Is Electroconvulsive Therapy Safe in the Presence of an Intracranial Metallic Object?

Case Report and Review of the Literature

Philippe Mortier, MD, Pascal Sienaert, MD, PhD, and Filip Bouckaert, MD

Background: Little is known about the use of electroconvulsive therapy (ECT) in patients with intracranial metallic objects. Theoretically, electric current might cause heating of the metal and damage of the surrounding brain tissue. Moreover, intracranial foreign objects increase the risk for epileptic phenomena and could thus complicate the treatment course.

Methods: The case of a man with intracranial bullet fragments as a result of a headshot, treated with ECT for mania, is presented. We conducted a PubMed literature search for other relevant cases.

Results: In our patient, ECT was completed without complication. Electroconvulsive therapy was safely administered in 22 published cases of patients with intracranial metallic objects.

Conclusion: After carefully weighing benefits and risks in each individual case, psychiatrists should not be reluctant to use ECT in patients with intracranial metallic objects. Apart from avoiding empirical dosage titration to minimize the exposure to current, positioning the electrodes to avoid the electric current of heating the metal, and continuing anti-epileptic agents in high-risk patients, no precautions need to be considered.

Key Words: ECT, intracranial metallic objects, safety

Electroconvulsive therapy (ECT) is an effective treatment for the most severe psychiatric disorders, such as depression, mania, and psychosis. Moreover, ECT is safe and generally well tolerated. There are no absolute contraindications to its use. Some conditions, such as intracranial space-occupying lesions, are considered relative contraindications because of concern that an increase of the intracranial pressure during ECT would cause either bleeding or herniation. In recent reviews, however, both patients with intracranial masses and/or intracranial vascular lesions were reported to have safely undergone ECT. In a recent paper, Amanullah et al argue that ECT can be used safely in patients with skull defects and reviewed 9 cases of ECT in the presence of extracranial or intracranial metallic objects. The literature on ECT in the presence of intracranial metallic objects is scarce, and the physician is left without guidance. We describe the case of a 60-year-old man with bipolar disorder and with intracranial lead and bullet fragments as a result of a headshot. He was treated with ECT for a manic episode. Our main concern was that the electric current could cause the metallic objects to heat and cause subsequent damage to the surrounding brain tissue.

However, the outcome in our patient was good, with full recovery of the affective episode and no adverse outcomes. We present a review of all published cases on the use of ECT in patients with intracranial metal objects.

MATERIALS AND METHODS

We found out that metal often is used in the manufacturing of aneurysm clips (titanium) and coils (platinum), deep brain stimulation (DBS) electrodes (platinum and iridium), skull plates, and fixation systems. We conducted a PubMed literature search, focusing on English-, French-, German-, or Dutch-language articles from the inception of the database until August 2012, using the search strategy (“electroconvulsive therapy”[Title/Abstract] AND (“foreign object”[Title/Abstract] OR “metallic object”[Title/Abstract] OR “plate”[Title/Abstract] OR “fixation system”[Title/Abstract] OR “coil”[Title/Abstract] OR “clip”[Title/Abstract] OR “dbs”[Title/Abstract] OR “bullet”[Title/Abstract] OR “gunshot”[Title/Abstract]). We included all cases of ECT used in patients with intracranial foreign material of iatrogenic origin (skull plates, fixation devices, aneurysm coils, aneurysm clips, and DBS electrodes) and of noniatrogenic origin (bullet fragments and shrapnel). We excluded all cases of intracranial nonmetallic objects. Data published as posters or book chapters were not included. References of all relevant articles were then screened for additional papers.

RESULTS

Case Report

The case patient is a 60-year-old man of low normal intelligence (Wechsler Adult Intelligence Scale 79 at the age of 24) who has a diagnosis of schizoaffective disorder and Parkinson disease. The family history showed severe psychiatric disorders in 3 first-degree relatives. He has been hospitalized several times for episodes with affective and/or psychotic symptoms. There has been several suicide attempts. At the age of 26, he shot himself with one single shot in the head and prefrontal region. The entrance wound in the head was right parietal, and medical imaging soon after the attempt showed 2 small lead bullets and several bullet fragments. Several fragments were localized in the right parietal and occipital region. Others were localized in the left temporoparietal region. At the age of 60, he was hospitalized again in a high-care psychiatric setting because of a severe manic episode. At admission, he presented with mood instability, disinhibited behavior, decreased need for sleep, pressure of speech and psychomotor agitation, all of approximately 2 months’ duration. No psychotic symptoms were present. Neurologic examination showed cogwheel rigidity, tremor, bradykinesia, and decreased mobility, probably due to Parkinson disease. The patient had been treated successfully in the past with fluphenixol decanoate and olanzapine. Treatment...
at admission included clozapine, quetiapine, valproic acid, and L-dopa. Three months before admission, there had been 2 tonic-clonic epileptic seizures of unknown origin. Levetiracetam was started. Optimal antimanic psychopharmacological treatment became more and more compromised by the increasing need for dopaminergic anti-Parkinson medication on the one hand and by the risk of epileptic seizures when using neuroleptics in higher doses on the other. Electroconvulsive therapy was considered. Written informed consent was obtained and pre-ECT investigations were carried out. Serum analysis showed a blood cell count of $3.5 \times 10^{12}/L$ due to normochromic, normocytologic anemia of unknown origin. Levels of iron and folic acid were normal due to substitution therapy, and stool examination showed no evidence of anal blood loss. C-reactive protein was slightly elevated to 2.4 mg/100 mL with a normal leukocytosis. Thyroxine was decreased to 0.84 ng/dL with no clinical signs of hypothyroidism. Liver enzymes, creatinine, electrolytes, and thyroid-stimulating hormone were in normal level range. Relevant medical history reveals an episode of atrial fibrillation treated with electric reconversion therapy and the subsequent administration of propranolol. Intramuscular injections of enoxaparin were prescribed to prevent arterial embolism. An electrocardiogram taken at admission was normal. Computed tomographic scanning and magnetic resonance imaging of the brain confirmed intracranial metal fragments located in the right occipital parafalcine region and right posterior periventricular region due to the past suicide attempt by gunshot in the head (Figs. 1, 2). Electroconvulsive therapy anesthesia consisted of glycopyrrolate, 0.2 mg; propofol, 60 mg; succinylcholine, 40 mg; and 100% oxygen. A brief-pulse stimulator Thymatron (Somatics, LLC, Lake Bluff, Ill) delivered the stimulus. Bifrontal electrode placement was used with a 1-ms, 70-Hz, 8-second, and 1014-milliCoulomb stimulus. This position of the electrodes was chosen to avoid the electric current from interfering with the metallic fragments located in the occipital brain regions. The patient reported no adverse effects, except for mild postictal headache for which paracetamol was given. The Young Mania Rating Scale (YMRS) at baseline was 43 and dropped to 29 after 5 ECT sessions. Electroconvulsive therapy was stopped after 10 sessions because of full remission (Young Mania Rating Scale score, 4). The Mini Mental State Examination was 29 at baseline and remained unchanged during and after the treatment. The Clinical Global Impression—Severity of Illness scale improved from 6 (severely ill) to 2 (borderline mentally ill) and the Clinical Global Impression—Improvement scale from 6 (much worse) to 1 (very much improved). The Unified Parkinson Disease Rating Scale also showed a marked improvement in posture, speech, stability, and brady-hypokinesia. Tremor disappeared almost completely.

Literature Review

Apart from this case, we found a total of 22 cases of patients who received ECT in the presence of an intracranial metal object. Characteristics of the 22 cases are presented in Table 1. In 19 cases, iatrogenic foreign metal objects (6 skull plates or fixation devices, 6 coils or clips, and 7 cases with DBS electrodes) were present. In 3 cases, the foreign objects were bullet fragments. In 5 cases, the objects were located in both hemispheres. In 7 cases, the objects were located in the right hemisphere; in 4 cases, the objects were located in the left hemisphere. In the remaining 6 cases, the exact location was not mentioned. In 19 of the 21 cases, a full recovery of the psychiatric disorder was reported. In one case, the outcome is not reported; and in one case, an improvement of depressive symptoms is mentioned but with remaining psychotic symptoms. Only in one early case, a possible complication due to the use of ECT was noted. Kooiker described the occurrence of fluid accumulation above the tantalum plate right after the use of ECT. There was a full spontaneous resorption of the fluid.
<table>
<thead>
<tr>
<th>Authors (Year)</th>
<th>Sex, Age</th>
<th>Disorder</th>
<th>Object</th>
<th>Localization</th>
<th>CT/KST (post-ECT)</th>
<th>Precautions</th>
<th>ECT</th>
<th>Complications</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kooiker, 1955</td>
<td>Unknown</td>
<td>Psychosis</td>
<td>Tantalum skull plate</td>
<td>Right parieto-occipital</td>
<td>None</td>
<td>BIL</td>
<td>Fluid accumulation over the plate</td>
<td>Improvement of depression but remaining psychotic symptoms</td>
<td></td>
</tr>
<tr>
<td>Ruedrich et al, 1983</td>
<td>F, 21</td>
<td>MDD</td>
<td>Bullet fragments</td>
<td>Parietotemporoparietocerebral close to the falx cerebi</td>
<td>Phenobarbital to avoid status epilepticus and spontaneous seizures</td>
<td>Bitemporal</td>
<td>None</td>
<td>Full recovery</td>
<td></td>
</tr>
<tr>
<td>Husam et al, 1983</td>
<td>F, 42</td>
<td>MDD</td>
<td>Clipping of an aneurysm</td>
<td>Upper part of the internal carotid artery</td>
<td>Hydralazine and propranolol IV to control BP</td>
<td>None</td>
<td>Full recovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crow et al, 1996</td>
<td>M, 35</td>
<td>MDD</td>
<td>Bullet history of chronic organic brain syndrome and seizure disorder</td>
<td>Left middle cranial fossa</td>
<td>Re electrode 1.5 in above-standard location to keep the electrodes equidistant from the defect</td>
<td>RUL</td>
<td>Mild confusion</td>
<td>BDI from 20 to 7 after the last treatment</td>
<td></td>
</tr>
<tr>
<td>Farah et al, 1996</td>
<td>M, 60</td>
<td>MDD with psychotic and catatonic features</td>
<td>Aneurysm clip</td>
<td>Origin of the left posterior cerebral artery</td>
<td>Succinylcholine and propofol as anesthetic agents to afford better control of BP</td>
<td>BIL</td>
<td>Premature ventricular contractions and bigeminy after the first three sessions for which lidocaine was administered</td>
<td>Full recovery</td>
<td></td>
</tr>
<tr>
<td>Najjar et al, 1998</td>
<td>F, 66</td>
<td>MDD with catatonic features</td>
<td>Aneurysm clip</td>
<td>Right middle cerebral artery</td>
<td>First 2 sessions conducted at the PACU with arterial line monitoring</td>
<td>8 BIL and 4 RUL</td>
<td>Dramatic improvements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscarillo and Annunziata, 1999</td>
<td>F, 68</td>
<td>History of alcohol abuse DBS for essential tremor MDD</td>
<td>DBS electrode Ventral nucleus of the thalamus</td>
<td>CT scan of the head after ECT showed that the DBS electrode was unchanged in position</td>
<td>Device was switched of due to edge of the left electrode was positioned 2.5 cm from the edge of the subcutaneously tunneled extender cable</td>
<td>BIL</td>
<td>Recent and immediate memory were impaired on MMSE</td>
<td>Full recovery</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Sex, Age</th>
<th>Disorder</th>
<th>Object</th>
<th>Localization</th>
<th>CT/KST (post-ECT)</th>
<th>Precautions</th>
<th>ECT</th>
<th>Complications</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker et al</td>
<td>2000</td>
<td>M, 34</td>
<td>MDD after brain injury</td>
<td>Metal prosthesis</td>
<td>Periorbital right</td>
<td>Electrodes placed more posteriorly</td>
<td>BIL</td>
<td></td>
<td>Significant improvement of mood (MADRS from 40 to 24)</td>
<td></td>
</tr>
<tr>
<td>Madan and Anderson</td>
<td>2001</td>
<td>M, 74</td>
<td>MDD with psychotic features</td>
<td>Stainless steel skull plate</td>
<td>Right temporoparietal region</td>
<td>Electrodes placed left temporal and right frontal (3 cm above the supraorbital notch, 4 cm from the midsagittal plane)</td>
<td>BIL</td>
<td></td>
<td>None</td>
<td>Full recovery</td>
</tr>
<tr>
<td>Power-Connon and Pridmore</td>
<td>2003</td>
<td>F, 57</td>
<td>MDD</td>
<td>Aneurysm clip</td>
<td>Left infraclinoidal internal carotid artery</td>
<td></td>
<td></td>
<td></td>
<td>Full recovery</td>
<td></td>
</tr>
<tr>
<td>Sharma et al</td>
<td>2005</td>
<td>F, 60</td>
<td>MDD</td>
<td>Surgical repairs for intracerebral aneurysms</td>
<td>Different sites Proximal segment of the right anterior cerebral artery (coil)</td>
<td>Succinylcholine and propofol as anesthetic agent to control BP Esmolol to control BP</td>
<td>BIL</td>
<td></td>
<td>Some retrograde amnesia</td>
<td>Full recovery, MDRS 6</td>
</tr>
<tr>
<td>Chou et al</td>
<td>2005</td>
<td>F, 66</td>
<td>DBS for PD</td>
<td>DBS electrodes</td>
<td>Bilateral subthalamic nuclei</td>
<td>Post-ECT cranial MRJ revealed no shift in electrode position Device was switched off; electrodes were placed bilaterally over the frontal regions as far away from the DBS hardware as possible</td>
<td>BIL frontal</td>
<td></td>
<td>Some postictal confusion</td>
<td>Full recovery</td>
</tr>
<tr>
<td>Okamura et al</td>
<td>2006</td>
<td>F, 44</td>
<td>Psychosis/delirium (?)</td>
<td>Aneurysm coil</td>
<td>Basilar tip aneurysm</td>
<td>Succinylcholine and propofol as anesthetic agent to control BP</td>
<td>BIL</td>
<td></td>
<td>None</td>
<td>Full recovery (rigidity of the right upper limb)</td>
</tr>
<tr>
<td>Name</td>
<td>Gender</td>
<td>Age</td>
<td>History</td>
<td>Device</td>
<td>Electrode Position</td>
<td>Procedure Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>--------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang et al., 2007</td>
<td>M, 63</td>
<td>PD</td>
<td>DBS electrodes & thalamic nucleus</td>
<td>Device was switched off; one ECT paddle was placed approximately 5 cm anterior to the exit of the DBS electrode from the skull, and the other was placed more medially than normal to avoid the electrode as it traveled around the ear.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh et al., 2008</td>
<td>F, 72</td>
<td>MDD with psychotic features</td>
<td>Residual lead gunshot fragments, in the parietal, occipital and temporal bones of the skull</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailine et al., 2008</td>
<td>F, 78</td>
<td>History of PD - MDD</td>
<td>DBS electrode, left subthalamic nucleus</td>
<td>BIL, some confusion after each ECT session. Mood significantly improved and delusional thinking disappeared; remaining feeling of anxiousness and restlessness.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glezer et al., 2009</td>
<td>M, 53</td>
<td>MDD</td>
<td>Synthes titanium plating system with mesh and multiple connectors</td>
<td>Modified RUL electrode placement to avoid unnecessary conduction through the metal prosthesis. Single brief-pulse stimulation (1 ms) without titration through threshold to minimize undue exposure to current.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puidgemont et al., 2009</td>
<td>F, 64</td>
<td>DBS for recurrent MDD</td>
<td>DBS electrodes, bilateral subcallosal cingulate gyrus</td>
<td>Device was switched off; BIL, bifrontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ling et al., 2010</td>
<td>M, 54</td>
<td>BD, manic episode and delirium</td>
<td>Titanium skull plates, right frontoparieto-temporal region</td>
<td>Changing the electrode positioning to avoid the metallic plate with one electrode on the left temporal region and one on the left occipital region.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Sex</th>
<th>Age</th>
<th>Disorder</th>
<th>Object</th>
<th>Localization</th>
<th>ECT</th>
<th>Complications</th>
<th>Precautions</th>
<th>Outcome</th>
<th>Complications</th>
<th>Precautions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasr et al.</td>
<td>2010</td>
<td>F, 56</td>
<td>History of PD</td>
<td>DBS electrodes</td>
<td>Bilateral subthalamic nuclei</td>
<td>Device was switched off</td>
<td>BIL</td>
<td>None</td>
<td>Full recovery</td>
<td>None</td>
<td>Full recovery</td>
<td>None</td>
<td>Full recovery</td>
</tr>
<tr>
<td>Kaido et al.</td>
<td>2011</td>
<td>M, 57</td>
<td>BD</td>
<td>ZIP cranial fixation system</td>
<td>Bilateral</td>
<td>Device was switched off</td>
<td>Bifrontal</td>
<td>None</td>
<td>Full recovery</td>
<td>-placement of the electrodes was modified</td>
<td>Placement of the electrodes was modified</td>
<td>Full recovery</td>
<td>None</td>
</tr>
<tr>
<td>Ducharme et al.</td>
<td>2011</td>
<td>M, 71</td>
<td>History of PD</td>
<td>DBS electrodes</td>
<td>Bilateral subthalamic nuclei</td>
<td>Device was switched off</td>
<td>Bilateral</td>
<td>None</td>
<td>Full recovery</td>
<td>Placement of the electrodes was modified</td>
<td>Placement of the electrodes was modified</td>
<td>Full recovery</td>
<td>None</td>
</tr>
</tbody>
</table>

DISCUSSION

Although there might be some concern that cases where the treatment resulted in brain damage were just not reported, from a review of 22 published cases, it can be concluded that the use of ECT in the presence of intracranial metallic objects can probably be performed safely. Our experience adds to this body of evidence. In the cases reviewed, no complications occurred. In the case described by Kooiker,6 where fluid accumulated above the skull plate, it is highly unlikely that ECT was the causal factor because similar transient fluid accumulations had been noted in this patient before the start of ECT.

The main concern in using ECT in the presence of intracranial metallic objects is that the electric current might cause heating of the objects and thus damage the surrounding brain tissue. Such adverse outcomes have been reported after medical procedures exposing patients with DBS electrodes to electric or radiofrequency energy. However, the underlying mechanisms are still unclear. Yamamoto et al28 report a patient developing irreversible brain damage after cardioversion. The high-voltage electrical current of the chest wall was believed to have interfered with the subcutaneously implanted radiofrequency receiver that was connected to the stimulating electrode in the brain. However, the exact mechanism of brain lesioning could not be fully explained. Nutt et al29 report on a patient with Parkinson disease and with implanted subthalamic DBS electrodes. He received diathermy treatment (a method to produce heat by radiofrequency waves used in several medical procedures) to the maxilla that produced dramatic brain damage and a subsequent vegetative state. Whether the radiofrequency energy interfered with the electrode wires en passage in the soft tissues of the neck or directly with the DBS electrodes in the brainstem was uncertain, although the latter was assumed. With the previous 2 reports in mind, the main concern of the authors who considered administering ECT to their patients with implanted DBS systems was that the electrical charge could interfere with the electrodes, either directly or by interference with the extension wires connected to the electrodes, thus heating them by inducing radiofrequency current. However, in the 7 cases of ECT in patients with DBS, no adverse effects were reported. It is believed that the risk of heating the electrodes is small because the energy needed to induce a seizure is low and far less than what is traditionally used for procedures like cardioversion.30 Nevertheless, Medtronic (Minneapolis, Minn), manufacturer of DBS electrodes, states that the safety of ECT in patients who have an implanted DBS system has not been established. They put forward that induced electrical currents may interfere with the intended stimulation or damage the neurostimulation system components resulting in loss of therapeutic effect, clinically significant undesirable stimulation effects, additional surgery for system explantation and replacement, or neurological injury.31

Theoretically, one could estimate the risk of heating intracranial metal by electric power by taking into account the electric resistivity (ρ) of the metal (eg, lead, as in our case, was 2.2 nΩm at 300 K; titanium, a metal used in modern brain surgery in aneurysm clips and used in the case that Glezzer et al.22 describe in a Synthes titanium plating system, was 4.2 nΩm at 300 K; platinum, a metal used in aneurysm coils and DBS electrodes, was 10.8 nΩm at 300 K; tantalum, the metal used in a skull plate in the case Kooiker6 describes, was 13.5 nΩm at 300 K), the volumetric properties of the metal object (cross-sectional area (A) and length (l)) and the amount of electric current administered. The higher the resistance (R), the more heat at equal amount of electric power will cause (with R expressed in the formula $R = \rho \times 1 / A$). The amount of heat is then proportional to the square of the electric current
multiplied by this electrical resistance, a process known as ohmic heating or resistive heating. Two problems arise. First, the exponential fall in electric field strength with increasing distance from the electrodes makes it very difficult to estimate the amount of electric current that actually reaches the metal object. Second, the complex volumetric properties of the objects in almost all cases are not to be reduced to cross-sectional area (A) and length (l). Experimental research, as Deng et al. did by using artificial 5-shell spherical heads in testing the possible effects of different ECT procedures on the brain when burr holes are present, is needed to provide absolute figures. However, from a pragmatic view, ECT uses low electric currents. Furthermore, as already mentioned earlier, because the exponential fall in electric field strength is away from the electrodes, the risk of heating a metallic object, if it is not located very close to the electrode, is most probably negligible. It is therefore advisable to choose the electrode position so that the current path does not cross close to the intracranial object. In our patient, a bifrontal placement was used because the metallic fragments were located posteriorly in the right hemisphere.

Indeed, several authors decided to change the position of the electrodes albeit for different reasons. In 5 of the 7 cases on ECT in the presence of DBS electrodes, the authors mentioned placing the electrodes as far away as possible from the DBS hardware to prevent electric current from interfering. Glezer et al. changed the position to avoid the current path from passing close to a titanium plating system and a titanium skull plate. In the other cases, no preventive measures to prevent the current from interfering with the metal objects were mentioned. However, in several cases with skull defects, authors altered the electrode position to avoid the current from taking a low-resistance pathway more directly into the brain and to decrease the risk of electrolytic brain injury. This is in line with studies conducted on cadavers by Gordon et al. who found that if a skull defect was present, electricity entering the brain, from an electrode close to the defect, would be preferentially shunted through the defect. He theorized that this would result in concentration of current immediately below the defect, leading to a greater chance of brain injury. To minimize the risk of damage, he recommended that electrodes be placed equidistant from the defect and, in fact, found that if this was done, the current used would be similar to that of normal skulls. Therefore, a history of craniotomy is not a relative contraindication for ECT in accordance with the practice guideline for the treatment of psychiatric disorders of the American Psychiatric Association.

As mentioned earlier, in the cases of ECT used when DBS electrodes are present, the position of the electrodes was altered to keep the electric current as far away from the DBS hardware as possible, especially the subcutaneously tunneled DBS lead extension cable, which typically runs posterior to the patient’s ears. As Deng et al. pointed out, this has no strong physical rationale because the DBS leads are insulated and hence, ECT-induced current cannot penetrate the wire (however, if there is evidence of wire insulation being damaged, neither DBS nor ECT stimulation should be applied). Deng et al. further showed by modeling common methods of DBS electrode fixation on specially constructed artificial scalps that during the application of ECT, there might be a substantial increase of the electric field strength in the brain when the burr holes are not filled with an electrically insulating material and when the ECT electrodes are placed close to the burr holes. They warn that bifrontal ECT results in stronger and more focused induced electric field compared to right unilateral and bilateral placements, especially if the DBS electrode is anchored with metal plates. Choosing bifrontal electrode placement, as Moscarillo and Annunziatta and Chou et al. did in an attempt to place the electrodes as far away as possible from the extension wire, can end up in placing the electrodes closer to the burr holes, resulting in more current flowing through the burr holes. However, even in the experimental setting, which produced the largest increase in electric field strength and focality (bifrontal ECT with titanium burr hole covers), charge densities reached less than half the recommended safety limit for neural tissue damage (40 μC/cm² per phase). Deng et al. conclude that it is therefore unlikely that brain damage occurs but that clinical outcomes could be affected.

An alternative way to minimize risk is advocated by Glezer et al. who skipped empirical dose titration to prevent the metallic object from repetitive undue exposure to electric current. However, no further arguments for this strategy were given.

Another concern in patients with intracranial foreign objects is the emergence of epileptic seizures. Ruedrich et al. and Crow et al. administered phenobarbital or phenytoin (postictal or as induction), respectively, to prevent epileptic phenomena, with success. Our patient had a history of tonic-clonic seizures, possibly secondary to the presence of the occipital lead fragments, in conjunction with high doses of neuroleptics (clozapine). We lowered the dose of clozapine and continued valproic acid throughout the treatment course. The treatment course was uneventful, and our patient made a full recovery. Manic symptoms disappeared, and motor symptoms improved substantially, corroborating the beneficial effects of ECT in Parkinson disease.

In patients where the metallic object is a coil or a clip to treat an aneurysm, it is advisable to prevent a rise in blood pressure. In 3 cases with a history of aneurysm repair, propofol and succinylcholine were used as anesthetic agents to attenuate hemodynamic changes due to the consecutive rise in parasympathetic tone during a convulsion. Husum et al. decided to administer intravenous hydralazine and propranolol, and Sharma et al. administered esmolol. Najjar and Guttmacher monitored the blood pressure by an arterial line in a patient with a history of aneurysm clipping during the first 2 ECT sessions to provide an intensive monitoring of blood pressure and anticipate possible rise in blood pressure due to the ECT. The importance of the use of blood pressure-lowering anesthetic agents and frequent monitoring of the arterial pressure in patients with a history of brain aneurysm repair has already been shown in a review from Van Herck et al.

In all cases on the use of ECT with DBS electrodes present, the authors switched off the device before administration. This was done to avoid triggering the device or destroying it. With one exception, the device was switched off during the whole ECT course, depriving the patient from the therapeutic effect of DBS during a significant period. Ducharme et al. were the first to turn the device back on immediately after each ECT session to prevent their patient from producing disabling tremor from Parkinson disease. Furthermore, they also describe leaving the device turned on during the sessions but putting it on 0 V. This was done to lower the risk even more of the DBS generator turning on and producing unwanted and possibly hazardous electric current during the treatment.

CONCLUSION

Electroconvulsive therapy in patients with intracranial metallic objects is probably safe. To avoid the theoretical risk of heating the metal causing damage to the surrounding brain tissue, the electrodes should be placed as far away from the metallic object as possible. In patients with DBS
This page contains a discussion on the safe use of electroconvulsive therapy (ECT) in patients with intracranial metallic objects. The authors thank Bart Nuttin, MD, PhD, Department of Neurosurgery, University Hospital Leuven, Belgium, for providing us with the brain images. The authors also acknowledge the contributions of Guillaume Clinckemaillie, MD, Department of Neurosurgery, University Hospital Leuven, Belgium, in the safe use of ECT.

Acknowledgments

The authors thank Bart Nuttin, MD, PhD, Department of Neurosurgery, University Hospital Leuven, Belgium, for providing us with technical information about neurosurgical materials and Guillaume Clinckemaillie, MD, Department of Radiology, University Hospital Leuven, Belgium, for providing us with the brain images.

References

