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Abstract: 

An organic extract of a filamentous fungus (MSX 58801), identified as a Volutella sp. 
(Hypocreales, Ascomycota), displayed moderate cytotoxic activity against NCI-H460 human 
large cell lung carcinoma. Bioactivity-directed fractionation led to the isolation of three γ-
lactones having the furo[3,4-b]pyran-5-one bicyclic ring system [waol A (1), trans-dihydrowaol 
A (2), and cis-dihydrowaol A (3)]. The structures were elucidated using a set of spectroscopic 
and spectrometric techniques; the absolute configuration of 2 was established via a modified 
Mosher’s ester method. Compounds 1 and 2 were evaluated for cytotoxicity against a human 
cancer cell panel. 
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Article: 

In pursuit of structurally diverse anticancer leads from nature,1 and 2 our group has been 
investigating filamentous fungi, particularly the Mycosynthetix library, representing over 55,000 
accessions.3, 4, 5, 6, 7,8 and 9 Fungi represent an exciting reservoir of bioactive natural products, as 
they are an underexplored and renewable resource.10, 11 and 12 

An organic extract of the filamentous fungus MSX 58801, which was isolated from leaf litter in 
1991, displayed moderate cytotoxic activity against NCI-H460 human large cell lung carcinoma 
(∼86% inhibition of cell growth when tested at 20 μg/mL).3 Bioactivity-directed fractionation 
using flash chromatography followed by preparative RP-HPLC resulted in the isolation of 
three γ-lactones (1–3) containing a furo[3,4-b]pyran-5-one bicyclic ring system, with >95% 
purity for compounds 1 and 2 according to UPLC ( Fig. S1, Supplementary data). 
Compounds 1 and 2 were evaluated for cytotoxicity against a human cancer cell panel. 

Compound 1 (2.46 mg), which was obtained as a colorless oil, had a molecular formula of 
C13H16O4 as determined by HRESIMS. The NMR (Fig. S2, Supplementary data), HRMS, and 
optical rotation data identified 1 as the known compound, waol A (FD-211; Fig. 1). First isolated 
in 1995 from a fermentation of Myceliophthora lutea TF-0409, 13 the structure of 1 was revised 
in 2003. 14 and 15 

 

Figure 1. Structures of compounds 1–3. 

Compound 2 (9.67 mg) was also obtained as a colorless oil.16 The molecular formula was 
determined as C13H18O4 via HRESIMS, establishing an index of hydrogen deficiency of 5. The 
NMR data suggested structural similarity with compound 1. However, compound 2 lacked the 
olefinic proton at δH 6.90, which was replaced by three aliphatic protons (δH 1.79, 2.43, and 
2.91). These data suggested a difference between 1and 2 of a double bond, as supported by a 
2 amu difference in the HRMS data. The 1H NMR data of 2revealed the presence of four olefinic 
protons, corresponding to two trans-disubstituted olefins (δH 5.52, ddq,J = 15.5, 8.0, 1.7; 5.55, 
ddq, J = 15.5, 5.2, 1.7; 5.91, dqd, J = 15.5, 6.9, 1.7; and 5.99, dq, J = 15.5, 6.9, for H-1′′, H-1
′, H-2′, and H-2′′, respectively), four oxymethines (δH 3.48, dd, J = 12.0, 8.6; 3.84, 
bq, J = 2.9; 4.03, ddd, J = 5.2, 2.9, 1.7; and 4.67, dd, J = 8.6, 8.0, for H-7a, H-3, H-2, and H-7, 
respectively), one methine (δH2.91, ddd, J = 12.6, 12.0, 3.4, for H-4a), one methylene (δ



H 1.79, ddd, J = 13.2, 12.6, 2.9; and 2.43, ddd,J = 13.2, 3.4, 2.9, for H-4α and H-4β, 
respectively), two equivalent methyls (δH 1.77, dd, J = 6.9, 1.7, for H-3′ and H-3′′), and 
one exchangeable proton (δH 1.84, for 3-OH). The 13C NMR data revealed 13 carbons, 
consistent with the HRMS data and indicative of one carbonyl (δC 173.5 for C-5), four olefinic 
carbons (δC125.7, 126.4, 130.6, and 134.3, for C-1′′, C-1′, C-2′, and C-2′′, 
respectively), five methines (δC 39.0, 66.3, 81.2, 82.1, and 82.4 for C-4a, C-3, C-2, C-7a, and 
C-7, respectively), one methylene (δC 30.0 for C-4), and two methyls (δC 18.1 and 18.2 for C-
3′ and C-3′′, respectively), (see Supplementary Figs. S3 and S4 for the1H and 13C NMR 
spectra and Table S1). The two double bonds and the carbonyl group accounted for three degrees 
of unsaturations, leaving the remaining two accommodated by the bicyclic ring system. COSY 
data identified one spin system as H3-3′/H-2′/H-1′/H-2/H-3/H2-4/H-4a/H-7a/H-7/H-1′′

/H-2′′/H3-3′′ ( Fig. 2a). The following key HMBC correlations were observed: H3-3′→

C-1′, H3-3′′→C-1′′, H-2→C-2′, H-7→C-2′′, H-3→C-4a, H-7a→C-4, H-4a→C-7, 
and H-4a→C-5 ( Fig. 2a). NOESY correlations from H-1′′ to H-7a, from H-7a to H-2, and 
from H-2 to H-3 and H-2′ indicated that H-1′′, H-7a, H-2, H-3, and H-2′ were all on the 
same face. Alternatively, NOESY correlations observed from H-4a to H-7 indicated that these 
two protons were on the same side of the molecule but opposite to the previous set ( Fig. 2b). 
Comparing all of these data with those for 1 yielded the structure of 2 ( Fig. 1), which was 
ascribed the trivial name trans-dihydrowaol A. The absolute configuration of 2 was assigned via 
a modified Mosher’s ester method, 17 establishing the configuration as 2R, 3R, 4aR, 7S, and 
7aR ( Fig. 3). 18 



 

Figure 2. Key HMBC, COSY, and NOESY correlations of 2 and 3. 

 

Figure 3. ΔδH values [Δδ (in ppm) = δS − δR] obtained for (S)- and (R)-MTPA esters 
(2a and 2b, respectively), of trans-dihydrowaol A (2) in pyridine-d5. 

Compound 3 (1.45 mg) was obtained as a colorless oil.19 The molecular formula was determined 
as C13H18O4 via HRESIMS, and was the same as compound 2. The NMR data (Table S1 and 
Figs. S5 and S6) suggested structural similarity with 2. Key differences were a coupling constant 
of 0.6 Hz between H-4a (δH2.58, ddd, J = 7.5, 2.3, 0.6) and H-7a (δH 4.17, dd, J = 4.6, 0.6) 
in 3 versus 12 Hz in 2, and a NOESY correlation from H-4a to H-7a in 3 versus H-4a to H-7 
in 2 ( Fig. 2d). These data implied a pseudoaxial/pseudoequatorial cis orientation of H-4a/H-7a. 
NOESY correlations were also observed from H-2 to H-7a and H-4a, and from H-4a to H-3, 
indicating that those protons were on the same face ( Fig. 2d). These data suggested an inversion 



in the configuration at C-4a in 3 relative to 2, establishing the structure of3 as an epimer 
of 2 ( Fig. 1). The trivial name, cis-dihydrowaol A (3), was ascribed to this compound. The 
relative configuration of 3 was assigned by comparison with 2 as 2R, 3R, 4aS, 7S, and 7aR. An 
attempt to establish the absolute configuration via a modified Mosher’s ester method 17 was 
unsuccessful. 

Compounds 1 and 2 were tested against two cancer cell lines, MDA-MB-435 (human melanoma) 
and SW-620 (human colon cancer), using methods described previously;3 due to paucity of 
sample, compound 3 was not tested. While compound 1 showed moderate cytotoxic activity 
against the SW-620 cancer cell line, compound 2 was inactive against both cancer cell lines 
(Table 1), suggesting the importance of the double bond for cytotoxicity. Compound 1 was 
reported by Nozawa et al13 to have broad spectrum activity against cultured tumor cell lines, 
including adriamycin-resistant HL-60 cells. Several compounds having the furo[3,4-b]pyran-5-
one bicyclic ring system have been reported from fungi with diverse biological activities, 
including antibacterial and cytotoxic activities. 20, 21, 22, 23, 24 and 25 

Table 1.Cytotoxicity of compounds 1 and 2 against two human tumor cell linesa 

Compound IC50 values in μM 

 

MDA-MB-435b SW-620c 

Waol A (1) 39.6 13.8 

trans-Dihydrowaol A (2) >40 >40 

a Positive controls were vinblastine and bortezomib. Vinblastine was tested at concentrations of 
3 ng/mL and 1 ng/mL: MDA-MB-435 cells had 37% and 99% viable cells; SW620 cells had 
76% and 90% viable cells; respectively. Bortezomib was tested at concentrations of 5 nM and 
2.5 nM: MDA-MB-435 cells had 90% and 91% viable cells; SW620 cells had 79% and 71% 
viable cells, respectively. 

b Melanoma and tumor cell lines were tested using published protocols. 

c Colon tumor cell lines were tested using published protocols.3 and 20 
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