Towards a Lexicologically Informed Parameter Evaluation of Distributional Modelling in Lexical Semantics

Thomas Wielfaert, Kris Heylen, Jocelyne Daems, Dirk Speelman & Dirk Geeraerts

KU Leuven
Quantitative Lexicology and Variational Linguistics
Purpose of the talk

THEORETICAL

• Study the **structure of lexical variation**: mapping of meaning onto lexemes in different varieties.
• Analyse how this structure is apparent in **usage data**

METHODOLOGICAL

• **Semantic Vector Spaces** as a method for the quantitative, large-scale, corpus-based analysis of lexical semantics
• **Interactive Visualisation** of distributional models as an exploratory, visual analytic tool for lexicology
• Creating a ’gold standard’ and **cluster evaluation**.
Overview

1. Linguistic Background

2. Semantic Vector Spaces

3. Visual Analytics

4. Creating a 'gold standard' and cluster evaluation.

5. Discussion and future work
Overview

1. Linguistic Background

2. Semantic Vector Spaces

3. Visual Analytics

4. Creating a 'gold standard' and cluster evaluation.

5. Discussion and future work
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):

PROTOTYPE STRUCTURE:
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):

PROTOTYPE STRUCTURE:

```
<table>
<thead>
<tr>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
</tr>
<tr>
<td>Word</td>
</tr>
</tbody>
</table>
```

onomasiology
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):

PROTOTYPE STRUCTURE:
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):

LECTAL VARIATION:
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994): BASED ON BIG DATA:

CORPUS
- many concepts
- objective, bottom-up semantic analysis
Linguistic Background

Structure of Lexical Variation (Geeraerts et al. 1994):
BASED ON BIG DATA:

CORPUS
- many concepts
- objective, bottom-up semantic analysis

⇒ Automatic modelling of lexical semantics
Overview

1. Linguistic Background

2. Semantic Vector Spaces

3. Visual Analytics

4. Creating a 'gold standard' and cluster evaluation.

5. Discussion and future work
2. Semantic Vector Spaces

Linguistic origin: Distributional Hypothesis

• "You shall know a word by the company it keeps" (Firth)
• a word’s meaning can be induced from its co-occurring words
• long tradition of collocation studies in corpus linguistics

Semantic Vector Spaces in Computational Linguistics

• standard technique in statistical NLP for the large-scale automatic modeling of (lexical) semantics
• aka Vector Spaces Models, Distributional Semantic Models, Word Spaces,... (cf Turney & Pantel 2010 for overview)
• generalised, large-scale collocation analysis
• mainly used for automatic thesaurus extraction: ⇒ words occurring in same contexts have similar meaning
Type-level SVS

Collect co-occurrence frequencies for a large part of the vocabulary and put them in a matrix

<table>
<thead>
<tr>
<th></th>
<th>transport</th>
<th>train</th>
<th>commute</th>
<th>ticket</th>
<th>scene</th>
<th>sugar</th>
<th>cream</th>
<th>now</th>
</tr>
</thead>
<tbody>
<tr>
<td>subway</td>
<td>120</td>
<td>424</td>
<td>388</td>
<td>82</td>
<td>12</td>
<td>11</td>
<td>3</td>
<td>189</td>
</tr>
<tr>
<td>underground</td>
<td>154</td>
<td>401</td>
<td>376</td>
<td>99</td>
<td>305</td>
<td>20</td>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>coffee</td>
<td>5</td>
<td>8</td>
<td>18</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>102</td>
<td>152</td>
</tr>
</tbody>
</table>
Type-level SVS

weight the raw frequencies by collocational strength (pmi)

<table>
<thead>
<tr>
<th></th>
<th>transport</th>
<th>train</th>
<th>commute</th>
<th>ticket</th>
<th>scene</th>
<th>sugar</th>
<th>milk</th>
<th>now</th>
</tr>
</thead>
<tbody>
<tr>
<td>subway</td>
<td>5.3</td>
<td>7.9</td>
<td>6.5</td>
<td>4.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>underground</td>
<td>4.3</td>
<td>8.1</td>
<td>5.7</td>
<td>3.2</td>
<td>6.2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>coffee</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.0</td>
<td>6.4</td>
<td>7.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Type-level SVS

calculate word by word similarity matrix

<table>
<thead>
<tr>
<th></th>
<th>subway</th>
<th>underground</th>
<th>coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>subway</td>
<td>1</td>
<td>.71</td>
<td>.08</td>
</tr>
<tr>
<td>underground</td>
<td>.71</td>
<td>1</td>
<td>.09</td>
</tr>
<tr>
<td>coffee</td>
<td>.08</td>
<td>.09</td>
<td>1</td>
</tr>
</tbody>
</table>

```
subway underground coffee
subway 1 .71 .08
underground .71 1 .09
coffee .08 .09 1
```
Token-level SVS

Make a vector for each occurrence of the variants

the teacher saw the dog chasing the cat
Token-level SVS

Make a vector for each occurrence of the variants

\[
\begin{array}{cccc}
3.2 & 4.3 & 0.8 & 7.1 \\
5.1 & 2.2 & 3.7 & 0.1 \\
0.2 & 3.5 & 2.3 & 0.3 \\
3.1 & 1.9 & 2.9 & 4.1 \\
4.7 & 0.2 & 1.3 & 3.1 \\
2.2 & 3.1 & 4.1 & 3.8 \\
\end{array}
\]

the teacher saw the dog chasing the cat
Token-level SVS

Make a vector for each occurrence of the variants

<table>
<thead>
<tr>
<th>teacher</th>
<th>saw</th>
<th>dog</th>
<th>chasing</th>
<th>cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVERAGE

<table>
<thead>
<tr>
<th></th>
<th>0.8</th>
<th>7.1</th>
<th>3.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>0.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>0.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>4.1</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>3.1</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>3.8</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>
Token-level SVS

Weighting

<table>
<thead>
<tr>
<th>3.2</th>
<th>4.3</th>
<th>0.8</th>
<th>7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>2.2</td>
<td>3.7</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>3.5</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>3.1</td>
<td>1.9</td>
<td>2.9</td>
<td>4.1</td>
</tr>
<tr>
<td>4.7</td>
<td>0.2</td>
<td>1.3</td>
<td>3.1</td>
</tr>
<tr>
<td>2.2</td>
<td>3.1</td>
<td>4.1</td>
<td>3.8</td>
</tr>
</tbody>
</table>

PMI weights 0.4 0.8 2.1 1.5

teacher saw dog chasing cat

Context words are not equally informative for the meaning of dog.
Token-level SVS

Weighted vectors

<table>
<thead>
<tr>
<th>teacher</th>
<th>saw</th>
<th>dog</th>
<th>chasing</th>
<th>cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2x0.4</td>
<td>4.3x0.8</td>
<td>0.8x2.1</td>
<td>7.1x1.5</td>
<td>4.3</td>
</tr>
<tr>
<td>5.1x0.4</td>
<td>2.2x0.8</td>
<td>3.7x2.1</td>
<td>0.2x1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>0.2x0.4</td>
<td>3.5x0.8</td>
<td>2.3x2.1</td>
<td>0.3x1.5</td>
<td>2</td>
</tr>
<tr>
<td>3.1x0.4</td>
<td>1.9x0.8</td>
<td>2.9x2.1</td>
<td>4.1x1.5</td>
<td>3.8</td>
</tr>
<tr>
<td>4.7x0.4</td>
<td>0.2x0.8</td>
<td>1.4x2.1</td>
<td>3.1x1.5</td>
<td>2.4</td>
</tr>
<tr>
<td>2.2x0.4</td>
<td>3.1x0.8</td>
<td>4.1x2.1</td>
<td>3.8x1.5</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Visual Analytics: Token clouds

Calculate similarity between all tokens
Version 1: use MDS and googlevis to plot interactively in 2D
Calibration problem

Semantic Vector Spaces, and especially token-level SVSs are parameter-rich.

Examples of parameters

- Bag-of-Words ↔ Dependency Models
- Size of the context window for co-occurrences
- Size of the context window for weights
- Weighting scheme:
 Pointwise Mutual Information ↔ Log-Likelihood Ratio
- Include ↔ exclude highly-frequent (function words) words
Overview

1. Linguistic Background

2. Semantic Vector Spaces

3. Visual Analytics

4. Creating a ‘gold standard’ and cluster evaluation.

5. Discussion and future work
3. Visual Analytics

- Calibration could benefit from visual analytics of the different solutions.
- Using manually disambiguated data facilitates the visual evaluation as we can color-code the tokens for their different meanings.
- Misclassified tokens are quickly identified.
- We built our own, customisable tool to explore these token clouds.
3. Visual Analytics

Dutch noun *piraterij*

- Data from large Dutch newspaper corpora
 - Leuven News Corpus (LeNC): 1.3 billion words
 - Twente News Corpus (TwNC): 500 million words
- Manually disambiguated data for the Dutch word type *piraterij* (piracy)
 - *piraterij*\(_1\): attack on ships
 - *piraterij*\(_2\): illegally producing and selling products
3. Visual Analytics
3. Visual Analytics

piraterij
isoMDS, k=2
stress = 25.41%
piraterij/nouw/volkskrant20040709/18582

' We gaan altijd pas tot actie over als we hele harde aanwijzingen hebben. ' Een [[inval(0.0)] [is(0.23)] [het(0.99)]
[ulteme(0.91)] [wapen(0.91)] [cat(0.91)] [die(0.24)] [BSA(7.42)]
[inzet(0.6)] [tegen(2.02)] [piraterij(1.0)] [Per(0.05)]
[maand(0.87)] [ijn(0.0)] de [organisatie(1.72)] [.00.0]
[die(1.13)] [woord(0.0)] [gefinancierd(0.0)] door aangeslotensoftware
, zo'n vrij bruikbare tips.'
3. Visual Analytics
Overview

1. Linguistic Background

2. Semantic Vector Spaces

3. Visual Analytics

4. Creating a ’gold standard’ and cluster evaluation.

5. Discussion and future work
'Gold standard'

Manual effort
Selection of nouns from Algemeen Nederlands Woordenboek (ANW)

- Highly frequent in both BE and NL newspaper corpus.
- Examples that are not purily literary use.
- At least 2 core senses with a semantic relationship (betekenisbetrekking).

Manual disambiguation of random tokens until each sense has at least 50 occurrences.
'Gold standard'

ANW selection

- aanbieder (offerer)
- koper (buyer / copper)
- match
- motor (engine / motorcycle)
- parachute
- piraterij (piracy)
- pony
- prof
- scout
- therapeut (therapist)
'Gold standard'

ANW selection

- aanbieder (offerer)
- koper (buyer / copper)
- match
- motor (engine / motorcycle)
- parachute
- *piraterij* (piracy)
- pony
- prof
- scout
- *therapeut* (therapist)
4. Cluster evaluation

Aggregate cluster quality

- First proposed by McClain and Rao (1975) to evaluate clustering in marketing research.
- Speelman and Geeraerts (2009) proposed a similar measure for dialectometry.

\[
\text{clusterqual} = \frac{S_W/N_W}{S_B/N_B}
\]

- \(S_W\): within distances
- \(N_W\): number of distances between pairs
- \(S_B\): between distances
- \(N_B\): number of distances between pairs
4. Cluster evaluation

clusterqual properties

Due to its design:

- clusterqual is sensitive to outliers.
- Unbalanced samples bias the result as our SemEval case study showed. (Wielfaert et al. 2013)

Solution:

- For each token, iteratively remove the n furthest tokens.
- Balance the sample over the different senses: 50 occurrences per sense.
4. Cluster evaluation

piraterij
4. Cluster evaluation

scout
4. Cluster evaluation

therapeut
Overview

1. Linguistic Background

2. Semantic Vector Spaces

3. Visual Analytics

4. Creating a ’gold standard’ and cluster evalution.

5. Discussion and future work
5. Discussion and future work

‘Gold standard’ as a tool for parameter choice

- Controlled sample for different target words reduces the risk of overfitting.
- Finding one fits all parameter settings is probably impossible.
5. Discussion and future work

Extending the varied parameters

- Focus on weighting scheme of first-order co-occurrences, effect rather limited.
- Previous experiments: reducing noise largest improvement so far.
- Next step: remove function words and set low weights to virtually zero.
5. Discussion and future work

Other cluster quality indices

- clusterqual has its flaws
- Whole rang of other indices implemented in R *clusterCrit* package.
5. Discussion and future work

Fitting a model

- Number solutions grow quickly explodes when varying more parameters.
- Lapesa and Evert (2013) fitted a linear model on DSM parameters for 38800 solutions.
Purpose of the talk

THEORETICAL

- Study the structure of lexical variation: mapping of meaning onto lexemes in different varieties.
- Analyse how this structure is apparent in usage data

METHODOLOGICAL

- Semantic Vector Spaces as a method for the quantitative, large-scale, corpus-based analysis of lexical semantics
- Interactive Visualisation of distributional models as an exploratory, visual analytic tool for lexicology
- Creating a 'gold standard' and cluster evaluation.
For more information:
http://wwwling.arts.kuleuven.be/qlvl
thomas.wielfaert@arts.kuleuven.be
kris.heylen@arts.kuleuven.be
jocelyne.daems@arts.kuleuven.be
dirk.speelman@arts.kuleuven.be
dirk.geeraerts@arts.kuleuven.be