<table>
<thead>
<tr>
<th>Citation</th>
<th>Piet Callemeyn, Dimitri De Jonghe, Georges Gielen and Michiel Steyaert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization of Fully-Integrated Power Converter Circuits Comprising</td>
<td>Tapered Inductor Layout and Temperature Effects</td>
</tr>
<tr>
<td>International Conference on Synthesis, Modeling, Analysis and Simulation</td>
<td>Methods and Applications to Circuit Design 2012 (pp.37 - 40)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archived version</th>
<th>Author manuscript: the content is identical to the content of the published paper, but without the final typesetting by the publisher</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Published version</th>
<th>http://dx.doi.org/10.1109/SMACD.2012.6339411</th>
</tr>
</thead>
</table>

|----------------------|---|

<table>
<thead>
<tr>
<th>Author contact</th>
<th>piet.callemeyn@esat.kuleuven.be</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 32 (0)16 321086</td>
</tr>
</tbody>
</table>

(article begins on next page)
Optimization of Fully-Integrated Power Converter Circuits Comprising Tapered Inductor Layout and Temperature Effects

Piet Calleme, Dimitri De Jonghe, Georges Gielen and Michiel Steyaert
ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
Email: piet.calleme@esat.kuleuven.be

Abstract—A technique for the optimization of fully-integrated inductive DC-DC converters is presented. An optimization framework is used to acquire an optimal converter, focusing on the on-chip inductor as well as on the accurate layout-based modeling of temperature effects. For the inductor in inductive DC-DC converters, a tapered topology is introduced. A fully-integrated DC-DC boost converter is designed and optimized in a 0.13 μm CMOS technology. The power loss in the circuit is reduced with 27 % resulting in a 7 % efficiency improvement, compared to a fully-integrated DC-DC boost converter with a regular inductor topology.

I. INTRODUCTION

Until recently, the analog and mixed-signal designer was seen as an “artist” capable of designing an optimal circuit, based on years of design experience and thorough circuit knowledge. Nowadays, promising techniques in the domain of artificial intelligence are emerging. These techniques can simplify the work of an analog designer. Tools have already been developed for the optimal sizing of circuits [1]. The combination of the circuit knowledge of the designer and the use of these tools enable the designer to determine the most optimal circuit in a short time. Using these tools, even inexperienced designers are now able to identify the trade-offs in a circuit.

State-of-the-art power management techniques require fully-integrated DC-DC converters, as it becomes more cost-efficient to integrate all the passive components on the same die [2]. The integration of these components is paramount for the overall performance of the monolithic solution. This high efficiency can be achieved by the use of design tools.

In this work, an optimization framework is used in order to optimize the complex trade-offs encountered in the design of DC-DC converters. The effect of the inductor topology as well as temperature effects are taken into account in this layout-aware framework. Moreover, a tapered on-chip inductor topology is presented. It enables an efficiency increase compared to the regular inductor topologies that are used, without adding an extra cost in the processing.

The optimization framework is described in section II. The architecture of the inductive DC-DC converter along with the tapered inductor topology and temperature effects is discussed in section III. Section IV gives an overview of the results and conclusions are drawn in section V.

II. OPTIMIZATION FRAMEWORK

An inductive DC-DC boost converter, as depicted in the top part of Figure 1 will be optimized. A high-level system and circuit model has been designed for this DC-DC boost converter in [3]. This high-level abstraction model enables a designer to perform an accurate evaluation (within 3% accuracy range of SPICE simulations) of the converter performance, using specified circuit parameters, without the need for time-intensive SPICE simulations. The existing model is adapted by the authors and enhanced in this paper to include temperature effects as well.

The inductor design has a major impact on the efficiency of a fully integrated DC-DC boost converter, due to the ever-present power losses in the inductor. Therefore it is important to have accurate simulations of this component. However, finite-element 3D-simulations of inductors are very time-intensive. The technique presented below will be incorporated into the model, hereby enabling highly accurate inductor optimization without extensive simulation times. In Figure 1 this is presented as the layout model.

The high-level DC-DC converter model and inductor
optimization technique are integrated in a global evolutionary framework. The framework uses a combination of existing evolutionary techniques, e.g. NSGA-II [4], SPEA [5] and ALPS [6]. This combination yields an efficient and robust framework, applicable for layout-aware optimization of a relatively large class of analog building blocks. The general flow is presented in the bottom part of Figure 1.

There are two simulation possibilities for the inductor layout. The first one is to perform fast evaluation using fieldsolvers. An example of such a tool for simulation of inductors is FastHenry [7]. On the other hand, when electromagnetic coupling effects need to be considered, expensive evaluations are needed. For instance, Momentum can generate accurate simulation results for 3D on-chip structures. In general, the expensive evaluations are more accurate than the fast evaluations. The total cost of the expensive simulations can be reduced using techniques as MC, DOE, LHS and active learning sampling selection, see [8] and [9].

In this optimization framework, a fast evaluation is chosen, where the simulated samples are stored in a database. These samples can be reused when similar design points occur. The loss in accuracy compared to the expensive evaluations is in this case irrelevant to consider the use of slightly more accurate expensive simulations. However, in power converters using on-chip transformers the use of expensive electromagnetic simulations is motivated and in such a case one would choose to follow this path. This is possible in the framework, but out of the scope of this paper.

To conclude, the temperature effects are considered in the optimization loop as well. As will be discussed in section III-C, the temperature effects will have a considerable influence on the overall converter performance.

III. ARCHITECTURE

A. Inductive DC-DC boost converter

The basic circuit for an inductive DC-DC boost converter is given in Figure 2 at the top right-hand side. The quality factor of the inductor determines the efficiency of the converter. Since all power to the load needs to be delivered through the inductor, the series resistance of the inductor will determine the efficiency of the complete circuit. Moreover, the parasitic capacitive coupling of the inductor to the substrate will lead to power losses.

Different approaches exist to increase the quality factor of inductors. One way to achieve this is to apply ferro-magnetic materials to metal-track inductors [10] or using bondwire inductors [11]. Another way is the addition of a thick metal-film on top of the chip [12], under-etching of the substrate [13] or even the use of an aluminium substrate [14]. However these are expensive methods. In the presented improved inductor topology, the standard CMOS process is used without the need for additional costly processing steps.

B. Inductor optimization

Two trends are identified in the design of an inductor. First, one wants to reduce the parasitic series resistance as much as possible. Secondly, one wants the inductance to be as high as possible. The latter can be realized by increasing the number of windings. However, because of the increased length of the metal track, an increasing parasitic series resistance R_s arises (1). In (1), ρ and l denote the resistivity and length of the metal track respectively. A indicates the cross-section area of this metal track.

Furthermore, the inductor area will increase, yielding an increase of the parasitic substrate capacitance C_{sub} (2). In (2), ϵ_0 and ϵ_r indicate the absolute and relative permittivities of the oxide between the metal track and substrate, A_{ovl} indicates the overlapping area of metal track and substrate and d indicates the distance between the inductor metal track and substrate.

$$R_s = \frac{\rho \cdot l}{A} \quad (1)$$

$$C_{sub} = \frac{\epsilon_0 \cdot \epsilon_r \cdot A_{ovl}}{d} \quad (2)$$

A solution to reduce the parasitic series resistance is the use of more parallel-connected metal layers, as indicated in the full intersection in Figure 2. However, since more metal layers are used, the distance of the lowest metal layer to the substrate decreases. This increases the total parasitic substrate capacitance C_{sub} (2) and hence the power losses in the substrate increase. This is indicated in (3), with input voltage U_s, average voltage drop ΔU over the inductor and switching frequency f_{sw}.

$$P_{loss,sub} = C_{sub} \cdot U_s \cdot \Delta U \cdot f_{sw} \quad (3)$$

In order to solve this problem, a tapered inductor topology is introduced. In this topology, an evenly increasing number of metal layers is used for the inductor metal tracks. The number increases along the length of the metal track, as indicated in the tapered intersection presented in Figure 2. This leads to an increase of series resistance, compared to a solution with added full metal. However, C_{sub} and the corresponding power losses are lower, because less metal is close to the substrate. Because of the continuous distribution of the metal layers, a trade-off is now determined between series resistance and parasitic substrate capacitance. This trade-off is presented in Figure 3. The horizontal axis presents
an increasing number of windings using a full stack of metal layers, leading to a more full inductor topology. From this trade-off curve, the most optimal design point for an inductor can be located. This is incorporated into the optimization loop.

Next to the intersections of the two inductor types in Figure 2, the unrolled versions of both inductors with full metal layers and with tapered metal layers are depicted as well. The latter thus has a decreasing number of windings with full metal stack, meaning that there are less metal layers closer to the substrate. An equivalent electrical lumped model is given in Figure 4. The subsets of this lumped model are shown in Figure 2 for the unrolled tapered inductor. Using (4), the total power loss in the substrate can now be calculated as in [3], with \(U_{\text{C, max}} \) the average \(\Delta U \) over all subsets and \(C_{\text{sub,i}} \) the specific substrate capacitance of each subset. Using the factor \(\frac{1}{n-1} \) the average voltage drop is translated into one that is applicable for a specific subset \(i \) of the \(n \) subsets.

\[
P_{\text{loss, substrate}} = f_{su} \times U_S \times \sum_{i=0}^{n-1} \left(\frac{U_{\text{C, max}} \times C_{\text{sub,i}}}{n-1} \right) \quad (4)
\]

For a boost converter topology, the voltage over the inductor will change frequently. The voltage at node \(U_n \), as seen in Figure 2, will change with a full rail-to-rail swing (large \(\Delta U \)), whereas the side of the inductor at node \(U_{in} \) is at DC-voltage (\(\Delta U = 0 \)). The substrate capacitance at \(U_{in} \) will thus cause no significant power losses according to (3). At the \(U_n \) side, the number of metal layers is reduced yielding lower substrate capacitance of this subset and thus lower power losses.

\[
R_{\text{S, temp}} = R_S \times (1 + \alpha \times \Delta T) \quad (5)
\]

Here, \(R_S \) is the initial parasitic series resistance of the inductor at 25°C. \(\Delta T \) is the temperature rise and \(\alpha \) is the temperature coefficient of the resistivity of the inductor metal tracks. Also, with increasing temperature, the on-resistance of the transistors will increase. This will deteriorate efficiency as well. For an accurate modeling, these temperature effects have been integrated in the high-level model that is used in the optimization framework. Using this adaptation, the obtained results correspond to the real behavior of previously measured DC-DC converters, as discussed in [15].

IV. DISCUSSION OF RESULTS

An inductive DC-DC boost converter (1.2 V to 2.4 V) is designed in a 0.13 \(\mu m \) CMOS technology using a tapered inductor. The properties of this design are summarized in Table I. These simulation results are compared for an inductor using the tapered topology; for an inductor with a regular topology, using only a thick top-metal layer and another regular inductor using eight metal layers. An inductor with 8 tapered metal
layers and resulting inductance of 49.57 nH is created with an area of 2.29 mm². As can be seen in Table I, only a small difference with the inductance of the regular inductors exists. The efficiency of the converter using a tapered inductor however is increased with 7 % giving a total efficiency of 64.5 % instead of 57.3 % for a converter with a full inductor. The temperature effects are considered as well. These have an influence on the maximum output power and should thus be taken into account. The total power loss is reduced with as much as 27 %, going from 19.2 mW to 14 mW. This implicitly presents the lower substrate capacitance in the tapered inductor. Also, the maximum output power has increased with 34 % from 47 mW to 63 mW (or 35.3 mW to 46.6 mW with temperature effects), compared to the regular inductor with one metal layer. The contribution of the inductor to the total power loss has dropped from 59 % to 44 %.

V. CONCLUSION

This paper proposes a technique for the optimization of fully-integrated inductive DC-DC converters. An optimization framework is used, focusing on the on-chip inductor as well as on the accurate layout-based modeling of temperature effects. A tapered inductor topology is introduced. This is applied in a design for a fully-integrated DC-DC boost converter in a 0.13 μm CMOS technology. The power loss in the circuit is reduced with 27 % which results in a 7 % efficiency improvement, compared to a fully-integrated DC-DC boost converter with a regular inductor topology.

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Regular inductor</th>
<th>Full inductor</th>
<th>Tapered inductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>out</sub> at max efficiency</td>
<td>25.4 mW</td>
<td>25.7 mW</td>
<td>25.6 mW</td>
</tr>
<tr>
<td>P<sub>in</sub> at max efficiency</td>
<td>43.3 mW</td>
<td>44.9 mW</td>
<td>39.7 mW</td>
</tr>
<tr>
<td>Max efficiency (with temperature effect)</td>
<td>58.7 %</td>
<td>57.3 %</td>
<td>64.5 %</td>
</tr>
<tr>
<td>P<sub>out,max</sub> (with temperature effect)</td>
<td>47 mW @ η = 52 %</td>
<td>59 mW @ η = 54 %</td>
<td>63 mW @ η = 54 %</td>
</tr>
<tr>
<td>Inductor inductance</td>
<td>49.74 nH (1 layer)</td>
<td>49.62 nH (full)</td>
<td>49.57 nH (tapered)</td>
</tr>
<tr>
<td>Inductor area</td>
<td>2.29 mm² (1 layer)</td>
<td>2.29 mm² (full)</td>
<td>2.29 mm² (tapered)</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>76.8 MHz</td>
<td>76.8 MHz</td>
<td>76.8 MHz</td>
</tr>
<tr>
<td>C<sub>out</sub></td>
<td>0.89 nF</td>
<td>0.89 nF</td>
<td>0.89 nF</td>
</tr>
<tr>
<td>P<sub>loss,inductor</sub> (% of P<sub>loss,total</sub>)</td>
<td>9.2 mW (51 %)</td>
<td>11.4 mW (59.4 %)</td>
<td>6.3 mW (44 %)</td>
</tr>
<tr>
<td>P<sub>loss,total</sub></td>
<td>18 mW (100 %)</td>
<td>19.2 mW (100 %)</td>
<td>14 mW (100 %)</td>
</tr>
</tbody>
</table>