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1  | INTRODUC TION

Asthma is a chronic inflammatory airway disease characterized 
by coughing, wheezing, chest tightness, variable airflow limita-
tion and airway hyper-responsiveness (AHR)1 to environmental 
specific (allergens such as house dust mite (HDM), pollen and 

animal dander) and nonspecific (eg tobacco smoke, air pollution) 
stimuli. Asthma is a heterogeneous disease with a complex aeti-
ology. Allergen-induced asthma is the most common form, with 
atopy and allergic sensitization being identified as major risk fac-
tors.2 Other risk factors include increased viral infections during 
early childhood, exposure to tobacco smoke and air pollution.3 In 
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Abstract
Airway epithelial barrier dysfunction is frequently observed in asthma and may 
have important implications. The physical barrier function of the airway epithelium 
is tightly interwoven with its immunomodulatory actions, while abnormal epithe-
lial repair responses may contribute to remodelling of the airway wall. We propose 
that abnormalities in the airway epithelial barrier play a crucial role in the sensitiza-
tion to allergens and pathogenesis of asthma. Many of the identified susceptibility 
genes for asthma are expressed in the airway epithelium, supporting the notion that 
events at the airway epithelial surface are critical for the development of the disease. 
However, the exact mechanisms by which the expression of epithelial susceptibility 
genes translates into a functionally altered response to environmental risk factors 
of asthma are still unknown. Interactions between genetic factors and epigenetic 
regulatory mechanisms may be crucial for asthma susceptibility. Understanding these 
mechanisms may lead to identification of novel targets for asthma intervention by 
targeting the airway epithelium. Moreover, exciting new insights have come from 
recent studies using single-cell RNA sequencing (scRNA-Seq) to study the airway epi-
thelium in asthma. This review focuses on the role of airway epithelial barrier func-
tion in the susceptibility to develop asthma and novel insights in the modulation of 
epithelial cell dysfunction in asthma.
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addition to elevated serum IgE, features of atopic asthma include 
chronic eosinophilic airway inflammation and airway remodelling 
with increased smooth muscle mass, subepithelial fibrosis, epi-
thelial desquamation and goblet cell hyperplasia. Type-2T-helper 
(Th2) lymphocytes are key players in the eosinophilic airway in-
flammatory response of allergen-sensitized individuals, giving rise 
to the pathological changes and clinical symptoms of asthma.4 
Other asthma endotypes include nonallergic eosinophilic asthma, 
which may be driven by type-2 innate lymphocytes, mixed-granu-
locytic asthma, type-1 and type-17-mediated neutrophilic asthma, 
and paucigranulocytic asthma, without apparent neutrophilia and 
eosinophilia.5

Susceptibility to asthma has a strong genetic component. Many 
asthma susceptibility genes are expressed in the airway epithelium 
(eg IL1RL1, IL33, TSLP, CDHR3, PCDH1, MUC5AC, KIF3A, EFHC1 and 
GSDMB, as outlined below), highlighting the importance of the air-
way epithelium in the development of asthma. Allergens, viruses and 
other inhaled environmental insults are in first contact with the air-
way epithelial barrier, which forms a continuous lining of the respira-
tory system from the nose to the trachea, bronchi, bronchioles and 
finally the alveoli. The upper airway epithelium has a different devel-
opmental origin than the epithelia of the lower airway and alveolar 
epithelium. The nature of the epithelium changes in the specific re-
gions, being a pseudostratified columnar epithelium in the nose, tra-
chea and bronchi, transitioning into cuboidal cells in the bronchioles 
and forming a single-cell thick alveolar epithelium. The alveolar epi-
thelium is highly vascularized and responsible for gas exchange. The 
alveoli receive air from the conducting airways, starting in the tra-
chea, bifurcating into the bronchi and bronchioles and ending in the 
terminal bronchioles, which divide into the alveolar ducts from which 
the alveoli arise. The transitional region between terminal bronchi-
oles and alveoli is referred to as the bronchioalveolar duct junction. 
Alveolar cells can be subdivided into alveolar type 1 (AT1) epithelial 
cells, flat-shaped epithelial cells that accommodate the transfer of 
oxygen into the blood stream and cuboidal-shaped AT2 cells that 
serve as progenitor cells for AT1 cells, contribute to alveolar tissue 
regeneration upon injury and produce surfactants to reduce the sur-
face tension. The pseudostratified epithelial layer of the conducting 
airways is separated from the underlying mesenchyme by the base-
ment membrane and consists of different epithelial cell types: basal, 
club, goblet and ciliated cells being the major ones. Basal cells serve 
as progenitors, being able to differentiate into secretory club cells, 
which can further differentiate into mucus producing goblet cells or 
mucus clearing ciliated cells.6 Club cells are able to self-renew and 
generate ciliated cells after injury, repopulating damaged airway 
tissue. Secretory cells also have the capacity to dedifferentiate into 
basal cells when these cells are ablated by diphteria toxin, underscor-
ing the remarkable plasticity of the airway epithelium.7 While some 
studies have shown that ciliated cells are terminally differentiated,8 
others have shown that ciliated cells can undergo dynamic changes in 
cell shape and gene expression to re-differentiate into columnar cells 
upon naphthalene induced injury.9 In the presence of IL-13, ciliated 
cells also undergo transdifferentiation into goblet cells.10 In addition 

to the physical barrier function and mucociliary clearance of foreign 
particles, the airway epithelium acts as chemical barrier against en-
vironmental insults by secreting, for example antimicrobial peptides, 
anti-proteases and antioxidants, and is part of the innate immune 
system. Airway epithelial cells express pattern recognition recep-
tors (PRRs) like toll-like receptors (TLRs), retinoic acid-inducible gene 
(RIG)-I-like receptors (RLRs), nucleotide-binding oligomerization do-
main (NOD)-like receptors (NLRs), C-type lectin receptors (CLRs), 
protease activated receptor (PAR)-2 and purinergic receptors.11 

Bullet points outlining future research perspective

• Future research unravelling the molecular mechanisms 
and regulatory networks underlying abnormal epithe-
lial repair responses after exposure to environmental 
insults hold promise for the identification of novel inter-
vention strategies in asthma.

• Single-cell RNA-sequencing studies may lead to eluci-
dating the cellular changes and causal gene regulatory 
networks underlying the different asthma endotypes.

• Analysis of matched single-cell RNA-Sequencing data 
sets from airway wall biopsies, bronchial brushes and 
nasal brushes will allow identification of novel biomark-
ers for disease activity or treatment response using less 
invasive methodologies.

• Better understanding of (epi)genetic regulatory mecha-
nisms of airway epithelial abnormalities in asthma likely 
contributes to identification of novel targets for asthma 
intervention.

Box outlining the major milestone discoveries

• Loss of epithelial junctions not only results in increased 
susceptibility towards pathogens and allergens, but also 
propagates pro-inflammatory responses and may con-
tribute to airway remodelling.

• E-cadherin loss and activation of β-catenin per se induce 
epithelial features reminiscent of the airway epithelium 
in asthma in in vitro and in vivo models.

• Loss of airway epithelial barrier function in asthma is a 
consequence of interaction between environmental and 
genetic factors and epigenetic regulatory mechanisms.

• Expression quantitative trait loci (eQTL) studies in 
human bronchial epithelial cells and bronchial alveolar 
lavage identified risk alleles that regulate expression of 
genes involved in epithelial function, including IL1RL1, 
IL33, TSLP, CDHR3, MUC5AC, KIF3A, EFHC1 and GSDMB, 
support the role of the airway epithelium as driver of 
asthma pathogenesis.
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These recognize pathogen-associated molecular patterns (PAMPs) 
from inhaled microbes, parasites and allergens as well as alarmins/
damage-associated molecular patterns (DAMPs) released from dying 
or damaged cells. Upon recognition of PAMPs or DAMPs, PRRs acti-
vate downstream signalling that promotes the release of pro-inflam-
matory cytokines/chemokines, including IL-6, IL-8, CCL20, CCL17, 
TSLP, IL-25, IL-33 and GM-CSF. These can attract and/or activate 
cells from the innate and adaptive immune system. Upon sensing of 
allergens by various PRRs, including purinergic receptors, multipro-
tein complexes termed inflammasome can be activated, leading to 
caspase-1 activity and subsequent cleavage of IL-1β and IL-18 into 
active forms.12 In particular, HDM has been shown to activate the 
nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) 
inflammasome through PI3K/Akt pathway leading to inflammation 
in asthma.13,14 During these allergen-driven inflammatory responses, 
dendritic cells (DCs) induce the differentiation Th2 cells, which se-
crete cytokines such as IL-4, IL-5, IL-9 and IL-13 to induce IgE produc-
tion by B-lymphocytes, eosinophilic infiltration into the airways and 

goblet cell hyperplasia with excessive mucus production. Epithelial 
alarmins can drive similar responses (independent of allergens) 
through activation of type-2 innate lymphoid cells (ILC2).15

Upon damage, for example by exposure to allergens, the epi-
thelial barrier is disrupted, promoting epithelial release of growth 
factors such as epidermal growth factor (EGF) and TGF-β, which 
activate fibroblasts and myofibroblasts.16 This promotes exces-
sive deposition of extracellular matrix (ECM) components, for ex-
ample collagens, in the lamina reticularis just below the basement 
membrane, termed as subepithelial fibrosis, resulting in airway 
wall thickening and increased smooth muscle mass.17 In addition, 
release of vascular endothelial growth factor (VEGF) by airway ep-
ithelial cells increases the size of airway wall vessels and promotes 
angiogenesis.18 These structural changes are characteristic of air-
way remodelling in asthma (Figure 1). Thus, the airway epithelium 
may be crucial in the pathophysiology of asthma. In this review, 
we will focus on airway epithelial barrier dysfunction as driver of 
asthma.

F I G U R E  1   Structural changes in the airways of allergic asthma patients: Epithelial barrier dysfunction and airway remodelling. Asthmatic 
airway epithelium exposed to allergens (A) results in the disruption of adherens junctions (Aj) and tight junctions (Tj), which is accompanied 
by loss of ciliated cells, mucus hypersecretion (M), thickening of the basal membrane (B), subepithelial fibrosis (F), increased smooth muscle 
mass (S) and excessive deposition of ECM (E)
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2  | EPITHELIAL BARRIER DYSFUNC TION 
IN A STHMA

The airway epithelial layer in asthma is disrupted, as indicated by de-
tachment of ciliated cells, presence of epithelial cell aggregates (creola 
bodies) in sputum, increased permeability to allergens and reduced ex-
pression of cell-cell adhesion molecule E-cadherin.19,20 Epithelial dam-
age is a pathological feature observed in all phenotypes of asthma.21 
Structural changes have been observed in the airway epithelium of 
children with respiratory problems before the onset of airway inflam-
mation and clinical diagnosis of asthma, suggesting that epithelial 
changes occur early in asthma pathogenesis.2 This challenged the 
dogma that chronic airway inflammation induces airway remodelling. 
One of the key features of epithelial remodelling in asthma is the loss 
of cell-cell contact proteins, which mechanically connect adjacent 
epithelial cells, thereby keeping the barrier intact. These intercellular 
junctions are mainly comprised of tight junctions (TJs), which are lo-
cated most apically, adherens junctions (AJs) and (hemi)desmosomes, 
which are located basolaterally (Figure 2). Desmosomes form adhe-
sive bonds with the filament cytoskeleton between adjacent cells or 
between cells and the lamina propria by nonclassical cadherins.22 The 
major constituent of AJs is transmembrane protein E-cadherin. Its 
extracellular domain binds homotypically to neighbouring cells, while 
the intracellular domain is linked to the actin cytoskeleton by a mi-
crotubule network of p120-catenin, β-catenin and α-catenin proteins, 
providing mechanical support and intracellular signalling. E-cadherin is 
thought to be crucial for formation of all other junctions, and its dis-
ruption results in delocalization of TJ proteins.23,24 TJs are composed 
of the transmembrane proteins zona occludens-1 (ZO-1), occludin, 
claudins and junction adhesion molecules (JAMs) and are the main 
regulators of epithelial permeability.25

Disrupted expression of E-cadherin, β-catenin, ZO-1 and occludin 
has been observed in airway epithelium of asthma patients,20,26,27 

leading to impaired barrier function.19,28 In murine studies, it has 
been demonstrated that the junctional proteins Zo-1, Tjp2, Occludin 
and Claudins-5,-8,-18 and -23 are decreased in all the three chronic 
HDM models of eosinophilic, neutrophilic and mixed granulocyte 
experimental asthma.29 Animal models have also demonstrated that 
lung epithelial-specific deficiency of E-cadherin results in epithe-
lial denudation with specific loss of ciliated cells30 and that loss of 
E-cadherin in club cells induces their proliferation while inhibiting 
differentiation, impairing epithelial repair upon injury.31 Expression 
of E-cadherin may not only be critical for the formation of a func-
tionally intact epithelial layer, as downregulation of E-cadherin is 
also crucial for epithelial plasticity, where cells lose their epithelial 
phenotype and gain mesenchymal characteristics, termed epitheli-
al-to-mesenchymal transition (EMT).32 Loss of E-cadherin releases 
β-catenin into the cytoplasm, where it is normally proteolytically de-
graded by a destruction complex including glycogen synthase kinase 
(GSK)-3β. Inactivation of GSK-3β, for example by active WNT signal-
ling or TGF-β, prevents the degradation of β-catenin, resulting in nu-
clear translocation and transcriptional activation. Active β-catenin, 
especially when bound to co-activator CREB-binding protein (CBP), 
promotes the expression of E-cadherin repressors such as Snail and 
Slug as well as various mesenchymal genes, including fibronectin, 
EGF receptor (EGFR) and VEGF, which may contribute to airway wall 
remodelling.22 The initial induction of a mesenchymal phenotype 
enables epithelial repair, promoting cell migration and proliferation. 
After this, cells differentiate into a pseudostratified epithelial layer. 
In asthma, this repair process may be disturbed, which is supported 
by the observed increase in basal cell markers (eg cytokeratin 5 and 
p63)22 and repair markers (eg TGF-β and EGFR) in the airway epi-
thelium, representing a more proliferative, less differentiated phe-
notype.22 HDM facilitates TGF-β-induced EMT in airway epithelial 
cells in vitro33 and induces EMT-like features in the airway epithelium 
of mice.34 In asthma, epithelial cells are more susceptible to undergo 
TGF-β-induced EMT.35 The Notch signalling pathway also plays a 
crucial role in controlling the fate of airway epithelial cells upon in-
jury. Although the mechanisms by which Notch signalling modulates 
epithelial homeostasis and responses to environmental insults are 
incompletely understood, various Notch (target) genes are differ-
ently expressed in healthy and asthmatic airway epithelium.36,37

The inability to reconstitute epithelial barrier function may have 
important pathophysiological consequences, not only resulting in 
increased permeability to allergens, but also propagating pro-in-
flammatory and abnormal repair responses in the airways, leading 
to airway hyper-responsiveness and airway remodelling16 (Figure 3). 
Accordingly, airway epithelial damage has been shown to cor-
relate with the severity of AHR.38 Furthermore, the knock-down of 
E-cadherin in vitro resulted in EGFR activation and pro-inflammatory 
responses.32 Upon loss of E-cadherin in vivo, the loss of ciliated cells 
was accompanied by spontaneous goblet cell metaplasia and infiltra-
tion of eosinophils and dendritic cells.22 These features may at least 
in part be mediated by activation of β-catenin, as inhibition of β-cat-
enin downstream activity attenuated airway inflammation, smooth 
muscle thickness, supepithelial fibrosis, hyper-responsiveness and 

F I G U R E  2   Schematic representation of the basic structural 
components of epithelial junctions. AJ, Adherens Junction; JAM, 
junctional adhesion molecule; TJ, Tight junction
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goblet cell metaplasia in mouse models of asthma.39 Moreover, we 
recently demonstrated that inhibition of β-catenin/CBP signalling 
not only improves epithelial barrier function, but also attenuates 
HDM-induced airway epithelial pro-inflammatory responses in 
vitro.40

3  | ENVIRONMENTAL RISK FAC TORS AND 
EPITHELIAL BARRIER DYSFUNC TION IN 
A STHMA

As described above, the development of asthma results from the 
interaction between genetic and environmental factors. Various 
in vitro studies have shown that allergens can disrupt the airway 
epithelial barrier.41 Exposure of cultured airway epithelial cells 

to proteolytically active allergens from house dust mites (eg Der 
p1), ragweed, white birch, grass and pollen can lead to the cleav-
age of the junctional proteins.22 Furthermore, house dust mite 
(HDM), cockroach, fungi and mould extracts have been shown 
to disrupt epithelial junctions via activation of PAR-2 and down-
stream signalling.42 Accordingly, exposure of human airway epi-
thelial cells to HDM induces rapid, transient reduction in epithelial 
barrier function,33 concomitant with delocalization of junctional 
proteins (Figure 3). Submerged cultures of airway epithelial cells 
from mild/moderate asthma patients were more susceptible to 
HDM-induced barrier dysfunction than healthy subject-derived 
cultures. Surprisingly, this was independent of serine and cysteine 
proteases.43,44 Yet to be identified PRRs coupled to Ca2+/calpain-
dependent disruption of epithelial junctions may be involved.43 In 
addition to direct effects of allergens, allergic sensitization may 

F I G U R E  3   Proposed model of house dust mite (HDM)-induced airway epithelium barrier dysfunction. Allergens including HDM can 
directly cleave epithelial junctions proteolytically or act on various pattern recognition receptors (PRRs), including PAR-2, C-type lectins 
(CLR) and purinergic receptors. Their activation can induce degradation and/or delocalization of junctional proteins, including E-cadherin, 
in which intracellular Ca2+ signalling and subsequent activation of calpain may be involved and epidermal growth factor receptor (EGFR) 
activation.161 EGFR can activate ADAM10, a sheddase of E-cadherin as well as CCL20.40 In addition, EGFR signalling can induce secretion of 
pro-inflammatory mediators, such as CCL20, CCL17 and GM-CSF that attract and/or activate dendritic cells (DCs), Th2 cells and eosinophils 
(EOS).22 When epithelial repair and re-differentiation is impaired, persistent loss of E-cadherin can result in activation of β-catenin-mediated 
programs that cause further loss of epithelial characteristics, induction of a more basal/mesenchymal phenotype as well as goblet cell 
hyperplasia, with loss of ciliated cells, as is also characteristic of the epithelial phenotype in asthma
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lead to epithelial barrier dysfunction as consequence of type-2 
mediated airway inflammation associated with atopic asthma. 
Both Th2 cells and ILC2 may contribute to the compromised epi-
thelial barrier function through IL-13 secretion, which induces 
many features of the airway epithelium in asthma, including mucus 
production, and has been reported to disrupt airway epithelial bar-
rier function in vitro.45,46 In fact, Th2-derived IL-13 and IL-4 and 
type-2 driving cytokine TSLP47 have been shown to decrease bar-
rier integrity in air-liquid interface (ALI) cultured primary airway 
epithelial cells from healthy subjects, with delocalization of TJ 
proteins.48 This was not observed in cultures derived from asthma 
subjects, in which barrier function was already compromised at 
baseline.48 This may reflect cell-intrinsic loss of airway epithelial 
cells in asthma to re-differentiate and form an effective barrier 
upon ALI culture in vitro, as proposed previously.2

In addition to allergens, early-life sensitization to lower respi-
ratory viral infections is an important environmental risk factor 
for developing asthma in childhood, with the highest risk for pro-
gression to persistent asthma when these environmental expo-
sures coincide.49 Two major respiratory viruses, rhinovirus (RV) 
and respiratory syncytial virus (RSV), bind to specific receptors 
on the airway epithelium, for example cadherin-related family 
member 3 (CDHR3) and ICAM-1 for RV50 and CX3CR1 for RSV.51 
Upon internalization, uncoating and replication, the virus is rec-
ognized by TLR3 and RIG-I like helicase, inducing production of 
anti-viral type-I interferons (IFNs), which eradicate pathogens and 
promote pro-inflammatory cytokine release. Impaired epithelial 
barrier function is accompanied by compromised IFN responses 
in asthma, resulting in increased viral replication upon rhinovirus 
infection compared to nonasthma-derived epithelial cultures.52 
Exposure of airway epithelial cells to double-stranded RNA or in-
fection with RV or RSV in vitro induces upregulation of TSLP53,54 
and may thus support type-2 mediated inflammation. This may 
further impair epithelial barrier function in a vicious circle, viral 
exposure causing disruption of epithelial cell-cell contacts.55,56 
RV has been shown to disrupt TJ integrity in human bronchial ep-
ithelial cell lines and ALI-differentiated primary cultures via loss 
of ZO-1 from TJs and airway epithelial cells cultures from healthy 
and asthmatic children, with more pronounced and sustained ef-
fects in asthmatic-derived cultures.57

Other environmental factors that may impact on epithelial in-
tegrity are those associated with nonatopic forms of asthma, for 
example noneosinophilic, neutrophilic asthma. Besides viral infec-
tions, these include smoking58 and bacterial colonization.21 Smoke 
exposure is well known to cause airway epithelial barrier dysfunc-
tion by disruption epithelial junctions.59 Indirectly, smoking-in-
duced Th17-mediated inflammation can reduce epithelial barrier 
function through Th17 cytokine IL-17.58 As colonization of the re-
spiratory tract with bacteria, for example Streptococcus pneumoniae, 
Haemophilus influenzae or Moraxella catarrhalis, may increase the risk 
of asthma, it is of relevance that also bacteria can cause epithelial 
barrier dysfunction, as demonstrated for infection with S pneumonia 
in a bronchial epithelial cell line.60

Finally, environmental pollutants such as particulate matter and 
ozone as well as household cleaning products may contribute to 
the development and/or worsening of asthma61 and can disrupt 
the epithelial barrier. Particulate matter has been shown to atten-
uate ciliary beat frequency in bronchial epithelial cells and degrade 
TJ proteins in lung epithelial cells.62 Diesel exhaust particles de-
creased the expression of TJ proteins and epithelial resistance in 
primary nasal epithelial cells.63 Ozone was reported to cause rapid 
disruption of the epithelial barrier with increased permeability and 
diminished expression of TJ and AJ proteins in the absence of IL-
33.64 Of interest, also laundry detergents were recently shown 
to compromise human bronchial epithelial integrity by disruption 
of tight junctions and may thus contribute to the development of 
asthma.65

4  | GENETIC FAC TORS AND THE 
EPITHELIAL BARRIER IN A STHMA

As mentioned above, in addition to environmental factors, a heredity 
component contributes to disease risk, with 35%-95% of susceptibil-
ity thought to involve genetic factors. Positional cloning and more 
recently genome-wide association studies (GWAS) have been highly 
successful in identifying risk alleles and loci for asthma and related 
phenotypes.66

Expression quantitative trait loci (eQTL) studies in human bron-
chial epithelial cells and bronchial alveolar lavage identified that risk 
alleles regulate highly relevant genes involved in epithelial function, 
for example IL1RL1, IL33, TSLP, HLA-DQB1, CDHR3, ZTB10, Corf30, 
DEX1 and GSDMB levels.67 Similarly, Luo and colleagues combined 
asthma GWAS results and small and large airway epithelial eQTL 
data to demonstrate enrichment of airway epithelial eQTLs.68 This 
supports the barrier hypothesis, where genetic alterations influence 
the ability of the skin and epithelial tissues to form a protective bar-
rier from, for example pathogens and allergens.1 The finding that the 
majority of genetic variants associated with risk of developing 
asthma is shared risk factors for the development of atopic dermati-
tis and allergic rhinitis69 further underlines this. Selected genes iden-
tified through asthma genetic studies and implicated in epithelial cell 
function are outlined in Table 1. Genetic changes in the epithelium 
may thus be important in mediating several aspects of relevance to 
asthma, including the inflammatory environment, for example IL33, 
TSLP, IL1RL1, responses to pathogens, for example CDHR3, 

 1The shared genetic origin of asthma, rhinitis and eczema was recently analysed in 
detail.133 This approach revealed a striking overlap in risk SNPs between these three 
allergic disorders, with limited disease-specific polymorphisms. The study identified a 
total of 132 plausible target genes, which were enriched for expression in blood and lung 
tissue.133 These results clearly indicate that susceptibility to allergic diseases is mediated 
by at least in part shared biological mechanisms. Loss of epithelial barrier function has 
indeed been postulated as a central mechanism in allergic rhinitis134 and eczema135 as 
well, with loss of function variants in epidermal protein filaggrin being identified as major 
predisposing factor of atopic dermatitis.136 In addition, GWAS studies have identified 
epithelial junction protein Desmoglein 1 as susceptibility gene for eosinophilic 
esophagitis.137
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mucociliary clearance, for example MUC5AC, KIF3A, EFHC1 and cell 
homeostasis and epithelial integrity, including proliferation, migra-
tion, cell-cell adhesion, apoptosis and repair, for example PCDH1, 
SMAD3, GSDMB, ORMDL3 and PLAUR.

While a discussion of all these genes is beyond this review, it is 
important to highlight selected genes particularly implicated in bar-
rier function. In the GWAS of atopic dermatitis followed by asthma, 
two genes thought to be involved in ciliary function were implicated, 

TA B L E  1   Selected genes identified through genetic studies of asthma implicated in airway epithelial cell homeostasis which may impact 
barrier properties and inflammation

Chrs
Gene
Reported variants Main Asthma Phenotype(s)

Suggested role in HBEC homeostasis/epithelial gene 
expression References

2q12.1 a IL1RL1
rs3771166

Asthma, 
Asthma + Exacerbation, 
moderate-severe asthma

IL33 receptor, regulates inflammation. Important in 
innate immune responses including responses to 
viruses and Type 2 inflammation. Expressed in HBEC

74,76,138,139

5q22.1 a TSLP
rs1043828

Asthma, Asthma + Hay 
fever, moderate-severe 
asthma

Can drive induction of allergic responses by effects 
on several cell types including dendritic cells. 
Regulates an IL-13–dependent increase in bronchial 
epithelial cell proliferation

138,140-143

5q31.1 KIF3A
rs17690965

Atopic Dermatitis followed 
by Asthma

Molecular motor that transports molecules along 
microtubules, role in ciliary function. Role in 
epithelial apoptosis and inflammation

70,71,144

5q31.3 PCDH1
rs3797054
rs3822357

Airway 
hyper-responsiveness

Epithelial adhesion, differentiation, barrier formation 78,79,145

6p12.2 EFHC1
rs9357733

Atopic Dermatitis followed 
by Asthma

Contains an EF-hand motif which is able to bind 
Ca2+ ions. Involved in ciliary function

70,72,73

7q22.3 a CDHR3
rs6967330

Asthma + Exacerbation Epithelial polarity and cell-cell interactions. Receptor 
for Rhinovirus C, the most common respiratory virus 
associated with exacerbations in asthma. Cys529Tyr 
regulates viral entry

76,77,146

9p24.1 a IL33
rs1342326

Asthma, 
Asthma + Exacerbation, 
moderate-severe asthma

Epithelium-derived cytokine alarmin, regulates 
inflammation via interactions with ST2/IL1RL1 on 
several inflammatory cells. Type 2 inflammation, viral 
exacerbation. Also activates HBEC via ST2/IL1RL1

74,76,138,147,148

11p15.5 a MUC5AC
rs11603634

Moderate-Severe asthma Oligomeric mucus/gel-forming, a pathogenic mucin 
linked to allergic airway hyper-reactivity. Elevated in 
bronchial epithelial cell brushing from severe asthma 
patients

74,75

15q22.33 SMAD3
rs744910

Asthma, Asthma + Hay 
fever

Signalling intermediate in the TGF-β1 induced 
epithelial–mesenchymal transition

69,74,75,139,149,150

17q21.1 a GSDMB
rs7216389

Asthma, childhood 
asthma + exacerbations, 
Asthma + Hay fever, 
childhood asthma, 
moderate–severe asthma

Member of gasdermin-domain containing protein 
family, elevated in the airway epithelium in asthma 
and in mice increased expression led to spontaneous, 
remodelling and airway hyper-responsiveness. 
Epithelial cell pyroptosis

76,82,83,140,151

17q21.1 ORMDL3
rs7216389

Asthma, childhood 
asthma + exacerbations, 
Asthma + Hay fever, 
childhood asthma, 
moderate–severe asthma

Orosomucoid-like protein isoform 3, regulates 
endoplasmic reticulum (ER) stress. Implicated 
in epithelial barrier formation, pro-remodelling 
phenotype in vivo and in vitro. Sphingolipid 
regulation

69,76,138,151-156

19q23 PLAUR
rs4493171 rs2356338
rs2239372

Asthma, decline in lung 
function

Regulates activation of urokinase plasminogen 
activator (uPA), triggering the plasminogen/plasmin 
activation cycle. Epithelial repair, proliferation, pro-
remodeling phenotype

157-160

Note: For a comprehensive review of asthma related phenotypes, these loci have been associated with see recent reviews.54,142

Abbreviations: CDHR3 cadherin-related family member 3; EFHC1, EF-hand domain containing protein 1; IL1RL1, Interleukin 1 Receptor Like 1; 
IL33, Interleukin 33; KIF3A, Kinesin Family Member 3A; MUC5AC, Mucin 5AC, Oligomeric Mucus/Gel-Forming; ORMDL3, ORMDL sphingolipid 
biosynthesis regulator 3; PCDH1, Protocadherin 1; PLAUR, plasminogen activator, urokinase receptor; SMAD3, GSDMB, gasdermin B; TSLP, Thymic 
stromal lymphopoietin.
aIdentified in eQTL studies using asthma risk alleles in airway epithelium. 
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that is KIF3A and EFHC1.70 These genes encode for Kinesin Family 
Member 3A and EF-hand domain containing protein 1, respectively. 
KIF3A is thought to function as a molecular motor transporting mol-
ecules along microtubules and has also been implicated in ciliary 
function in epithelial cells. Interestingly, mice deficient in KIF3A in 
the epithelium is more susceptible to allergen-induced inflammation 
and epithelial cell apoptosis in an allergic airway model.71 Mutations 
within EFHC1 have been associated with juvenile myoclonic epi-
lepsy via a role in motile cilia and in regulating calcium channels.72,73 
Importantly, EFHC1 may be of relevance in cilia function in the air-
ways, being expressed in the tracheal epithelium in mice. Therefore, 
KIF3A and EFHC1 may in part contribute to poor allergen and mucus 
clearance from the airways. Recently, in a GWAS of moderate-severe 
asthma, a signal on chromosome 11 was identified that regulates 
expression of MUC5AC,74 the main mucin found in the airways and 
linked to severe asthma,75 emphasizing abnormal mucociliary clear-
ance. In a GWAS of asthma with exacerbation, polymorphisms span-
ning CDHR3 were identified, including coding change Cys529Tyr.76 
CDHR3 is involved in epithelial polarity and cell-cell interactions. As 
described above, recent data suggest that CDHR3 is the receptor 
for RV-C and the Cys529Tyr mediates this interaction providing a 
putative mechanism. Interestingly, CDHR3 knock-down also influ-
ences transepithelial resistance.77 The PCDH1 gene also encodes an 
adhesion molecule localizes to cell-cell junctions especially in dif-
ferentiated airway epithelial.78,79 PCDH1 has a dual function, sup-
porting epithelial barrier function79 and regulating TGF-β/SMAD3 
signalling.80 Hence, PCDH1 may serve as cellular switch between 
TGF-β driven EMT and epithelial repair vs epithelial differentiation 
and barrier formation. The gene ORMDL3 regulates cytosolic Ca2+ 
entry by the sarco-endoplasmic reticulum (ER) Ca2+ ATPase (SERCA) 
pump, which we previously showed to be involved in HDM-induced 
epithelial barrier dysfunction.43 Moreover, the ORMDL3 gene 
product was recently shown to support RV replication in epithelia 
cells.81 Finally, GSDMB encodes gasdermin B, which is a member of 
the gasdermin-domain containing protein family linked to epithelial 
apoptosis. Recently, it has been shown that GSDMB is elevated in 
the airway epithelium in asthma. In mice, increased expression led to 
spontaneous airway hyper-responsiveness,82 and the GSDMB pro-
tein induces pyroptotic cell death in airway epithelium.83 Although 
several asthma genes have been shown to act on airway epithelial 
function, a clear endotype of asthma driven by the loss of epithelial 
barrier specifically due to these asthma-associated polymorphisms 
has not been identified. However, it is important to note that the 
asthma phenotypes associated with these selected genetic signals 
include bronchial hyper-responsiveness (PCDH1, PLAUR, ORMDL3/
GSDMB) and asthma exacerbation (IL33, IL1RL1, CDHR3, ORMDL3/
GSDMB), potentially directly by effects on bronchial epithelial func-
tion. Similarly, genetic signals associate with blood eosinophil counts 
(IL33, IL1RL1, TSLP), time to asthma onset (IL33, IL1RL1, ORMDL3/
GSDMB), atopic march (KIF3A, EFHC1) and self-reported allergy 
(IL33, ORMDL3/GSDMB, IL1RL1), potentially via an indirect mecha-
nism by the production of cytokines from bronchial epithelial cells 
leading to type-2 inflammation.84,85 The gene signature of the type-2 

high endotype of asthma, characterized by increased blood and BAL 
eosinophils and basal membrane thickness, lower PC20 threshold 
and a better lung function improvement after inhaled corticoste-
roids, identifies this asthma subphenotype as a steroid responsive 
signature of epithelial cells in asthma,86 indicating the relevance of 
the airway epithelial phenotype in the disease. Two of these genes 
(CLCA1 and SERPINB2) are predominantly expressed in goblet cells, 
indicating that a true asthma endotype reflecting loss of epithelial 
barrier function is yet to be identified.

5  | EPIGENETIC FAC TORS AND THE 
EPITHELIAL BARRIER IN A STHMA

As outlined, asthma-associated polymorphisms can directly alter a 
gene's coding sequences, thereby altering protein function and, con-
sequently, the biology of the airway epithelium. More frequently, 
however, asthma-associated SNPs have a regulatory effect on gene 
expression, acting as eQTLs. A recent study shows that almost 59% 
of the asthma-associated SNPs identified by the Trans-National 
Asthma Genetic Consortium (TAGC) study is an eQTL in nasal epi-
thelium and that in almost 90% of these cases, this effect is mediated 
by CpG methylation.87 Clearly, epigenetic regulation of gene expres-
sion is highly relevant to the translation of disease susceptibility into 
altered biology of the airway epithelium. Epigenetic marks are highly 
responsive to environmental exposures relevant to asthma inception 
or exacerbations, further underscoring the relevance of epigenetics 
for understanding asthma pathophysiology.88-91 Three main types 
of epigenetic marks can be distinguished: CpG methylation, histone 
modifications and small, noncoding RNAs.

Differences in DNA methylation patterns between asthma pa-
tients and healthy controls have been studied in (epi)genome-wide 
analyses (EWAS). As CpG methylation patterns are also highly cell-
type dependent, cell-type composition of the biological sample is an 
important cofounder of EWAS analyses.92 Therefore, we here focus 
on the studies in upper (nasal) airway brushes, that mainly consist of 
epithelial cells,93 and which were shown to have the best correlation 
to the DNA methylation patterns in bronchial epithelial cells.94 In four 
studies reported to date,95-98 methylation of the GJA4 gene, encod-
ing Connexin37, a protein capable of forming heterotypic gap junc-
tions, was consistently found to be reduced, although an association 
with altered gene expression levels was not detected.97 Other genes 
relevant to epithelial barrier function (CDH26, CDHR3) were also 
found differentially methylated.95,97 In addition to CDHR3, another 
genes selectively expressed in ciliated epithelial cells, ZMYND1091 
was found to be differentially methylated, which is consistent with 
an altered airway epithelial composition in asthma. Only one study 
to date analysed CpG methylation in bronchial biopsies from asthma 
patients and healthy controls, but this analysis was focussed on 
methylation patterns associated with remission of asthma.99

Several studies have looked specifically into DNA methylation 
changes induced by relevant environmental factors, which affect epi-
genetic regulation of asthma genes.100-102 RV infection-induced DNA 
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methylation patterns differed between nasal epithelial cells from asth-
matic children and healthy controls, with enrichment for loci carrying 
genes involved in cell-cell and cell-matrix interactions.100 Similarly, RV 
infection-induced DNA methylation patterns differed between nasal 
epithelial cells from asthmatic adults and healthy controls.102 In chil-
dren who had early-life rhinovirus-induced wheezing, specific DNA 
methylation patterns associated with asthma later in life were iden-
tified, including increased methylation at the SMAD3 locus.101 Finally, 
one elegant study analysed the effects of diesel exhaust particle expo-
sure and (segmental) allergen challenge on DNA methylation patterns 
in airway epithelial cells obtained by bronchial brushing both 48 hours 
after exposure and after 4 weeks.103 While both allergen challenge and 
diesel exhaust particle exposure induced DNA methylation changes 
in airway epithelial cells, the most pronounced effects were observed 
in individuals who received an allergen challenge 4 weeks prior to ex-
haust particles exposure, with genes annotated to cell adhesion being 
most enriched in the differentially methylated regions.103 These data 
clearly indicate the relevance of environmental exposures for epigen-
etic regulation of gene expression in the airway epithelium and there-
fore for asthma. As the epigenetic signature of the airway epithelium 
integrates genetic susceptibility with the life history of relevant envi-
ronmental exposures, it can be expected to be a strong biomarker for 
asthma development or even treatment response.98

In addition to DNA methylation, epithelial gene expression can be 
modulated by miRNAs, which are small noncoding RNAs of about 21-25 
nucleotides that can bind to target mRNAs, leading to mRNA degrada-
tion or translational repression. Altered miRNA profiles have been ob-
served in airway epithelium of asthma patients compared to healthy 
controls.104,105 Several of the differentially expressed miRNAs modu-
late the expression of genes implicated in epithelial barrier function, 
repair, proliferation or apoptosis. For example, miR-744, miR-19a, miR-
221, miR-27a, miR-128 and miR-34/449 are differentially expressed in 
bronchial epithelial cells from asthma patients compared to controls 
and have been described to modulate cell proliferation, apoptosis and 
ciliogenesis by targeting TGF-β1, TGF-βR2, SIRT1, SMAD2 (target of 
both miR-27a and miR-128) and Cp110, respectively (Figure 4).106-111 
Of interest, the discussed miRNAs were not all identified in patients 
with the same disease severity. The differential expression of miR-
744, miR-221 and miR-19 was shown in HBEC from severe asthma 
patients with an atopic and eosinophilic phenotype,106-108 whereas 
miR-34/449 was identified in mild atopic asthma.105 While miR-19 
was higher in severe atopic eosinophilic asthma, its expression in mild 
asthma was similar as in healthy controls.108 Moreover, a miR-19 mimic 
induced more proliferation in HBEC from severe asthma patients than 
in control-derived HBEC. The expression of miR-744 was reduced 
in HBEC from severe asthma, but tended to increase in mild asthma 

F I G U R E  4   The influence of microRNAs in epithelial barrier function. This overview illustrates miRNAs that are differentially expressed 
in asthma and could contribute to epithelial barrier dysfunction in asthma. miRNAs coloured in red with upward arrow are upregulated in 
asthma, and miRNAs coloured in blue with downward arrow are downregulated in asthma. miRNAs with an underscore were measured in 
bronchial epithelial cells, and miRNAs in italic were measured in sputum or blood from asthma patients and controls. Black lines ending with 
a perpendicular line indicate inhibitory effects, and black lines ending with an arrow indicate a stimulatory effect. Full lines indicate direct 
effects, and half-full lines indicate indirect effects. EMT, epithelial-mesenchymal transition; LPS, lipopolysaccharide; SIRT-1, Sirtuin 1; SPDEF, 
SAM Pointed Domain Containing ETS Transcription Factor; TGF-β1, Transforming Growth Factor Beta 1; TGFBR1, Transforming Growth 
Factor Beta Receptor 1
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compared to healthy controls.106 These observations suggest that the 
impact of the miRNAs on the epithelium can differ with disease se-
verity; however, this requires further investigation. It is also unknown 
whether miRNAs that affect epithelial barrier in asthma modify the 
treatment response, but for miR-34/449, miR-19 and miR-223, there 
were no correlations between miRNA expression and treatment with 
inhaled corticosteroids.105,108,112 Furthermore, miR-155 and miR-223 
have been implicated in EMT by altering mesenchymal markers,112,113 
although their exact role in asthma airway epithelial cells is unknown. 
Also, differential expression of miR-3162, miR-125b, miR-223 and miR-
330 in blood or sputum from asthma patients, possibly transported in 
extracellular vesicles (EVs), can affect the epithelial barrier function 
by influencing the expression of, for example β-catenin, vimentin and 
mucins112,114-117 (Figure 4). Moreover, airway epithelium itself can 
communicate by secreting EVs. Epithelial-derived EVs play a role in 
airway homeostasis and airway epithelial remodelling by inducing 

amongst others mucin hypersecretion.117 The miRNA signature in epi-
thelial-derived EVs is altered upon stimulation with IL-13 compared to 
EVs obtained from untreated bronchial epithelial cells.118 However, it 
is unclear whether similar changes can be observed in the miRNA pro-
file of epithelial-derived EVs from asthma patients and whether those 
changes in miRNA expression affect the epithelial barrier. In asthma 
murine models, lower miR-448-5p and higher miR-106a levels were 
expressed in lung tissue compared to control mice.111,119 In vitro up- or 
downregulation of these miRNAs resulted in altered protein levels of 
E-cadherin, fibronectin, collagen IV and vimentin in bronchial epithe-
lial cells after TGF-β1 stimulation.111,119

Together, the interaction between genetic factors and epigen-
etic regulatory mechanisms may contribute to abnormalities in the 
airway epithelium and the development of asthma. Understanding 
these mechanisms may lead to identification of novel targets in air-
way epithelium for asthma intervention.

F I G U R E  5   Analysis of airway epithelial cells in asthma using single-cell RNA sequencing. (A) Airway wall biopsies are obtained from 5th-
7th generation airway through bronchoschopy, followed by tissue digestion and scRNA-Seq analysis. (B) Unsupervised clustering identifies 
a large number of epithelial and nonepithelial cell types from airway wall. (C) Comparison of relative frequencies of cell types identified 
increased number of goblet cells and mucous ciliated cells, a novel, disease-associated ciliated epithelial cell phenotype and increased 
numbers of mast cells and B cells in asthma compared to healthy. (D) Analysis of epithelial cell subset-specific transcriptomes reveals 
presence of IL4/IL13-induced gene transcription in goblet cells and mucous ciliated cells, specifically in asthma
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6  | NE W INSIGHTS FROM SINGLE- CELL 
SEQUENCING DATA

Further insight into the mechanisms of asthma and the role of the 
airway epithelium may come from technological advances. These 
include recent progress in single-cell RNA sequencing (scRNA-Seq), 
greatly enhancing the granularity at which the cellular composition 
of tissues can be characterized.120 In addition, scRNA-Seq allows the 
description of molecular cell phenotypes (or cellular “states”), predict 
cell-cell interactions and cell state transitions at unprecedented detail. 
Using these technologies to study lung tissue, the ionocyte has re-
cently been discovered as novel airway epithelial cell.6,121 The pulmo-
nary ionocyte is a relatively rare cell type, characterized by expression 
of ion transporters including V-ATPase and the cystic fibrosis CFTR 
gene, indicating a role in regulation of ion and fluid transport across 
the airway epithelium as well as pH of the mucosal surface. While 
the application of these technologies to identify all cell types of the 
healthy human body, including lung, as pursued by the Human Cell 
Atlas consortium122,123 are exciting, these novel techniques also hold 
great potential to increase our understanding of disease pathogenesis. 
A first description of the cellular landscape of healthy airway wall and 
the changes thereof in patients with childhood-onset allergic asthma 
identified a unique disease-associated airway epithelial cell state, as 
well as a remarkable shift in cell-cell communication.93 Various known 
changes in the asthmatic airway wall were recapitulated by scRNA-
Seq analysis, such as increased numbers of airway smooth muscle 
cells, goblet cells and mast cells, underscoring the validity of the ap-
proach (Figure 5). The study identified a subset of ciliated epithelial 
cells in asthma that was characterized by expression of MUC5AC and 
other goblet-cell genes, a molecular phenotype of ciliated cells that 
was not observed in healthy airway walls.93 This so-called mucous 
ciliated cell type was mapped to the ciliated differentiation trajectory. 
Interestingly, these mucous ciliated cells as well as the goblet cells 
in asthma lacked expression of Notch target genes, but instead ex-
pressed a signature of IL4/IL13-induced genes, which was in contrast 
to the (few) goblet cells present in airway wall from healthy donors. 
Therefore, mucous ciliated cells were proposed to represent a tran-
sitional cell state in the ciliated lineage—induced by IL-4/IL-13 signal-
ling—leading to a mucous cell phenotype that contributes to mucous 
cell metaplasia in asthma.93 As these pathogenic Th2 effector cells 
were exclusively observed in asthmatic airway walls, and the mucous 
ciliated cells showed evidence of IL-13-induced gene transcription, it 
seems likely that Th2 cytokines are responsible for these cell state 
changes in the asthmatic airway epithelium. Indeed, Th2 effector cells 
were found to dominate the predicted airway wall cell-cell interac-
tome in asthma.93 We previously reported that Th2 cytokine produc-
tion was suppressed by primary bronchial epithelial cells, a regulatory 
mechanism that seems to be attenuated in asthma.124 The airway wall 
cellular interactome analysis also identified cell-cell communication 
between epithelial cells and other structural or tissue-resident cells, 
characterized by growth factor signalling. This interaction was present 
in healthy airway wall, but lost in asthma.93 Therefore, it will be of 
great interest to study which cell-cell interactions observed in healthy 

airway wall maintain the barrier function of airway epithelium, and 
how these can be restored in the asthmatic condition. Future studies 
in larger cohorts of patients and controls, as well as in a larger variety 
of asthma subphenotypes also hold the promise of charting the cel-
lular changes and causal gene regulatory networks underlying a wider 
variety of asthma endotypes. Moreover, analysis of matched scRNA-
Seq data sets from airway wall biopsies, bronchial brushes and nasal 
brushes will allow design of novel biomarkers for disease activity or 
treatment response using less invasive methodologies.

7  | THER APEUTIC STR ATEGIES TO 
IMPROVE BARRIER FUNC TION

Targeting the airway epithelial barrier may constitute a promising 
novel therapeutic strategy for asthma and related allergic diseases. 
Intrinsic abnormalities in the airway epithelium of asthmatics culmi-
nate in inappropriate immune and inflammatory responses as well 
as defective repair. Genetically supported targets could double the 
success rate in clinical development.

A number of pathways involved in maintaining or restoring 
epithelial barrier function are targetable; these include those (a) 
enhancing mucosal innate immunity, (b) decreasing epithelial per-
meability through effective assembly of TJ and AJ proteins and (c) 
restoring epithelial cell integrity by improving regeneration and 
regulating mucus production. Modulation of several developmental 
transcription factors has been shown to improve epithelial differen-
tiation and as a consequence, barrier function. We recently demon-
strated that inhibition of β-catenin/CBP signalling inhibits EMT and 
promotes recovery of epithelial barrier function through restoration 
of E-cadherin expression.40,80,125,126 Notch signalling appears to 
be intimately involved in regulating mucus cell fate and mucus re-
lease.127 Recent studies from our laboratory and others have shown 
that modulating Notch signalling has a dramatic effect on mucus 
secretion.37 In addition, Smad3 inhibitors may reverse airway epi-
thelial abnormalities as observed in asthma, as reviewed previously.2 
Because of the described effects of type-2 cytokines on epithelial 
barrier function, we anticipate that new biologics may have benefi-
cial effects on airway epithelial barrier function specifically in type-2 
driven asthma; however, to the best of our knowledge, there are no 
studies yet that assessed this.

The majority of patients respond well to a combination of inhaled 
corticosteroids (ICS) and bronchodilators. Whether or not ICS have 
direct beneficial effects on epithelial health or barrier function is un-
clear. Although corticosteroids failed to prevent the TGF-β-induced 
downregulation of E-cadherin in a bronchial epithelial cell line,128 
findings in primary bronchial epithelial cells indicate that ICS protect 
against oxidative stress-induced epithelial barrier dysfunction.129 
However, asthma epithelium was found less responsive to ICS.129 
Oxidative stress as well as IL-17 may lead to ICS unresponsiveness 
by PI3K-dependent post-translational histone deacetylase (HDAC)2 
modifications and proteasomal HDAC2 degradation.130,131 Strategies 
to restore ICS sensitivity could be beneficial in improving epithelial 
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barrier function in asthma in combination with ICS, including the use 
of antioxidants or α-IL-17 antibodies.132 Endotype-specific therapies 
that have been recently developed to mitigate symptoms in patients 
refractory to conventional ICS-based therapy may largely have their 
impact through effects on immune/inflammatory components though.

8  | CONCLUDING REMARKS

The airway epithelial phenotype induced by the interaction of gen-
otype and environment plays a central role in the pathogenesis of 
asthma. Accumulating evidence indicates that multiple genetic var-
iants associated with the risk of developing asthma in response to 
environmental factors regulate proteins of relevance to airway epi-
thelial function, including roles in barrier function, inflammation, 
mucociliary clearance and homeostasis. In addition, alterations in 
epigenetic regulation contribute to abnormalities in the biology of 
the airway epithelium in asthma. Further insight into these regu-
latory mechanisms, for example by the use of scRNA-seq, holds 
promise for identifying patients likely to benefit from epithelial-
focused therapies and the identification of targets for novel thera-
pies strategies aimed at correcting dysfunctional epithelial barrier.
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