Abstract—This paper presents a global-shutter imager readout architecture which allows a dynamic range of more than 132dB and a high frame rate. It is based on a stacked technology where the top tier contains the back-illuminated pixel array and the bottom one contains the sub-pixel logic array which implements the dynamic range extension by selecting the best integration time for each pixel. Experimental results of a 64 x 64 sub-pixel array confirm the effectiveness of the proposed method in extending the dynamic range by more than 10 bits. The application of the algorithm to higher array resolutions compromises its effectiveness given the increased column capacitance. As a way out, we propose a novel source-follower-based buffer which reduces the settling time of the sub-pixel without increasing its size. The performed analysis shows that the sensor can reach 1900fps and 375fps respectively at full HD and at 8K resolutions.

Index Terms—image sensor, dynamic range, low noise, high frame rate, 3D integration, stacked, global shutter

I. INTRODUCTION

Given their capability to detect bright and dark scenes in the same image, high-dynamic-range (HDR) sensors are required in several applications such as automotive, surveillance, machine vision etc. Methods based on multiple captures (MC)[1] can effectively extend the DR while maintaining a relatively small pixel pitch. The sensor captures light at different integration times, and the closest value to saturation is taken at each pixel. The main drawbacks of the conventional MC technique are the reduced frame rate, which is proportional to the number of captures per frame and the need for capture storage memories. Furthermore, the reduced frame rate emphasizes the motion artifacts given by the difference in time of the different exposures within a frame. If only 2 captures are used to extend the DR, the SNR dip at the switching point between long and short integration time reduces the image quality at mid-light and lowers the DR extension capability to a few bits. Alternatively, in-pixel processing has proven to be a very effective method to combine DR extension with a good frame rate [2][3][4][5]. However, adding many transistors near the photodiode results in a deterioration of the optical performance due to the increased dark current, different types of image lag, increased photo-response non-uniformity (PRNU), etc. Furthermore, those techniques do not provide correlated double sampling (CDS), limiting the low-light performance of the sensor. For these reasons, methods with in-pixel DR-extension processing have found limited applications in commercial products.

The aim of this paper is the design exploration for a high performance-imager providing more than 120dB DR, global shutter with high shutter efficiency and a high frame rate combined with a large array resolution. A summary of the target imager characteristics is shown in Table I.

The dynamic range extension algorithm implemented here has been presented in our previous work [6]. The algorithm is now proposed for a high-speed global-shutter imager in a dual-tier stacked technology. In order to perform accurate simulations of the stacked, high-resolution imager, we have designed a test chip emulating part of the second tier. The chip contains the sub-pixels which implement the global shutter readout and the dynamic range extension algorithm and the column-level comparator.

This paper is organized as follows. Session II describes the proposed stacked imager architecture. Session III shows the measurement results of the test chip while session IV analyzes the performance of the proposed architecture in large array implementations. A discussion about the pixel pitch and the power consumption reduction is made in session V, and final conclusions are drawn in session VI.

II. ARCHITECTURE

The proposed sensor consists of 2 silicon layers or tiers face-to-face connected through micro-bumps or micro-contacts as shown in Fig. 1. The top tier (tier 0) contains back-side-illuminated (BSI) pinned-photodiode-based pixels whereas the bottom tier (tier 1) contains the sub-pixel array and column-level readout circuitry as shown in Fig. 1. Each pixel of tier 0 is face-to-face connected to its own sub-pixel in tier 1 through a micro-bump or micro-contact. Each sub-pixel contains 2 sample-and-hold capacitors, analog buffers in the form of

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>TARGET IMAGER CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor resolution</td>
<td>> 1920 x 1080</td>
</tr>
<tr>
<td>Frame rate</td>
<td>> 240fps</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>> 120dB</td>
</tr>
<tr>
<td>Pixel type</td>
<td>BSI 4T pinned photodiode</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>< 10µm</td>
</tr>
<tr>
<td>Read noise</td>
<td>< 10e-</td>
</tr>
<tr>
<td>Shutter type</td>
<td>Global</td>
</tr>
</tbody>
</table>

A. Xhakoni and G. Gielen are with the Department of Electrical Engineering ESAT-MICAS, KU Leuven, Leuven, Belgium e-mail: (adi.xhakoni@esat.kuleuven.be).

The authors acknowledge the financial support of the SBO project 3SIS.

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org
source followers and logic gates for dynamic range extension (Fig. 2). The 2 capacitors implement a low-noise global-shutter readout. The stacked technology allows a very high shutter efficiency as the top tier shields the storage capacitors from the parasitic light [7].

Fig. 1. A dual-tier stacked image sensor. Each pixel of tier 0 is connected to its own sub-pixel at tier 1 through a micro-bump or a micro-contact. Column-level readout is used at tier 1 to perform the DR extension and the analog to digital conversion.

Fig. 2. Schematic of the BSI 4T pixel at tier 0 and the corresponding sub-pixel at tier 1. To reduce the pixel area, the digital part of the sub-pixel can be mostly made of thin transistors to spare area whereas the analog part is better implemented with thick ones to avoid storage leakage.

A. DR extension and sub-pixel operation

The functionality of the sub-pixel and its DR extension are explained as follows. Each frame time T_{frame} is divided into slots of sub-integration times:

$$T_{frame} = \sum_{i=0}^{N} \frac{T_{int}}{2^i}$$ \hspace{1cm} (1)

where N represents the number of bits of the dynamic range extension. The algorithm selects the best integration time for the pixel (i.e. the one with the closest value to saturation). The DR extension corresponds to the ratio between the longest and the shortest integration time.

The timing of the pixel and the sub-pixel is shown in Fig. 3. After the longest integration time T_{int}, a true correlated double sampling (CDS) operation is performed at low light, allowing low-noise detection. Higher light levels are subject to a digital double sampling (DDS) which removes the pixel fixed pattern noise but not the thermal noise of the reset operation. As the photon shot noise is the dominant noise at high light, the DDS operation has little impact on the SNR of the pixel. After the reset voltage storage, the transfer gates of all the pixels are activated and the pixel signals are transferred to their corresponding C_{SIG} at tier 1.

A column comparator accesses sequentially the differential signals $V_{dif}=V_{reset}-V_{signal}$ stored in the sub-pixels after the longest integration time T_{int} and compares them to a threshold voltage V_{th}. As opposed to previous DR extension methods (e.g. [4]) where a single-ended signal is compared, the differential signal comparison implemented here reduces the impact of process variations in the correct execution of the algorithm. In case V_{dif} is higher than V_{th}, a "0" is written in the sub-pixel SRAM, indicating that a shorter integration time is required since the pixel value is probably saturated. Therefore, at the end of $T_{int}/2$ a new signal will be stored at C_{SIG}. The same operation is repeated in the following shorter sub-integration time slots. If V_{dif} is lower than V_{th}, a "veto" signal is sent back to the pixel SRAM preventing the storage of a new signal after the next time slots. Each "veto" bit is also readout and stored in a memory in the periphery of the sub-pixel array and corresponds to an exponent value, implementing a floating-point DR extension technique [6].

As shown in Fig. 4, in case the DR processing time of all the pixels in the column is longer than the integration time...
itself, the pixel SNR integration time is shifted in order to allow the algorithm to take a decision before the integration time ends.

In order to avoid the storage of a saturated signal, the threshold voltage used by the comparator to detect the saturation of a pixel (Fig. 5) is adjusted as:

\[V_{th} = V_{sat} - (V_{os cmp} + V_{os subpix} + V_{overhead}) \]

where \(V_{sat} \) is the maximum output swing of the pixel, \(V_{os cmp} \) is the offset value of the sub-pixel differential output, \(V_{os subpix} \) is the comparator offset and \(V_{overhead} \) is the voltage margin which also takes into account light intensity variations within the frame. \(V_{th} \) is common for all the column comparators in the second tier of the imager. The adjustment of the threshold voltage results in a decrease of the maximum SNR as the pixel cannot reach the full well in mid-light levels. In case a pixel with 20ke− full well is used, a threshold voltage adjusted as 80% of the pixel full swing reduces the maximum SNR, limited by the photon shot noise, by 1dB.

The A/D conversion of the sub-pixel differential signal is performed during the longest integration time of the next frame as shown in Fig. 4. Despite the multiple captures, only one A/D conversion per frame is needed, allowing dynamic range extension at high frame rate. The SNR dip at the switching point between integration times is expressed as [8]:

\[SNR_{dip} \approx 10 \log \left(\frac{T_{int}(i)}{T_{int}(i+1)} \right) \]

Since \(T_{int}(i+1) = T_{int}(i)/2 \), an SNR dip as low as 3dB can be achieved by the proposed algorithm.

![Frame time divided into multiple integration times. Captures with integration time shorter than the DR processing time are shifted to allow the algorithm to take a decision before the next capture starts.](image)

Fig. 4. Frame time divided into multiple integration times. Captures with integration time shorter than the DR processing time are shifted to allow the algorithm to take a decision before the next capture starts.

B. Readout speed enhancement

The large number of pixels sharing the columns increases the column capacitance, slowing down the readout speed and reducing the efficiency of the DR extension algorithm. In order to increase the readout speed, higher column currents biasing the sub-pixel source followers (SF) are needed. Increasing the bias current, however, increases the gate-to-source voltage of the SFs, reducing their output swing. Therefore, large SF transistors are required, increasing the size of the sub-pixel. To avoid this issue, we propose here a modification of the traditional SF-based buffer circuit. Fig. 6 shows the schematic of the proposed new SF-based buffer. At the voltage storage stage, the drain of the source follower is switched to the ground potential. A channel is therefore created and the SF acts as a MOSCAP with the gate capacitance equal to the sum of \(C_{GS} \) and \(C_{GB} \) representing the gate-to-source and the gate-to-bulk capacitance respectively. The capacitance density of the newly created MOSCAP is comparable with that of the \(C_t \) MOSCAP. During the readout mode, the drain voltage is switched to VDD, restoring the SF functionality as a buffer and the gate capacitance of the SF reduces to \(C_{GB} \) only. As the charge stored at the gate does not change, the stored voltage \(V_A \) increases to \(V_B \), counterbalancing the capacitance reduction. This feature corresponds to a gain as shown below:

\[
\begin{align*}
V_A &= \frac{Q_A}{C_s + C_{GS} + C_{GB}} \\
V_B &= \frac{Q_B}{C_s + C_{GB}} \\
G &= \frac{V_B}{V_A} = \frac{C_s + C_{GS} + C_{GB}}{C_s + C_{GB}}
\end{align*}
\]

where \(Q_A \) and \(Q_B \) respectively represent the charge at the gate of the SF during the voltage storage and the voltage read. As the SF now contributes to the storage capacitance, its size can increase without increasing the sub-pixel size as the storage capacitor can be reduced accordingly. Furthermore, the addition of the gain \(G \) allows a more relaxed design in terms of noise performance of the column ADCs, potentially reducing their power consumption.

In the sampling phase, power supply noise is added to the storage node proportionally to \(C_{GS}(C_{GS}+C_S+C_{GB}) \). A separate power supply for the sub-pixel array guarantees low noise operation. Multiple supply voltages are commonly used in imagers (e.g. one for the pixel array, one for the analog readout and one for the digital blocks) and are easier to route given the multiple metal layers available in the second tier.

III. TEST CHIP MEASUREMENTS

A test chip has been designed in a standard 180nm process to verify the functionality of the DR extension algorithm. Furthermore, it is used to provide experimental data including the noise of the sub-pixel, the parasitics and the power consumption needed to analyze the performance of the proposed stacked imager in high-resolution implementations. The chip
Fig. 6. Source-follower-based gain amplifier. During voltage storage, the drain of the SF is grounded and the SF acts as a storage capacitor. At the readout phase, the drain is switched to VDD; the SF buffering capability is restored and the signal stored at the gate gets amplified.

consists of a 64 x 64, 10µm pitch, sub-pixel array with column-level comparison. A micro-photograph of the chip is shown in Fig. 7. A voltage source is applied at the same time to all the sub-pixels, emulating the source follower voltage of the pixels of the top tier. The column comparator is clocked at 20MHz. In the 64 x 64 sub-pixel array, the operation of the sub-pixel readout-comparison-write is performed within 100ns and can be further decreased by using fast on-chip clock generation (e.g. through a PLL). The measured noise of the sub-pixels is 400µV and is limited by the thermal noise due to the 50fF storage capacitors. Combined with a typical 80µV/e− conversion gain and 20ke− full well pixel, the proposed architecture can achieve 5e− noise and 72dB inherent DR. The measurements show that the differential output of the sub-pixels is affected by 20mV offset. This value can be reduced below the thermal noise value by a digital CDS readout or by storing the offset values in a memory. As the photodiodes requiring CIS technology are placed in the top tier, the second tier can be implemented in a standard deep-submicron technology without affecting the optical performance, therefore reducing the footprint of an eventual on-chip memory.

Fig. 7. Micro-photograph of the test chip and sub-pixel layout.

IV. HIGH-RESOLUTION ANALYSIS

The measurement results of the fabricated chip have been used to predict the performance of the proposed architecture in high-resolution imagers. We consider an imager architecture as shown in Fig. 1 with comparators and ADCs placed at the top and at the bottom of the columns. The simulation includes imager formats from full HD to 8K with column sizes of 1080 and 4320 pixels respectively. We also assume fully differential column ADCs running at a conversion time of 0.5µs. An example of such high-speed column ADCs is shown in [9].

To evaluate the efficiency of the proposed architecture, we simulate the frame rate with 10-bit DR extension corresponding to 10 extra captures per frame for a total DR of 132dB. The SFs of the sub-pixels have the same area as the MOSCAPs used as storage capacitors; therefore, according to Eq. 4, the gain of the sub-pixel readout is slightly below 2. As the SF can have a large size without impacting the area of the sub-pixel (see Section II), the SFs are biased with 50µA current to provide a high readout speed. We assume a pipelined readout flow where the pixel n is accessed while pixel n-1 is processed by the column readout. This feature can be achieved by placing sample & holds before the ADCs.

The settling time of the SFs of the sub-pixels is calculated as:

\[T_{sett} \approx \frac{n \cdot C_{par} \cdot \Delta V}{I_{bias}} \]

where n represents the number of sub-pixels of a column, \(C_{par} \) the output capacitance of each sub-pixel and \(I_{bias} \) the current biasing each SF and \(\Delta V \) the SF output voltage swing.

Fig. 8 shows the simulated frame rate of the proposed sensor with and without the DR extension algorithm at column resolutions from 1080 to 4320 pixels. With the modified SF buffer, at 1080 pixels/column the frame rate at extended DR reaches 1900fps and drops to 375fps at 4320 pixels/column. Without the modified SF buffer, the frame rate at maximum array resolution is 75fps. The penalty time, representing the ratio between the frame rate at inherent DR and that at extended DR operation, is 2.45 at 8K resolution indicating that the 10-bit DR extension only reduces the frame rate by 2.45x.
V. DISCUSSION

As shown in Fig. 8, the combination of the proposed DR extension algorithm together with the modified SF buffers and the use of a stacked technology allows much higher frame rates compared to recent works on HDR imagers [10] [11] [12]. Given the high frame rate, high-speed digital I/O (e.g. LVDS) are required. Again, as the bottom tier can be designed with a standard sub-micron technology without affecting the optical performance of the photodiodes, the high-speed I/O is easier to achieve than in the traditional 180nm CIS technology.

The main drawbacks of the proposed readout architecture include the increased cost of fabrication, the large pixel pitch and the power consumption. The 10µm pixel pitch is limited by the 10µm micro-bump pitch and by the sub-pixel pitch at tier 1. The effect of the micro-bump pitch can be avoided by using a floating-diffusion-node sharing technique where more photodiodes (typically 2 or 4) share the same source follower: one bump can then be shared by more pixels as in [7]. Main contributors of the sub-pixel area are the digital part of the DR extension for 40%, and the storage capacitors for 50%. Its pitch can be reduced in two ways:

1) Tier 1 technology scaling: This option reduces the area of the digital logic used for the dynamic range extension. For instance, shifting from 180nm to a 90nm standard CMOS technology reduces the area of the sub-pixel by about 25%.

2) Storage capacitors area reduction: This option reduces the inherent DR of the sensor since it increases the thermal noise of the signal storage. Halving the capacitor size reduces the total area of the sub-pixel by 25% but increases the thermal noise by \(\sqrt{2} \) to 7e^- and reduces the inherent DR by 3dB.

Combining the solutions proposed above, the pixel would scale to about 7µm pitch.

The power consumption of the proposed DR extension algorithm at 8K resolution amounts to 270nW per pixel and is dominated by the comparator-to-sub-pixel SRAM-write process. This high value is due to the very high frame rate, the large column capacitance of the high-resolution sensor and the number of captures per frame. A trade-off between power consumption and SNR dip is present. At the same DR extension, 5 extra captures instead of 10 can be used, decreasing the power consumption of the algorithm to about 150nW per sub-pixel with an SNR dip increase at mid-light by 6dB (Eq. 3).

VI. CONCLUSION

A readout architecture for stacked image sensors has been presented, which allows more than 132dB dynamic range, global shutter and a high frame rate. The compact sub-pixel circuit occupies an area of 10µm x 10µm including the logic for DR extension and the sample-and-hold capacitors for global shutter. As the pixel logic and the storage capacitors are implemented in a second tier, the optical performance deterioration due to having multiple transistors per pixels is avoided. The designed test chip confirmed the silicon functionality of the proposed algorithm and has been used to provide experimental data needed to predict the performance of such stacked architecture when combined with high array resolution. The application of the proposed method in high-resolution imagers limits the effectiveness of the algorithm due to the increased column capacitance. As a way out we have developed a novel source-follower-based amplifier which uses the SF as a gate capacitor during voltage storage and as an amplifier during readout. This method increases the readout speed without increasing the area of the sub-pixel, and allows a very high frame rate of 1900fps at full-HD resolution and of 375fps at 8K resolution.

ACKNOWLEDGMENTS

The authors would like to thank D. San Segundo Bello, P. De Moor and K. De Munch from Imec for the valuable discussions and for providing the technology access.

REFERENCES