Brain Type 1 Cannabinoid Receptor Availability in Patients with Anorexia and Bulimia Nervosa

Nathalie Gérard, Guido Pieters, Karolien Goffin, Guy Bormans, and Koen Van Laere

Background: The endocannabinoid system is a possible target in the treatment of eating disorders. We used positron emission tomography to investigate the type 1 cannabinoid receptor (CB1R) in bulimic and anorectic patients.

Methods: We investigated 16 female bulimia nervosa patients (BN) (age = 23.8 ± 7.1 years) and 14 female anorexia nervosa patients (AN) (age = 20.5 ± 3.6 years) using the selective CB1R ligand [(18F)MK-9470]. The control group consisted of 19 age-matched women (age = 25.2 ± 8.5 years). Statistical parametric mapping (p, family-wise error < .05) and volume-of-interest analyses of CB1R availability were performed.

Results: Global CB1R availability was significantly increased in cortical and subcortical brain areas in AN patients compared with healthy control subjects (+24.5%, p = .0003). Regionally, CB1R availability was increased in the insula in both AN and BN patients (p = .01 and p = .0004) and the inferior frontal and temporal cortex in AN patients only (p = .02).

Conclusions: Global CB1R upregulation in AN patients is a possible long-term compensatory mechanism to an underactive endocannabinoid system in anorectic conditions. There is a similarity in CB1R dysregulation both in AN and BN in the insular cortex, which is involved in the integration of interoceptive information, gustatory information, reward, and emotion processing.

Key Words: [(18F)MK-9470], anorexia nervosa, bulimia nervosa, insula, positron emission tomography, type 1 cannabinoid receptor

Anorexia nervosa (AN) and bulimia nervosa (BN) are severe psychiatric disorders with prevalence in Western countries of 0.7% and up to 2%, respectively, and a poor clinical outcome. Characteristic symptoms of AN are the refusal to maintain a minimally normal body weight, an intense fear of gaining weight or becoming fat, and a disturbed perception of body shape and size. Bulimia nervosa is characterized by binge-eating episodes and loss of control over eating behavior. In addition, self-esteem in these patients is largely determined by their body shape and weight (1).

Pharmacotherapeutic interventions for AN and BN remain unsatisfactory, as there is still a lack of understanding of their pathogenesis. Functional neuroimaging has shown cortical metabolic dysfunction and changes in monoamine neurotransmitter systems (2). While the serotonergic and dopaminergic systems have been studied most intensively, the endocannabinoid neurotransmission system (ECS) has recently been recognized as an important target in both food intake and reward processing (3). The type 1 cannabinoid receptor (CB1R) is abundantly expressed in the central nervous system and induces mainly inhibition of neurotransmission through modulation of presynaptic neurotransmitter release, primarily through retrograde signaling (4). Type 1 cannabinoid receptor inverse agonists inhibit food intake through both central and peripheral mechanisms (5), but their development is halted by undesired central side effects such as increased prevalence of depression and suicidality. In contrast, cannabinoid agonists stimulate food intake in humans and induce beneficial effects in acquired immune deficiency syndrome related anorexia, suggesting altered ECS neurotransmission in anorectic conditions (6). Different alleles of the CB1R gene have been associated with restricting and binge-eating/purging AN subtypes (7). Moreover, an increase in plasma levels of the endocannabinoid anandamide has been demonstrated in AN but not in BN (8). Also in animals, an orexigenic effect of CB1R agonists is present, even in the satiated condition (9). In one clinical trial in primary anorexia nervosa, patients received high doses of cannabis’ psychoactive component Δ⁹-tetrahydrocannabinol, but no improvement in food intake or weight was observed (10).

Recently, the CB1R-specific radioligand [(18F)MK-9470] was developed for CB1R positron emission tomography (PET) imaging and characterized preclinically and clinically (11). Its affinity (7 nmol/L) is much higher than the endogenous cannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and its selectivity is several ten-fold higher for the CB1R over the type 2 cannabinoid receptor (11). Using this radioligand, we have investigated in vivo CB1R availability in both female AN and BN patients, in comparison with age-matched healthy volunteers. Based on current literature on the ECS in eating disorders, we hypothesized that the ECS would be underactive, at least in AN, and a compensatory chronic upregulation of the CB1R would be the result.

Methods and Materials

Participants and Procedure

Female AN and BN patients were recruited during hospitalization in an inpatient university center for eating disorders. Seven restricting and seven binging/purging AN patients were included, as well as 16 purging BN patients, as diagnosed according to DSM-IV criteria (12). Patients were between 17 and 45 years old. The control group (CON) consisted of 19 healthy age-matched women. Informed consent was obtained from all participants before study investigations, and the study was approved by the local ethics committee and performed according to the World Medical Association Declaration of Helsinki.

All participants were screened for absence of current medical conditions or current psychosis and addiction and were free of any psychoactive medication. Blood and urine testing as performed on the day of PET scanning included screening for benzodiazepines, neuroleptics, opiates (including synthetic), cocaine and metabo-
lites, amphetamines, and cannabinoids. Magnetic resonance imaging (MRI) was performed to exclude structural brain abnormalities and for voxel-based morphometry to assess possible changes in gray matter concentration (13). Subjects completed the Eating Disorder Evaluation Scale (EDES) and the Eating Disorder Inventory (EDI) to assess psychological and clinical aspects related to eating disorders (14,15).

Radiotracer Characteristics and Preparation

The radiotracer \([^{18}F]MK-9470\) (Merck Research Laboratories, West Point, Pennsylvania) is an inverse agonist with a high affinity and selectivity for the human CB1R. The precursor for tracer synthesis was obtained from Merck Research Laboratories and subsequent labeling was performed onsite with 2-fluoroethyl bromide as previously described (11). The radioligand had a radiochemical purity of >95% and a mean specific radioactivity of 261 ± 144 GBq/μmol.

Imaging Procedure

All PET acquisitions were performed on an HR+ camera (Siemens, Erlangen, Germany). Subjects fasted for at least 4 hours before the PET scan and received on average 306 ± 55 MBq of \([^{18}F]MK-9470\) in a slow bolus injection, under standardized injection circumstances. Full dynamic measurements with arterial blood sampling were conducted for the first 10 subjects (5 AN and 5 BN) and for the control subjects, between 0 and 75 minutes and 90 and 120 minutes post injection. These data were used to assess whether a simplified noninvasive quantification procedure (see further), as shown for healthy volunteers, was justified in these patient groups as well (16). Arterial sampling for input curve determination and blood metabolites was done as described previously (16). For the remaining patients, a simplified dynamic acquisition between 90 and 120 minutes post injection was used, without blood sampling. Using a transmission scan \((^{68}Ge\) source) for attenuation correction, images with 4 mm resolution were reconstructed by a standard filtered backprojection algorithm.

Image Processing

Each subject’s dynamic \([^{18}F]MK-9470\) scan was co-registered to the corresponding volumetric magnetic resonance (MR) image. Regional time-activity curves were calculated from a manually defined volume-of-interest (VOI) template to assess kinetic parameters (16). For the subjects with arterial sampling, the fractional uptake value (fractional uptake rate [FUR]), which is proportional to the CB1R total volume of distribution \((V_T)\), was calculated as the ratio of total radioactivity concentration in tissue at the end of the scan and the integral of metabolite-corrected plasma radioactivity from time of injection to the end of the scan (16). Also, parametric modified standard uptake value \((mSUV)\) images were generated by summation of the 90 to 120 minutes image data, corrected for injected dose and subject’s body weight: \(mSUV = \frac{\text{[activity concentration (kBq/mL)]} \times \text{(subject’s weight [kg])} + 70}{2\text{/injected dose (MBq)}}\) (17). With comparable peripheral tracer metabolization in subjects, this simplified method can be used as indicator of CB1R availability, thereby not requiring invasive blood sampling (16). Figure 1 shows that no difference in FUR versus mSUV relationship was present between both groups, indicating absence of systematic bias or peripheral metabolization effects because of this simplification.

Optimized voxel-based morphometry (VBM) was performed to assess structural gray matter differences between groups (18). Normalized MR images were segmented into gray matter maps and a voxelwise comparison of the local gray matter concentration was performed with Statistical Parametric Mapping version 2 (SPM 2; Wellcome Trust Centre for Neuroimaging, London, United Kingdom).

Data Analysis

For Statistical Parametric Mapping analysis, spatially normalized gray matter maps and mSUV PET images were smoothed with an isotropic 10 mm Gaussian kernel and analyzed using a categorical design. Both absolute and regional relative distributions of CB1R availability were investigated. The latter was done by normalizing activity to total cerebral values. For statistical assessment, a relative gray matter analysis threshold of 80% was set to exclude extracerebral activity, and only significant clusters \((P_{\text{cluster}} < .05, \text{corrected for multiple comparisons})\) were retained, in combination with sufficient localizing power \((P_{\text{height}} < .001 \text{uncorrected for multiple comparisons})\). The extent threshold \(k_{\text{ext}}\) was set at 50 voxels (4 cm³) to minimize false-positive small clusters.

Additionally, a VOI analysis was performed by loading a predefined VOI map on all parameter PET images (PMOD; PMOD Inc., Zurich, Switzerland). This VOI map was drawn on an MRI template in Montreal Neurological Institute space, representing cortical Brodmann areas and subcortical gray matter structures (caudate nucleus, putamen, nucleus accumbens, pallidum, thalamus, and hypothalamus). Individual adjustments were performed for the subcortical brain areas based on the individual MR images. Type 1 cannabinoid receptor availability values were compared using analysis of variance and Tukey honestly significant difference post hoc tests \((p < .05)\), by use of Statistica v. 9.0 (StatSoft, Inc., Tulsa, Oklahoma).

With both analysis methods, correlations with EDES and EDI scores were assessed.
fore, the remaining analysis was done using mSUV determinations. and FUR values as indicator for the AN, BN, and CON groups. There-
rected arterial input functions were present between the AN, BN,
together.

binding, results were analyzed and reported for both subgroups
significant differences in their demographic characteristics or in CB1R
PET images.

Figure 1 shows the group comparison of mSUV
Figure 2. (A) Mean parametric images of global [18F]MK-9470 binding in the anorexia nervosa (AN), bulimia nervosa (BN), and control group (CON). Modified standard uptake values (mSUV) are indicated by the color bar. (B) Quantitative representation of mean gray matter mSUV (+ 1 SD) for each group. **AN > CON, p < .001; *AN > BN, p < .05; AN: n = 14, BN: n = 16, control subjects: n = 19.

Table 1. Demographic and Clinical Characteristics of Study Participants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AN</th>
<th>BN</th>
<th>Control Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>14 F (7 AN-BP/7 AN-R)</td>
<td>16 F (16 BN-P)</td>
<td>19 F</td>
</tr>
<tr>
<td>Age (years)</td>
<td>20.5 ± 3.6</td>
<td>23.8 ± 7.1</td>
<td>25.2 ± 8.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>42.5 ± 6.2b</td>
<td>61.2 ± 10.3a</td>
<td>66.4 ± 13.1b</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>15.5 ± 1.3b</td>
<td>21.8 ± 2.5c</td>
<td>23.1 ± 4.3b</td>
</tr>
<tr>
<td>Menstrual State</td>
<td>Amenorrhea (n = 14)</td>
<td>Normal (n = 14)</td>
<td>Normal (n = 19)</td>
</tr>
<tr>
<td>Estimated Disease Duration (years)</td>
<td>4.2 ± 4.5</td>
<td>6.3 ± 6.3</td>
<td>—</td>
</tr>
<tr>
<td>EDES</td>
<td>n = 11</td>
<td>n = 13</td>
<td>n = 13</td>
</tr>
<tr>
<td>Total</td>
<td>36.7 ± 9.5c</td>
<td>37.4 ± 9.5c</td>
<td>69.5 ± 6.2kc</td>
</tr>
<tr>
<td>EDI</td>
<td>n = 13</td>
<td>n = 15</td>
<td>n = 13</td>
</tr>
<tr>
<td>Total</td>
<td>87.3 ± 19.4b</td>
<td>83.4 ± 30.1c</td>
<td>13.7 ± 9.6kc</td>
</tr>
</tbody>
</table>

Values are given as mean ± 1 standard deviation. Scores below 55 on the EDES questionnaire indicate pathology; for the EDI, pathology is defined with a cutoff value of 30 or higher. Significant differences p < .05.

AN, anorexia nervosa; BMI, body mass index; BN, bulimia nervosa; BP, binging-purging; EDES, Eating Disorder Evaluation Scale; EDI, Eating Disorder Inventory; F, female; P, purging; R, restricting.

aAN versus BN.
bAN versus control subjects.
cBN versus control subjects.

Results

Clinical Characteristics

Demographic and clinical characteristics and EDES/EDI (sub-)scores for all subjects are given in Table 1. Weight and body mass index of AN patients were significantly lower compared with the BN patients and healthy control subjects (p < .001). No differences were found in disease duration between both patient groups. Anorexia nervosa and BN patients scored significantly lower on the EDES questionnaire (p < .001) and significantly higher on the EDI questionnaire relative to healthy control subjects (p < .001).

Imaging Results

Optimized voxel-based morphometry did not detect any significant changes in gray matter concentration between AN, BN, and CON. Therefore, no partial volume correction was performed on the PET images.

As restricting and binge-purging anorectics showed no significant differences in their demographic characteristics or in CB1R binding, results were analyzed and reported for both subgroups together.

No significant differences in metabolization or metabolite corrected arterial input functions were present between the AN, BN, and CON groups. Figure 1 shows the group comparison of mSUV and FUR values as indicator for the AN, BN, and CON groups. Therefore, the remaining analysis was done using mSUV determinations.

The mean injected [18F]MK-9470 dose was 269 ± 67 MBq for AN, 303 ± 55 MBq for BN, and 336 ± 17 MBq for the control group.

Statistical Parametric Mapping analysis showed a whole-brain increase of CB1R availability in the AN group compared with the BN patients and the control group. The average gray matter mSUV of the AN group was increased with 24.5% compared with control subjects (p = .0003) and with 14.7% compared with the BN group (p = .03) (Figure 2). The difference between BN and control subjects did not reach significance (p = .16).

Regional analysis after normalizing mSUV to global cerebral uptake showed a relative significant increase in CB1R availability in the bilateral insular cortex of AN and BN patients in comparison with healthy control subjects (Figure 3). Only in AN, clustered CB1R increases were present in the inferior frontal cortex (Brodmann area 45) and in the inferior temporal cortex (Brodmann area 20) compared with the control volunteers. Cluster location, significance, and group relative differences are given in Table 2. No significant differences were found between both patient groups.

Correlation Analyses

Regional relative CB1R availability was positively correlated with the EDI subscale drive for thinness in the superior temporal brain area of AN patients (r = .86, pheight < .001) (Figure 4), but no significant correlations were present for BN patients.
are overlaid on a T1 magnetic resonance imaging template at compared with healthy control subjects. Statistical Parametric Mapping T-maps

Volunteers

Cluster

Discussion

In this study, we observed strong changes in cerebral CB1R availability in the insular, inferofrontal, and inferotemporal pole of anorexia nervosa (AN) patients and (B) in the insular cortex of bulimia nervosa (BN) patients compared with healthy control subjects. Statistical Parametric Mapping T-maps are overlaid on a T1 magnetic resonance imaging template at $p_{\text{uncor}} < .001$ (uncorrected); T values are indicated by the color bar. Cluster extent threshold is 50 voxels. AN: $n = 14$, BN: $n = 16$, control subjects: $n = 19$. L, left; R, right.

Figure 3. (A) Increases in relative type 1 cannabinoid receptor availability in the insular, inferofrontal, and inferotemporal pole of anorexia nervosa (AN) patients and (B) in the insular cortex of bulimia nervosa (BN) patients compared with healthy control subjects. Statistical Parametric Mapping T-maps are overlaid on a T1 magnetic resonance imaging template at $p_{\text{uncor}} < .001$ (uncorrected); T values are indicated by the color bar. Cluster extent threshold is 50 voxels. AN: $n = 14$, BN: $n = 16$, control subjects: $n = 19$. L, left; R, right.

Table 2. Cluster p Values and Peak Locations for Statistical Parametric Mapping Comparisons of Regional CB1R Binding Between Patient Groups and Volunteers

<table>
<thead>
<tr>
<th>Cluster Level</th>
<th>Voxel Level</th>
<th>Montreal Neurological Institute Coordinates and Structure</th>
<th>p_{cor}</th>
<th>k_e</th>
<th>T</th>
<th>p_{uncor}</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Name and Proportional Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Anorexia Nervosa > Control Subjects</td>
<td>.02</td>
<td>337</td>
<td>5.70</td>
<td><.001</td>
<td>-46</td>
<td>24</td>
<td>8</td>
<td>Left inferior frontal cortex (BA 45) + 6.1%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>.02</td>
<td>361</td>
<td>5.18</td>
<td><.001</td>
<td>-30</td>
<td>-8</td>
<td>-34</td>
<td>Left inferior temporal cortex (BA 20) + 6.6%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>.02</td>
<td>376</td>
<td>4.42</td>
<td><.001</td>
<td>-48</td>
<td>-24</td>
<td>-26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>.02</td>
<td>376</td>
<td>4.89</td>
<td><.001</td>
<td>34</td>
<td>10</td>
<td>10</td>
<td>Right insula (BA 48) + 4.6%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>.02</td>
<td>376</td>
<td>4.74</td>
<td><.001</td>
<td>38</td>
<td>-8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Bulimia Nervosa > Control Subjects</td>
<td><.001</td>
<td>754</td>
<td>6.02</td>
<td><.001</td>
<td>-36</td>
<td>22</td>
<td>0</td>
<td>Left insula (BA 47) + 5.2%</td>
</tr>
</tbody>
</table>

$AN, n = 14$; $BN, n = 16$; volunteers, $n = 19$.

BA, Brodmann area; CB1R, type 1 cannabinoid receptor; k_e, cluster extent; p_{cor}, corrected p value; p_{uncor}, uncorrected p value.

www.sobp.org/journal

logically involved in energy homeostasis through food intake (3). Previously, it has been hypothesized that the ECS is hypoactive in anorectic conditions (20,21), based on several indirect arguments. Cannabinoid agonists are used as appetite stimulants in cancer and AIDS patients, likely compensating for endocannabinoid hypoactivity during anorectic conditions that accompany these diseases (6). Type 1 cannabinoid receptor inactivation by blockade or genetic deletion is a strategy used to suppress eating by decreasing hedonic aspects of food intake, suggesting the importance of tonic endocannabinoid signaling for normal feeding (9). Kirkham et al. (22), addressing short-term effects of starvation, reported an increase of hypothalamic 2-AG concentration after 24 hours in the rat brain. Hanus et al. (23) found a whole brain decrease of 2-AG following 12 days of food restriction in mice, including hypothalamic and hippocampal regions. This could reflect adaptive strategies to cope with short or long-lasting food deprivation. In the short term, elevated levels of 2-AG may be beneficial to trigger searching for food and eating behavior, while in the context of a prolonged starvation, survival may be aided by downregulating this orexigenic signal and reducing appetite and motivation to eat (24). Finally, at the opposite side of the eating disorder spectrum in conditions of hyperphagia and obesity, arguments for a hyperactive ECS and CB1R overstimulation have been put forward (3,25). The presumed ECS hyperactivity could be accompanied by a chronic upregulation of CB1R expression, as is also seen in other G protein-coupled receptor systems (e.g., upregulation of striatal D2 receptors in Parkinson’s disease). Albeit that decreased endocannabinoid content could also drive a decrease in CB1R expression or that the change in CB1R expression may occur independently from changes in the endocannabinoid content (26), a compensatory receptor upregulation is plausible from a large intracellular CB1R reserve (27).

At odds with this hypothesis, in AN patients, elevated plasma levels of anandamide were found (8), but it is uncertain whether peripheral levels reflect the central nervous system status. Furthermore, little success was obtained in a single Δ^9-tetrahydrocannabinol trial in anorectics, but the dosage used in this study may have been too high and therefore even have anorexigenic properties (10,28).

Possible hormonal effects on the global ECS activity in AN patients should also be considered. Ghrelin is increased in AN, while leptin is decreased in AN but not in BN (8,29,30). In rodents, a downregulating effect on the CB1R through leptin signaling has been described (31), while in animal models on obesity, defective leptin signaling has been associated with regionally increased CB1R
binding (32,33). Moreover, higher anandamide turnover may contribute to a compensatory CB1R upregulation if fatty acid amide hydrolase (responsible for the inactivation of anandamide) is not subjected to an inhibitory influence of leptin, as seen in human T lymphocytes (34), or of estrogen. Low estrogen levels are seen in AN patients in the amenorrheic state (35). In contrast, in our population of BN patients, only two presented with amenorrhea.

Regarding regional changes in CB1R availability, we found an insular increase in both groups. The insula is a key area in the neural control of interoception, i.e., the sense of the body’s physiological condition, reward, and emotion processing, and its anterior part encompasses the primary taste cortex. Consistent with this knowledge, the insula has been implicated in neural responses to hunger, in the sensory processing of food intake (taste, smell, texture), and in modulation of the rewarding value of food (36). Other symptoms commonly found in AN and BN patients, such as a distorted body perception, lack of insight, and denial of illness or elevated pain thresholds, could also be manifestations of abnormal interoceptive awareness and thus insular dysfunction (37). Insular involvement in eating disorders has been described in functional magnetic resonance imaging studies using symptom provocation strategies with pictures of food, high-calorie drinks, or the subject’s own distorted body image (38–40). Our findings further suggest a role for insular cannabinoid signaling dysfunctions in the altered relationship toward food and its rewarding value, which is characteristic for AN and BN patients.

Whether eating disorder pathology, rather than comorbid disturbances in mood and anxiety, can be causally linked to the observed insular dysfunction in our patients remains unclear. The insular cortex has been implicated in obsessive-compulsive disorder (OCD) and more generally in anxiety but also in depression (36). Evaluation of the CB1R in noneating-disordered patients with depression or OCD should further elucidate this issue. Some studies reported direct cannabinoid-related measures in mood and anxiety disorders. Prefrontal CB1R brain density was increased in depressed suicide victims (41) and preclinically in rodent models exposed to chronic stress (26). As endocannabinoid deficiency is suggested to be involved in depressive syndromes (28) and cannabinoids might reduce OCD symptoms (42), this may indicate potential cannabinoid-related disturbances both in those disorders and in eating disorders.

Besides this common main finding in the AN and BN patients, regional differences also were found, i.e., increased CB1R availability in the inferior frontal and inferior temporal cortex of AN patients. In AN, and to a much lesser extent in BN, dysfunction in frontal and temporal areas related to executive functioning and emotional processing has been observed for several other in vivo neurochemical markers, e.g., local hypoperfusion, decreased glucose metabolism, and decreased serotonin-2A neuroreceptor binding potential (for review, see [2]). Neuropsychological deficits present in AN patients, such as problem-solving or attention disabilities, are often related to changes in the frontal cortex because of its mediating role herein (43). This altered cognitive processing could also influence the responsiveness to emotional stimuli mediated in (medial) temporal areas, for example, the decreased experience in food pleasantness as observed in AN patients. In parallel, recently increased brain histamine H1 receptor binding has been reported in AN patients in limbic brain and in the prefrontal, orbitofrontal, and temporal cortex (44). Our findings also corroborate a recent study describing increased serotonin-1A receptor binding in parts of the frontal and temporal cortices of lean AN patients and suggesting frontotemporal impairment to be involved in the pathophysiology of AN (45). Moreover, we found a positive correlation of CB1R binding in the superior temporal brain area of the AN patients with the scores on the drive for thinness EDI subscale, which represents a core psychopathological feature of the disease. Anorexia nervosa and BN patients could present differences in their motivation for dieting in the fact that rather than the drive to be thinner as in AN, it is the drive to be objectively thin that animates BN patients (46). Anorexia nervosa patients could be motivated more by a fear of gaining weight.

Figure 4. Positive correlation of normalized modified standard uptake values with the Eating Disorder Inventory (EDI) subscale drive for thinness in the right superior temporal cortex of anorexia nervosa (AN) patients (BA 22, $r = .86$). AN: $n = 14$. BA, Brodmann area; CB1R, type 1 cannabinoid receptor.
compared with BN patients, meaning a different emotional involve-
ment in this process.

Some limitations of this study have to be considered. Regarding
completeness of behavioral variables, not all patients fully com-
pleted their questionnaires (as detailed in Table 1). However, this
small group of missing data are unlikely to have impacted on the
results, as AN and BN patients are well known to differ on these
EDES and EDI measurements.

Regarding the state of hunger of the participants, the eating
disordered patients were not deprived from food for a longer time
than the control subjects, as they were investigated at the moment
they were hospitalized with a normalized meal pattern.

Also, a number of potential confounds regarding radiotracer
quantification are present. The large differences in body weight
between patient groups and control subjects may represent differ-
ences in distribution volume of the tracer, e.g., in fatty tissues. There
was no difference in metabolized fraction over time for either
group. Furthermore, metabolite-corrected plasma input curves
were calculated for a subgroup of patients. The area under these
input curves was, on average, 417.6 ± 133.2 for AN, 291.9 ± 117.5
for BN, and 378.0 ± 99.8 for control subjects. Analysis of variance
did not detect significant differences in plasma area under the
curve between groups. In Figure 5, we also quantified CB1R avail-
ability with the FUR, to address these potential confounds, and
observed similar results. However, the FUR differences were not
significant, most probably because of the limited size of this subset
and the slightly higher interindividual variance in FUR measures
compared with mSUV (see also [16]). With the absence of tracer
delivery or metabolism effects, we, however, demonstrated the
reliability of mSUV derived values. Tracer dosing has been ac-
counted for in both mSUV and FUR quantification by injected activ-
ity normalization.

Figure 5. Bar chart of type 1 cannabinoid receptor fractional uptake ratio per volume-of-interest for a smaller subset of anorexia nervosa (AN) and bulimia
nervosa (BN) patients and for control subjects (CON). Fractional uptake ratio is increased but not significantly different in all cerebral regions of AN patients
compared with the other groups, except in the white matter. AN: n = 5, BN: n = 6, CON: n = 19. CB1R, type 1 cannabinoid receptor; CG ant, anterior cingulate
gyrus; CG pos, posterior cingulate gyrus; V_T, total receptor distribution volume.

www.sobp.org/journal
studies in an activity-based anorexia rat model showed reversibility of increased CB1R availability upon recovery from the anorectic state (N.G. et al., unpublished data; June 2010).

New studies with related drug compounds, such as CB1R agonists or fatty acid amide hydrolyase or monoacylglycerol lipase inhibitors, and accounting for dose-dependent cannabinoid effects and reduced psychotropic side effects may lead to beneficial therapeutic approaches for eating disorders. As anorexia nervosa does not imply a loss of appetite, beneficial effects of altering cannabinoid signaling might be more related to restoring homeostatic food intake or positively mediating rewarding aspects of food intake. To support this further, in vivo direct or indirect information on the concentration of endocannabinoid ligands in the central nervous system of control subjects and eating disordered patients is warranted.

This work was supported by the Research Council of the Katholieke Universiteit Leuven (OT/05/58). KG is Research Assistant and KVL is Senior Clinical Investigator of the Flemish Fund of Scientific Research.

We are grateful to all study participants. We thank the personnel of the Centre for Eating Disorders and the positron emission tomography radiopharmacy and nuclear medicine team of the University Hospitals Leuven for their skilled collaboration. Merck Research Laboratories is acknowledged for the availability of the [18F]MK-9470 precursor and nonradioactive standard.

KVL received research grants from Merck, Inc., GE Healthcare, and Johnson & Johnson. GB received research grants from Merck, Inc. and Johnson & Johnson. All other authors report no biomedical financial interests or potential conflicts of interest.

