models demonstrated significant improvements in 

terms of tuning, radiation pattern omnidirectionality and gain. To try to mitigate the effects of satellite-

radiated EMI on the payload receiver noise floor, we experimented three shielding methods: (a) copper 

plate shielding (on BIRDS-2S), (b) aluminum plate shielding (on BIRDS-4) and (c) commercially available 

non-metallic EMI absorber/shielding sheet. The idea was to wrap the suspected EMI source, that is, 

OBC/EPS board, with the shielding material, to reduce the amount of EMI captured by the antenna and 

prevent the receiver noise level from increasing. Unfortunately, all the three methods to date failed to 

resolve the EMI problem.  

The experimental results demonstrated that receiver noise floor increases dramatically (from -135 

dBm to about -96 dBm~-93 dBm) whenever a dipole antenna is connected to the receiver RF port. This 

observation persisted without shielding or with any of the three shielding methods. On the other hand, the 

BIRDS-4 team performed long-range communication test on the payload twice and reported a receiver 

sensitivity of about -95 dBm on both occasions. However, this result does not agree with the receiver noise 

floor measurements inside the laboratory and therefore must be investigated further in the future. The long-

range test and receiver noise floor measurement results cannot be correct at the same time. Moreover, 

although a very good receiver sensitivity was consistently obtained in cabled setup, it must be verified 

again in wireless setup in isolated condition (i.e., without other satellite parts).  

Our experience and investigation emphasize four important recommendations. Firstly, since the 

antenna characteristics and EMI/EMC aspects are intricately related to one another in a 1U CubeSat with 

compactly positioned parts, these aspects and altogether with the satellite’s structural and EPS designs, 

must be carefully examined during the preliminary design phase of satellite development. Secondly, the 

optimum cabled condition receiver sensitivity and the antenna (with pre-existing or mock-up satellite 

structure and boards) performance must each be tested in early phase of development. In terms of antenna 

design, if the space constraints allow, dipole antenna is recommended over monopole antenna as the 

former’s characteristics are less dependent on grounding. Similarly, subsystem boards, such as EPS board, 

must be checked if they might contribute significant EMI levels, whether conducted or radiated form. 

Thirdly, antenna performance, EMI and receiver noise measurement tests must be performed with the fully 
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integrated satellite as soon as possible. Mitigation approaches such as adding EMI absorbers or shielding 

may be experimented upon diagnosis of previously unconsidered problems. Lastly, wireless 

communication tests inside a full-anechoic chamber and in outdoor very long-distance condition must be 

done as final confirmation of end-to-end performance and the link budget analysis. For further work, we 

also recommend to conduct a more comprehensive and systematic study that will examine the EMI/EMC 

related design issues on CubeSat platforms and provide guidelines to proactively address or mitigate issues 

that usually arise in very compact CubeSat platforms. 

9.5 Summary, Conclusion and Recommendations on E-SSA Protocol-based 
Nanosatellite S&F Communication System for IoT/M2M Applications 

This thesis investigated using E-SSA protocol for nanosatellite IoT/M2M uplink communication and 

analyzed the packet loss rate (PLR), throughput (THR) and energy efficiency (EE) considering different 

multiple access (MAC) load, 𝐸𝑏/𝑁0 and received power imbalance conditions expected in LEO. The E-

SSA protocol had been previously proposed and investigated in prior works in literature considering GEO 

satellite. Our research focused on investigating suitability of E-SSA protocol for the said application 

considering a nanosatellite platform with hardware, processing capability and energy constraints, as well 

as ground sensor terminals (GSTs) with low-cost, simple hardware and limited energy budget. Our study 

assumes a nanosatellite constellation in LEO so that it must face several physical communication layer 

constraints and characteristics of a LEO communication channel (Doppler shift, rate, phase offset, and 

received amplitudes variation) involving a large population of GSTs. Although it is true that E-SSA 

requires a tremendous signal processing power to be able to decode a large number of overlapping packets, 

we think of a practical work-around in which nanosatellites only record received baseband signals and on-

ground post-processing is performed on downloaded signal samples.  

We modeled the communication scenario in a MATLAB simulation program, considering physical 

communication layer details in the baseband domain. To reflect the different Doppler frequency shifts, 

rates, and amplitudes among received packets in realistic condition, channel parameters of individual 

terminals were randomly generated based on terminals’ spatial distribution. The received amplitude was 

modeled as the product of a random variable (RV) due to terminal spatial distribution and a lognormally 

distributed RV accounting for the joint effect of land mobile service (LMS) channel fading/shadowing 

statistics, antenna radiation patterns and with/without power control. We then described details of an 

iterative baseband signal processing algorithm having random-access resolution and packet decoding 

capabilities (E-SSA protocol-based). The formulated E-SSA protocol-based algorithm involves packet 

detection, channel estimations, demodulation/decoding and successive interference cancellation. The 

algorithm was optimized to obtain a good balance between high packet detection rate and low false alarm 

rate, very accurate channel estimation, and overall, obtain low packet loss rates even with ultra-low data 

rate transmissions from GSTs (<333 bps). Rate ~1/3 Turbo code was employed to completely recover 

packets even with several bit errors due to imperfect channel estimation, multi-user interference, and noise.  
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Simulation results across different MAC load G and received amplitude variation 𝜎𝐿𝑁  conditions 

showed that at Eb/N0=14 dB, the channel estimation algorithm can estimate amplitude with mean absolute 

(mabs) error of 0.8~1.2 dB in 1st iteration, 1.0~9.0 dB in 3rd iteration, and 1.0~13.3 dB in 5th iteration. 

Phase estimation mabs error of 0.03~0.60 rad., frequency shift estimation mabs error of 0.09~0.60 Hz, and 

frequency rate estimation mabs error of 0.10~0.64 Hz/s, were attained. However, because these estimation 

error ranges would still result in coherence times shorter than the packet duration, these estimates alone 

would not be enough for successful packet decoding. Thus, when decoding each packet, other frequency 

shift  and rate candidates around the fine estimates were tried with 0.2 Hz and 0.2 Hz/s 

increments/decrements within limited trial ranges. Doing this would give 0.2 Hz and 0.2 Hz/s minimum 

average final estimation errors. With the rate ~1/3 Turbo code, these limited accuracies could still allow 

complete packet recovery despite erroneous symbols caused by combined effects of multiuser interference 

(MUI), imperfect interference cancellation residue power, noise, and phase reversals, as PLR results 

showed.  

Simulation results showed that with the actual baseband signal processing algorithm, THR, PLR and 

EE metrics are sensitive to MAC load G, received power variation 𝜎𝐿𝑁, and 𝐸𝑏/𝑁0. With loose power 

control (𝜎𝐿𝑁 = 3 dB), at Eb/N0=14 dB, the system can be operated up to a maximum load of 1.3 bps/Hz, 

achieving a maximum THR of 1.25 bps/Hz with PLR<0.03. Without power control (higher 𝜎𝐿𝑁 = 6dB,

9dB), at Eb/N0=14 dB, maximum load is also 1.3 bps/Hz, but achievable THR is lower than ~1 bps/Hz and 

PLR values can be as high as ~0.23. Moreover, for all three 𝜎𝐿𝑁  values, PLR, THR and 𝜂𝐸𝐸  are more 

sensitive to MAC load such that even for 𝐺 < 1.3 bps/Hz, we see increasing PLR and decreasing 𝜂𝐸𝐸 with 

increasing 𝐺  (compared with relatively constant plots in ideal case with perfect packet detection and 

channel estimation). Considering the said limits for 𝐺, the maximum THR for 𝜎𝐿𝑁 = 6 dB and 9 dB are 

about 1.1 bps/Hz and 0.9 bps/Hz, respectively. However, if we consider the target PLR<5%, it is impossible 

to meet this with any G when 𝜎𝐿𝑁 = 9 dB. For 𝜎𝐿𝑁 = 6 dB, it is possible to meet PLR requirement when 

G<0.5. For 𝜎𝐿𝑁 = 3 dB, it is possible to meet PLR requirement when G<1.4. 

The worse PLR results are due to imperfect packet detection and channel estimation algorithms. 

Firstly, cumulative misdetection rates (CMDR), even after 5 or 6 iterations, are quite high. Had we only 

observed the data after five iterations, we might be tempted to say that majority of packet losses are caused 

by packets being not yet detected and the remaining smaller portion are due to demodulation/decoding 

error. However, since we also examined the data after six iterations, we realized that while CMDR can be 

reduced by proceeding to 6th iteration, those lower power newly detected packets can no longer be decoded 

effectively. Therefore, we can say that overall, packet losses can be attributed – in mutually significant 

proportions – to both misdetections and demodulation/decoding errors. Both are caused by the combined 

effects of MUI, channel estimation errors, imperfect interference cancellation residue power, and noise. 

Also, imperfect channel estimation causes accumulated residue interference power which can hamper 

detection and/or demodulation/decoding of lower power packets in later iterations. The PLR and THR can 
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be improved by operating with higher 𝐸𝑏/𝑁0 (i.e., higher transmit power) at the expense of lower energy 

efficiency.  

Finally, we experimentally validated the simulation results through four laboratory setups representing 

various extents of additional signal impairments not accounted for in simulation model, including 

frequency errors, phase noise and sampling timing errors. These impairments arise in practical scenarios 

wherein GSTs employ low-cost oscillators but with output frequency uncertainties (limited accuracies), 

instability (dynamically varies, with time) and random phase errors (phase noise). Thus, the goal is not 

only to validate the simulation results but also to confirm whether the formulated algorithm for E-SSA 

protocol can still perform well even with additional signal impairments caused by employing low-cost 

oscillators on the GSTs. Using software-defined radio (SDR) modules, the MATLAB-generated received 

baseband signal (emulating numerous GST transmissions, each experiencing different Doppler shift, rate, 

amplitude and carrier phase offset) was allowed to go through data conversion circuits (DACs/ADCs), 

analog filters and RF frontends (TX/RX PLL and mixers). The RF output signal on the SDR TX side 

propagated to the SDR RX side through RF cable and attenuators. Then, the recorded received baseband 

signal at SDR RX side was post-processed by the same MATLAB simulation program.  

Among the four laboratory setups, Lab Setup 4 represents most closely the realistic scenario because 

it uses only the reference oscillator built-in the SDR TX. Experimental results for cumulative PLR (CPLR) 

in Lab Setup 4 (with G=0.1, 𝐸𝑏/𝑁0 = 14dB, 𝜎𝐿𝑁 = 6dB) were bad, reaching only 0.3875 after five 

iterations, compared to simulation result of 0.0352. It was noticed that CPLR stagnates at a still high value 

after 2nd or 3rd iteration due to high packet misdetection rate, and that only high-power packets could be 

detected and decoded (in the 1st and 2nd iterations). Packet detection rate was improved by lowering the 

detection threshold values, thus lowering the experimental CPLR result to 0.0650, although still slightly 

worse than simulation result. However, false alarm rate increased, thus leading to significantly longer 

processing time. With the given G=0.1, 𝐸𝑏/𝑁0 = 14dB, 𝜎𝐿𝑁 = 6dB conditions considered so far, we can 

conclude that the formulated algorithm for E-SSA protocol can still work even with inaccurate oscillator 

(±2 ppm), but this requires lowering the detection thresholds and takes significantly longer processing time.  

For future work, other G and 𝜎𝐿𝑁 conditions will be considered in the laboratory setup. Also, for 

further work, it is recommended to perform the laboratory validation in a wireless condition. Other 

recommendations include: (1) further optimizing the signal processing algorithm so that it takes shorter 

time, and (2) implementing a computing hardware to execute the algorithm at faster speed (e.g. computing 

hardware  supporting parallel or distributed processing). 

9.6 Summary, Conclusion and Recommendations on S&F Nanosatellite 
Constellation Design 

S&F nanosatellite constellation design applied the findings from E-SSA protocol simulation in 

computing the coverage in terms of meeting the link budget requirement (Eb/N0>15 dB, link margin>5 dB), 

in addition to the minimum satellite elevation requirement (5°). We considered a communication scenario 
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with operation frequency of 402 MHz and information transmission rate of 333 bps. For a given 

constellation size, there are optimum values for satellite altitude and GST transmit power that can provide 

the highest percent coverage time (PCT). The optimum values for satellite altitude and GST transmit power 

were determined by first considering a small constellation (3x3 Hybrid constellation). The optimum values 

were found to be altitude=700 km and PTX=17 dBm, which were selected for upscaling the constellation. 

Compared to Walker Delta constellations, Hybrid constellations provide more even coverage across 

all latitudes. For the high-inclination Walker Delta constellations, near polar regions have higher PCT than 

near equatorial regions. To achieve the target PCT of more than 95% across all latitudes, a 9x10 Hybrid 

constellation or a 10x10 Walker Delta constellation would be required (although for the latter, PCT is 

slightly below 95% at ±10° latitudes). Both the 9x10 Hybrid constellation and the 10x10 Walker Delta 

constellation meet the 100% minimum percent area coverage (PAC) requirement. 

To achieve the minimum PCT requirement, a large constellation is required, thus it becomes 

unavoidable that multiple satellites will be visible to GSTs at any time. We recommend investigating the 

improvement it brings to the PLR since the computation of PLR in the simulation assumes the GSTs always 

communicate only to a single satellite. 
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Appendix 0: BIRDS-2 S&F Packet Format  
 

Sensor Data Packet (Uplink) 
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Acknowledgment Packet (Downlink) 
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TLE Packet (Downlink) 
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Appendix 1: Derivation of terminal sdf 

By considering a differential area d𝑎 containing d𝑛𝑘 terminals, the following relations (14) to (23) 

can be derived. 𝑁𝑘  expresses the number of active terminals within a region of ∆𝛼  and ∆𝜀 , 𝜌𝐴  is the 

terminal area density which is a parameter that can be expressed in terms of 𝐾 and constant C. Equations 

(22) and (23) are the final working equations to be used for generating random terminal positions. 

 

d𝑛𝑘 = 𝜌𝐴d𝑎 = 𝜌𝐴RE
2 sin𝛽d𝛽d𝛼  (14) 

𝛿𝛽(𝜀) ≜
d𝛽

d𝜀
=

RE

RE+ℎ
·

sin𝜀

√1−(
RE

RE+ℎ
cos𝜀)

2
− 1  (15) 

d𝛽 = 𝛿𝛽(𝜀)d𝜀 (16) 

𝑁𝑘 = ∫ ∫ 𝜌𝐴RE
2 sin [cos−1 (

RE

RE+ℎ
cos 𝜀) − 𝜀] 𝛿𝛽(𝜀)d𝛼

𝛼=𝛼2

𝛼=𝛼1
d𝜀

𝜀=𝜀2

𝜀=𝜀min 
 (17) 

𝑁𝑘 = ∫ 𝜌𝐴RE
2∆𝛼 sin [cos−1 (

RE

RE+ℎ
cos 𝜀) − 𝜀] 𝛿𝛽(𝜀)d𝜀

𝜀=𝜀2

𝜀=𝜀min 
 (18) 

𝜌𝜀(𝜀) ≜
d𝑁𝑘

d𝜀
|
∆𝛼=2𝜋

= 2𝜋𝜌𝐴RE
2 sin [cos−1 (

RE

RE+ℎ
cos 𝜀) − 𝜀] 𝛿𝛽(𝜀) (19) 

𝜌𝐴 =
𝐾

2𝜋RE
2 ∫ sin[cos−1(

RE
RE+ℎ

cos 𝜀)−𝜀]𝛿𝛽(𝜀)d𝜀
𝜀=𝜋/2

𝜀=𝜀min 

=
𝐾

C
 (20) 

𝑝𝜀𝛼(𝜀, 𝛼) ≜
1

𝐾

d2𝑁𝑘

d𝜀d𝛼
=

RE
2

C
sin [cos−1 (

RE

RE+ℎ
cos 𝜀) − 𝜀] 𝛿𝛽(𝜀) (21) 

𝑝𝜀(𝜀) ≜
1

𝐾

d𝑁𝑘

d𝜀
|
∆𝛼=2𝜋

=
2𝜋RE

2

C
sin [cos−1 (

RE

RE+ℎ
cos 𝜀) − 𝜀] 𝛿𝛽(𝜀) (22) 

𝑝𝛼(𝛼) ≜
1

𝐾

d𝑁𝑘

d𝛼
= ∫ 𝑝𝜀𝛼(𝜀, 𝛼)d𝜀

𝜀=𝜋/2

𝜀=𝜀min
=

1

2𝜋
  (23). 
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Appendix 2: Derivation of dA/dt 

Consider a differential time interval ∆𝑡. By Law of Sines: 

∆𝑥

sin𝐷
=

𝑠

sin (𝐴 + ∆𝐴)
 

∆𝑥

sin(∆𝐴)
=

𝑠

sin (𝐴 + ∆𝐴)
 

Dividing both sides by ∆𝑡, re-arranging, and taking the limit: 

∆𝑥

∆𝑡
=

𝑠 sin(∆𝐴)

sin (𝐴 + ∆𝐴)∆𝑡
 

lim
∆𝑡→0

(
∆𝑥

∆𝑡
) = lim

∆𝑡→0
(

𝑠 sin(∆𝐴)

sin (𝐴 + ∆𝐴)∆𝑡
) =

𝑠

sin𝐴
lim
∆𝑡→0

(
≈ ∆𝐴

∆𝑡
) 

𝑑𝑥

𝑑𝑡
= 𝑣𝑠 =

𝑠

sin𝐴

𝑑𝐴

𝑑𝑡
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Appendix 3: Working Equations for Packet Detection and 
Rough Channel Estimation 

 

𝑟𝑝𝑟𝑒,𝜅 = 𝑟(𝜅: 𝜅 + 𝑁𝑝𝑟𝑒𝑁𝑐 − 1)  (38) 

𝑟𝑝𝑟𝑒,𝜅,𝑐𝑜𝑟𝑟 = 𝑟𝑝𝑟𝑒,𝜅 ∙ √𝑇𝑠/2 conj(𝑝𝑝𝑟𝑒)  (39) 

ℛ𝑝𝑟𝑒,𝜅(𝛺𝑙) = DFT(𝑟𝑝𝑟𝑒,𝜅,𝑐𝑜𝑟𝑟) = ∑ 𝑟𝑝𝑟𝑒,𝜅,𝑐𝑜𝑟𝑟(𝑛)

𝑁𝑝𝑟𝑒𝑁𝑐−1

𝑛=0

exp(−𝑗
2𝜋𝑙𝑛

𝑁𝑝𝑟𝑒𝑁𝑐
) 

𝑙 ∈ [
−𝑁𝑝𝑟𝑒𝑁𝑐

2
,
𝑁𝑝𝑟𝑒𝑁𝑐

2
− 1]  (40) 

𝑉𝜅,𝑝𝑟𝑒 =
1

𝑁𝑝𝑟𝑒𝑁𝑐
max (|ℛ𝑝𝑟𝑒,𝜅|)  (41) 

𝑉𝑘,𝑝𝑟𝑒 ⩼ 𝑉th   (42) 

𝑟𝑝𝑜𝑠,𝜅 = 𝑟(𝜅 + 𝑁𝑇𝑐 − 𝑁𝑝𝑜𝑠𝑁𝑐: 𝜅 + 𝑁𝑇𝑐 − 1) (43) 

𝑟𝑝𝑜𝑠,𝜅,𝑐𝑜𝑟𝑟 = 𝑟𝑝𝑜𝑠,𝜅 ∙ √𝑇𝑠/2 conj(𝑝𝑝𝑜𝑠)  (44) 

ℛ𝑝𝑜𝑠,𝜅(𝛺𝑙) = DFT(𝑟𝑝𝑜𝑠,𝜅,𝑐𝑜𝑟𝑟) = ∑ 𝑟𝑝𝑜𝑠,𝜅,𝑐𝑜𝑟𝑟(𝑛)

𝑁𝑝𝑜𝑠𝑁𝑐−1

𝑛=0

exp(−𝑗
2𝜋𝑙𝑛

𝑁𝑝𝑜𝑠𝑁𝑐
) 

(45) 

𝑉𝜅,𝑝𝑜𝑠 =
1

𝑁𝑝𝑜𝑠𝑁𝑐
max (|ℛ𝑝𝑜𝑠,𝜅|)  (46) 

𝑉𝑘,𝑝𝑜𝑠 ⩼ 𝑉th  (47) 

𝐴𝜅 =
1

2
(𝑉𝜅,𝑝𝑟𝑒 + 𝑉𝜅,𝑝𝑜𝑠)  (48) 

𝑉th = 𝐴𝜅,𝐿 + rth · [𝐴𝜅,𝐻 − 𝐴𝜅,𝐿] (49) 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 214 

𝜏𝑘 = 𝜅  𝐴𝑘
(1)

= 𝐴𝜅         𝑓𝑘
(1)

=
𝑅𝑐ℎ𝑖𝑝

𝑁𝑝𝑟𝑒𝑁𝑐
𝑙𝑉𝜅,𝑝𝑟𝑒

         𝑓𝑘,𝑝𝑜𝑠
(1)

=
𝑅𝑐ℎ𝑖𝑝

𝑁𝑝𝑟𝑒𝑁𝑐
𝑙𝑉𝜅,𝑝𝑜𝑠

 

𝑑𝑘
(1)

=
𝑓𝑘,𝑝𝑜𝑠

(1)
−𝑓𝑘

(1)

𝑇𝑝−0.5(𝑇𝑝𝑟𝑒+𝑇𝑝𝑜𝑠)
        𝜙𝑘

(1)
= ∠mean(𝑟𝑝𝑟𝑒,𝜅(0: 𝑆𝐹 − 1) ) (50a-f) 

Note that before doing all chip-wise offset preamble-match detection, 𝑉th  is first determined by 

performing equations (38)-(41) on a small portion of overall signal samples. 𝐴𝜅,𝐿 is an estimate of “noise 

floor” so it is computed as the average of 100 highest elements of the lowest 99% of all preliminary 𝑉𝜅,𝑝𝑟𝑒 

values. 𝐴𝜅,𝐻 is a ceiling estimate an is computed as the average of 20 highest elements of preliminary 𝑉𝜅,𝑝𝑟𝑒 

values. The value of rth is selected for a good balance between false alarm rate and misdetection rate: rth =

0.15 for E-SSA iterations 1-4 and rth = 0 for iteration 5. 
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Appendix 4: Working Equations for Fine Channel Estimation 

𝑟𝑘,𝐷𝐶(𝑛𝑐,𝐷𝐶) = 𝑟(𝜏𝑘 + 𝑁𝑝𝑟𝑒𝑁𝑐 + 𝑛𝑐,𝐷𝐶)  (51) 

𝑛𝑐,𝐷𝐶 = 0, 1, 2,… , (𝑁𝑏,𝑐𝑜𝑑𝑒𝑑𝑆𝐹 − 1)   

𝑦𝑘,𝐷𝐶
(1)

= 𝑟𝑘,𝐷𝐶 · 𝑐𝑘
(1)

· (1/𝐴𝑢) conj(𝐶𝑠)  (52) 

𝑐𝑘
(1)

(𝑛𝑐,𝐷𝐶) = exp(−𝑗 [𝜙𝑘
(1)

+ 2𝜋𝑓𝑘
(1)

(𝑁𝑝𝑟𝑒𝑁𝑐 + 𝑛𝑐,𝐷𝐶)/𝑅𝑐ℎ𝑖𝑝 +
2𝜋𝑑𝑘

(1)
((𝑁𝑝𝑟𝑒𝑁𝑐+𝑛𝑐,𝐷𝐶)/𝑅𝑐ℎ𝑖𝑝)

2

2
]) 

 (53) 

𝑦𝑘,𝐷𝐶
(1)

(𝑛𝑐,𝐷𝐶) = 𝐴𝑘 [𝑎𝑘 (⌊𝑛𝑐,𝐷𝐶⌋𝑆𝐹
)𝐶𝐷 (|𝑛𝑐,𝐷𝐶|𝑆𝐹

) + 𝑗𝑎𝐶𝐸𝛽𝐶𝐸𝐶𝐶 (|𝑛𝑐,𝐷𝐶|𝑆𝐹
)] ∙ 𝑒𝑗𝜃𝑘,𝑒𝑟𝑟(𝑛𝑐,𝐷𝐶) + 𝑀𝑈𝐼 +

𝑁𝑜𝑖𝑠𝑒     (54) 

𝑎𝐶𝐸
′ (𝑛) = average over every 𝑆𝐹 chips of [𝐼𝑚 {𝑦𝑘,𝐷𝐶

(1)
} ∙ 𝐶𝐶] = 𝐴𝑘𝑎𝐶𝐸(𝑛) 𝛽𝐶𝐸cos (𝜃𝑘,𝑒𝑟𝑟(𝑛)) +

𝐸𝑅𝑅1       (55) 

𝑎𝐶𝐸
′′ (𝑛) = average over every 𝑆𝐹 chips of [𝑅𝑒 {𝑦𝑘,𝐷𝐶

(1)
} ∙ (−𝐶𝐶)] = 𝐴𝑘𝑎𝐶𝐸(𝑛)𝛽𝐶𝐸sin (𝜃𝑘,𝑒𝑟𝑟(𝑛)) +

𝐸𝑅𝑅2       (56) 

(cos𝜃𝑘,𝑒𝑟𝑟(𝑛))
𝑒𝑠𝑡

=
𝑎𝐶𝐸

′ (𝑛)

𝐴𝑘
1𝑎𝐶𝐸(𝑛)𝛽𝐶𝐸

   (57) 

(sin𝜃𝑘,𝑒𝑟𝑟(𝑛))
𝑒𝑠𝑡

=
𝑎𝐶𝐸

′′ (𝑛)

𝐴𝑘
1𝑎𝐶𝐸(𝑛)𝛽𝐶𝐸

   (58) 

(cos𝜃𝑘,𝑒𝑟𝑟(𝑛))
𝑒𝑠𝑡

′
= 𝑀𝐴𝐹 ((cos𝜃𝑘,𝑒𝑟𝑟(𝑛))

𝑒𝑠𝑡
)  (59) 

(sin𝜃𝑘,𝑒𝑟𝑟(𝑛))
𝑒𝑠𝑡

′
= 𝑀𝐴𝐹 ((sin𝜃𝑘,𝑒𝑟𝑟(𝑛))

𝑒𝑠𝑡
)  (60) 

(𝜓𝑘 , 𝛿𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝑚𝑒𝑎𝑛 ([(cos𝜃𝑘,𝑒𝑟𝑟(𝑛))
𝑒𝑠𝑡

′
∙ cos𝜃𝑘,𝑒𝑟𝑟,𝑐𝑎𝑛𝑑(𝑛)] + [(sin𝜃𝑘,𝑒𝑟𝑟(𝑛))

𝑒𝑠𝑡

′
∙

sin𝜃𝑘,𝑒𝑟𝑟,𝑐𝑎𝑛𝑑(𝑛)])}  

(61)  
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where 𝜃𝑘,𝑒𝑟𝑟,𝑐𝑎𝑛𝑑 (𝑛) = acos ((𝑐𝑜𝑠𝜃𝑘,𝑒𝑟𝑟(0))
𝑒𝑠𝑡

′
) + 2𝜋𝜓𝑘 · ((𝑁𝑝𝑟𝑒 + 𝑛)/𝑅𝑠) +

2𝜋𝛿𝑘·((𝑁𝑝𝑟𝑒+𝑛)/𝑅𝑠)
2

2

  

𝜙𝑘
(2)

= 𝜙𝑘
(1)

+ ∠mean(𝑟(𝜏𝑘: 𝜏𝑘 + 𝑁𝑝𝑟𝑒𝑁𝑐 − 1) ·  conj(𝑝𝑝𝑟𝑒)) − 2𝜋 (𝜓𝑘 −
𝛿𝑘𝑁𝑝𝑟𝑒𝑁𝑐

𝑅𝑐ℎ𝑖𝑝
)

𝑁𝑝𝑟𝑒𝑁𝑐

2𝑅𝑐ℎ𝑖𝑝
        

(62a) 

𝑓𝑘
(2)

= 𝑓𝑘
(1)

+ 𝜓𝑘 − 𝛿𝑘𝑁𝑝𝑟𝑒𝑁𝑐/𝑅𝑐ℎ𝑖𝑝 𝑑𝑘
(2)

= 𝑑𝑘
(1)

+ 𝛿𝑘  (62b-c) 

Equation (61) calculates the correlation between the “noisy” channel error cosine/sine estimates 

obtained in (59) and (60) and those of the candidate. A strong correlation indicates packet presence with 

corresponding channel estimation error candidate parameters. Obtained highest correlation values (one for 

each 𝑘) are each compared to a threshold value, which is set to the minimum of the said correlation values 

plus 1/3 of the difference between the maximum and minimum. 
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Appendix 5: Other E-SSA Simulation Results 

 

 

 

Figure 124. IFAR, IMDR and CMDR for different 𝑮 values (𝝈𝑳𝑵 = 𝟑𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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Figure 125. IFAR, IMDR and CMDR for different 𝑮 values (𝝈𝑳𝑵 = 𝟗𝒅𝑩,𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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Figure 126. IFAR, IMDR and CMDR for different 𝝈𝑳𝑵 values (𝑮 = 𝟎. 𝟏, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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Figure 127. IFAR, IMDR and CMDR for different 𝝈𝑳𝑵 values (𝑮 = 𝟎. 𝟒, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 



Nanosatellite S&F Communication Systems for Remote Data Collection Applications 
 

  

Adrian Salces  2020  Page 221 

 

 

 

Figure 128. IFAR, IMDR and CMDR for different 𝝈𝑳𝑵 values (𝑮 = 𝟎. 𝟕, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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Figure 129. IFAR, IMDR and CMDR for different 𝝈𝑳𝑵 values (𝑮 = 𝟏. 𝟑, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩) 
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Figure 130. IPLR and CPLR for different 𝝈𝑳𝑵 values (𝑮 = 𝟎. 𝟏, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Figure 131. IPLR and CPLR for different 𝝈𝑳𝑵 values (𝑮 = 𝟎. 𝟕, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Figure 132. IPLR and CPLR for different 𝝈𝑳𝑵 values (𝑮 = 𝟏. 𝟑, 𝑬𝒃/𝑵𝟎 = 𝟏𝟒𝒅𝑩, actual algorithm) 
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Appendix 6: Constellation Design Details 

Table 37. Constellation Configurations Simulated  

Constellation Size 

and Configuration 

Inclinations 

of Planes (°) 

RAANs of 

Planes (°) 
TA (°) 

3 x 3 Hybrid 

33 0 0, 120, 240 

67 120 0, 120, 240 

100 240 0, 120, 240 

3 x 3 Walker Delta 

98 0 Within a plane, uniformly distributed from 

0° to 360° (120° interval); relative offset 

between two consecutive planes 

98 120 

98 240 

4 x 4 Hybrid 

25 0 0, 90, 180, 270 

50 90 0, 90, 180, 270 

75 180 0, 90, 180, 270 

100 270 0, 90, 180, 270 

4 x 4 Walker Delta 

98 0 
Within a plane, uniformly distributed from 

0° to 360° (90° interval); relative offset 

between two consecutive planes 

98 90 

98 180 

98 270 

5 x 5 Hybrid 

20 0 0, 72, 144, 216, 288 

40 72 0, 72, 144, 216, 288 

60 144 0, 72, 144, 216, 288 

80 216 0, 72, 144, 216, 288 

100 288 0, 72, 144, 216, 288 

5 x 5 Walker Delta 

98 0 

Within a plane, uniformly distributed from 

0° to 360° (72° interval); relative offset 

between two consecutive planes 

98 72 

98 144 

98 216 

98 288 

6 x 6 Hybrid 

17 0 0, 60, 120, 180, 240, 300 

33 60 0, 60, 120, 180, 240, 300 

50 120 0, 60, 120, 180, 240, 300 

67 180 0, 60, 120, 180, 240, 300 

83 240 0, 60, 120, 180, 240, 300 

100 300 0, 60, 120, 180, 240, 300 

6 x 6 Walker Delta 

98 0 

Within a plane, uniformly distributed from 

0° to 360° (60° interval); relative offset 

between two consecutive planes 

98 60 

98 120 

98 180 

98 240 

98 300 
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6 x 8 Hybrid 

17 0 0, 45, 90, 135, 180, 225, 270, 315 

33 60 0, 45, 90, 135, 180, 225, 270, 315 

50 120 0, 45, 90, 135, 180, 225, 270, 315 

67 180 0, 45, 90, 135, 180, 225, 270, 315 

83 240 0, 45, 90, 135, 180, 225, 270, 315 

100 300 0, 45, 90, 135, 180, 225, 270, 315 

7 x 7 Hybrid 

14 0 0, 51, 103, 154, 206, 257, 309 

29 51 0, 51, 103, 154, 206, 257, 309 

43 103 0, 51, 103, 154, 206, 257, 309 

57 154 0, 51, 103, 154, 206, 257, 309 

71 206 0, 51, 103, 154, 206, 257, 309 

86 257 0, 51, 103, 154, 206, 257, 309 

100 309 0, 51, 103, 154, 206, 257, 309 

7 x 7 Walker Delta 

98 0 

Within a plane, uniformly distributed from 

0° to 360° (~51° interval); relative offset 

between two consecutive planes 

98 51 

98 103 

98 154 

98 206 

98 257 

98 309 

8 x 8 Hybrid 

13 0 0, 45, 90, 135, 180, 225, 270, 315 

25 45 0, 45, 90, 135, 180, 225, 270, 315 

38 90 0, 45, 90, 135, 180, 225, 270, 315 

50 135 0, 45, 90, 135, 180, 225, 270, 315 

63 180 0, 45, 90, 135, 180, 225, 270, 315 

75 225 0, 45, 90, 135, 180, 225, 270, 315 

88 270 0, 45, 90, 135, 180, 225, 270, 315 

100 315 0, 45, 90, 135, 180, 225, 270, 315 

8 x 8 Walker Delta 

98 0 

Within a plane, uniformly distributed from 

0° to 360° (45° interval); relative offset 

between two consecutive planes 

98 45 

98 90 

98 135 

98 180 

98 225 

98 270 

98 315 

8 x 10 Hybrid 

13 0 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

25 45 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

38 90 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

50 135 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

63 180 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 
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75 225 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

88 270 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

100 315 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

13 0 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

25 45 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

9 x 9 Hybrid 

11 0 0, 40, 80, 120, 160, 200, 240, 280, 320 

22 40 0, 40, 80, 120, 160, 200, 240, 280, 320 

33 80 0, 40, 80, 120, 160, 200, 240, 280, 320 

44 120 0, 40, 80, 120, 160, 200, 240, 280, 320 

56 160 0, 40, 80, 120, 160, 200, 240, 280, 320 

67 200 0, 40, 80, 120, 160, 200, 240, 280, 320 

78 240 0, 40, 80, 120, 160, 200, 240, 280, 320 

89 280 0, 40, 80, 120, 160, 200, 240, 280, 320 

100 320 0, 40, 80, 120, 160, 200, 240, 280, 320 

9 x 9 Walker Delta 

98 0 

Within a plane, uniformly distributed from 

0° to 360° (40° interval); relative offset 

between two consecutive planes 

98 40 

98 80 

98 120 

98 160 

98 200 

98 240 

98 280 

98 320 

9 x 10 Hybrid 

11 0 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

22 40 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

33 80 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

44 120 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

56 160 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

67 200 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

78 240 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

89 280 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

100 320 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

10 x 10 Hybrid 

10 0 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

20 36 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

30 72 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

40 108 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

50 144 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

60 180 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

70 216 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

80 252 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

90 288 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 
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100 324 0, 36, 72, 108, 144, 180, 216, 252, 288, 324 

10 x 10 Walker 

Delta 

10 0 

Within a plane, uniformly distributed from 

0° to 360° (36° interval); relative offset 

between two consecutive planes 

20 36 

30 72 

40 108 

50 144 

60 180 

70 216 

80 252 

90 288 

100 324 
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