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Abstract: 

Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, 
USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully 
studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of 
lung cancer incidence risk by race and gender in Georgia for the period of 2000–2007. With the 
census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we 
compare a total of seven Bayesian spatio-temporal models including two under a separate 
modeling framework and five under a joint modeling framework. One joint model outperforms 
others based on the deviance information criterion. Results show that the northwest region of 
Georgia has consistently high lung cancer incidence risk for all population groups during the 
study period. In addition, there are inverse relationships between the socioeconomic status and 
the lung cancer incidence risk among all Georgian population groups, and the relationships in 
males are stronger than those in females. By mapping more reliable variations in lung cancer 
incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, 
our study aims to better support healthcare performance assessment, etiological hypothesis 
generation, and health policy making. 

Keywords: Hierarchical Bayesian model | Spatio-temporal pattern | Lung cancer | 
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Article: 

1 Introduction 

In Georgia, USA, during 2001–2005, the age-adjusted lung cancer incidence rate was 53 per 
100,000 in females and 104 per 100,000 in males, the second highest cancer incidence rates after 
breast cancer in females and prostate cancer in males (Georgia Department of Public 
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Health 2008). To the best of our knowledge, however, the spatio-temporal patterns of lung 
cancer risk in Georgia have not been reported, and most of the related research focuses on 
descriptive analyses at a coarse spatial scale (e.g., health district or county level) or temporal 
scale (e.g., 5-year period aggregation). Such results usually obscure detailed variations in lung 
cancer risk in space and time, leading to limited ability to formulate etiological hypotheses or 
limited support for accurate healthcare performance assessments and efficient health 
interventions. 

One of the challenges for mapping lung cancer risk at a fine spatio-temporal scale is limited 
sample sizes. For rare diseases such as cancers, the total counts of cases could become very 
sparse at fine spatio-temporal scales. This situation could become more obvious when many 
demographic dimensions are considered simultaneously, such as gender, age, and race. With the 
sparseness of the counts, some traditional estimates of disease risk, such as the standardized 
incidence ratio (SIR), could become unreliable and may lead to a large misunderstanding of the 
true disease risk due to high sampling variability. Recently, hierarchical Bayesian models have 
been widely used to map disease risk spatially or spatio-temporally (Abellan et al. 2008; 
Bernardinelli et al. 1995; Best et al. 2005; Knorr-Held 2000; Lawson 2009; Mollié 2001; 
Wakefield et al. 2001; Waller et al. 1997; Xia and Carlin 1998). For example, Fortunato et al. 
(2011) used Bayesian modeling to study the spatio-temporal patterns of bladder cancer incidence 
in Utah from 1973 to 2004. Richardson et al. (2006) conducted Bayesian modeling of joint 
patterns of male and female lung cancer risks in Yorkshire in UK. For sparse count data, the 
integration of both data fit and subjective prior information makes it possible for Bayesian 
models to mitigate the inferential biases of frequentist methods that totally depend on data fit. In 
addition, under the Bayesian framework, it is easy to develop model-based spatial and spatio-
temporal smoothing methods, which not only consider the effects of disease risk factors, but also 
borrow strengths from neighboring areas and/or time periods. 

In this study, we used hierarchical Bayesian models and GIS to explore the spatio-temporal 
patterns of lung cancer incidence risk in Georgia. We used the term of “hierarchical” to 
emphasize the hierarchical structure of Bayesian models instead of covariates at different 
organizational levels. The risk under the study was relative risk (RR), which was defined as the 
ratio of local risk in a spatio-temporal unit to the average risk across the whole study area over 
the entire time period. The analyses are conducted for four population groups stratified by gender 
and race at the census tract level over four 2-year periods from 2000 to 2007. A total of seven 
spatio-temporal models under two different modeling frameworks are proposed and compared. 
One framework is to model the RR of each population group separately, and the other framework 
is to jointly model the RR of each population group under the assumption that some common 
disease risk factors exist in all of the population groups. One of the seven models is finally 
chosen based on specific criterion, and its results are interpreted. The aim of the study is to 
obtain reliable spatio-temporal patterns of lung cancer incidence risk by gender and race in 
Georgia at a relatively fine aggregation scale. These patterns can help identify spatio-temporal 



hotspots of lung cancer risk among different population groups for further study and facilitate the 
related health policy decisions in Georgia. The effect of area-based socioeconomic status (SES) 
on the lung cancer incidence risk of population groups also is explored in the modeling. 

2 Study area and data 

Our study area is Georgia, USA, with 1,618 census tracts in 2000. Figure 1 shows the spatial 
distribution of population density by census tract in Georgia 2000. The 10 most populous cities 
in 2000 are also identified in this map. We can see that the population is mainly concentrated in 
the north region of Georgia, especially in the metropolitan Atlanta area that includes the cities of 
Atlanta, Sandy Springs, Roswell, and Marietta. All population and socioeconomic data were 
downloaded from the US Census Bureau. 

 

Fig. 1 Population density by census tract and the 10 most populous cities in Georgia 2000 

The lung cancer data were extracted from the Georgia Comprehensive Cancer Registry (Georgia 
Department of Public Health 2011). A total of 44,671 lung cancer cases were diagnosed in 
Georgia from 2000 to 2007. In this study, we only consider the cases among white and black 



individuals over 20 years old, which reduces the number of cases to 44,348. A total of 4,063 
cases were excluded from the analyses because their recorded residences cannot be geocoded to 
the census tract or more detailed levels. A total of 40,285 cases were included in the final 
analyses. Among them, 34,347 cases (85.3 %) can be geocoded to the street level and the rest of 
them can meet the census tract level. Table 1 shows the distributions of cases by gender and race. 

Table 1 Total numbers of cases of individuals over 20 years old and the included cases in the 
analyses 

  White Black 

Total 
cases 

Included 
cases 

Included cases 
(%) 

Total 
cases 

Included 
cases 

Included cases 
(%) 

Male 20,547 18,614 90.59 5,557 4,991 89.81 

Female 14,882 13,596 91.36 3,362 3,084 91.73 

 

Compared to the zip code or county levels, census tracts are more homogenous and can provide 
more detailed information due to their smaller spatial sizes. Using finer aggregation levels on 
space (e.g., census block group level) and time (e.g., 1-year period) tends to decrease the 
precision of models due to an extremely high degree of data sparseness, to exclude more disease 
cases from the research due to a higher requirement on geocoding accuracy, and to increase the 
computational difficulty due to a significant increase in analytical unit amount. To balance the 
above considerations, therefore, the analyses aggregated the cases into the 1,618 census tracts 
and four 2-year periods, 2000–2001, 2002–2003, 2004–2005, and 2006–2007. The average 
number of cases per census tract per 2-year period was 2.88 for white males, 2.10 for white 
females, 0.77 for black males, and 0.47 for black females. Their average medians were 2, 1.5, 0, 
and 0, respectively. More detailed distribution of the observed numbers of cases is shown in the 
supplementary material. 

3 Methods 

3.1 Population estimation for intercensal years 

The population at risk is important to the calculation of expected cases and the estimation of 
disease risk. However, the census population data at the tract level are only available at the 
census years (e.g., 2000 and 2010), and geographic boundaries of census tracts may change from 
time to time. For example, there were a total of 1,618 tracts in Georgia according to Census 2000 
and that number became 1,969 in Census 2010. In this study, the boundaries of census tracts in 
2000 were used as the standard geography for the whole study period. At the county level, the 
Census Bureau (Population Estimates Program 2011) provides the estimates of population by 



race, gender, and age group for each intercensal year. With the population census data at the tract 
level and the estimates at the county level, we estimated the population by race, gender, and age 
group at the census tract level for each intercensal year. 

First, we used the overlay function in the GIS, ArcGIS™ (ESRI, Inc.), and the areal weighting 
interpolation method (Goodchild and Lam 1980) to estimate the population in 2010 using the 
geography of the 2000 census tracts. To improve the accuracy, we used the 2010 population data 
at the block level instead of the tract level. Then, we followed Best and Wakefield (1999)’s 
Model B to allocate the county population in each race–gender–age group to the census tracts in 
that county. Specifically, we assume the county population in a race–gender–age group, N, are 
multinomially distributed to the census tracts in that county with a vector of apportionment 
probabilities p = (p 1,…,p I ) T , where I denotes the number of census tracts in that county 
andp i is the proportion of the population in census tract i in the population of the county N. The 
probabilities p for each intercensal year are estimated via a simple linear interpolation between 
the censuses (i.e., 2000 and 2010). 

3.2 Relative risk (RR) and expected cases 

We modeled the RR of lung cancer incidence for each gender–race population group in each 
spatio-temporal unit defined by the census tract and the 2-year period. The reference rate of each 
gender–race population group was defined as the indirect age-adjusted incidence rate of that 
population group across the whole state of Georgia over the entire time period 2000–2007. 
Following Vena (1983)’s study on lung cancer, ten age groups were considered in this research 
including age groups from 20 to 39 and 40 to 49, seven five-year age groups from 50 to 84, and 
one group from 85 and over. Using the US 2000 standard population for standardization, the 
direct age-adjusted (over 20 years old) lung cancer incidence annual rates (per 100,000 
population) in Georgia from 2000 to 2007 were 132.7 for white males, 75.3 for white females, 
135.2 for black males, and 54.5 for black females. 

The expected number of cases, which reflects the reference rate, was needed in the modeling of 
RR. To calculate the expected number of cases for each gender–race population group in each 
spatio-temporal unit, we first calculated the age-specific incidence annual rate of each gender–
race population group across Georgia over the entire time period and then calculated and 
summed up the expected number of cases in each age group for each spatio-temporal unit. 

The standardized incidence ratio (SIR), defined as the ratio of the number of observed cases to 
the number of expected cases, is regarded as the best maximum likelihood estimate for RR in 
frequentist methods. In this study, we drew a comparison between the SIRs and our modeling 
results of RR. 

3.3 Area-based SES measure 



Due to the relative homogeneity, the area-based SES measure at the census tract level is a good 
surrogate of individual SES in a health study when individual SES is unavailable (Krieger 1992). 
Detailed discussions of area-based SES measures can be found in the literature (Darden et 
al. 2009; Carstairs 2001; Krieger et al.1997, 2002). Various single variable or composite 
measures can capture different aspects of socioeconomic characteristics. In this study, we used 
the modified Darden–Kamel Composite Index (Darden et al. 2009) to measure the SES at the 
census tract level and evaluate its relationships with the lung cancer incidence risk by race and 
gender in Georgia. The modified Darden–Kamel Composite Index is an average Z-score of total 
nine socioeconomic variables in US census data (Table 2). 

Table 2 Variables incorporated in the modified Darden–Kamel Composite Index 

Modified Darden–Kamel Composite Index 

1. Percentage of residents with university degrees 

2. Median household income 

3. Percentage of managerial and professional positions

4. Median value of dwelling 

5. Median gross rent of dwelling 

6. Percentage of homeownership 

7. Percentage below poverty 

8. Unemployment rate 

9. Percentage of households with vehicle 

 

Based on Census 2000 data, the modified Darden–Kamel Composite Indices for the census tracts 
in Georgia were calculated and the value range was from −31.05 to 24.77. A larger value means 
a higher SES. Based on the index, the census tracts in Georgia were divided into five SES groups 
using quintile classification so that each group had the same (or very close) number of census 
tracts. Group 1 had the highest SES, and group 5 had the lowest one. Figure 2 shows the spatial 
distribution of the SES by census tract. The top 20 % SES regions were mainly concentrated in 
the suburban areas in Georgia. 



 

Fig. 2 Quintile map of SES in Georgia by census tract in 2000 

3.4 Bayesian spatio-temporal models 

Bayesian models naturally have hierarchical structures. At the first level, the number of observed 
cases y itkfor census tract i = 1,…,1,618, time period t = 1,…,4 (1: 2000–2001; 2: 2002–2003; 3: 
2004–2005; 4: 2006–2007) and gender-race population group k = 1,…,4 (1: white male; 2: white 
female; 3: black male; 4: black female) was assumed to follow a Poisson distribution with 
mean E itk RR itk , where E itk and RR itk are, respectively, the estimated expected number of 
cases and the unknown RR in census tract i, time period t,and population group k. At the second 
level, the logarithms of RRs were decomposed into fixed effects for those measured risk factors, 
such as SES, and random effects for those unmeasured or unobserved risk factors. In Bayesian 
spatio-temporal models, three random effects are usually considered: spatial random main effect, 
temporal random main effect, and spatio-temporal interaction random effect. Both spatial and 
temporal random main effects would be further divided into a structured component and an 
unstructured component, which reflect the dependent and heterogeneous variations in risks in 
space and time, respectively. In the Bayesian paradigm, prior distributions were needed to be 



assigned to the model parameters and the random effects. Then, the inferences were made from 
the simulation-based posterior distributions of the parameters and random effects. 

In this study, we modeled the RR of each population group individually under two modeling 
frameworks. The first framework used separate modeling where each population group had an 
independent set of random effects. The second framework used joint modeling where there were 
shared random effects representing some common unmeasured or unknown risk factors among 
all of the population groups. This joint modeling framework has been used to map one disease 
for multiple population groups or multiple diseases that have common risk factors (Richardson et 
al. 2006; Knorr-Held and Best 2001; Held et al. 2005; Downing et al.2008; Tassone et al. 2009; 
Wheeler et al. 2008). We compared a total of seven models including two separate models and 
five joint models. Table 3 shows the components of the logarithm of RR in each model. These 
seven models are nested models where model 7 is the full model. In all joint models, the 
coefficients δ1,k and δ 2,k allow gradients of the shared spatial and temporal components among 
all the population groups. For the two components φ ik and θ tk in models 4–7, we set them equal 
to 0 for white male models (k = 1), so that these two components in other population group 
models (k = 2, 3 and 4) actually are the differentials of the spatial and temporal random main 
effects between that population group and white male group. 

Table 3 Components of logarithms of RRs in the seven Bayesian spatio-temporal models 

Framework Model # Logarithms of RRs 

Separate Model 1 log(RRitk)=αk+βTkxi+φik+θtk 

  Model 2 log(RRitk)=αk+βTkxi+φik+θtk+ωitk 

Joint Model 3 log(RRitk)=αk+βTkxi+δ1,kλi+δ2,kξt+ωitk 

  Model 4 log(RRitk)=αk+βTkxi+δ1,kλi+δ2,kξt+φik+θtk 

  Model 5 log(RRitk)=αk+βTkxi+δ1,kλi+δ2,kξt+ζit+φik+θtk 

  Model 6 log(RRitk)=αk+βTkxi+δ1,kλi+δ2,kξt+φik+θtk+ωitk 

  Model 7 log(RRitk)=αk+βTkxi+δ1,kλi+δ2,kξt+ζit+φik+θtk+ωitk 

Fixed effects 

α k —Overall log-RR for population group k across the whole study area over the whole study 
period 

β k —Coefficients associated with the SES group vector x i for population group k 



Population group-specific random effects 

φ ik —Spatial random main effect for population group k in census tract i 

θ tk —Temporal random main effect for population group k in time period t 

ω itk —Spatio-temporal interaction for population group k in census tract i and time period t 

Population group-shared random effects 

λ i —Shared spatial component in census tract i 

ξ t —Shared temporal component in time period t 

δ 1,k , δ 2,k —Coefficients of λ i and ξ t for population group k 

ς it —Shared spatio-temporal interaction in census tract i and time period t 

 

In preliminary analyses, we tested models with different combinations of structured and 
unstructured components for spatial and temporal random main effects under both separate and 
shared modeling frameworks. The results showed that models involving both structured and 
unstructured components were generally more difficult to converge. Therefore, we only 
considered structured components in spatial and temporal random main effects for all of the 
models in Table 3. Specifically, the widely used Gaussian intrinsic conditional autoregression 
normal (CAR normal) prior proposed by Besag et al. (1991) was used to represent the dependent 
variations in RRs over space and time. For the population group-specific random effects φ ikand 
θ tk , the CAR priors were independent for each population group k. For population group-shared 
random effects λ i and ξ t , the same CAR priors were applied across the different population 
groups. For a spatial random effect in an area, CAR normal specifies that its conditional 
distribution, given all other spatial effects, is a normal distribution with mean equal to the 
average spatial effects of its neighboring areas and variance inversely proportional to the number 
of these neighbors. In this study, the spatial neighbors were Queen neighbors, defined if they 
shared a border or a vertex. For a temporal random effect in a time period, CAR normal 
smoothes it toward the temporal effects of its applicable previous and next time periods. 

Due to the lack of strong prior knowledge, vague prior distributions were used for other 
parameters in the models based on the current literature. We assigned a flat prior on the overall 
log-RR terms, αk, and assigned independent normal (0, 10−5) prior distributions to fixed 
effects β k . Independent normal (0, 5) prior distributions were assigned to the logarithms of 
scaling parameters δ 1,k and δ 2,k , so that these scaling parameters have a 99 % possibility of 
lying between 0.36 and 2.82 with a mode at 1. This prior was also used by Richardson et al. 
(2006) and Downing et al. (2008). With respect to the spatio-temporal interaction random 



effects, independent normal prior distributions with means equal to 0 and 
precisions τ ωk , k = 1,…,4, were assigned to ω itk in model 2 for each population group. 
Independent normal prior distributions with means equal to 0 and precisions τ ς were assigned 
to ς it in models 5 and 7, and a multivariate normal prior distribution with covariance matrix Σ 
was assigned to ω itk in models 3, 6, and 7 to allow correlations among the population groups 
(Richardson et al. 2006; Downing et al. 2008). Following the previous studies (Best et al. 2005; 
Downing et al. 2008; Kelsall and Wakefield 1999), independent conjugate hyperprior 
distribution Gamma (0.5, 0.0005) was assigned to all of the precision parameters in the normal 
priors for shared components τ λ , τ ξ , τ ς and for population group-specific 
components τ φk , τ θk , τ ωk , k = 1,…,4. The precision matrix (i.e., the matrix inverse of 
covariance matrix Σ) in the multivariate normal prior was assigned a Wishart (B, 4) distribution, 
where B is set to be a diagonal matrix with 0.01 s (Richardson et al. 2006). This was a relative 
vague hyperprior making the expectation of precision matrix be a diagonal matrix with 400 s. 

All of the models were fitted by the Markov chain Monte Carlo (MCMC) algorithms using 
WinBUGS software (Lunn et al. 2000) (code for model 6 is given in the supplementary 
material). MCMC algorithms use iterative simulation of parameter values within a Markov chain 
to obtain the posterior distribution to which this chain converges. For each model, two 
independent chains were run for 60,000 iterations. The parameters we monitored included all 
fixed effects, scaling parameters, and standard deviations of all random effects. We also 
randomly selected varied numbers of overall RRs and random effects to monitor. Brooks–
Gelman–Rubin diagnostics (Brooks and Gelman 1998) and visual checks of tracing plots 
confirmed convergence for most monitored parameters by 50,000 iterations (selected tracing 
plots are shown in the supplementary material). Precision τ ωk and covariance matrix Σ for the 
prior distributions of spatio-temporal interaction component ω itkdid not converge well. 
However, their incapability of convergence did not affect the convergence of ω itk that was 
achieved within 50,000 iterations. With the remaining 10,000 iterations (i.e., 20,000 samples 
with two chains), the Monte Carlo errors of the monitored parameters were <5 % of the sample 
standard deviation. Therefore, these samples were used for inference on all convergent 
parameters. 

Similar to the joint mapping of lung cancer risk in males and females by Richardson et al. 
(2006), the scaling parameters δ 2,k were difficult to converge during the data fitting of models. 
This could be because only four time periods could not provide enough information to 
differentiate the shared and specific temporal patterns. Therefore, we fixed δ 2,k  = 1 for all joint 
models. Our preliminary analyses showed that fixing δ 2,k did not greatly affect the estimation of 
RRs in the joint models. The correlations of the estimated RRs were over 0.98 between the 
models with fixed δ 2,k and the corresponding ones with random δ 2,k . 

We used the deviance information criterion (DIC) to choose the best of the seven models. The 
DIC was proposed by Spiegelhalter et al. (2002) as the sum of D¯ and pD, where D¯ is the 
posterior mean of the deviance measuring the goodness of fit of a model, and pD is the number 



of effective model parameters measuring model complexity. The model with a smaller DIC was 
preferred due to its overall advantage in both data fit and model complexity. 

4 Results 

4.1 Model comparison 

From Table 4, we can see that joint model 6 had the smallest DIC value of 64,155.6 among the 
seven models. Model 7 had the smallest D¯ value indicating it had the best data fit, and model 4 
had the smallestpD value indicating it was the simplest model. All of the joint models except for 
model 3 were better than the two separate models based on their DICs. Keeping parsimony in 
mind, in the following, we chose the results of model 
6 (log(RRitk)=αk+βTkxi+δ1,kλi+δ2,kξt+φik+θtk+ωitk) to interpret. In model 6, the shared 
components included spatial and temporal random main effects λ i and ξ t , and the specific 
components included spatial and temporal random main effects φ ik and θ tk as well as spatio-
temporal interaction random effect ω itk . 

Table 4 DICs of the seven models 

Framework Model # D¯ pD DIC 

Separate Model 1 63,349.2 962.636 64,311.8

  Model 2 63,029.5 1,264.91 64,294.4

Joint Model 3 62,996.6 1,383.51 64,380.1

  Model 4 63,328.4 869.157 64,197.6

  Model 5 63,099.8 1,064.9 64,164.7

  Model 6 62,908.1 1,247.48 64,155.6

  Model 7 62,904.5 1,347.36 64,251.9

 

4.2 Spatio-temporal patterns of relative risk 

For comparison, Fig. 3 shows the spatial patterns of the crude SIRs by race and gender in the 
first time period 2000–2001. These SIRs were calculated based on age-adjusted rates. In addition 
to the census tracts without residents or without lung cancer cases, we classified the census tracts 
into five categories based on their SIR values. The range of 0.95–1.05 represents the risk close to 
the reference rate, and other four categories represent the risk obviously higher or lower than the 
reference rate. Due to the uneven population distribution and possible missing in data collection, 
these SIR maps, especially those for black males and black females, show many census tracts 



with SIR value of zero due to zero cases observed in that tract and that time period. However, it 
was highly probable that lung cancer risk existed in these census tracts in reality. In addition, it is 
obvious that the SIR surfaces are not smooth across the whole area since most of the SIRs fall 
into either the very high or very low category. These facts indicated that SIR was not an 
appropriate estimate of the lung cancer risk in this study. 

 

Fig. 3 Maps of crude SIRs by race and gender by census tract during 2000–2001 

Figure 4 shows the maps of posterior median RR of model 6 in the four time periods for all of 
the gender–race population groups. In these maps, we used the classification breakpoints in 
Fig. 3 to classify the census tracts in terms of their modeled RR values. Compared to the crude 
SIRs in Fig. 3, the model-based RR shows a much smoother spatial pattern without RR equal to 
0 in each population group. These maps show different spatial patterns of lung cancer risk exist 
among the four population groups. For white males and white females, the high RRs were 
mainly concentrated in the northwest, southeast, and middle regions of Georgia. For black males, 
the high RRs were mainly concentrated in the northwest, east, and south Georgia. The high RRs 
for black females were mainly concentrated in the northwest of Georgia. Comparing the maps of 
different time periods, for white males and black males, more census tracts with moderate and 
low RRs emerged and the number of census tracts with high RRs decreased over the time, while 
the situations reversed for white females and black females. 



 

Fig. 4 Maps of the posterior median RR for all population groups in the four time periods 

Those areas with consistently high disease risks over the time can only be identified using spatio-
temporal analyses. Richardson et al. (2004) showed that Bayesian disease-mapping models are 
essentially conservative, with high specificity but low sensitivity if the elevated-risk areas have 
only a moderate (<twofold) excess. To obtain high specificity (around 95 %) and reasonable 
sensitivity to pick out areas where the true RR is moderately elevated (e.g., around twofold), they 
suggested using a cut-off rule of 0.8 on the posterior probability that an area had an estimated RR 
>1. Figure 5 shows the maps indicating how many times each census tract had an estimated 



elevated RR during the four time periods based on the rule of prob(RR > 1) > 0.8. The frequency 
associated with each census tract reflected the stability of elevated RR in that area over the entire 
time period. The northwest of Georgia and the area near Augusta had consistently high RRs for 
all population groups. The identification of those census tracts with consistently high RRs over 
the time could be helpful to generate some etiological hypotheses and support health policy 
making, such as the distribution of resources. 

 

Fig. 5 Maps of elevated RR frequency (prob(RR > 1) > 0.8) by race and gender during 2000–
2007 

We studied the spatial patterns of lung cancer incidence RR among the population groups by 
looking at the shared and the population group-specific spatial components in model 6. The map 
of the shared spatial components in Fig. 6 captures the common spatial variation in RR among 
the four population groups. Taking the white male group as the reference with its scaling 
parameter equal to 1 for the shared spatial component, the posterior medians of the scaling 
parameters for white females, black males, and black females were 0.743 [95 % credible interval 
(CI) 0.606, 0.892], 0.538 [95 % CI 0.343, 0.761], and 0.571 [95 % CI 0.355, 0.818], 
respectively. 

 



Fig. 6 Maps of the posterior medians of the shared spatial component exp(λ) and differential 
spatial componentsexp(φ) 

The population group-specific spatial components reflect the deviation of spatial pattern in each 
population group from the common spatial pattern. This deviation could be caused by the 
population group-specific location-related risk factors. Since we took the white male group as the 
reference by setting its specific spatial component equal to 0, the shared spatial component 
totally represented the spatial effect among white males, and the specific spatial components in 
other three population groups reflected the differentials of spatial effect between that population 
group and white male group. From the differential maps (on exponential scale) of specific spatial 
components in Fig. 6, we can see that both of the white female–white male differential and the 
black male–white male differential show a major portion of the area with a value ranging from 
0.85 to 1.15, which indicates that the pattern of the shared spatial component (i.e., the spatial 
pattern of RR in white males) captures well the variations in the spatial effects on RR for both 
white females and black males. Exceptions (i.e., high and low differential values) existed in the 
areas of metropolitan Atlanta and Savannah for white females, and existed in the northwest, 
northeast, and southwest in Georgia for black males. In the black female–white male differential 
map, a large southern area with a value <0.85 and a large northern area with a value larger than 
1.15 reflect that there was an obvious difference in the spatial pattern of RR between white males 
and black females. The spatial pattern of RR in white males underestimated the RR in black 
females in northern Georgia and overestimated that in southern Georgia. 

Table 5 shows the posterior medians and 95 % CIs of the shared temporal component and the 
differential temporal components. The shared temporal trend stayed flat in the first two periods 
and slightly decreased after 2004. The three differentials showed that the shared temporal trend 
captured well the temporal trend in the RR of black males, but was different from those of white 
females and black females. 

Table 5 Posterior medians (95 % CIs) of the shared temporal components exp(ξ) and differential 
temporal components exp(θ) 

Time 
perio
d 

Shared temporal 
componentsexp(ξ t 
) 

White female–
white male 
differential exp(θt2
) 

Black male–white 
male 
differentialexp(θ t3
) 

Black female–
white male 
differential exp(θt4
) 

2000–
2001 

1.04 (1.02, 1.07) 0.93 (0.90, 0.97) 1.01 (0.98, 1.06) 0.92 (0.86, 0.98) 

2002–
2003 

1.04 (1.01, 1.06) 0.97 (0.94, 1.00) 1.00 (0.97, 1.04) 0.97 (0.92, 1.02) 



2004–
2005 

0.98 (0.96, 1.00) 1.02 (0.99, 1.05) 1.00 (0.97, 1.04) 1.03 (0.98, 1.08) 

2006–
2007 

0.95 (0.92, 097) 1.09 (1.05, 1.13) 0.98 (0.94, 1.02) 1.09 (1.03, 1.16) 

 

4.3 Effect of SES 

The posterior medians of the SES-related RR in Fig. 7 show the effect of SES on RR in each 
gender–race population group. The highest SES group was taken as the reference. The general 
trend among all population groups was that lower SES leads to a higher RR. However, the 
gradients of SES effects on RR in males were larger than those in females. The socioeconomic 
disparities in lung cancer RR were more obvious in males in Georgia. 

 

Fig. 7 Posterior medians (95 % CIs) of the RR for SES quintile exp(β) in the four population 
groups 

4.4 Urban versus rural setting 

An urban census tract was defined as a census tract with over 50 % of its area falling within the 
urbanized region defined by Census 2000. Following this definition, there were 827 urban census 
tracts and 791 rural census tracts. As shown in Fig. 8, males had higher average risk in rural 
areas while females had higher average risk in urban areas. The largest difference occurred in 



black females. One-way analysis of variance showed that all of the urban–rural differences were 
statistically significant (p < 0.05). 

 

Fig. 8 Urban–rural difference of average risk 

4.5 Sensitivity analysis 

Bayesian modeling is sensitive to the choice of priors and hyperpriors. Following Downing et 
al’s (2008) work, we performed a sensitivity analysis using an alternative hyperprior distribution 
Gamma (1,1) to replace Gamma (0.5, 0.0005) for the precision parameters in model 6. The 
Gamma (0.5, 0.0005) distribution made the variances (inverse of precision) have a 99 % 
probability of lying between 0.000151 and 6.25 with a mode at 0.00033. For the Gamma (1, 1) 
distribution, the 99 % probability range of the variances was from 0.217 to 100 and the mode 
was at 0.5. After 50,000 burn-in iterations with two independent chains that confirmed 
convergence, 20,000 samples were used for reference. The DIC of the model was 64,160.8 (D¯ = 
62,892.7,pD = 1,268.1), slightly larger than model 6. Table 6 shows the correlations between the 
posterior median RRs using model 6 with the two types of hyperpriors. The two groups of results 
showed a good concordance in general, but the correlations in black individuals were slightly 
lower than those in white individuals. These differences may be due to the different degrees of 
data sparseness between races. 

Table 6 Correlations between the posterior median RRs using model 6 with two different types 
of hyperpriors 

Time period White males White females Black males Black females 

2000–2001 0.998 0.992 0.988 0.990 

2002–2003 0.998 0.991 0.988 0.989 

2004–2005 0.998 0.991 0.987 0.988 



2006–2007 0.998 0.991 0.987 0.988 

 

5 Discussion and limitations of the study 

This study explored the spatio-temporal patterns of lung cancer incidence risk for four gender–
race population groups at the census tract level within four 2-year periods 2000–2007. These 
patterns, which are usually smoothed out in spatial and/or temporal analyses at coarser scales, 
can answer such queries as who, where, and when the risk of lung cancer varies. For example, in 
addition to the northwestern Georgia where all population groups have stable elevated lung 
cancer risks over the study period, more attention is also needed to the higher rates among white 
males in many census tracts in the south of Georgia. With visual comparison or other explorative 
spatial analysis methods, these spatio-temporal patterns, especially the individual spatial and 
temporal components in the modeling, can aid the establishment of etiological hypotheses of 
lung cancer with regard to environmental- or lifestyle-related risk factors. These assumptions can 
then be validated with further models of cause and effect or biological experiments. This study 
showed a general inverse relationship between SES and lung cancer incidence risk for all 
population groups, and a larger gradient exists in males. This result was consistent with the 
findings of several previous studies (Mao et al. 2001; van Loon et al. 1995). To explain the 
socioeconomic disparities in the lung cancer risk, further study is needed, such as the exploration 
of occupational differences between males and females in Georgia. 

It is well known that an individual’s smoking behavior is an important risk factor for lung 
cancer. However, one of the limitations in this study was the lack of suitable smoking data at the 
fine spatial scale. The smoking data from the Behavioral Risk Factor Surveillance System 
(CDC 2013) can be readily obtained. However, it is only available to 22 % counties in Georgia at 
the level of metropolitan statistical area since 2002. Recently, several studies show that the 
associations of SES with lung cancer may be attributable to incomplete adjustment for smoking 
(Matukala Nkosi et al. 2012; Menvielle et al. 2009). To some extent, the random effects in our 
hierarchical Bayesian spatio-temporal models can approximate the total effects of unmeasured or 
unknown risk factors including smoking. However, we believe that integrating appropriate 
smoking data into the models can greatly reduce the uncertainty of the models. 

Although our study included about 90 % (i.e., a total of 40,285) Georgian lung cancer cases 
diagnosed during the study time period (see Table 1), it is important to note the potential bias 
introduced by the exclusion of cases. Figure 9 shows the spatial distribution of 3,039 excluded 
cases that can be geocoded at best to counties instead of census tracts. Most of the counties 
excluded less than 25 % cases. However, there were seven rural counties in central Georgia with 
large percentages (>50 %) for excluded cases. The high percentages of exclusion led to large 
uncertainty on the RR estimates in those areas, requiring more carefulness to use the study 



results. The percentages of the excluded cases for the four time periods are 12.1 % for 2000–
2001, 8.9 % for 2002–2003, 8.0 % for 2004–2005, and 7.8 % for 2006–2007. 

 

Fig. 9 Distribution of percentage of excluded cases by county 

According to the 2009 American Community Survey (ACS 2013), about 13.9 % of the 
population (1 year old and over) move each year in USA during our study period, about 8.3 % 
moving within the county, and about 2.7 % moving to another county within the state. 
Population mobility has been a big challenge in the studies of the diseases with a long latency 
period such as cancers (Wheeler et al. 2012). In this study, we measure the area-based SES with 
Census 2000 data and assume they could reflect the individual SES during the long latency 
period. This assumption made this study suffer from measurement error. However, decennial 
census data at the census tract level was the best data we can get to approximate individual SES. 
Without detailed mobility data, integrating this census information can reduce the modeling 
uncertainty to some degree. In addition to the assumption about population mobility, the analysis 
of the relationship between disease RR and SES is subject to the modifiable area unit problem 
(Openshaw and Taylor 1981) and ecological fallacy problem. The inferences based on the 
analyses at current scale and/or unit definition may not be generalized to other scales and/or unit 
definitions. 



Estimation of population in small areas is a hot research topic in geography and statistics 
recently. In our study, we used an apportionment method to estimate the population by race, 
gender, and age in each census tract in each intercensal year. Improvement in population 
estimation models could greatly benefit the disease-mapping models. 

6 Conclusion 

We reported hierarchical Bayesian models to contribute to the literature about lung cancer 
studies in Georgia and to explore the spatio-temporal patterns of lung cancer incidence risk in 
Georgia for the time period 2000–2007. The study was conducted at the census tract level using 
2-year time period as the temporal unit. Compared to the commonly used county level and 5-year 
time period, the finer spatial and temporal scales enabled our study to show more detailed 
variations in lung cancer incidence risk in space and time, which can better support healthcare 
performance assessment, etiological hypothesis generation, and health policy making. In this 
study, a total of seven Bayesian spatio-temporal models under the separate (each population 
group with an independent set of random effects) and joint (shared random effects representing 
some common unmeasured or unknown risk factors among all of the population groups) 
modeling frameworks were proposed and compared. The modeling results showed that the joint 
models generally produced better performance than the separate models using DIC as the 
criterion. Compared to the crude SIR, the estimated disease risk from Bayesian spatio-temporal 
models can be more reliable at a relatively fine spatio-temporal scale. The study also showed that 
there were strong inverse relationships between SES and lung cancer incidence risk in males and 
weak inverse relationships in females in Georgia. These relationships and the patterns of the 
spatial and temporal random effects in these Bayesian models may provide some implications on 
the underlying disease risk factors for further ecological studies. 
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