Proteins in a subfamily usually share a specific function that is not common to the entire family. We investigate the use of clustering trees to identify such subfamilies.

Protein function prediction

Several computational methods have been designed to assist scientists in the context of protein function prediction:

- **Homology-based methods**
 - Error prone: error propagation; proteins can change functions

- **Supervised learning approach**
 - Large amount of training data needed

- **Phylogenomic methods**
 - Use phylogenetic information
 - Example: SCI-PHY (Brown et al. 2007)

Top-down hierarchical clustering: Clus-φ

Divisive clustering algorithm Clus-φ

- **Start with one cluster containing all sequences**
- **Repeat**
 - **Split cluster**
 - Clus-φ uses the minimum evolution hypothesis to choose the best split: it constructs a tree with minimal total branch length (cfr. Neighbor Joining).
- **Until there is only one sequence per cluster**

Applying Clus-φ to identify subfamilies

Problem: how to extract clusters from the tree?

- Post-pruning based on minimum description length (minimizing encoding cost) – (cfr. SCI-PHY)

Procedure:

1. Start with complete tree
2. Merge 2 leaves that most reduces the encoding cost
3. Repeat until one node left
4. Choose clustering with minimum encoding cost

Advantages over existing phylogenomic methods:

- Allows to identify functional sites
- Allows to directly classify new sequences
- No need to build the complete tree if only high level grouping of subfamilies is wanted

Experiments

1 - Feasibility

Question: Are polymorphic positions useful to determine protein subfamily identification?

Setting: We added the subfamily information to the data and induced a classification tree using Clus (i.e., supervised classification task)

<table>
<thead>
<tr>
<th>Subfamilies</th>
<th>Classification tree # leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3A</td>
<td>16</td>
</tr>
<tr>
<td>3A'</td>
<td>15</td>
</tr>
<tr>
<td>3A''</td>
<td>14</td>
</tr>
<tr>
<td>3B</td>
<td>12</td>
</tr>
<tr>
<td>3B'</td>
<td>11</td>
</tr>
</tbody>
</table>

Results:

- Subfamilies can be perfectly separated from one another using compact trees.
- On average, the classification tree is 1.2 times larger than the ideal case.

2 - Evaluating the predicted protein subfamilies

Question: Do the predicted clusters correspond to the protein subfamilies defined by the biologist?

Setting: We compared our results with the ones given by SCI-PHY and Neighbor-Joining – NJ (with post-pruning based on encoding cost)

Evaluation measures: We used several clustering evaluation measures proposed in the literature (purity, edit distance, VI distance, category utility)

Results:

- Clus-φ vs NJ: Clus-φ has in general better results than NJ
- Clus-φ vs SCI-PHY: no clear winner (each method has better results for about half of the comparisons)

3 - Evaluating the underlying tree

Question: How meaningful is the tree structure?

Setting: We compared the Clus-φ trees with the SCI-PHY and NJ trees

Evaluation measures: We propose 2 measures to evaluate the trees:

- Number of protein subfamily switches (cfr. Fitch score)
- Edited tree size (most compact tree with pure leaves)

Results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of protein subfamily switches</th>
<th>Edited tree size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clus-φ</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>SCI-PHY</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>NJ</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

Clus-φ vs SCI-PHY: Clus-φ has mostly a smaller edited tree but a higher number of protein subfamily switches

Clus-φ vs NJ: Clus-φ trees are better evaluated according to the 2 measures

Visual inspection of a biologist of 5 datasets - 4 wins

For Clus-φ tree / 1 undecided case