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ABSTRACT

The ambiguity of natural language (NL) causes miscommunication and misun-
derstandings. Precision of language is particularly important in software develop-
ment when handling requirements agreed between the customer and the provider.
Software Requirements Specification (SRS) is a commonly used document type
for specifying the requirements. A strict standard for how every SRS should be
constructed does not exist, and thus it is often written in NL. However, some re-
stricted languages can be used for specifying requirements. An example of such
is Easy Approach to Requirements Syntax (EARS).

In this thesis is presented an automated tool for reducing the structural am-
biguity of requirements by converting NL into EARS form. Four different text
datasets were used for testing the converter and they were compared before and
after conversion and against each other. Both performance and ambiguity reduc-
tion of the tool were assessed using various measures. Since a standard ambiguity
measurement was not available, a combination of sentence structure assessment,
word occurrences against Zipf’s law, readability score and information complex-
ity was used.

The results suggest that the tool reduces structural ambiguity of sentences. The
tool is successful in converting NL into the different EARS patterns and the con-
verted sentences are less complicated and more readable, according to the results.
This hints at the possibility of creating more automated tools that could be used to
reduce ambiguity in NL SRS. It might not be possible to make people start using
a restricted language, like EARS, for writing the documents, but with the help
of automated converters, sentences could be mapped to more restricted forms to
help with making better sense of them.

Keywords: Natural Language Processing, Ambiguity Reduction, Requirements
Engineering, Software Requirements Specification, Easy Approach to Require-
ments Syntax (EARS)
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TIIVISTELMÄ

Luonnollisen kielen epämääräisyys aiheuttaa vaikeuksia kommunikoinnissa ja
ymmärtämisessä. Kielen tarkkuus on erityisen tärkeää ohjelmistokehityksessä
silloin kun käsitellään asiakkaan ja tarjoajan keskenään sopimia vaatimuksia oh-
jelmistolle. Ei ole olemassa tiukkaa standardia sille miten vaatimusten määrittely-
dokumentti pitäisi rakentaa, joten se usein kirjoitetaan luonnollisella kielellä. Sii-
tä huolimatta joitain rajoitettuja kieliä voidaan käyttää yksittäisten vaatimusten
määrittelyyn. Eräs esimerkki rajoitetusta kielestä on Easy Approach to Require-
ments Syntax (EARS).

Tässä diplomityössä esitellään automatisoitu työkalu vähentämään rakenteista
epämääräisyttä muuttamalla luonnollista kieltä EARS-muotoon. Neljää erilais-
ta tekstiä käytettiin työkalun testaamiseen ja niitä verrattiin toisiinsa sekä ennen
että jälkeen muuntamisen. Työkalun toimintaa ja epämääräisyyden vähentämis-
tä mitattiin useilla metriikoilla. Epämääräisyyden mittaamiseen valittiin joukko
kvantitatiivisia metriikoita: lauserakenteita analysoitiin, sanojen ilmiintyvyysti-
heyttä ja lausiden luettavuutta mitattiin ja informaation kompleksisuuttakin ver-
rattiin muunnettujen ja muuntamattomien tekstien välillä.

Tulosten perusteella esitelty työkalu vähentää lauseiden rakenteellista epämää-
räisyyttä. Se muuntaa onnistuneesti luonnollista kieltä EARS-muotoon ja tulos-
ten mukaan muunnetut lauseet ovat vähemmän monimutkaisia ja luettavampia.
Tämä viittaa siihen, että automatisoiduilla työkaluilla voisi olla mahdollista vä-
hentää epämääräisyyttä luonnollisella kielellä kirjoitetuissa vaatimusten määrit-
telydokumenteissa. Vaikkei ihmisiä saataisikaan kirjoittamaan vaatimusten mää-
rittelyjä rajoitetuilla kielillä, automatisoiduilla kielen muuntajilla lauseita voi-
daan uudelleenmuotoilla rajoitetumpiin muotoihin, jotta niistä saataisiin parem-
min selvää.

Avainsanat: Luonnollisen Kielen Käsittely, Epämääräisyys, Moniselitteisyys, Mo-
nitulkinnallisuus, Monimerkityksellisyys, Vaatimusten Määrittely, Ohjelmistojen
Vaatimusten Määrittely, Easy Approach to Requirements Syntax (EARS)
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1. INTRODUCTION

In software engineering, a software requirements specification (SRS) is the document
that defines the software and its functions. The software designer(s) and the commis-
sioner have to agree about its contents. Unfortunately SRS is often written in natural
language (NL). NL can be very ambiguous, but creating tools that clarify the NL facil-
itates reducing ambiguity in SRS documents. [1]

Ambiguousness can lead to disagreements about the meaning of the requirements
specifications. At worst, ambiguity can be disastrous for the software project, since it
causes delays and additional work and costs. Building the system becomes the more
difficult the later the ambiguities are resolved in the project. When the ambiguities
are found, it requires fixing them in the specification and in the product, which can be
expensive. If the ambiguities are not found before the product is finished, the customer
may be very unhappy with the product, since it may not be what the customer expected.

Using controlled natural languages (CNL) can solve some of the ambiguousness by
eliminating some of the structural and semantic ambiguity. Applying a CNL requires
training and, in some cases, a system that enforces their usage. Training and the system
can be expensive. CNL is a lot more restrictive than NL. Some CNLs only use a certain
set of words and some allow only some types of sentence structures. [2]

However, it has been proven that it is easier to extract the logic behind a system
when the requirements are written using CNL rather than NL. [3] If the NL SRS is first
transformed into CNL SRS, automating the process of transforming NL SRS into a
different formal form might become easier. This in turn could reduce more ambiguity.

Some tools already exist for keeping track of the ambiguity in SRS documents. They
typically focus on analysing the sentences against each other or they may force the
writer to fill in the blanks of language templates. [4, 5, 6] Some level of converting NL
sentences into more structured formats exist [7, 8, 9]. But an unsupervised tool that
transforms NL sentences into unambiguous requirements has not been created yet.

Easy Approach to Requirements Syntax (EARS) is a CNL used to write require-
ments in a less ambiguous way than just writing them in NL. [10] EARS does not
restrict the vocabulary, but it contains templates in which the text should be fitted into.
Fitting NL in templates creates a more unambiguous structure for the language without
taking away all of its expressiveness and flexibility.

In this thesis is presented the EARS Converter1 – an automated tool that transforms
NL requirements into their EARS equivalents. The Converter reduces the structural
ambiguity of the sentences. Because the Converter’s structure is simple, it could be
integrated to many different systems and processes. In its current form, it is a tool for
a requirements engineer to get suggested EARS form equivalents of NL requirements.

The Converter is assessed with a group of measures chosen for determining the
structural ambiguity of the input and output data. The datasets chosen for the study
vary in their content and format to bring out how the Converter handles diverse SRS
data. All of the measures are quantitative and the datasets are freely available.

Creating automated tools that lessen the ambiguousness of a text also paves the way
for natural language understanding (NLU), which is machine’s automatic comprehen-
sion of NL. [11] Better NLU could help different artificial intelligences (AI) to reach

1There is more about the EARS Converter in the Implementation chapter.
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more humanlike comprehension. With SRS documents, it can lead to AIs that could
understand the SRS and translate it to different forms to make the SRS easier to un-
derstand by humans. It could also lead to AIs that could produce working code by
interpreting the SRS documents correctly.
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2. BACKGROUND

In requirements engineering, Requirements Specification (RS) is one of the most im-
portant documents, and in software requirements engineering the equivalent is the Soft-
ware Requirements Specification (SRS). A problem with SRS is that the specifications
are often written in natural language (NL). [12]

NL is ambiguous by nature. To reduce ambiguity in SRS documents, a method of
turning NL into a controlled natural language (CNL) was developed during this thesis.
CNLs are specifically developed for reducing the ambiguity of NL, and the chosen
target CNL, Easy Approach to Requirements Syntax (EARS), was built specifically
for RS. [10]

Structural ambiguity was chosen as the main type of ambiguity to reduce for this
thesis. To compare structural ambiguity of texts, a few measures of structural ambi-
guity were gathered together. Since a standard structural ambiguity measure does not
exist, most of the chosen methods are indirect ways to measure ambiguity.

In this chapter is explained some background information for the methods chosen
for reducing ambiguity of natural language. In the first section, some basic concepts
of NL and NLP are presented. In the second section ambiguity and complexity are
reviewed in the context of NL. In the third section the features of SRS are discussed.
In the final section of this chapter, important details of EARS are outlined.

2.1. Natural Language Processing

Machines and humans use languages to communicate. For a language, it is important
to be expressive enough that all the things that are necessary things can be expressed
through it. It is also important for a language to be exact enough. The producers and
the interpreters of the language should be able to understand the message expressed
through the language.

Natural languages (NL) have developed between natural entities, like humans. The
topic of this thesis concerns only written NL, despite the existence of spoken and non-
verbal NL. English was chosen as the only target NL.

The popularity in the Internet makes it possible to acquire various English language
texts with relative ease. This is one of the main reasons English was chosen as the
target language as the NL in this thesis. Because the texts in the Internet do not have
to be professionally edited, however, they are usually not grammatically perfect. This
has to be taken into account when using natural language processing (NLP) on texts
from the internet. Humans tend to make grammar errors.

Languages that are not NLs also exist. They are typically made by humans for a
certain purpose. For example, programming languages are languages, but not NLs,
and controlled natural languages (CNLs) only contain parts of NLs. [2]

Humans learn to process natural language by getting the input through their senses
and output through their bodies. Humans usually learn to handle language in vari-
ous different forms in tandem – they get information through all their senses and can
connect the information with words while they learn it – unlike a typical modern com-
puter. In most cases, computer’s only NL input is in text form. The computer does
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not automatically try to connect the text with any kind of meanings without special
programming (machine learning) and other input sources (e.g. voice, images).

Natural language processing (NLP) is a field of computer science that studies ways
to handle natural language (NL) through computer algorithms. NLP encompasses
study areas from basic text processing to natural language understanding. In addi-
tion to text processing, modern NLP includes other forms of NLP as well (e.g. speech
processing). [13]

This section has been divided into four parts. The first part consists of relevant in-
formation about natural language. The second part explains some natural language
processing techniques. The third part describes background information about the in-
formation retrieval measures that are used in the testing part of this thesis. In the fourth
part natural language understanding is discussed.

2.1.1. Natural Language

Typical humans use natural language (NL) every day. They communicate using audio
signals and writing. A lot of humans even arrange their thoughts with the help of NL.
Humans produce NL and invent new words and sayings; NL is in a constant state of
change. NL can describe events and things that exist and even imaginary events and
things. It may be impossible to record everything NL can describe without modelling
all things that could be perceived or imagined by humans.

The theory of Universals of Grammar states that all natural languages contain some
similar structures, they just need to be found if they have not been found. [14] These
structures (like sentences, clauses, and phrases) are useful for identifying which parts
of each utterance are connected to each other in which way. When constructing a
controlled natural language (CNL) out of a NL, it is possible to only allow specific
structures within the CNL.

English in text form was chosen as the NL to be processed in this thesis. To do
so, basics of the English grammar must be known despite the fact that NL texts often
do contain grammatical errors. This subsection consists of an overview of some very
basics of the Universals of Grammar and English Grammar.

Universals of Grammar

The Universals of Grammar theory assumes that similarities between the grammars of
different languages exist.[15] In 1963 Joseph Greenberg published a study in which
he presented some linguistical universals concerning word order correlations [14], of
which many have been later established as fitting in a larger number of languages than
in the original study. [16] This indicates that there are similarities between different
language grammars.

Searching for Universals of Grammar has aided the natural language processing
(NLP) by finding different kinds of structures that appear in languages, even when
some of them have been found to not appear in all languages. Automated analysis of
languages can benefit from the research of different language structures.
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Sentences consist of clauses and clauses consist of phrases. For example, the pre-
vious sentence consists of two clauses connected by "and". The beginning word "sen-
tences" can be thought of as a noun phrase (NP) by itself and "consist of clauses" as a
verb phrase (VP). A verb (e.g. be, use, calculate) is an action. A noun (e.g. computer,
programmer, idea) is a thing. [17]

One of the findings in search for Universals of Grammar has been that most lan-
guages contain subjects, objects and verbs. Also, different languages can have differ-
ent dominant orders of them. Subject is a word or a phrase that describes the actor or
actors of the action, verb. Object is a word or a phrase that is the target for the ac-
tion. For example, in English, the dominant order is "SVO", subject-verb-object (see
Figure 2). [14]

Matthew Dryer presented the Branching Direction Theory (BDT) in 1992 [16] and
some improvements to it in 2009 [18]. BDT states that languages can have right- and
left-branching structures and usually one of them is more common. The sentences
can be arranged in sentence tree structures (e.g. Figure 1) and the branching direction
refers to which side of the tree has larger (deeper) branches. The sentence tree structure
is used a lot in natural language processing (NLP). With it, the information of the
sentence is stored in a human and machine readable format.

S

NP

Det

The

N

programmer

VP

V

is

NP

Det

a

N

human

Figure 1. The example sentence, "The programmer is a human", in tree form. As
can be seen, the structure’s branching leans on the right. However, it does have left-
branching parts, like "The programmer", where the "programmer" is the main word
and "The" is attached to it from the left side. The order is SVO, where the subject is
"The programmer", the verb is "is", and the object is "a human".

English Grammar

English is a dominantly right-branching language. [18] It also contains lots of helper
words to show the relationships between words in sentences, which makes it an ana-
lytic language. Like most other languages, English contains noun phrases (NP) and
verb phrases (VP), expressions of who did what. [17]

In English, phrases can be classified in three universal categories: subject, object,
and verb. In greenbergian terms [14] their dominant order is SVO (Figure 2), subject-
verb-object, and it can also be OVS when in passive form (Figure 3).
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Subject // Predicate // Object

The programmer // uses // the computer

Figure 2. Typical active English sentence order. "The programmer" is the subject,
"uses" is the verb and "the computer" is the object.

Object // Predicate( // Subject)

The computer // is used ( // by the programmer)

Figure 3. Typical passive English sentence order. In passive sentences the subject
might not be declared at all."The computer" is the object, "is used" is the predicate and
"the programmer" is the subject, which is given to the sentence with the word "by".

Controlled Natural Language

A controlled natural language (CNL) is a language that consists of parts of natural
language (NL) that are used to build a restricted set of rules or words. Controlled
natural languages are created for specific purposes, like writing technical documents
or more effective communication through a simplified language. The exact definition
of a CNL tends to vary from author to author and the definition used in this thesis
complies with the definition in the study by Kuhn (2014) [2].

Different CNLs vary in the language they are based on (although English is the
most common base language), the level of restrictiveness (some contain only a small
vocabulary and few possible sentence structures, when others only omit small parts of
NL) and the environment of origin (academia, industry, government).[2] For example,
Easy Approach to Requirements Syntax (EARS) [19] uses English as its base language.
EARS applies templates in which NL is fitted in. EARS originates from industry, as it
is meant for requirements documents.

Some CNLs can be straightforwardly mapped into a formal form, like first-order
logic, without eliminating the readability by humans. For example, Attempto Con-
trolled English (ACE) [20] can be turned into first-order logic and it is easy to read
by humans, but writing it requires deep knowledge about how the denotations work
within each sentence’s context. Because of this, it is not easy to automatically translate
NL into ACE, or another similar CNL.

In contrast to ACE, turning NL into EARS may not require quite as rigorous under-
standing of the NL, although it would help. EARS consists of the patterns and pieces
of NL within the patterns. When transforming NL into EARS, everything may not
have to be understood by the translator to create properly structured EARS sentences.
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2.1.2. Natural Language Processing Techniques

Natural language can be processed algorithmically with computers. Various NLP
methods to do so vary from very basic level processing, like separating words from
each other, to more advanced and complicated ones, like information extraction, ma-
chine translation and opinion mining. [13] The more complicated and advanced meth-
ods usually build on the very basic NLP techniques.

An SRS usually consists mostly of text. Thus, this thesis is focused on the written
text processing side of NLP. In this subsection is presented some of the most relevant
NLP techniques.

Tokenising

Tokenising is separating things, like sentences or words, from text. The tokenising is
done for better analysis of texts. Separating sentences from each other helps with han-
dling the text as units. Word tokens can, for example, be compared against each other
and against different lexicons and they can be modified or connected with interpreta-
tions.

For most words, tokenising means simply picking the groups of characters between
spaces or other invisible characters. However, special characters and punctuation
marks are sometimes used as parts of words, sometimes to mark an abbreviation and
sometimes to mark the end of a sentence. Thus, tokenising words can require a good
knowledge base of the practices used for mark-up. Also some machine learning might
be required, since all word-mark-up combinations may not have been documented.

Tagging

Tagging can be used to tag tokens and phrases with labels that tell the purpose of the
token or phrase. For example, POS-tagging tags the tokens with their part-of-speech
(POS) labels and NER-tagging tags named entities, like location names. The software
implementation presented in this thesis relies on POS-tagging.

Stanford POS-tagger uses Penn Treebank tag set [21] for English language tagging.
It uses the maximum entropy model to calculate likelihoods for different tags and the
likelihoods are based on the training data. It is one of the most popular and distin-
guished POS-taggers available. [22, 23, 24] Thus, it was chosen as the POS-tagger for
the EARS Converter 1.

Named entity recognition (NER) makes it easier to POS-tag words more correctly.
Named entities often contain words that either have other meanings or have no known
meanings as normal (not named entity) words. For example, "University of Oulu" is a
named entity which further contains a typical word "University" which could refer to
any kind of university, and the named entity, location name, "Oulu", which is hard to
interpret as anything else than as the name of the city. However, NER is often not so

1Chapter 3 Sections 3.3-3.5.



16

straightforward and to have NER for SRS, lots of knowledge of the language used on
the specific SRS would be required. [25]

Parsing and Parse Trees

Parsing in NLP refers to the act of forming tree structures out of sentences. The tree
structures, parse trees, describe how parts of sentences are related to other parts of
sentences. For example, many parsers sort POS-tagged words into trees that describe
phrase structures (e.g. Figure 1). Parsers facilitate the automated analysis of sentence
structures.

Parse trees contain syntax of strings. They should not be confused with semantic
trees that are used for finding the meanings rather than the syntax. [26, 27] But se-
mantic trees, among other lexical tools, can be used to find the syntactic connections
between words. That way they can be used to build parse trees.

Language parse trees and pattern recognition trees have already been combined to
make computers produce descriptions of pictures. Language structures are hierarchial,
like human perception of what a picture contains. For example, a picture might contain
grass, part of a building and a part of a human and that could be interpreted as "a
human stands in front of a house", when the human is interpreted as the main object of
the picture, the building as a secondary object and the grass as irrelevant background.
[28]

Natural Language Toolkit

Natural Language Toolkit (NLTK) is a Python library of libraries that contain different
tools to use in natural language processing (NLP). The version used in this thesis is 3.3.
NLTK can be used for producing different parse tree formats, tokenising sentences and
tagging words. NLTK also contains other useful functions, like visualisation tools for
the parse trees. [29, 30]

Keyword Extraction

Extracting the keywords of a text assists automatic recognition of the text’s topic. It
can be handy in information extraction of large masses of data when only a general
idea of what is written about is required. [31]

Extracting keywords usually involves removing stop words. Stop words are words
that have little or no meaning. English stop words usually include a lot of helper
words, like "and", "the", "if", "when", and so on. The stop words may not have much
meaning by themselves, but they are important for the sentence structure when trying
to decipher a single sentence rather than a general idea about the text as a whole.

Keyword extraction is not very useful in the basic level of transforming NL into Easy
Approach to Requirements Syntax (EARS) form, since the structure is more important
than topic in that level. Thus, it was not included in the current version of the EARS
Converter (presented in Implementation chapter). Nonetheless, keyword extraction
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could be useful in further development of translating texts. When trying to rebuild
sentences that are so ambiguous that even the structure is not recognised properly,
keyword extraction can give extra information about the context.

2.1.3. Information Extraction Measures

Information extraction systems resemble classification systems in the sense that they
both classify data. Information extraction from text data includes classifying the texts
and parts of texts as relevant, irrelevant, correct and incorrect among other more spe-
cific possible classification. [32] For example, in keyword extraction, parts of texts are
classified as possibly containing keywords, and the words in those parts are classified
as keywords and non-keywords.

Converting natural language sentences into a controlled natural language sentence
format is an information extraction system in the sense that it attempts to extract the
relevant information from NL sentences to create their CNL equivalents. To measure
the effectiveness of the system, some typical information retrieval measures can be
used on it. In this thesis precision, recall and F-measure are applied for that purpose.

Table 1 depicts the areas that are measured with precision, recall and F-measure.
In the Relevant column are the true positives (TP), which are information that gets
extracted and is relevant, and the false negatives (FN), which are non-extracted infor-
mation which is relevant. In the Irrelevant column are the false positives (FP) and the
true negatives (TN).

Table 1. Information extraction success for precision, recall and F-measure
Relevant Irrelevant

Extracted TP FP
Abandoned FN TN

Precision

In data classification, precision tells how many of the positive results were actually
positive. In information extraction, precision tells how much of the extracted informa-
tion is also relevant information. [32]

In Equation 1 is shown how precision is calculated. P is precision, TP the number
of true positives and FP the number of false positives. In contrast, Equation 2 shows
how precision calculated using information extraction terminology. P is still precision,
relevant refers to the group of relevant information and extracted to the group of all of
the extracted information. [32]

P =
TP

TP + FP
(1)

P =
relevant ∩ extracted

extracted
(2)
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A problem with precision is that it is only as good as the analysis of how well the
relevance of the information is assessed. This can make it highly biased. Also, it is
a binary measure in the sense that the extracted units need to be classified in binary
categories. The binarity does not take into account that some relevant data may be
more relevant than the other. Because of this, when precision is used as an information
extraction measure, the assessment of relevance must be well recorded. If the relevance
is not binary, it might be sensible to consider how to take into account the strength of
relevance. [33]

Recall

Recall is the measure of how much of the correct information was classified as cor-
rect. In information extraction, recall describes how much of the relevant information
was extracted. Unlike precision, calculating recall requires knowledge of how much
relevant information exists within the test data. [32]

In Equation 3 is shown how recall (R) is calculated in typical classification systems.
TP is the number of true positives and FN is the number of false negatives. Equation 4
shows how recall is calculated using information extraction terminology. R is still
recall, relevant refers to the group of relevant information and extracted to the group
of all of the extracted information. [32]

R =
TP

TP + FN
(3)

R =
relevant ∩ extracted

relevant
(4)

Like with precision, also with recall the accuracy how relevance is assessed is not
taken into account within the measure. With recall, special attention should be paid to
how the amount of actual relevant information within the dataset is calculated.[33]

F-Measure

F-measure (also known as F-score) is a popular measure in information retrieval sys-
tems, and it can also be applied to information extraction systems. It combines preci-
sion and recall to measure the overall success of information retrieval, or extraction,
by calculating their harmonic average. However, like precision and recall, its accuracy
depends on the accuracy of the measuring of relevance. [32, 33]

Equation 5 shows how the F-measure (F) is calculated. P represents precision and
R recall. [32]

F = 2 ∗
P ∗R

P +R
(5)
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2.1.4. Natural Language Understanding

Natural language understanding (NLU) is the field of study in machine learning that fo-
cuses on making the machines understand natural language (NL) in one way or another.
An artificial intelligence (AI) may have to have at least human level understanding to
comprehend the meaning of NL. In other words, it has been claimed that NLU is an
AI-complete problem.[34]

NLU encompasses various fields. Examples of them include sentiment analysis
(automatic understanding of the tone of a text, is it positive or negative or some-
thing else)[35, 36], biomedical text mining and universal dependencies (how words
are linked to each other within texts)[11], and interpreting NL in logic form [37]. To
build a system that would understand NL on human level, many areas of NLU might
have to be combined.

NLU deals with topics somewhat obscure topics, like language ambiguity and com-
plexity and machine reading comprehension (Section 2.2). Human understanding of
language is intrinsic, which can make it difficult for humans to reverse engineer their
natural language understanding. This thesis is focused on attempting to reduce the
ambiguity of NL so that it would become easier to navigate through the obscurity and
find out how to make machines understand NL.

2.2. Ambiguity and Complexity of Natural Language

For SRS it is important that they convey the information exactly the way it is meant
to be. The ambiguity of natural language (NL) hinders the precision of expressing the
requirements. If the requirements are written ambiguously, the developers can not be
sure whether or not they created a product that complies with the customer’s will. If
the product is not what the customer wanted or needed, it can cause great costs and
delays.

On the other hand, the reading comprehension can suffer when the features are writ-
ten meticulously without paying attention to the readability. The text structures can
become too complicated to be processed easily by humans. Both, the ambiguity and
the complexity of NL, make the reading comprehension of SRS documents more chal-
lenging.

This section first tries to disambiguate what ambiguity is and then describes some
relevant ambiguity measures. In the third subsection complexity is discussed in more
detail, as it is tightly related to ambiguity within NL context. In last subsection some
points about reading comprehension are brought up.

2.2.1. Ambiguity

Even the definition of ambiguity is ambiguous. [38, 39] However, the ambiguity of
NL enables its versatile usage. It has been noted, that new words are allowed to have
several possible meanings when introduced to a language before some of them are
established, which indicates that the ambiguity of NL is not decreasing. [40] To face
the challenge of the ambiguity of NL, finding ways to disambiguate is important.
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Humans can disambiguate NL by deciphering it through the context it appears in.
They naturally interpret ambiguous language as unambiguous, unless they find a rea-
son to suspect there might be more than one way to interpret something. Detecting
ambiguity is seldom easy. [38]

Resolving ambiguity automatically has been attempted. [41, 1] But even with trans-
lating language it is difficult.[42] In this thesis some of the ambiguity of NL in SRS
is resolved by transforming the sentence structure into a less ambiguous one, which
faces some of the same difficulties machine translation does with ambiguity. For ex-
ample, the words may not appear in the dictionary used and despite correct placement
of words, the meaning may still stay ambiguous because of the lexical ambiguity of
the words.

Many types of ambiguity exist for NL. Different texts discussing ambiguity have
different, often ambiguous, ways of categorising different types of ambiguities in
groups.[40, 42, 4, 43] Despite that, ambiguity can be categorised. Some of the most
relevant types of ambiguity in the context of this thesis are semantic, structural and
scopal ambiguity.

Semantic ambiguity

Semantic ambiguity is the type of ambiguity that deals with the meaning, the possible
interpretations, of text. Words can have multiple meanings, phrases and clauses and
sentences can have multiple meanings, sentence groups can have multiple different
meanings, and so on. The very base of semantic ambiguity of texts is lexical ambiguity,
which can be measured by the number of meanings a word can have.

If a word has more than one meaning, it is lexically ambiguous. A couple of exam-
ples of lexically ambiguous words include "bank" (e.g. the place money is stored in
or a river bank), "die" (e.g. singular of dice or the opposite of live), and "fork" (e.g.
the kitchen utensil or branch). It is easy to prove a word has multiple meanings by just
looking at a dictionary. However, it can be harder to prove that it does not have more
than one meaning, since language is constantly evolving and the meanings of words
also depend on the context.

Structural ambiguity

Structural ambiguity is about sentence structure. Sentence structure can restrict the
possible interpretations of a word depending on which word follows which and what
kind of punctuation is used. If the structure is ambiguous, it can be difficult to deter-
mine what words the other words are referring to.

If a word appears in one kind of structure and then in another, it can have different
meanings. For example, "this is a sentence" and "is this a sentence" do not have the
same meaning despite consisting of the same words. Because of this, structural ambi-
guity and lexical ambiguity are related to each other. In addition to that, the more there
are words in a sentence, the more complicated the structure can be. If a structure is
complicated, it has more potential for more interpretations than a simple structure.
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Scopal ambiguity

Scopal ambiguity relates to the scope words refer to. It can be the scope of an adjective
(e.g. in "the new program part" the scope of "new" can encompass just "program" or
"program part") or a pronoun (e.g. "it" can refer to many different things) or a quantifier
(e.g. "a program should run every second" can refer to a certain program that should
be run multiple times or that some program, no matter which one, should be run).

2.2.2. Ambiguity Measures

Measuring ambiguity can facilitate writing less ambiguous requirements. If a sentence
in SRS is deemed ambiguous before the SRS is released for use, it can be fixed before
it causes trouble. To some extent, ambiguity can be measured in semantic and syntactic
level. [44]

Kiyavitskaya et al. [4] presented requirements for systems identifying ambiguities
in NL requirements. The requirements include two main parts: 1. The system must
identify which sentences are ambiguous and 2. for each identified ambiguous sentence
the system must provide help for understanding why the sentence is ambiguous.

It is challenging to create objective measures of ambiguity when a message’s am-
biguity depends on the subjective interpretations made by the sender and the receiver
of the message. Measuring ambiguity can be done with indirect ways if the ambiguity
type is well defined.

Lexical ambiguity measures are one of the most common ways to measure ambi-
guity in requirements engineering. Measuring lexical ambiguity is possible to do by
determining how many different definitions a word has. One way to do so is to look in a
dictionary and see how many definitions there are for the word. However, a dictionary
may not contain all of the possible definitions.

Different software projects have differently named elements. A common dictionary
that encompasses all possible words in software requirements does not exist. For spe-
cific SRS documents, however, it is technically possible to build a specific dictionary
for the words. That may not be feasible for SRS documents in general, just for specific
SRS documents.

2.2.3. Complexity

When talking about natural language, complexity refers to the complicated structures
of multiple words and multiple combinations of words. Information complexity refers
to the multiform ways information is arranged. Basically, language complexity is in-
formation complexity, but information complexity is not necessarily language com-
plexity. Several definitions for language complexity exist, but for the purposes of this
study, the meaning as the structural complexity of language [45] is the most interesting
one.

Ambiguity is not complexity and complexity is not necessarily ambiguity. A sen-
tence structure can be very complicated, but it still can have only one meaning. Sen-
tence structure can also be very simple, but it still can have many meanings because
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of semantic ambiguity. However, if a sentence structure is complex, it is more difficult
to interpret than when it is simple. With complex structures there are more pieces that
need to be comprehended together.

Information content

Information content can be complex, it can have multiple parts that relate to each other
in different ways. The parts and the ways they relate to each other are both information
content. The complexity of information content can be measured from the numbers of
different characters and other structures. [46]

Kolmogorov complexity means the shortest form a text can be written in without
losing its information content. Nowadays it is often interpreted as the shortest program
that can output the text. In Figure 4 is presented one way how words can be encoded
to see their Kolmogorov complexity in an encoding style.[46]

10 10 10

Complexity

��

heavyheavy

��

nooooooooo

��

Complexity 2 ∗ heavy n+ 9 ∗ o

10 7 5

Figure 4. An example of Kolmogorov complexity of encoded words. Three pieces
of text that have the same length can have different Kolmogorov complexities: For
"Complexity" it is 10, for "heavyheavy" 7, and for "nooooooooo" it is 5.

Kolmogorov complexity tells the amount of information content in a string. It can
also be used as an indirect complexity measure. [46] To calculate the Kolmogorov
complexity of a text file, a file compressor can be used. The smaller the packed file,
the lesser the information content. For testing the datasets used in the implementation
of this thesis, 7zip was used as the file compressor. [47]

Software Complexity Measures

In the field of Software Engineering, complexity generally refers to the system and how
its parts interact with each other. The term complicatedness is closer to the linguistic
interpretation of complexity, where complexity refers to the language rather than the
system it describes.

Lines of Code (LoC) is one of the easiest and most common ways to measure soft-
ware complexity. [48] Calculating the number of sentences in a NL is somewhat sim-
ilar to the LoC measure. Each sentence represents a piece of information, a bit like
lines of code do.
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Language Complexity Measures

Language complexity (and ambiguity) has been an object of interest in linguistics espe-
cially when talking about cross-linguistic studies. Results of comparing the complex-
ities between different languages have even been thought of as evidence of different
levels of intelligence between cultures. However, such ideas have been deemed as po-
litical rather than scientific in modern studies. [49] A more practical use of linguistic
complexity is using complexity as a measure for how difficult it is to understand a text.

An expert linguist might be able to measure morphological complexity, e.g., by
calculating different morphemes and their relationships within the text. [45] However,
creating an automated system for that purpose is not simple. When creating a system to
automatically analyse complexity, it can be easier to concentrate on the complexity of
syntactic structures.Syntactic complexity measures include lengths of phrases, number
phrases in clause, number of clauses in unit and number of word order patterns. [45]

Noun Phrase Chunks

Chao Y. Din presented the use of noun phrase chunks (NPC) as a complexity and qual-
ity measure specifically for requirements documents.[50] Din proposes three ways to
measure the complexity using NPCs: NPC-Count, NPC-Cohesion and NPC-Coupling.

NPCs describe the sentence structure by separating the noun phrases (NP) from
the sentence structure. A NPC consists of the main noun and words that specify and
describe it. A few examples of NPCs include "The programmer", "a programming
programmer" and "that new skilled programmer", where "programmer" is the main
noun. A NPC can be treated as a single noun. For example, in the sentences "NPC
programs" and "there was NPC", "NPC" can be replaced by any of the previous NPCs
and the sentences make sense.

The NPC-Count measure calculates the number of NPCs in a sentence. It describes
the number of different entities that the sentence is about. The more there are NPCs in
a sentence, the more complex it is, since its meaning can consist of at least that many
parts.

The NPC-Cohesion is measured by calculating the sum of all sentence cluster sizes
within a requirement and dividing it by the number of all sentences in the requirement.
A cluster of sentences is formed so that a sentence and the next one belong to the same
cluster if both sentences contain the same NPC. [50]

NPC-Coupling is measured by calculating the sum of spatial distances between
NPCs that are inside and outside a sentence within the target text. [50] Measuring the
Coupling this way requires defining spatial distances between NPCs and sentences.
Measuring Coupling could also be useful in analysing how interrelated the require-
ments are, but that is out of scope of this thesis and Coupling is not measured for the
current implementation.
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2.2.4. Reading Comprehension

Reading comprehension is a topic of importance in both linguistics and NLP. Reading
comprehension is what natural language understanding (NLU) attempts to reach with
machines. Reading comprehension is more difficult on ambiguous texts, but at least
human readers can fill in the holes and comprehend texts at times even when they are
ambiguous, if they know what to expect from the text.[51]

Humans can process only a small number of units at a time [52] when machines can
handle as many as they are built to handle at a time. This makes it possible for a ma-
chine to go through complex structures without making errors more easily, assuming
there are no errors in the structures.

For example, the sentence "the programmer programs" can be handled as three units,
three words, by a human, but a computer can remember all the 23 characters at the
same time. When human processes the sentence, they can still divide each unit into
smaller units to reproduce the text, but if the units are interpreted incorrectly, they
might produce an incorrect text, for example by forgetting the article as meaningless
("programmer programs") or by recalling the spelling incorrectly ("the programer pro-
grams"). In contrast, a machine could store the whole sentence in memory without
changing its format and it could still create many different kinds of units (e.g. words,
parts of words) in which it could classify the sentence parts.

Humans vary in reading comprehension abilities depending on their background
and the target reading material. [53] A lot of studies have been made on school chil-
dren to develop better teaching methods. Adults have not been studied as much, but
they still also vary in reading comprehension abilities. [54] The equivalent of reading
comprehension variation in machines is the training datasets and the algorithms used
to interpret the text. Vocabulary size has a great effect on reading comprehension.
[55, 56]

To some extent the readability of a text can be measured. One of those measures is
the Automated Readability Index (ARI), which uses the stroke count (number of non-
whitespace characters), word count and sentence count. How ARI is calculated can be
seen in Equation 6. The Grade Level (GL) corresponds to the US school system grades
levels. [57] A problem with ARI is that it does not take the vocabulary or structure into
account at all, it only measures superficial readability.

GL = 4,71(
strokes

words
) + 0,5(

words

sentences
)− 21,43 (6)

2.3. Software Requirements Specification

Requirements engineering (RE) consists of requirement elicitation, analysis and nego-
tiation, documentation, validation, and management. [58] The document containing
software requirements is called the Software Requirements Specification (SRS). In the
SRS the elicitation of requirements and their analysis and negotiation are culminated
in the documentation of the requirements.

In requirements documentation the SRS is created so that the supplier and the client
are in agreement about the requirements and can verify them. To define software re-
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quirements, discussions between the customer and the the software provider need to
take place. Those discussions are typically held in natural language (NL) whether they
are done in speech or writing or both. Since the discussions are in NL, it is straightfor-
ward to write the requirements in NL.

The field of software engineering consists of areas like information engineering and
embedded engineering. Especially in embedded software engineering, where human
lives can be at stake (pace makers, car software, etc.), software quality is important. If
you release a faulty software, the cost of patching it up is much larger with embedded
software. One could argue that the better the SRS, the better the quality of the software,
since the better you understand what is required, the more accurately you can create it.
[59]

SRS documents are used to define what is expected from the software product. They
can be used by those who implement the code and those who validate it. A big part
of the issues in implementing software lies in poor SRS documentation and it causes
costs and delay. Unfortunately, it may be impossible to predict all the possible changes
in requirements, but a thorough groundwork can save a lot of time and money.[60, 59]

This section consists of three subsections. The first subsection describes what is
meant by SRS quality, the second discusses the language used in SRS and the third the
structures of SRS.

2.3.1. SRS Quality

It could be said that the quality of SRS documents could be measured by the number
of errors in them. There are two kinds of errors that are made during writing SRS doc-
uments: knowledge errors and specification errors. Knowledge errors are not always
preventable, since the required knowledge to do so may be available only later in the
process. However, specification errors should always be preventable by writing the
SRS better. [61]

Davis et al (1993) found 24 specific qualities an SRS should exhibit for being a good
quality SRS [61]. Some of them overlap. For example, unambiguous and understand-
able come close to being synonyms when considering from human perspective and
modifiable could be thought to include concise and reusable. Also, quality measures
may contradict each other and it is impossible to make a perfect SRS in general sense.
[61]

The following subsections discuss the most relevant ones of the 24 SRS quality
measures of [61] and how they are related to this thesis.

Unambiguous

In SRS documents ambiguity can lead to mixed interpretations of the requirements’
meanings. If the ambiguities are not fixed early on, the developers may produce soft-
ware which lacks intended features and exhibits unintended ones. The testers may still
catch the incorrect features, but it costs a lot more than catching them while defining
the desired features. If the faulty software is handed over to the customer, the costs of
correcting the errors caused by ambiguous requirements are even larger.



26

A sentence’s ambiguity can be measured by how many different interpretations the
sentence has. The sentence is unambiguous if it only has one interpretation. Natural
language sentences can be interpreted in various ways depending on the context. With
natural language, one sentence can have so many meanings that it could be said that
natural language is inherently ambiguous.

Using formal form for natural language sentences can help with reducing ambiguity,
despite the possibility of it also reducing understandability. [61] Formal form can be
understood as a strict context in which the language may be used only in predefined
ways and so the interpretations are limited.

SRS ambiguity can be sorted in two categories: linguistic ambiguity and software
engineering specific ambiguity. [1] Linguistic ambiguity can be resolved by a person
who is not familiar with the software described in the SRS as long as the person has
relatively good language skills. It is related to grammar, syntax, and how the sentences
have otherwise been built. For resolving software engineering related ambiguities an
expert on the system is required. The software engineering related ambiguities include
things like conflicting requirements and not describing a requirement in the required
level of precision.

There are systems that have been built for detecting ambiguity in natural language
SRS documents.[1] However, no gold standard ambiguity detecting tool of such kind
exists yet. Even manually detecting ambiguities by reviewing the SRS is not always
reliable due to human errors.

Ambiguity in technical documents, especially in SRS documents, leads to delays
and errors due to misunderstandings. It may be useful to be able to produce at least
some level of code straight from its technical specifications, but if the specifications are
ambiguous, that is very difficult, if not impossible, without someone to disambiguate
them first.[62]

Using specific requirements management tools helps with removing some of the
ambiguity by automating the structure creation. Using CNLs or formal languages
lessen the ambiguity, by removing the ambiguities of NL.

Understandable

SRS’s understandability means how easily the readers of the SRS interpret correctly
what is said in it. As it sounds, it is not easy to measure accurately. In some cases,
the developers and testers might understand UML charts and other formal represen-
tations of the requirements better than natural language requirements, but the other
stakeholders, like customers, need to be able to understand the requirements easily as
well.

Understandability is closely related to the unambiguousness of SRS. However, un-
derstandability takes into account how humans see the documents. A sentence can be
unambiguous, but it can also be hard to comprehend if it is too complicated and long.
Understandability can be enhanced by keeping things simple and clear.
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Modifiable

The SRS should be modifiable so that changing it is trivially easy, as the requirements
change when new information comes in. Electronically stored SRS documents can
be easily modifiable depending on the form they are stored in. Typically, to modify
the text, you only need a text processor with electronic documents. The base level of
modifiability is that the SRS can be modified.

Tracking the requirements and the changes done in them can increase modifiability
by helping to revert wrong changes and knowing which parts to modify. Making a
change in one place of the SRS may require making changes in some other places too
when the requirements depend on each other.

Keeping the requirements modular can also increase modifiability. It can also make
easier to track them. If the requirements have names and clear borders, they may be
thought of as modular. Naming the requirements also makes it easier to arrange them
and increases their modularity.

Executable/Interpretable

Usually SRS documents are not executable or interpretable in the sense that it would
be possible to press a button and get code generated out of the SRS. For that to be
possible, there would have to either be an AI capable of understanding NL or the SRS
would have to be written in an executable language. [61]

Reusable

The requirements in the SRS can be reusable in other SRS documents if they are easy
to modify to reflect the needs of the other SRS documents or if they are re-applicable
without modification. Like in software, where modularity is one dimension that can
make the code more reusable, the SRS is also more reusable if it is modular. A good
modular SRS has separate requirements that are stated clearly and on the right level of
generality. [61]

2.3.2. Language

SRS documents are typically written in English, which is a natural language (NL).
Other NLs can also be used. Many SRS are also written in a controlled natural lan-
guage (CNL) or a formal language, like mathematical equations. Pictures can also be
used in SRS, for example, in the form of UML diagrams. [63, 12]

SRS documents are usually not made public, so it is hard to find verified facts about
the quality of language used in them. However, as the writers of SRS have been mostly
human to this day, the documents are bound to have errors. That is why the SRS needs
to be under quality assurance. Unfortunately, the quality of grammar and spelling
in the SRS are not the top priority, so low quality language is to be expected in the
documents.
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Natural Language

NL is so often used in SRS because of its universality. Even people who have not been
taught technical CNLs can easily write and read text in NL. Natural language can be
used to express a wider variety of things than any CNL. Compared to picture data, NL
text data can also be cheaper to store in memory.

Unfortunately, NL in an SRS is only as precise and grammatically correct as its
writers write it. Humans make a lot of spelling errors, of which many can be detected
and corrected with the help of current technology. [64] Since SRS writers do not
always use spelling checkers and even if they do, they can still make mistakes. Many
SRS documents contain grammatical and spelling errors in addition to ambiguity that
does not stem from wrong usage of language.

Controlled Natural Language

Technical documents that are not written in NL are often written in a CNL. A CNL can
greatly clarify the meaning of sentence, which greatly reduces the ambiguity NL can
possess.

For the purposes of this thesis, Easy Approach to Requirements Syntax (EARS)2 was
chosen as the target CNL. Unlike, for example Attempto Controlled English (ACE),
which can have unlimited combinations of language structures, EARS relies on a lim-
ited number of different patterns.

Unified Modeling Language

Unified Modeling Language (UML) depicts complex algorithms and systems as pic-
tures. It can be used for software development, and in SRS documents, to describe
things that are difficult to do in natural language. Despite its allure, this thesis focuses
only on NL instead of UML.

2.3.3. Structure

The SRS consists of specifications of requirements for the desired system. If the SRS is
in the form of a single document, it can have an introduction that explains what the SRS
is for and what abbreviations are used. It can also include, for example, descriptions of
system parts. If the SRS is stored in a requirements management system (RMS), it can
still contain the descriptions, but they are not arranged in the single document format.
However, RMS may be able to produce a single SRS document, if it is necessary.

2There is a whole section dedicated to EARS in this chapter (Section 2.4).
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Single document

The SRS can be in a single document format. It can be written in .pdf, .doc, .txt or
practically any other document type. If the SRS contains pictures or diagrams, most
likely it is not in a raw text format, but in a mixed media format. It can also be a
physical document instead of being stored electronically.

If SRS is stored in a single document, it can be made to follow the IEEE Standards
for Requirements Specifications. [65, 66]

Requirement management systems

In requirement management systems it makes sense to store the SRS as separate re-
quirements specifications instead of keeping them all in one document. That way they
can be connected through the requirement management system in ways that are hard
to implement for s single document format.

2.4. Easy Approach to Requirements Syntax

The Easy Approach to Requirements Syntax (EARS) is a methodological way of writ-
ing SRS documents by using five simple templates. Requirements documents written
using EARS have been proven to be less ambiguous than documents written in unre-
stricted natural language (NL). [67]

EARS was created at Rolls-Royce around 2009. [10, 19] Its initial purpose was to
create better requirement documents for their products, including aero engine control
systems. In other words, EARS was created for safety, since having better requirements
leads to more reliability in designing the systems. It is easier to detect faults and fix
them in requirements that are written in a way that is clear and easy to understand.

For a controlled natural language (CNL), EARS is relatively simple and easy to
learn. EARS does not limit the requirements in strict ontologies, except for the tem-
plates, patterns, it uses. The EARS methodology consists of five patterns: Ubiquitous,
Event-Driven, State-Driven, Optional Feature and Unwanted Behaviour. To an extent,
they can be combined to make a sixth pattern group, the Combination.

The EARS patterns consist of a condition, an actor and an action, except Ubiquitous
pattern that consists of only the actor and the action. In Table 2, each basic pattern is
listed with its name, structure and an example. The actor is denoted with "the" and the
action with "shall". Each of the four condition types have a different word it begins
with (when, while, where, if) and the Unwanted Behaviour pattern’s condition has also
"then" at its end.
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Table 2. A summary of the EARS patterns
Name Structure Example

Ubiquitous The [ ] shall [ ]. The first protocol shall be implemented.

Event-Driven
When [ ],

the [ ] shall [ ].
When the authenticate command is received, the
first protocol shall activate.

State-Driven
While [ ],

the [ ] shall [ ].
While the first protocol is active, the second pro-
tocol shall encrypt all messages.

Optional
Feature

Where [ ],
the [ ] shall [ ].

Where encryption is defined, the second proto-
col shall use the defined encryption.

Unwanted
Behaviour

If [ ], then
the [ ] shall [ ].

If a received key is wrong, then the first protocol
shall terminate.

The work on EARS-CTRL has proven that EARS can be used to further translating
natural language straight into code. EARS-CTRL is a system that turns EARS text
into a linear temporal logic (LTL) format, which in turn can be turned into C code with
the help of Simulink. The EARS-CTRL demands a glossary of the components so that
they can be referred to with (restricted, EARS form) natural language. [68, 69]

2.4.1. The Ubiquitous Pattern

The Ubiquitous Patterns (UP) describe an inherent part of the systems that is not a
response to an action or otherwise optional. For example, it can describe what sort of
parts the software needs to include and what function which part performs.

The Figure 5 shows the structure of the pattern. UP consists of the main parts of a
requirement the actor and the action. The actor is expressed starting with "the" and the
action with "shall". If the action is in passive form, the "shall" is combined with "be".
It is possible to forbid the use of such passive form, but it is allowed in the context of
this thesis.

The (1) shall (2)

Figure 5. The Ubiquitous pattern. "The" and "shall" are marker words in the structure.
(1) represents the named target system and together with "The" it forms the actor, (2)
with "shall" represents the action it is supposed to do. The described action the system
is supposed to do comes without any pre-conditions in this pattern.

UP could be said to be the basic pattern, it can be found within all of the other
patterns. What distinguishes UP from the other EARS patterns, is the lack of condition
part. The action executed by the actor of the UP is ubiquitous, the actor should always
do it, when present, whatever the situation.
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2.4.2. The Event-Driven Pattern

Event-Driven pattern (EDP) describes a requirement of a response for an event that
triggers a behaviour. For example, in the example sentence from Table 2, "When the
authenticate command is received, the first protocol shall activate", the triggering event
is receiving the "authenticate command" and the response is that the "first protocol"
"activates". In Figure 6, the pattern is described in detail.

When (1) , the (2) shall (3)

Figure 6. The Event-Driven pattern. The pattern is much like the Ubiquitous pattern
with a "When"-condition put in front of it. (1) represents a description of the triggering
event and with "When" it is the EDP condition. It may consist of an initiating action
and preconditions. (2) is the target system and (3) is the response.

The EDP condition can include preconditions for the trigger. For example, "when
the authenticate command is received after the initiate command" includes the trigger,
"the authenticate command is received" and a precondition for the trigger, "after the
initiate command". It has not been strictly defined within EARS methodology how the
preconditions should be separated from the actual trigger. Thus it is the requirement
engineer’s responsibility to write the condition clearly in NL so that there is no doubt
about what the trigger is.

2.4.3. The State-Driven Pattern

The State-Driven pattern (SDP) describes an expected system behaviour while it is in
the defined state. In the example sentence from Table 2, "While the first protocol is
active, the second protocol shall encrypt all messages", the state condition is "While the
first protocol is active" and the rest are the actor and the action, the system behaviour
in the state. Figure 7 shows the SDP in detail.

While (1) , the (2) shall (3)

Figure 7. The State-Driven Pattern. The SDP is very similar to the EDP, but instead
of "when" it has "while" at its beginning and (1) represents the state in which (2), the
system, should respond in what way, or continuously do something, which is described
in (3).

2.4.4. The Optional Feature Pattern

The Optional Feature pattern (OFP) has a condition that describes a certain situation
where the behaviour happens. The condition is not a triggering event or a state, but, for
example, if some other feature has been implemented. The Optional Feature condition
depends on other features.
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In Figure 8 is the basic structure of the OFP. The OFP condition begins with the
word "where" and continues the same way as the other patterns that have conditions.

Where (1) , the (2) shall (3)

Figure 8. The Optional Feature pattern. The pattern resembles the two previous pat-
terns described in Figure 6 and Figure 7. It also has a condition, but it starts with
the marker word "where" and describes the optional feature in (1). The behaviour is
described in (2) and (3) like in the two previous patterns.

2.4.5. The Unwanted Behaviour Pattern

The Unwanted Behaviour pattern (UBP) differs from the other patterns most in the
sense that it describes behaviour in expected error situations. It is technically possible
to use EDP instead of UBP, but the knowledge about whether the condition is desirable
or not would disappear. Some EARS users may decide to only use EDP, but UBP is
included in the implementation of this thesis, albeit shallowly.

The UBP structure is described in Figure 9. It consists of a "if"-"then the"-"shall"-
structure. Other pattern conditions do not have a defined ending word, like UBP con-
dition does.

If (1) , then the (2) shall (3)

Figure 9. The Unwanted Behaviour pattern. This pattern has four marker words: "If",
"then", "the" and "shall". In (1) between "If" and "then" should be the description of
the unwanted behaviour (the UBP condition consists of "if", (1) and "then"). In (2)
is the system and in the place (3) is how the system should respond to the unwanted
behaviour.

The Unwanted Behaviour condition is an event that comes from outside of the sys-
tem. For example, a user may give the wrong PIN-code or the user may write a too
long text in a text box. The response can be something like prompting a new PIN-
code for three times before locking or not responding to text input after a limit of 300
characters.

2.4.6. Combination of Patterns

The patterns can be combined with each other if has been decided that combinations
of patterns is allowed. Combining patterns allows for more complex conditions for be-
haviour. However, if applied carelessly, combining the patterns may make the require-
ment more difficult to comprehend. In Figure 10 is an example of how a combination
of patterns can be structured.
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While (1) , when (2) , the (3) shall (4)

Figure 10. An example of a Combination of patterns, which combines the State-Driven
and Event-Driven patterns. This combination consists of two conditions, the actor and
the action.

Combinations of patterns can be either banned or allowed, and for the implementa-
tion of this thesis, they were allowed. The types of allowed combinations of patterns
are described in Figure 11. There are 45 different combination patterns when only one
of each type of conditions are allowed and the Unwanted Behaviour pattern can only
be the last condition before the actor.

condition1, condition2, actor action

condition1, condition2, condition3, actor action

condition1, condition2, condition3, condition4, actor action

Figure 11. The only allowed combination patterns in the implementation of this the-
sis. Any Condition can be Event-Driven, State-Driven, Optional Feature or Unwanted
Behaviour, but only the last one before the actor can be Unwanted Behaviour, because
of the "if...then" structure. There are only three possible combinations, because it is
assumed that if there are two conditions of the same type, they can be merged together
with "and". For example, the conditions "when the program starts" and "when the cur-
sor moves" can be merged to create "when the program starts and the cursor moves".

English, as a typical natural language, is so flexible that a sentence can have a main
clause and multiple subordinate clauses or it could even consist of more than one main
clauses. Sentences with multiple subordinate clauses are more difficult to express in
EARS if combinations of patterns are not allowed. A subordinate clause can often be
translated into a condition.
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3. IMPLEMENTATION

In this thesis is presented a tool for reducing ambiguity in SRS documents. Converting
NL requirements sentences into EARS reduces the structural ambiguity by presenting
only the cores of the sentences.

The tool presented in this thesis is called EARS Converter and it fulfills the main
goals of a tool for identifying and measuring ambiguity, as defined by Kiyavitskaya
et al. (2008) [4]. It determines ambiguity based on whether the sentence conforms to
EARS patterns and it proposes an EARS pattern if it finds a structure that could be
turned into one and warns if it does not find any.

Semantic ambiguity is more difficult to detect when structural ambiguity is also
present. Resolving semantic ambiguity requires deep knowledge of the vocabulary
of the target texts. [44] The focus of the EARS Converter is only in the structural
ambiguity of the sentences. This way it can be applied on SRS data that describe
more varied kinds of systems, since a glossary of the words and their meanings is not
required. If the EARS Converter is developed further in the future, ways to detect
semantic ambiguity in some level may be added.

EARS is a method of writing requirements in a simple and clear manner. If natural
language requirements are turned in their EARS form, they might become less ambigu-
ous. [62] If it is difficult or impossible to turn a natural language sentence in EARS
form, that might be a sign that it is too complicated. The EARS Converter attempts to
turn natural language sentences in their EARS forms.

The EARS Converter is the main implementation of this thesis. It takes raw text
SRS requirements as input and converts them in their EARS form. In Figure 12 is
shown the basic idea of the EARS Converter. The Converter consists of preprocessing,
tokenising, tagging and parsing, and mapping to EARS phrases.
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NL data

��

Preprocessing

��

44
preprocessed data

Tokenising

��

//
11 33requirements sentences words

Tagging

��

// POS − tagged

Parsing

��

// parse trees

Mapping

��

// pattern names

EARS style data

Figure 12. The EARS Converter’s tasks, input, and output. The preprocessing task
takes the input data and, from that, produces key words and preprocessed data. The
tokenising task handles separating the preprocessed data into sentences and words.
The tagging task labels the tokenised data with POS-tags. The parsing task creates
parse trees out of the POS-tagged data. The mapping task turns parse trees into EARS
sentences.

Algorithm 1 summarises the EARS Converter. Compared to Figure 12, tagging has
been omitted, because in the current version of the Converter the parsing task handles
both tagging and parsing.

Algorithm 1 The EARS Converter
Input: NL requirements specifications
Output: Requirements in EARS form

1: preprocessedData = Preprocessing(NLData)
2: tokenised = Tokenising(preprocessed)
3: parseTrees = Parsing(tokenised)
4: EARSsentences = Mapping(parseTrees)

Freely available and good enough tools exist for tokenising, tagging and parsing.
Preprocessing and mapping to EARS, however, had to be designed, built and tailored
for the purpose of handling the specific input data.

The EARS Converter is meant for SRS data. The jargon between the SRS of dif-
ferent systems varies a lot, which makes it challenging to optimise the tokenising and
tagging specifically for all different systems’ SRSs. Because of that, only more general
purpose tokeniser, tagger, and parser are applied in this implementation of the EARS
Converter.

It is possible to build the EARS Converter with different configurations. In the
configuration implemented in this thesis, the tokenising is done by the NLTK’s En-
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glish tokeniser and the tagging and parsing are handled by Stanford parser. Mapping
to EARS is implemented making use of the parse trees provided by the parser. The
preprocessing phase also applies the tokeniser.

The EARS Recogniser was developed to help assessing the EARS Converter. The
EARS Recogniser recognises and labels sentences by what EARS pattern they rep-
resent, if any. Figure 13 presents the only functionality the EARS recogniser has:
recognising EARS patterns.

sentence

��

EARS Recogniser

��

EARS pattern name

Figure 13. The EARS Recogniser. The Recogniser takes a sentence as an input and
outputs the name of the EARS pattern the sentence’s structure represents. If the sen-
tence is not in EARS form, the Recogniser outputs UNKNOWN.

The EARS Recogniser takes into account only whether or not the sentence contains
the EARS pattern structure superficially. It does not examine the connections between
the words and their purpose. It only takes into account the structure words and how
many other words are in which positions between, before, and after the structure words.

This chapter is arranged in the following way: The first section discusses the limita-
tions the implementation of the EARS Converter faces. The second section describes
the preprocessing phase. In the third section is described how the tokenising is han-
dled. In the fourth section, the tagging and parsing tasks are explained. In the fifth
section is presented how mapping to EARS is implemented in the EARS Converter. In
the last section is presented the EARS Recogniser, a small algorithm that can be used
to check whether a sentence conforms to EARS patterns.

3.1. Limitations

SRS documents as the target data limits the kind of processing the data should get.
Many different kinds of SRS documents exist. Some are casually written when oth-
ers follow strict patterns. Some describe a very complex software, whereas some may
depict only a simple system. The SRS documents to be analysed by the EARS Con-
verter had to be further limited to specific kind of SRS documents. English language
requirements were chosen as the only expected input, since it is a simple format com-
pared to whole documents and because English is a common language in software
development.

Since natural language is so ambiguous, there are many kinds of ambiguities that
could be attempted to remove from it. Structural ambiguity was chosen as the main
target of ambiguity reduction. It is done by converting NL requirements into EARS
patterns using NLP techniques. The applied NLP techniques were chosen based on
their popularity, applicability and usefulness.
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This section discusses the limitations of the implementation of this thesis. The rest
of this section consists of three parts. The first part focuses on the limitations SRS data
brings. The second part explains some of the limitations the NLP tools have. In the last
part some limitations for ambiguity reduction with the implementation are discussed.

3.1.1. Software Requirements Specifications Data

SRS data in English is not a specific enough scope by itself and it was specified further.
Gathering SRS documents proved to be a challenging task due to privacy issues, and
thus testing the application had to be done using alternative data, which resembles
SRS data. Only one language was chosen as the target language, since other languages
would have required as much expertise and material as English and those were not
available at the time of writing the thesis.

Single requirements written in English language were chosen as the target input.
That way the preprocessing phase of the EARS Converter is better equipped to handle
requirements coming from different storage formats and styles.

Availability

One of the largest challenges faced during writing the thesis was the unavailability of
public SRS documents. Despite the vast amount of SRS documents in the world, it is
hard to come by many of them at the same time. The majority of SRS documents are
owned by companies that may wish to keep them private. Unfortunately, gathering a
huge database of SRS documents is out of scope of this thesis.

High quality benchmark data for SRS does not seem to exist yet. Some have at-
tempted to gather a database of SRS data, but the attempts have not yet been very
successful. For example, nlrpBENCH [70] was launched around 2014 and its database
does not seem to have been updated since 2015 (10/2018, http://nlrp.ipd.kit.edu/). De-
spite the lack of recent updates, some of nlrpBENCH data was used for testing the
implementation, since no better options were available.

For the sake of simplicity, the chosen target SRS documents contain the require-
ments in one document. The requirements are also named. In the preprocessing, other
data than the requirements and their names is discarded. That includes background
information chapters, pictures and tables.

Limiting the target data to SRS requirements only reduces the freedom of the lan-
guage so that the structure can be monotonous and each sentence is expected to contain
important information. Natural language in free form can contain more sentences with
less importance and more variety. For example, technical documents rarely have need
for quotations, since they do not describe events the way i.a. novels do.
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Language

This thesis only handles requirements written in a specific natural language, English.
The EARS methodology is based on English, and to the best of the author’s knowledge,
it is not known whether or not it could be easily translatable to another language.

The multitude of ways NL can be used forces the algorithms developed for the so-
lution to be flexible about the language. Because of the limited amount of uniform
requirements data, statistical learning solution ideas were mostly discarded. Handling
NL reliably through machine learning methods demands a relatively large amount of
data to teach the system and to test it.

A lot of SRS are written with tables and pictures mixed in with NL. The EARS Con-
verter does not interpret tables nor pictures, which leaves out important information
when they are present in the data. When those are present in the data and it is ran
through the EARS Converter, it is recommended to use the tables and pictures as is
without trying to convert them. They are not in NL, and EARS fits only with NL.

3.1.2. Natural Language Processing Techniques

It might be possible to enhance the implementation with more NLP tools, but to cre-
ate the very basic version of it, only a few tools were required. The implementation
requires tokenising, tagging and parsing in addition to fitting into EARS patterns and
preprocessing the data.

Despite its popularity for tasks that resemble the EARS Converter, named entity
recognition (NER) was not implemented for tagging or otherwise due to its potential
for complicating the processing. Also, it could be difficult to find a ready made NER-
tagger that would work well with the jargon used in the SRS documents of different
fields of software development.

Stop-word removal was not implemented either. If the system was meant for getting
a general idea of the requirements, stop-word removal could be a powerful tool when
trying to get the main gist of the requirements. However, since the system relies on
sentence structure, and stop-word removal typically removes words that define struc-
ture, applying stop-word removal was deemed unnecessary and possibly even harmful
for the system.

The parser of choice for the Converter was Stanford parser [23]. The parser has been
trained on Penn treebank corpus, which is one of the largest datasets that can be used
for such task. [21]

One problem with Penn Treebank corpus is that it does not include technical soft-
ware documents and so its vocabulary does not cover a lot of jargon used in SRS.
Another problem is that the corpus has not been annotated for all kinds of purposes
and some of the annotations are ambiguous or incorrect (although most of them are
fine). [71] Because of these problems, the parser may also annotate some technical
specifications incorrectly. For example, Figure 14 demonstrates how a parser may
have incorrectly tagged words and created an incorrect parse tree when the training
data does not include enough of the jargon used in the sentence.
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NNP
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checksum

Figure 14. A parse tree of the example sentence: "Update data checksum." The parse
tree was produced by Stanford parser, which has been trained on data from the Penn
treebank. In the correct annotation "Update" should be the main verb and "data check-
sum" should be a noun phrase, where "checksum" is the target to be updated.

Due to time constraints of the project, no other parsers were used. The EARS Con-
verter could, at least in theory, use other parsers as well, as long as their tags fit the
implementation otherwise.

3.1.3. Ambiguity and Complexity Measurement

The EARS Converter does not measure the complexity and ambiguity of the sentences
by itself. For testing purposes such measures are used, however. The EARS Converter
attempts to decrease structural ambiguity by forcing a structure on the sentences.

There is a chance that reducing the structural ambiguity by pruning and rearranging
the sentence structure trees actually causes other kinds of ambiguity. For example,
parts of sentences that contain essential information for their interpretation may be
lost. Because of this, the Converter in its current form is recommended for being used
as a helper for those who write requirements or want to clarify them, instead of as an
independent interpreter.

3.2. Input and output

There are a lot of different SRS documents, written in various styles and formats. For
EARS Converter it means that the preprocessing needs to be tailored manually for
each type of SRS. Before the data is preprocessed for the EARS Converter, it has to be
analysed so that it will reach the correct format in the intended way.

Algorithm 2 describes the preprocessing in general. Different SRS documents can
have their requirements described in unique ways. Because of this, the preprocessing
ensures that the data is in a suitable format for the Converter.
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Algorithm 2 Preprocessing
Input: NL data
Output: Preprocessed data

1: limit the data to desired requirements
2: if NL data arranged in requirements then
3: ensure that each requirement has a name
4: else
5: arrange data in requirements
6: name the requirements
7: end if
8: return named requirements

The basic processed data format is raw text, or .txt files. Raw text data is easy to
handle and it does not contain extra pictures, unless the data happens to contain ascii
pictures or other kind of word art the preprocessing did not take into account. The
preprocessing should remove all kinds of tables and word art, though.

3.2.1. Input Data

The EARS Converter is meant for SRS documents only. The preprocessing can be
done on many different kinds of data, but it is easiest if it is in .txt file format and does
not contain any pictures or diagrams, just natural language. In addition to file input,
the EARS Converter can also process single sentences.

Format

Other data formats besides raw text files were considered as the optimal input, but due
to the simplicity and flexibility of the .txt file type, it was chosen.Some of the input
data may be in the form of .doc or .pdf files but the text needs to be extracted from
them during or before preprocessing so that the preprocessed file can be in the correct
form.

Style

The styles of the possible input documents vary a lot. The allowed styles depend on
how much effort can be applied in the preprocessing phase. An optimal input document
for the EARS Converter would already contain the requirements so that each line rep-
resents a requirement and begins with the requirement name, which does not contain
space characters, and continues with the NL requirement description sentences.
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3.2.2. Preprocessed data

After the data has been analysed, it has to be formatted so that the tokeniser can under-
stand it. In the preprocessed format, the data is given to the tokeniser to process. If the
data has been preprocessed incorrectly, the tokenising will not fix it and could make it
worse. The manual preprocessing must be done with care and documented properly,
even if it is partially automated so that the data goes through an algorithm rather than
human hands.

Format

The preprocessed data format is a single .txt file. A .txt file only contains raw text data,
which is easy to transform into different formats. The EARS Converter only handles
raw text data, which is supposedly in English.

Style

The preprocessed style was chosen so that it represents requirements in a simple man-
ner. Each line represents a requirement. The requirement begins with a name followed
by the sentences of within the requirement. The EARS Converter separates the name
from the requirement by space character and so the name may not include space char-
acters. In Figure 15 is shown an example of what the preprocessed data can look like.

Figure 15. Preprocessed example requirements as seen on a text processor. Each of the
three lines represent one requirement, and the first word of each line is a requirement
name.

3.2.3. Output data

When the input of the EARS Converter is a file, it forms an output file that contains the
transformed sentences. In the case where the EARS Converter input is given manually
instead of as a file, it does not form a summary file of all the sentences. It outputs the
transformed sentences on command prompt.

For each input data sentence, the EARS Converter forms an equivalent transformed
sentence, if possible. In the output file the sentences are arranged so that each sentence
is in a separate line, and the requirement name is at the start of the line. If the sentence
could not be transformed, its line only contains the name of the requirement the sen-
tence belongs to. In Figure 16 is an example of how the output sentences are arranged
in a file.
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Figure 16. An example of requirements that have gone through the EARS Converter.
See preprocessed version of the same sentences in Figure 15.

3.3. Tokenising

Single requirements were extracted from requirements specifications. One require-
ment can contain several sentences. The sentences were tokenised as separate units
and the words within the sentences as separate units within the sentences. This way
they are easier to handle through different NLP techniques. Algorithm 3 describes the
tokenising process.

Algorithm 3 Tokenising
Input: Preprocessed data
Output: Tokenised data

1: interpret each line in the data as requirement
2: for all Requirements do
3: Separate sentences
4: for all sentences do
5: Separate words
6: end for
7: end for
8: return Requirements, sentences in requirements, words in sentences

3.3.1. Requirements

An important part of tokenising happens already in the preprocessing phase. In the
preprocessing phase, the requirements are arranged in their own separate lines in a text
document and named if they did not already have names. In the tokenising phase, the
requirements are simply read line by line.

The input SRS vary in style and format and some may not even have requirements
separated properly. If they are not separated properly, there are two options: Either
analysing and separating them manually, or treating each sentence or paragraph as a
separate requirement. However, it is recommended that in the input data the require-
ments would be modular, originally separated into individual requirements.
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3.3.2. Sentences

In natural language text, sentences are not always annotated in the form where the sen-
tence begins with a capital letter and ends with a period. Not even in English language
text. There can be periods that mark abbreviations or are otherwise part of a name or
a number. Also, there are different punctuation marks that can end a sentence, and
sometimes natural language writers may forget to mark the end of sentence, especially
when the next character is a next line character or there is no next character.

To make it more likely that the sentences are separated correctly from each other
NLTK sentence tokeniser was used. [29, 30]

3.3.3. Words

To get the POS-tags, the words had to be tokenised first so that each word could be
given a POS-tag. In English language, if the clauses have been separated from each
other, it is simpler to separate words from each other, since a dot at the end of word
marks an end of sentence or an abbreviation, and when the domain is just one sentence,
there can be only one end of sentence and others must be abbreviations.

Like with sentences, the EARS Converter uses NLTK for tagging words as well.
[29, 30] The NLTK tokenised used is the "TreebankWordTokenizer" which has been
made for tokenising to words sentence by sentence.

3.4. Tagging and Parsing

The EARS Converter applies part-of-speech-tagging (POS-tagging) and parsing for
creating its main analysis structures, the sentence trees. A sentence tree describes how
a sentence’s words can be divided into phrase chunks. A sentence can have multiple
different possible trees, but a parser usually provides only one possibility based on the
algorithms it uses and the POS-tagging of the sentence.

Parsers are used for finding useful chunks of parts of sentences. Unfortunately, an
optimal parser for SRS data does not exist yet, and creating such would require a lot
of SRS data to train it. Thus, creating a parser of our own is out of scope of this thesis.
Instead, Stanford parser was chosen, due to its popularity, availability, and the large
amount of data that was used with training it.

Different kinds of taggers exist, but only a POS-tagger was necessary for the im-
plementation of the EARS Converter. The POS-tagging of the EARS Converter is
done by Stanford parser. With future development of the EARS Converter, different
POS-taggers might be used in addition to the one included in Stanford parser.

Algorithm 4 portrays the parsing process of the EARS Converter. The Stanford
parser includes tagging in its parsing process, and thus a separate tagging step was not
included.
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Algorithm 4 Parsing
Input: Tokenised data
Output: Parse trees of each sentence

1: for all Requirements do
2: add requirement name to list
3: for all sentences do
4: Build parse tree
5: add built tree under requirement name
6: end for
7: end for
8: return List of parse trees for each requirement

3.4.1. POS-Tagging

Part-of-speech (POS) tags are useful for identifying the purpose of each token in a
sentence. The EARS Converter applies POS-tagging to sentences to identify the token
types and to have a base to build parse trees on. The EARS Converter uses Stanford
parser [23] for both POS-tagging and building parse trees.

3.4.2. Phrase Chunks

Sentences consist of phrases and phrase chunks are phrases when they are handled
as units. Parsers that attempt to get phrase chunks without otherwise analysing the
sentence structure exist [5] but Stanford parser also tags the word tokens and analyses
the sentence structure deeper than just phrases. Stanford parser also builds phrase
chunks and trees out of phrases.

Sometimes it is more effective to use phrase chunks instead of phrase trees [5], but
in this thesis phrase trees were used instead. Phrase trees contain more information
than just phrase chunks. Phrase trees arrange the contents of large phrase chunks into
smaller chunks, creating multiple levels of chunking.

Verb Phrases

Verb phrases describe action. They consist of a verb and words that are related to it
instead of being related to the subject or object. In the EARS Converter, verb phrases
are used for finding the action part of the EARS pattern structure. In Figure 17 is
shown an example of what verb phrases can be like.
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Figure 17. A tree depiction of the verb phrase (VP) in the example sentence from
Dataset 2: "A TCP must support simultaneous open attempts." "Must" and "support"
are both verbs (V) and "simultaneous open attempts" is a noun phrase (NP) part of the
verb phrase.

Noun Phrases

Noun phrases describe a thing, an object, or an actor. EARS Converter applies noun
phrases mainly in finding the actor. Noun phrases consist of a main noun and words
related to it. In Figure 18 can be seen a couple of examples of noun phrases.
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Figure 18. A tree depiction of the noun phrases (NP) in the example sentence from
Dataset 2: "A TCP must support simultaneous open attempts." "TCP" and "attempts"
are both nouns (N), "A" is a determinant (DT) and "simultaneous" and "open" are
adjectives (JJ).

3.4.3. Main and Subordinate Clauses

Subordinate clauses describe information closely related to the main clause’s topic.
With requirements specifications, a subordinate clause could describe a condition un-
der which the main clause happens. Finding subordinate clauses within the sentence
can be the easiest way to find EARS pattern conditions.
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3.4.4. Stanford Parser

The Stanford parser is a statistical parser. It learns from the data it is fed, which, in
the case of the implementation in this thesis, is the Penn Treebank corpus. Because
of this, the data dictates a lot of what it can do. The parser produces POS-tagged data
and parse trees that can have multiple levels. The POS-tagged text is sorted into phrase
chunks and the phrase chunks are further arranged into higher level phrase chunks.

3.5. Mapping to EARS

During the writing of this thesis, the author designed and built a simple EARS Map-
per specifically for the thesis project to map the extracted phrases into EARS pattern
structures. It relies on the input data to make sense and be correctly POS-tagged and
built in a tree form (e.g. Figure 19). The focus of the EARS Mapper is on the structure
of the sentence that it extracts from the tree form.
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Figure 19. A parse tree of the example sentence: "A maximum of +10% in timing is

authorized." The sentence has a clear structure. It consists of a noun phrase (NP) and
a verb phrase (VP). It easily fits in the Ubiquitous EARS pattern and becomes: "The

maximum of +10% in timing shall be authorized."

The basic structure of the Mapper is described in Algorithm 5. The Mapper requires
at least a main VP to be able to build any of the EARS patterns. If a main NP is not
found, the Mapper gives the sentence one ("The OS"). To find the conditions of EARS
patterns, the Mapper applies a list of marker words that can be used to define whether
the subordinate clause is a potential EARS condition.
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Algorithm 5 Mapping
Input: Parse trees
Output: EARS form requirements specifications

1: for all Parse trees do
2: Find main VP
3: if main VP is found then
4: Find main NP
5: if main NP not found then
6: add "The OS" as the main NP
7: end if
8: Build base sentence using main VP and main NP
9: Find subordinate clauses from tree

10: if One or more subordinate clause found then
11: for all subordinate clauses do
12: Find condition marker words
13: if Potential marker words found then
14: build condition
15: end if
16: end for
17: for all condition do
18: add condition to base sentence
19: end for
20: end if
21: end if
22: if A sentence was built then
23: finish EARS sentence
24: end if
25: end for
26: return Requirements in EARS form

The Mapper takes sentence trees as input and outputs EARS sentences. If the sen-
tence is not in EARS form, the mapper recognizes if there are phrase structures that
could fit in EARS form present in the sentence. It uses them to rebuild the sentence in
EARS form. In Figure 20 is presented the basic idea of the EARS mapper in picture
form.
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Figure 20. The EARS Mapper. First the relevant phrase chunks and potential extra
sentences are extracted from the input tree. Next the phrases are transformed in the
form they would appear in EARS patterns. Lastly, the sentences are rebuilt in their
EARS form.

3.5.1. Extracting Phrase Chunks and Subordinate Clauses

Phrases and subordinate clauses are extracted from the sentence tree. The most im-
portant phrases are the main noun phrase and the main verb phrase, which can be
turned into the actor and the action. The subordinate clauses can often be turned into
conditions.

Main Verb Phrase

The main verb phrase represents the main action in the sentence. It can vary from a
complicated description, like "iterates over a wide dataset called Example Data", to a
single verb, like "exists" or "closes". Without a main verb phrase, a sentence is not
complete.

The Mapper transforms the original sentence’s main verb phrase into its EARS form
if it is not in it already. In EARS patterns, the main verb phrase starts with "shall"
followed by a verb in its base form (e.g. "exist", "close", "be") and its modifiers, like
the object or descriptions of how the verb is executed.

If the sentence structure does not have a verb phrase, it is likely that the sentence has
not been constructed properly. In English, a proper sentence requires a verb and for it
to be possible to build an EARS pattern, the sentence requires a verb phrase to have
an action that shall be implemented. If the main verb phrase is not found, the EARS
converter warns that an EARS pattern could not be produced.
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Main Noun Phrase

In SRS sentences, the main noun phrase should define which part of the system does
the action. The EARS mapper recognizes the main noun phrase as the noun phrase
that is in the same level as the main verb phrase.

If there is no main noun phrase, but a main verb phrase exists, a main noun phrase
("the OS") is added by the mapper. In Figure 21 is shown the structure of the added
noun phrase when one is not found.

NP

DT

the

NN

OS

Figure 21. The "the OS" NP, which is added if a main NP is not found.

In some cases the found main noun phrase is not the actual subject of the sentence.
For example, if the sentence is in passive form (e.g. "there shall be sunny") the main
noun phrase (e.g. "there") is not the actual subject. That kind of sentences can be
easily translated into EARS form, but the meaning of the sentence may not become
more specific.

Subordinate clauses

The conditions within EARS form sentences are subordinate clauses. The Converter
extracts subordinate clauses from the original sentences to check if they already are in
EARS condition form or if they could be transformed to be in EARS form.

During the development of the EARS Converter, it was noticed that the parse trees
often had subordinate clauses that had subordinate clauses, even though they could
be represented as two separate subordinate clauses. Thus, it was decided that if a
subordinate clause is within another subordinate clause, the EARS converter attempts
to separate them from each other.

Some subordinate clauses are already in the form of EARS conditions. The only
modifications the EARS converter does to those is separating subordinate clauses from
them. If they do not have a comma where it should be according to the EARS pattern,
it adds one.

3.5.2. Transforming Phrases

In the phrase transforming phase the processed phrase chunks are evaluated by how
well they would fit EARS patterns. The optimal EARS pattern structures are NP-VP
and SBAR-NP-VP, where SBAR can be multiple SBARs. The transformation idea is
depicted in Figure 22,
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Figure 22. The EARS patterns follow the formula where a condition for the action to
happen is placed before the actor and the action after the actor. Conditions are marked
by the the words "while","when","where" and "if..., then" and in Ubiquitous pattern the
condition does not exist. The actor is labeled with "the" and the action with "shall."

To fit the EARS patterns, phrases are extracted from the sentences. The basic struc-
ture of an EARS pattern is a condition followed by the actor and the action that the
actor shall do given the condition. Ubiquitous pattern contains only the actor and ac-
tion. Within the patterns, the actor is marked with "the", the action with "shall" and the
condition by "when", "while", "where" or "if..., then."

Action

Actions are main verb phrases that have been transformed to fit into EARS patterns.
In some cases, the verb phrase (VP) can already be in the correct form (begins with
"shall") and it does not need any transforming. The EARS Mapper does not check
linguistic correctness of the sentence, however, so the original one can be faulty, which
leads to the transformed one to be faulty as well.

If the main verb is in simple past tense, the EARS Converter attempts to transform
the phrase to fit into EARS pattern, but it does not know how to transform the verb
tense. This, however, should not cause too much trouble, since simple past tense is
rare as the main verb of SRS documents. Requirements describe what the system is
supposed to do, instead of what it did.

When the VP begins with an auxiliary verb (can, could, will, would, shall, should,
may, might, must, do or does), the EARS Converter ensures that "should" is always in
its place. The easiest VPs to transform into the EARS action form are those with aux-
iliary verbs, since they, if written correctly, already are in the correct form otherwise.

Different forms of "is" (is, ’s, are, was, were, am, ’m) in the input main VP sentence
are transformed into "shall be" by the EARS converter.

Actor

Actors are noun phrases that fit in the EARS pattern’s ubiquitous part’s first slot. Ide-
ally, the actor is the subject of the sentence, but some types of sentences do not have
an actor within the sentence structure (e.g. imperative sentences, where the actor is the
one or ones who the sentence is directed at)

The phrases found in natural language SRS documents are relatively often in imper-
ative form (e.g. "run away", "update slot number") when the actor is not present within
the sentence. It was decided that in the case where the actor is not found, the mapper
adds an actor, "the OS", as shown in Figure 23.
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Run the script

The OS shall run the script

Figure 23. An example of an imperative form sentence to Ubiquitous EARS pattern
sentence. The imperative form sentence does not contain the actor within itself. To
make it an EARS form sentence, the actor ("The OS") has to be added in addition to
transforming the main verb to create the action part. In this case, the transforming
consists of adding "shall" at the beginning of the action and leaving the main verb
("run") in its base form it appeared in.

Condition

The condition is a subordinate clause that fits into an EARS pattern that is not ubiq-
uitous pattern. The condition begins with one of these words: when, while, where,
if. If the condition begins with "if" it ends with "then." Otherwise the condition’s last
word has not been strictly determined. A combination of patterns may contain several
conditions with one Ubiquitous pattern followed by them.

3.5.3. Fitting to EARS

The main structure of most of the EARS patterns consists of a subordinate clause and a
main clause. The main structure of the Ubiquitous pattern is the only one that consists
of only a main clause, and complex EARS patterns can have more than one subordinate
clauses in their main structure. The input sentences may not follow the EARS pattern
structure, so the sentences are divided into specific parts that can be used for trying to
fit the sentence, or at least parts of it, into EARS pattern structure.

Phrase chunks and subordinate clauses can be used for building EARS patterns. In
Figure 24 is shown an example sentence tree, where main verb phrase and noun phrase
are clearly presented along with a subordinate clause.
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In Figure 26 is presented the mould in which the NP and VP should set for Ubiqui-
tous pattern to be produced. For creating an UP sentence that contains useful informa-
tion, the NP has to be the actor and the VP needs to be the action the actor carries out.
The EARS mapper does not take a stand on whether the actor and action make sense.
If the NP and VP in the sentence do not make sense, the new Ubiquitous pattern may
not make sense either.

The−NP shall − V P,

Figure 26. The Ubiquitous pattern build consists of an actor and an action. The actor
is a noun phrase, that has been transformed so that it begins with "the" if it did not
originally. The action is a verb phrase, that has to begin with "shall".

The Event-Driven Pattern

The Event-Driven pattern (EDP) consists of a condition, an actor and an action. The
condition begins with the word "when" and the actor and action are similar to the ones
in UP. The basic construction of an EDP is shown in Figure 27. The EDP describes an
action done by the actor following the event described in the condition.

When− SBAR, the−NP shall − V P,

Figure 27. The Event-Driven pattern build consists of a condition, an actor, and an
action. The condition is a subordinate clause beginning with "When" and the actor and
action are similar to the ones in the UP.

The Event-Driven pattern (EDP) may be chosen to contain Unwanted Behaviour
pattern (UBP) as well. By default, the EARS Mapper does so, except in the situations
where the potential condition begins with "if", which is a UBP condition’s marker
word.

The State-Driven Pattern

Like EDP, State-Driven pattern (SDP) also consists of a condition, an actor and an
action. SDP describes an action that the actor does in the state described in the SDP
condition. The marker word for SDP condition is "while". Figure 28 shows the basic
structure of the SDP.

While− SBAR, the−NP shall − V P,

Figure 28. The SDP build’s condition is a subordinate clause (SBAR), that begins with
"While". The actor and action of SDP follow the same style as the other patterns.
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The Optional Feature Pattern

The OFP condition begins with "where". Figure 29 shows the structure in which the
OFP is built.

Where− SBAR, the−NP shall − V P,

Figure 29. The OFP build’s condition begins with "Where" and it otherwise is similar
to the other pattern builds.

The Unwanted Behaviour Pattern

The Unwanted Behaviour Pattern (UBP) is the most complicated one of the single
patterns, because it contains four marker words instead of three or two. The EARS
Converter typically interprets potential conditions that could be UBP conditions as
EDP conditions, unless they already contain at least half of the UBP condition structure
(either "if" or "then").

As with other patterns, besides the UP, the UBP consists of a condition and UP
pattern after it. The marker words for the condition are "if" and "then." In a grammati-
cally correct UBP sentence, there is also a comma before "then", which is added to the
condition when it is built. In Figure 30 is shown the structure of how the UBP is built.

If − SBAR,−then the−NP shall − V P,

Figure 30. The UBP pattern build’s condition is different from the other pattern builds
in that it has to end with ", then" in addition to beginning with "If". Otherwise it is
very similar to the other pattern builds.

Combinations of Patterns

If the EARS Converter detects more than one subordinate clause, it attempts to create
more than one condition. If they are nested, it first separates them and builds conditions
out of all of them, if possible. However, if the pattern does not contain a main VP,
building a combination pattern is not possible, as it is not possible with any other
pattern.

Unknown Pattern

When the EARS Converter does not find the necessary main VP, the pattern is un-
known. In this case, the Converter outputs a single line "-" instead of a sentence, in
addition to giving a warning.
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3.6. Recognising EARS Patterns

The EARS Recogniser is a separate unit that can be used to check whether a sentence
conforms to any EARS pattern structure. It takes a sentence as an input and checks if
it has the marker words in place with the correct number of words in between them.

The Recogniser was created for having a tool that is independent of the Converter
and can be used for testing. In contrast to the Converter, the Recogniser only goes into
word level. It does not matter what words are in between the EARS structure elements,
as long as there is the right number of them and they do not break the structure.

3.6.1. Structure

The Recogniser mainly consists of only two parts: the tokeniser and the template
checker. The tokeniser is the same one used with the EARS Converter. The template
checker compares the tokenised sentence’s structure against EARS pattern structures.
Figure 31 shows the main structure of the Recogniser.

sentence

��

tokeniser

��

template checker

��
pattern name

Figure 31. The EARS Recogniser.

Algorithm 6 describes how the EARS Recogniser works. The tokeniser is required
for separating different words from each other so that the sentence structure can be
better analysed. The marker words are the words that appear in EARS form sentences
(e.g. shall, while) and they form the pattern structure. The numbers of non-marker
words are calculated, because in EARS patterns, there has to be a certain number (0 or
>0) of non-marker words between each marker word.

Algorithm 6 The EARS Recogniser
Input: sentence
Output: EARS pattern name or UNKNOWN

1: tokenise sentence to words
2: label marker words
3: count non-marker words between marker words
4: compare against EARS patterns
5: return pattern name
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3.6.2. Patterns

Each EARS pattern has its own structure. The template checker of the EARS Recog-
niser extracts the structure of a sentence from the tokenised sentence and compares the
structure against the different possible EARS pattern structures.

The structure of the tokenised sentence is extracted as follows: First the non-word
tokens are omitted. Then the word tokens’ letters are capitalised. Next the words
between, before, and after, marker words, are calculated and the structures are built
out of the marker words and the number of words between them. Since "the" is not
commonly used as a marker word, extra "the"s are removed from the structures leaving
only the "the"s that accompany "shall"s. The process is presented in Table 3 step-by-
step by transforming an example sentence into a potential pattern structure.

Table 3. Transforming a sentence into a potential patterns structure
Input sentence: When the process starts, the sentence shall be trans-

formed into a structure.
1. Punctuation removal: When the process starts the sentence shall be trans-

formed into a structure
2. Capitalisation: WHEN THE PROCESS STARTS THE SENTENCE

SHALL BE TRANSFORMED INTO A STRUC-
TURE

3. Calculating words: 0 WHEN 0 THE 2 THE 1 SHALL 5
4. Removing extra THEs: 0 WHEN 3 THE 1 SHALL 5

Single Patterns

The Recogniser can recognise all the different EARS patterns based on the structure
words. The structure words are: when, while, where, if, then, the and shall. Table 4
presents each basic EARS pattern structure. The x in the table represents the number
of words between the previous and next slot and it should be larger than zero. WHEN,
WHILE, WHERE, IF, THEN, THE and SHALL are the marker words that appear in
EARS pattern structures.

Table 4. Summary of the EARS pattern structures
Condition Actor Action

Ubiquitous - THE x SHALL x
Event-Driven WHEN x THE x SHALL x
State-Driven WHILE x THE x SHALL x
Optional Feature WHERE x THE x SHALL x
Unwanted Behaviour IF x THEN THE x SHALL x
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Combination of Patterns

In this thesis the combination of patterns was defined as a pattern with multiple condi-
tions, an actor and an action. The EARS Recogniser recognises a pattern as a COM-
BINATION, when it finds multiple conditions before the actor and action. Each con-
dition, however, has to begin with a different allowed word.

Unknown Patterns

When the EARS Recogniser does not recognise a pattern structure, it outputs UN-
KNOWN. The reasons for not recognising a pattern include insufficient number of
EARS structure elements, too many of them without other words in between, or in-
correct order of them. Also, if there are not enough other than structure words in the
correct places, the pattern is unknown.
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4. TESTING

The testing of the EARS Converter was performed on four different datasets. The
datasets were chosen based on availability and resemblance to software requirements.
The test were chosen so that they would measure the Converter performance and the
ambiguity of the input and output data to see whether it had been reduced.

Before the tests were done, the datasets had to be preprocessed. Preprocessing was
tailored for each dataset separately, since the datasets, like real SRS documents, are
not uniform in their style and format. In the first section of this chapter is described
what had to be taken into account while preprocessing each particular dataset.

The performance of the EARS Converter1 was measured with the help of the EARS
Recogniser2. The Recogniser recognises which pattern a sentence represents and also
if it does not represent any EARS pattern.

The ambiguity reduction was measured with the help of a few different measures.
Each of them aim to provide a different view on the structural ambiguity of the sen-
tences. Whether or not a sentence is in EARS is not taken into account when measuring
ambiguity, but the datasets were compared against each other before and after they had
been converted in their EARS equivalents by the Converter.

This chapter has been divided in four main sections. The first describes the datasets
and the preprocessing done to them. The second explains how the performance of
the EARS Converter was tested and the results of those tests. In the third section the
structural ambiguity of the datasets is analysed from a few different points of view.
The final section of this chapter summarises the test results.

4.1. Datasets and Preprocessing

Since finding freely available SRS documents proved to be difficult, four different
datasets, that only resemble SRS documents, were chosen. The datasets present differ-
ent writing styles of requirements. NL requirements can be written in different styles
depending on the software they are meant for and who writes them.

Each dataset contains data that defines requirements for different system. Dataset 1
defines the rules of a game. Dataset 2 defines requirements for Internet hosts. Dataset
3 consists of a few parts of requirements for steam-boiler control system. For compar-
ison, a completely different text, a novel, was chosen as Dataset 4.

The preprocessing of each dataset follows Algorithm 2 (Chapter 3 Section 3.2). The
different structures of the datasets necessitates personalising the preprocessing for each
dataset individually. The result of preprocessing is the preprocessed data, which is in
.txt format and each line represents a requirement. The first word (non-whitespace
characters before any whitespace characters on the line) is interpreted as the name of
the requirement and the rest of the line is the contents of the requirement.

1Chapter 3 Sections 3.3-3.5.
2Section 3.6.
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4.1.2. Dataset 2: Requirements for Internet Hosts – Communication Layers

Requirements for Internet Hosts – Communication Layers [73] was chosen as the ma-
terial for Dataset 2. It was chosen because it contains software terminology and SRS
can have similar structure. The structure is quite varied, as can be seen in Figure 33.
It contains tables and figures in ASCII-form, which had to be omitted when creating
Dataset 2. Only text form could be used, but not all of it fit into the desired requirement
format easily.

Figure 33. A page of Requirements for Internet Hosts – Communication layers (1989).
Note that the file is in .txt format, which does not have actual paging. The pages vary
in structure, but this page is a typical example of a page structure.

The requirements were gathered from page 20 to page 107 of the material [73].
Each sentence that contained "may", "should" or "must" was chosen as a requirement
sentence, since the document advised that those are its key words for requirements (al-
though only the upper case versions of the words are official, all casings were accepted
for Dataset 2). A sentence belongs to a chapter or section and the chapter or section
number is its requirement’s name.

Dataset 2 is the one of the four datasets that most resembles SRS. The sentences
contain software related terms and structures and they have been written in a slightly
restricted technical format. Each sentence of Dataset 2 contains a "must", "should",
or "may" which can be turned into "shall" to create an EARS structure. Turning them
into "shall" form, however, loses some of the sentences’ meaning and nuances, because
each of them have a specific purpose in the Requirements for Internet Hosts – Com-
munication Layers [73]. However, those meanings are closely related to the meaning
of "shall" in EARS sentences.



61

4.1.3. Dataset 3: Steam-Boiler Control Specification Problem

Dataset 3 contains data in technical description form. The sections 1.10-1.18 of Steam-
Boiler Control Specification Problem [74] are the only included data in Dataset 3, mak-
ing this the smallest of the datasets. Each named message and behaviour in sections
1.16-1.18 are considered separate requirements within the dataset. Figure 34 shows an
excerpt from the chosen parts of the Steam-Boiler Control Specification Problem.

Figure 34. An excerpt from the chosen sections of the Steam-Boiler Control Specifi-
cation Problem.

4.1.4. Dataset 4: Fiction

As Dataset 4, a piece of literature was chosen as non-technical material for comparison.
The chosen text was Pride and Prejudice by Jane Austen. [75] Dataset 4 is the largest
of the datasets and also contains the most non-technical language.

The novel is structured like novels often are. It consists of chapters and paragraphs.
Unlike with typical SRS documents, the novel contains literary structures, like quo-
tations, when the characters speak and do things. (Some SRS documents might also
contain quotations if, for example, they describe use cases where the users speak or
write specific things.)

The text file for the novel was acquired from project Gutenberg’s achieves [75] and
was in .txt form. Thus the preprocessing was rather easy. Each paragraph was con-
sidered a requirement and only the chapters of the novel were included without the
chapter names.

In preprocessing of Pride and Prejudice, semicolons were replaced by periods to
make processing the sentences easier. The Converter makes sentence trees of all sen-
tences. When processing too long sentences to create sentence trees, the NLTK with
Stanford Parser gives a warning and does not finish processing such sentences. An ex-
ample of a sentence, which uses semicolons as links to create an overly long sentence,
is the following found in the Pride and Prejudice by Jane Austen (1813) [75]:

" Every lingering struggle in his favour grew fainter and fainter; and in
farther justification of Mr. Darcy, she could not but allow Mr. Bingley,
when questioned by Jane, had long ago asserted his blamelessness in the
affair; that proud and repulsive as were his manners, she had never, in
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the whole course of their acquaintance– an acquaintance which had lat-
terly brought them much together, and given her a sort of intimacy with
his ways– seen anything that betrayed him to be unprincipled or unjust–
anything that spoke him of irreligious or immoral habits; that among his
own connections he was esteemed and valued– that even Wickham had
allowed him merit as a brother, and that she had often heard him speak
so affectionately of his sister as to prove him capable of some amiable
feeling; that had his actions been what Mr. Wickham represented them,
so gross a violation of everything right could hardly have been concealed
from the world; and that friendship between a person capable of it, and
such an amiable man as Bingley, was incomprehensible."

4.2. Performance

Precision and recall are measures commonly used for measuring the performance of in-
formation retrieval systems. The EARS Converter can be thought of as an information
retrieval system. The information retrieval measures, precision, recall and F-measure,
are calculated out of the recognized and non-recognized EARS sentences. They tell
how well the EARS Converter performs by describing how well it turns natural lan-
guage sentences into EARS sentences.

Classifying the sentences is done with the EARS Recogniser algorithm (Chapter 3
Section 3.6). No manual labelling of expected patterns was done, since that would
have required more than one available linguistically talented requirements engineer to
label the data. Because of the ambiguity of NL, same sentence can be transformed into
several different EARS pattern sentences. If only one person determines which EARS
pattern a sentence should become, the results are highly biased.

Using the Recogniser the variation in the recognition quality caused by human
recogniser is eliminated. However, the Recogniser can not take into account how a
human would actually interpret the sentences. Instead, it systematically classifies the
sentences based on their surface traits, e.g. which EARS structure words are present. It
does not take into account whether the sentence makes sense, only whether it conforms
to the EARS patterns.

4.2.1. Pattern Distribution

To evaluate whether the Converter manages to transform sentences into different EARS
patterns, the number of each pattern type was calculated over the datasets before and
after conversion. The EARS Recogniser was applied to determine which pattern each
sentence represents. No manual labelling nor predictions on which pattern a sentence
should be after conversion was performed due to time and resource constraints. How-
ever, the sentences were manually looked over to ensure they looked valid enough.

In Figure 35 is gathered the percentages of each pattern in each dataset before and
after the Converter. Only Dataset 1 contained any recognisable patterns before the
converter (5,8% of the sentences) and they were of the basic pattern type: Ubiquitous.
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Figure 35. The percentages of each pattern type in each dataset before and after the
Converter. The transparent bars describe the EARS distributions before the conversion
and the non-transparent after the conversion.

After the Converter the percentage of unrecognised patterns by the Recogniser was
below 13% in all datasets. The most prominent recognised pattern was the Ubiquitous
pattern (UP). Over 50% of all the recognised patterns were UPs in every converted
dataset.

Table 5 shows the result sentences distribution in different EARS patterns and un-
known patterns (denoted with "?"). Labelling the sentences was done with the EARS
Recogniser. The expected order of the different patterns, from most common to least
common, is in the rightmost column. It is based on how common the marker words
of the different patterns are in English language. Word frequencies were compared
against each other in the Corpus of Contemporary American English [76] and British
National Corpus [77].
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Table 5. EARS patterns in each dataset after EARS Converter
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Expected

UP (52,5%) UP (67,5%) UP (72,1%) UP (80,5%) ?
UBP (23,1%) EDP (10,4%) EDP (8,1%) SDP (5,7%) UP
? (12,6%) UBP (10,2%) SDP (8,1%) ? (4,6%) EDP
EDP (8%) ? (4,8%) UBP (5,8%) EDP (4,1%) OFP
Comb (2,1%) Comb (3,6%) Comb (5,8%) UBP (3%) SDP
SDP (1,3%) SDP (3%) OFP (0%) Comb (1,5%) Comb
OFP (0,4%) OFP (0,5%) ? (0%) OFP (0,7%) UBP

Based on Table 5, the Converter performed rather well on most datasets. The con-
verted Dataset 3 does not have any unknown sentences, but the others have some of
them.

Optional Feature pattern is very rare in all datasets, which was unexpected, since
"where" is a rather common word. However, "where" is a word that is very commonly
used in question sentences, which may not translate into EARS patterns very well.

4.2.2. Recall, Precision and F-Measure

Recall, Precision and F-Measure are all used to assess how well the system retrieved
its results. In this thesis, these measures are calculated over all patterns, since it was
not possible to forecast which specific sentence would represent which EARS pattern
after transformation, only that each sentence should have some EARS pattern sentence
equivalent.

Recall describes how much of retrieved information is correct. In equation 7, which
describes how recall is calculated in this thesis, R is recall, e the total number of re-
trieved sentences (both recognised and unrecognised ones) and u the number of sen-
tences that did not get a translation.

R =
e

e+ u
(7)

Precision describes how much of the retrieved information was also the correct sort
of information. With the help of EARS Recogniser, it tells which percentage of the re-
trieved sentences are in EARS. Equation 8 below describes how precision is calculated.
P is precision, r is the number of recognised EARS sentences and s is the number of
unrecognised retrieved sentences.

P =
r

r + s
(8)

F-measure combines precision and recall. The Equation 5 (Chapter 2 Section 2.1.3)
shows how F-measure is calculated.

In Table 6 are listed the results of precision, recall and F-measure calculations for
each dataset. Most of the sentences that the converter received as an input were re-
turned in EARS and thus the scores are quite high. For Dataset 3 the Converter re-
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turned all of the sentences in EARS form, which resulted in a perfect score for all the
three measures. The EARS Recogniser was used to define whether a sentence is in
EARS or not.

Table 6. Precision, recall and F-measure of each dataset
Precision Recall F-measure

Dataset 1 0.87 0.99 0.93
Dataset 2 0.95 0.99 0.97
Dataset 3 1 1 1
Dataset 4 0.95 0.92 0.94

The results of Dataset 3 are not unexpected, given that the input sentences all con-
tained words that resemble "shall" and a lot of the sentences could be transformed
into UP. Figure 35 shows that most of the sentences in Dataset 3 were converted into
UP pattern, but there are also some EDPs, SDPs, UBPs and combinations of patterns.
Dataset 1, which had the worst precision and F-measure proved to have the most varia-
tion in its output patterns; only about half of them were UPs. Dataset 2 had the second
smallest number of UPs in its output. Dataset 4, the literature dataset, had the largest
UP percentage in its output and the worst recall of the datasets.

4.3. Ambiguity Reduction

To measure the structural ambiguity of the input and output of the EARS Converter,
several measurements were chosen, since a single comprehensive measurement for it
does not exist. The chosen ambiguity measures are the sentence structure, vocabulary
size, readability and information retention. The sentence structure measures are the
main ambiguity measurements, and the others are used to provide additional informa-
tion to ensure that the loss of structural ambiguity does not make the text less readable
and that it retains information and relevant terminology.

The sentence structure is assessed using the sentence tree form. Various measures
are calculated for each dataset’s input and output sentence trees to assess the change
in structural complexity, which is tightly related to structural ambiguity. No humans
were used to provide subjective assessments of the structural ambiguity because of the
time and resource constraints.

The chosen measurements may be also used to assist measuring some other types of
ambiguity, not only structural ambiguity. For example, syntactic ambiguity might be
measured through assessing the structures of the sentence with the help of parse trees.
Some lexical ambiguity could be measured indirectly through assessing the number of
different words and their frequencies. Measuring semantic ambiguity might require
implementing and applying semantic networks or some other way to calculate possi-
ble meanings for each word, which is out of scope of this thesis. [44] However, the
frequencies and numbers of words can tell about the difficulty level of interpreting the
text correctly, even if not exactly about in how many ways the text can be interpreted.
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In the following subsections are described the application and results of each applied
ambiguity measure. For clarity, most of the results that are in graphical form in this
chapter can also be found in Appendix A in simple table form.

4.3.1. Sentence Structure

Removing structural ambiguity requires making the structures of the sentences simpler.
In English, the very basic structure of sentence is typically subject-verb-object. In an
example sentence from Dataset 1, "The players shall handle the chess clock properly.",
"The players" is the subject, "shall handle" is the verb and "the chess clock" is the
object.

The complexity of a sentence can be seen from a sentence tree. The more compli-
cated a sentence is, the more potential it has for ambiguity.

Stanford parser was used to create parse trees to analyse sentence complicatedness.
As the measures of complicatedness for each sentence was calculated the noun phrase
chunk (NPC) counts, NPC to verb phrase chunk (VPC) ratios, branch counts and sen-
tence lengths.

Sentence Length

The longer the sentences, the more potential they have for complexity and ambiguity.
The lengths of sentences were calculated as the number of words (tokens) in sentences.
The analysis of the sentence lengths of each dataset are visualised in Figure 36.
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Figure 36. Analysis of the sentence lengths of each dataset after preprocessing and
after the Converter.

Dataset 2 contained the longest sentences on average and Dataset 4 the shortest.
The most dramatic change the converter induced in sentence lengths happened for the
mode of Dataset 3: It dropped from 23 to 4. If a sentence is in EARS form, at its
shortest, it can have four words (e.g. "the actor shall act", UP). The only increase was
for the mode of Dataset 4 and it was minor: The mode went from 7 to 8. The standard
deviations of sentence lengths all decreased, which indicates that the lengths became
more uniform.

Noun Phrase Chunks

Noun Phrase Chunks (NPC) are NPs that can not be broken down to sub-NPs. NPC
count tells about the complexity of a sentence. The more there are NPCs, the more
complex it can be. [50]

Figure 37 shows the numbers of NPCs in a sentence for each dataset after prepro-
cessing and after conversion. The numbers of NPCs were calculated with the help of
Stanford parser. [23]
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Figure 37. Analysis of the number of NPCs in sentence. The Converter appears to
decrease the number of NPCs in sentence. Less NPCs in a sentence indicates that the
converted sentences may be simpler than the only preprocessed sentences in the sense
that they refer to a lesser amount of different entities.

The number of NPCs in sentence decreased for each dataset after conversion. The
number of NPCs in sentence was originally the smallest for Dataset 4 and the largest
for Dataset 2. The median NPCs in sentences was 5 for most of the preprocessed
datasets. For datasets 1 and 2 the median was very similar afterwards (about 4) and
datasets 3 and 4 experienced a more dramatic decrease during conversion.

NPCs to VPCs in Sentence

If a sentence contains a noun phrase (NPC) and a verb phrase (VPC), it is possible for
the sentence to include an action and the actor who does the action. The NPC and VPC
counts were compared against each other for each dataset before and after applying the
EARS Converter.

Figure 38 shows a breakdown of the ratios of NPCs against VPCs in a sentence for
each dataset after preprocessing and after conversion.
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Figure 38. Analysis of the number of how many NPCs there were for each VPC in
sentence. Sentences that were missing either NPCs or VPCs were omitted from the
data.

The number of NPCs to VPCs decreased overall, which indicates that the sentences
became simpler. The standard deviation suggests that there were less variation between
the NPC to VPC ratios. Dataset 2 had the largest number of NPCs to VPCs and Dataset
4 the smallest.

The mode was the same (2 NPCs for each VPC) for each dataset after conversion. It
had also been the same for almost every dataset in the preprocessed data. The sentence
structure where subject follows a verb which follows the object is very common. [16]
The UP typically follows the subject-verb-object sentence structure.

Branch count

The number of branches in a sentence tree describes the complicatedness of a sentence
structure. In Figure 39 are depicted the mean, median, standard deviation and mode of
each dataset’s branch count.
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Figure 39. Branches in sentences.

All of the measures had decreased after conversion, except for Dataset 1. Dataset
1’s standard deviation and mode increased after conversion, but its mean and median
decreased. The explanation for that could be that the Converter omits branches from
shorter sentences without omitting as many of the branches of longer sentences. For
other datasets the branches are filtered more equally from shorter and longer sentences.

4.3.2. Word Occurrences

The number of occurrences of different words tells about complexity, since each dif-
ferent word represents a possibility of an increase in possible interpretations. If certain
words appear many times in a text, it can indicate that either the word has multiple
meanings or the text’s topic is tightly tied to the word. Typically, word frequency
distribution over different words follows the Zipf’s word law [78, 79].

The vocabulary size of each dataset (before and after applying the Converter) was
calculated and the word frequency distributions checked for abnormalities. This helps
with assessing the changes in topic of the dataset and if the EARS structure skews the
word distribution.

Vocabulary

A larger vocabulary can make a text more precise, if the vocabulary includes more than
just the most common words. The most common words have more possible interpre-
tations than less common words. [55, 56] To get a general measure of how large part
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of the vocabularies of the datasets are common words and possible jargon or otherwise
special words, the vocabularies of the datasets were extracted and compared against a
list of 3000 most common words in English language. [80]

The Oxford Text Checker [80]compares texts against the Oxford 3000TM word list
that includes the 3000 most common English words. It can also be used to check
the texts against the 2000 most common words of the 3000 most common words and
to calculate the percentage of how many words in the text appear in the Academic
Word List (developed by Averil Coxhead of University of Victoria). [80] Figure 40
summarises the results of the Oxford Text Checker over the preprocessed and converted
datasets.

Figure 40. The percentages of words that appear in top 2000 and top 3000 most com-
mon words and the academic word list for each dataset after preprocessing and after
conversion.

Word frequencies

The text of each dataset should follow the Zipf’s law, like language typically does. The
Zipf’s law was tested on the datasets and the diverging words were analysed. The most
common words of each dataset were also compared to each other, with the expectation
that after the EARS Converter, they would include the words in the EARS pattern
structures.

Appendix B contains Zipf plots for each dataset before and after the conversion. Ap-
pendix C contains the twenty most frequent words of each dataset after preprocessing
and after conversion. From the Zipf plots can be seen how the word count distribution
approximately follows the Zipf curve, as expected.
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The most common words in all of the converted datasets are "the" and "shall". Those
are the marker words of UP, and they appear in all of the EARS patterns. The third
most common word in the converted datasets is "be" in all the datasets except Dataset
3, where it is "program".

In the preprocessed Dataset 1 the second most common word ("a") is unexpectedly
rare compared to the most common word ("the"). The distribution evens out after
applying the Converter, as the second most common word changes to "shall".

Datasets 1, 2 and 3 contain marker words for EARS sentences, stopwords and other
relevant words in the 20 most common words.

In Dataset 1, "player", "move", "game" and "arbiter" appear in the top 20 list before
and after conversion. Those words summarise well the topic of the dataset, which is
rules for a game.

In Dataset 2, "must", "ip", "host", "address" and "tcp" appear in the top 20 words
both before and after conversion. The word "may" disappears from the top 20 list after
conversion. The Converter transforms "may", in a correct position, into "should", so
this is expected. The word "layer" appears in the top 20 of Dataset 2 after conversion.
The Converter does not add that word to sentences, but it does transform words like
"may" and "should" into "shall" in some cases, which may be the reason for its rise on
the list.

Dataset 3’s top 20 words contain the most non-stop words of the datasets. The
preprocessed dataset’s notable non-stop words are "program", "message", "physical",
"units", "mode", "unit", "water", "sent" and "failure". In conversion "unit" drops out
of the top 20 list and "stop" and "level" rise on it.

Dataset 4 is the largest of the datasets and it contains the most general text. The
top 20 words of it only contain stop words and after conversion stop words and EARS
pattern words. The "os", which appears as the 17th most common word in the con-
verted Dataset 4 is a word that is added by the Converter when it does not find an actor
candidate.

4.3.3. Readability

To measure reading comprehension, the Automated Readability Index (ARI) was cal-
culated for each dataset before and after the Converter. ARI tells an estimation of on
which (United States) school grade level the reader should understand the text. [57]

In Table 7, ARI has been calculated for each dataset before preprocessing. This
was done so that the preprocessed and converted datasets could be compared against
the original texts, which are quite different from even the preprocessed datasets. The
strokes are visible (non-whitespace) characters, words are lines of characters separated
by whitespace characters and sentences are sentences extracted using NLTK corpus
reader. The score is calculated with the ARI formula [57] in Equation 6 (Chapter 2
Section 2.2.4.
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Table 7. ARI before preprocessing
strokes words sentences score

Dataset 1 50 976 9 233 616 12.1
Dataset 2 226 777 34 759 4 929 12.8
Dataset 3 11 603 1 887 95 17.5
Dataset 4 672 648 121 850 15 274 8.6

In Table 8 the ARI has been calculated for the datasets after preprocessing. Af-
ter preprocessing, each line had the name of the requirement it represents as its first
word. It was removed for calculating the ARI. The level of difficulty of reading com-
prehension rose for all datasets except for Dataset 3. Datasets 1, 2 and 3 lost data
in preprocessing, since only certain parts were chosen as suitable for conversion as
potential requirements.

Table 8. ARI after preprocessing
strokes words sentences score

Dataset 1 27 942 5 056 240 15.1
Dataset 2 57 988 9 626 397 19.1
Dataset 3 10 560 1 780 86 16.9
Dataset 4 676 123 121 476 7 657 12.7

Table 9 shows the ARI for datasets for the final result after conversion. The Con-
verter decreased ARI for every dataset. All the other fields of the table also decreased
or stayed the same. Datasets 1, 2 and 4 lost sentences because the Converter interprets
some sentences as unconvertable.

Table 9. ARI after conversion
strokes words sentences score

Dataset 1 20 998 3 890 234 12.3
Dataset 2 39 018 6 629 393 14.7
Dataset 3 7 276 1 241 86 13.4
Dataset 4 415 119 77 885 7 047 9.2

Datasets 2 and 3 are the most difficult ones to read in their original form and also in
their converted form. This is not surprising, because both of them consist of technical
specification text. However, the level of difficulty decreases more for Dataset 2 than
Dataset 3. This may be because the style of Dataset 2 is originally in a less technical
format and it becomes more so. Dataset 3, on the other hand, is originally in a format
that does not need to change as much to be in EARS form.

Dataset 1 describes a system that involves rules for humans rather than machines.
The text is meant for more casual readers than datasets 2 and 3 that are meant for
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technical people. That may explain why its ARI is lower. Dataset 4 is meant to read
for leisure, which explains why it is the easiest dataset to read.

4.3.4. Information Retention

Change in information complexity was used as the measure for information retention.
The diversity of data and how tightly it can be packed tells about the information com-
plexity. Calculating the Kolmogorov complexity for each dataset is used for comparing
the differences in information complexity of the datasets before and after conversion.
[46] If the information complexity decreases, that means the data may become less
meaningful, since the percentage of information it contains decreases.

The Kolmogorov complexity tells the potential for complexity from information
point of view rather than on word or sentence level. With the help of file compres-
sion programs, finding out Kolmogorov complexity is relatively easy. The dataset is
stored in a file and the file is compressed using a lossless compression algorithm. Then
the file sizes after and before compressing are compared against each other.

The chosen compression algorithm was 7zip’s LZMA2 due to its free availability.
LZMA2 is superior to the LZMA algorithm, which is its predecessor. [47] The LZMA
(and LZMA2) uses several compression techniques one after another to achieve the
resulting compression. The compression of LZMA is bitwise rather than bytewise,
which makes it better than many of its competitors. [81] Table 10 shows the file sizes
before and after compression.

Table 10. File sizes and compression ratios
Original (bytes) Compressed

(bytes)
ratio (%)

Dataset 1
preprocessed 28 797 8 218 28.538
converted 23 119 6 516 28.185

Dataset 2
preprocessed 58 852 17 361 29.499
converted 43,368 12 154 28.025

Dataset 3
preprocessed 11 285 2 657 23.545
converted 8 897 2 070 23.266

Dataset 4
preprocessed 695 512 199 147 28.633
converted 476 047 124 266 26.104

Figure 41 illustrates the differences between compression ratios of each dataset be-
fore and after conversion. Each dataset’s compression ratio decreases in conversion,
but not significantly. They stay about the same.
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Figure 41. The compression ratios of each dataset after preprocessing and after con-
version.

4.4. Summary of results

The Converter converted almost all of its input sentences into EARS if they were not
in it already. It also proved it could transform sentences into all of the different EARS
pattern forms. However, it is inconclusive whether the new sentences make sense, since
qualitative assessment of the sentences could not be done due to the time and resource
constraints. It is recommended that the EARS Converter is used by a requirements
engineer to check the resulting sentences, rather than blindly transforming sentences
and leaving them in the transformed form without checking.

The conversion reduced structural ambiguity. The sentence lengths decreased, which
decreases the potential for complexity of sentences. The sentences contained less
NPCs and the NPC to VPC ratio decreased, demonstrating the simplification of the
structure. The readability index indicates that the sentences became more readable
after conversion.

The performance results were rather good. The recall and precision of each dataset
were all above 86% for all datasets and F-measure was above 92%. For one dataset
they all were 100%. The Converter managed to transform NL sentences into EARS.

According to the used measures, it appears that the Converter can reduce struc-
tural ambiguity. The structures of the sentences became simpler: The NPC to VPC
ratio got better, there were less NPCs and branches overall in a sentence and the sen-
tences became shorter. The number of word occurrences distribution of the datasets
followed Zipf’s law before and after conversion. The readability scores after conver-
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sion improved. Information complexity decreased only a little, which means that the
transformed sentences are about as informationally rich as the original sentences.
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5. DISCUSSION

In this thesis was presented a tool (the EARS Converter) for turning natural language
(NL) software requirements specification (SRS) sentences into EARS form. The Con-
verter was tested on four datasets and it reduced structural ambiguity in all of them.

The applied testing methods for ambiguity reduction were quantitative. Had there
been more time and resources, more qualitative testing methods would have been ap-
plied to assess the overall ambiguity better. With the quantitative measurements only
structural ambiguity was measured.

Unlike with many other studies on SRS, the datasets used for this thesis are freely
available on the Internet. Thus, the results of this thesis can be used as a point of
comparison for future structural ambiguity reduction systems.

Since the EARS Converter is in its proof-of-concept form, there are ways that it
could be improved. With further development, the Converter could be combined with,
for example, a system like ARSENAL [82] that transforms EARS-like sentences into
formal form.

5.1. Results

The results suggest that the Converter reduces structural ambiguity. To remove other
types of ambiguity and to measure their removal, more studies are required.

During the development of the Converter, some SRS specific problems with the
Stanford parser were found that may apply to other parsers as well. For example, the
parser misinterprets sentences more easily if some of the words are in all uppercase let-
ters. That particular problem was fixed in preprocessing by turning the critical words
(e.g. MUST and MAY) to their lowercase counterparts if they were written in upper-
case. Unfortunately, it is likely that some other similar problems went unnoticed during
the development of the EARS converter. These kinds of problems arise, because the
parser was not trained on SRS data.

The preprocessed input and output of the EARS Converter were compared against
each other regarding their structural ambiguity. The chosen measures in this thesis
were mostly statistical to achieve the largest possible level of automation and objec-
tivity. However, when measuring ambiguity, subjective interpretations are relevant.
Given more time and resources, subjective ambiguity measures would have been also
used.

In some cases complexity and ambiguity are words that can be used interchangeably,
but they actually represent different concepts. Complexity is related to how many parts
and connections a thing has, and ambiguity is related to how the thing is understood.
In this thesis information complexity was measured as an aid to measuring the change
in ambiguity.

5.1.1. Performance

The datasets contained mostly sentences with a main verb, which is the bare mini-
mum for the Converter to be able to transform a sentence into EARS form. Thus, the
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Converter transformed almost all input sentences into EARS form. However, it must
be noted that EARS form is not a guarantee that the sentence makes sense, and with
more time and resources that would have been measured also with the help of human
evaluators to assess that.

To the best of the authors knowledge, other equivalents of the EARS Converter have
not been built, which means that there are no competitors to compare to. One example
of a somewhat similar system is PROPEL ("Property Elucidation")[83], which analy-
ses NL and elucidates the properties of the requirements [84] instead of converting the
sentences to EARS form.

5.1.2. Ambiguity Reduction

This thesis focused on structural ambiguity only. Since the types of ambiguity are not
easily separable from each other, measuring structural ambiguity involves measuring
other types of ambiguity as well.

Lexical ambiguity was lightly evaluated to get a better sense of the changes in struc-
tural ambiguity. The number of occurrences of each word, especially of the most
common words, tells a lot about the readability of the texts. If structural ambiguity
decreases, also its readability should get better and it can also affect the numbers of
words and word complexity.

Structure

Analysing the sentence structure tells the most about structural ambiguity. In this the-
sis, noun phrase chunks (NPC) and verb phrase chunks (VPC), as well as the number of
branches in sentence trees and sentence lengths were calculated for the analysis. With
these, some simple analyses could be performed to determine the levels of ambiguity
of sentence structures.

Information Retention

Information retention was measured to ensure that the Converter does not just translate
the sentences into pure structure without content. The measuring was done by applying
Kolmogorov complexity: the compression ratios of files before and after the Converter
were calculated.

As the results, the compression ratios did not change much, but the compression was
a little bit more effective after conversion. This means that in the restructuring process
a little bit of the information density was lost.

In addition to the density of data, some of the quantity of the data was also lost. The
Converter prunes the sentence trees as it creates new sentences. Some of the pruned
branches may have contained important side notes, but that can not be measured merely
by comparing the information density and amount of text.
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Readability

According to the readability scores based on word complexity, the Converter made the
texts easier to read. Automated Readability Index (ARI)[57] was applied to measure
the readability in this thesis. It measures the readability based on the text only by the
characters and words, not by interpretations or structures. It could be argued that it is
a very surface level readability index, but ARI and other readability indices, are often
objective. They assess the text by the numbers, not the meaning.

The target reader group of SRS documents is software engineers and software cus-
tomer representatives. To measure how well the target group understands a text, a
group of human evaluators representing the target group may be required. They should
also read the documents and respond to questions about it.

5.2. Future Work

The EARS Converter has potential uses in different systems. The solution of this
thesis, if developed further, could be used with tools like traceability matrices [85]
to help managing the changes in requirements. Another potential use for a further
developed EARS Converter would be a system that automatically produces code when
a NL SRS is given to it as an input.

5.2.1. Further Development of the Converter

There are many ways the Converter could be developed further. The output quality
could be improved by stemming the words to be transformed 1 and the pronouns could
be mapped to the likely previous nouns they are referring 2.

The Converter at its current state only reduces structural ambiguity, but it could also
be expanded to reduce lexical ambiguity.

Stemming

Stemming in general helps with connecting words with their roots. That way it helps
with connecting them to more of their possible meanings. With the help of tools like a
glossary or semantic networks, stemming could help with reducing lexical ambiguity.
In the current implementation stemming is not utilised much – only a little bit with
turning verbs into more correct forms when transforming the sentences in the Ubiqui-
tous pattern form.

In the current implementation ’-s’ or ’-ed’ is removed from the end of the verb when
present to make the verb more correct, but it can not track other kinds of past tense

1The Converter only stems and transforms some verbs to fit better with the word "should" at this
point.

2Currently the Converter only adds the words "The OS" to potential UP sentences that do not have a
subject.
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to present tense transformations than just removing ’-ed’. Verbs ’is’, ’are’, ’was’ and
’were’ are transformed in ’be’-form in the same manner.

Stop Word Removal

In natural language, stop words are frequently appearing words with little meaning.
For example, "the", "and" and "when" are words that can be seen as stop words. There
are different ways to determine which words are stop words, depending on the context.
Thus, different lists of stop words exist.

Stop word removal is one of the key techniques in NLP. Reducing less useful words
can make extracting information more efficient when dealing with large pools of data
and trying to find a general consensus about a specific thing. Key words can mix up
with stop words, which also can make it useful to remove stop words before trying to
find key words.

The structure of EARS patterns consists of words that appear frequently, especially
in text written in EARS. The structural words of a sentence may have only little mean-
ing, but they provide nuances that can be essential for writing and deciphering require-
ments.

Stop words were not removed from the input data, since that would remove too many
of the possible key words.

Automated glossary creation

If the vocabulary with the meanings of the words of an SRS could be reliably extracted
automatically, dispersing lexical ambiguity would become easier. Extracting the vo-
cabulary is relatively easy by extracting all the words, but extracting the meanings of
words and phrases and the connections between them is not as simple. For connecting
the meaning with the words, semantic networks could be used.

Semantic networks could help with reducing semantic or lexical ambiguity by trans-
forming sentences using the possible interpretations of the words to find alternative
words. Semantic networks could also be used for finding whether different sentences
are talking about same things. They could help with keeping track of requirement
changes in the SRS and with mapping which requirements are related to which as-
pects of the software. Systems like PROPEL[83] could also benefit from SRS specific
semantic networks.

The existing semantic networks, like the Semantic Web [86], have not been created
specifically about SRS vocabulary. Despite their more general nature, some semantic
networks could still be used on SRS documents to reduce at least some lexical ambi-
guity. However, that requires more research.
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5.2.2. Ambiguity Measures

Transforming sentences in their EARS equivalents does not remove the ambiguity of
the nouns and verbs and subclauses involved. The expressions themselves can be am-
biguous or the things they refer to can also be ambiguous.

The ambiguity measures used in this thesis were chosen for structural ambiguity.
Other types of ambiguity measures, like subjective assessments, may be needed for
measuring other types of ambiguity. [44]

5.2.3. Feature Extraction

With feature extraction a lot could be learned from SRS documents. For example,
different types of SRS documents could be recognised before processing and, if com-
bined with the Converter, the preprocessing could be done more automatically. Some
feature extraction approaches have been tried before [87] but there is a lot of room to
learn more.

Keyword collection is one type of feature extraction. A very modest amount of
keyword collection was applied in the testing and analysis of the results of this thesis.
It was done to give a bit of perspective to the datasets and what they are about.

Keyword collection could be used to a much larger extent in analysing SRS docu-
ments. It could give an initial view on the topic of the SRS and what may be its most
important words. With a glossary to map words to each other, there could be ways to
find what words are synonymous to the most relevant words and replace the synonyms
with the most relevant words. This would be useful, because when freely writing NL,
people do not always use the same words when they mean the same thing.

If automated keyword extraction was meant for finding structures instead of words,
it could have been helpful for the Converter. However, even more advanced keyword
extraction tools like RAKE [31], remove stop words before extracting keywords. Thus
keyword extraction would be difficult to use for finding structures.

5.2.4. NLP and Requirements Engineering

Requirements engineering relies on requirements specifications (RS), which are typi-
cally in the form of text documents. At least in software engineering, the RS typically
contains a lot of NL. When NL is present, NLP techniques can be useful. [88]

NLP can be used to analyse documents, build better documents and to keep track
of changes. With machine translation, they can even be translated to other languages.
Making better use of NLP could be beneficial for software requirements engineering.

CNL linguistic studies on EARS

SRS documents can apply controlled natural languages (CNL) in addition to NLs. A
lot of research has been done to build different CNLs, but more could be made. Now
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that NLP has progressed to its current level, machine translation with CNLs should be
studied more.

SRS benchmarks

One of the largest hindrances for the study of NLP with requirements engineering is the
lack of large freely available SRS databases. Since a good benchmark database does
not exist, comparing studies is not easy. Publishing studies concerning SRS documents
can also be difficult if the documents themselves have to be kept secret.

There are some possible solutions for this problem, but all of them require a lot
of time, resources, effort, and management. For example, group of companies could
together provide a pool of SRS documents for everyone to peruse. That would require
arranging such an agreement between the companies. It could be difficult to get a large
enough number of companies to agree about letting such well guarded documents go.
For another example, open source community could start building SRS documents for
open source tools, but producing SRS documents requires effort that people working
for free may not have the incentive to do. Such efforts might not be feasible.

The nlrpBENCH [70] is a good example of a project that attempts to fix the lack
of freely available SRS data to study. It was applied in this thesis for finding suitable
data for testing. Unfortunately, as good as the idea behind it is, it does not include
all kinds of SRS data and no annotated EARS data or other types of annotated data.
Further gathering efforts of a freely available SRS databases would be welcome for
NLP studies concerning SRS documents.

Until a large and diverse SRS database is available 3, SRS studies need to come
up with different ways to cope with the SRS data shortage. In this thesis the four
chosen datasets were small, but they represented different forms of the text that SRS
documents may contain. Other ways to cope with the difficulty of finding suitable data
could include making the studies private so that companies do not have to publish their
SRS documents. That, however, is not very desirable from the scientific point of view.

Turning NL SRS Into Different Forms

NL SRS documents are a blessing and a curse, since NL is so versatile and easy to
understand, but also ambiguous. The idea behind EARS Converter arose from the
hope that someday it would be possible to convert NL SRS into executable code. The
Converter is the first step towards that goal.

NL has already been turned into some formal forms successfully.[89] For example,
it has been attempted with neural attention. [37] Parts of NL have also been translated
into description logic [9] and CNL has been used to express logical arguments [3].
However, turning language to logic or other formal forms usually requires that the
language has enough structure. [26] The EARS Converter could be used as a part
of such system to perform initial transformation of the language into more structured
form.

3If one ever is! Businesses like to keep their secrets.
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6. CONCLUSION

This is a master’s thesis in computer science and engineering at the University of Oulu.
The work was done for a private company in 2018. The goal was to produce a tool for
reducing ambiguity of SRS documents. The goal was met. The EARS Converter
proved to be able to transform sentences into less structurally ambiguous form.

In addition to the EARS Converter, for this thesis was produced the EARS Recog-
niser to automatically recognise EARS sentence structures. This thesis also provides a
set of measures to assess structural ambiguity, and a group of datasets that can be used
as a small benchmark for further studies of ambiguity reduction in SRS documents.

As it was noted in the Introduction chapter, ambiguity of SRS can cause a lot of
expenses. Applying a system like the EARS Converter does not add much to the
expenses. Instead, it can be used to reduce the ambiguity of SRS from the beginning
of writing the SRS. The earlier the ambiguity is resolved, the less issues it is possible
for it to cause.

Ambiguity is a challenging thing to grasp. [39] People can understand the same
sentence in many different nuanced ways. Reducing structural ambiguity means re-
ducing the number of ways a sentence can be interpreted according to its structure. In
this thesis, the EARS Converter was applied to restructure NL sentences to EARS to
reduce structural ambiguity. There is still a lot of work to do to find ways to reduce
other types of ambiguity.

The EARS Converter can be applied without having to give a lot of training to its
users. The Converter simply outputs the EARS form interpretations of the input NL
sentences. The user does not even need to understand EARS format to use it. The
output sentences can be used as a metric for whether or not the Converter understands
the sentence structure or as suggestions for EARS form sentences.

The results suggest that the EARS form sentences are less structurally ambiguous
than the NL input sentences. The tree form of the sentences was used to analyse the
ambiguity of sentence structure, a bit like how chunks have been previously used for
such tasks [50]. The tree form measures were supplemented by some more general
measures, like the sentence lengths, vocabulary variation and readability index.

The sentence structure can be gathered from the sentence’s sentence tree form. In
automatic analysis of the sentence, the builders of the sentence trees are parsers, like
the Stanford parser which was used in this thesis. [23, 30] Humans can also construct
sentence trees, but automatic creation of them is faster and it can also be more accurate.
[71] However, even the Stanford parser, which is one of the most advanced parsers
available, did not accurately parse sentences when they were missing periods or some
of the words were written in all uppercase letters. More research on parsers with
jargon-rich data, like the SRS documents, is recommended.

The EARS Converter can be used as the first step towards a system that automat-
ically turns NL SRS into different formal forms. However, the Converter currently
only reduces structural ambiguity. Other types of ambiguity have to be removed from
sentences before the sentences are ready for reliable unsupervised transformations.

Previous work on natural language processing (NLP) with requirements engineering
(RE) has mostly focused on sentences that have already been in CNL form. [1, 6] In
contrast, the solution in this thesis transforms NL into CNL. This facilitates building
systems that might be able to automatically turn NL into code or other formal forms.
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This would be useful in requirement management systems, since it might make it pos-
sible to translate the requirements into executable code.

This thesis presented a point of measure for turning NL sentences into EARS. The
datasets are also freely available, which helps with the problem of not having enough
freely available benchmarks. [63, 70] Precision, recall and F-measure were used to
assess the performance of the Converter. Despite not being the best for every situa-
tion [33], these measures are common in NLP and likely to be familiar to many NLP
researchers.

Perfectly objective ambiguity measures do not exist. [38, 44] This thesis applied
a group of structural ambiguity measures that at least aim towards objectivity. All of
them are quantitative. Further studies are required, however, to determine whether they
are enough for all kinds of datasets and what else can be used.

With further development, more ambiguity types could be reduced with the EARS
Converter. An example of improving it is including automated glossary creation, which
could be used to find connections between requirements. With the development of
glossary creation and applying it, the Converter could be become an alternative to
systems like ARSENAL [82]. Another example would be simply to improve the cur-
rent version of the Converter by stemming words, or manually adding more types of
possible condition transformations. One more example of a possible direction of de-
velopment is building a module that compares the requirements sentences against each
other as a whole, or by their structure.

The Converter can be seen as a simple natural language understanding (NLU) sys-
tem. It interprets NL in another form. More complicated NLU systems could be built
that would use such interpretations as, for example, a base for better understanding of
the software. If an NLU system can analyse the requirements, it might be possible for
it to check whether the requirements and the software match. That could enable more
automated software testing and development.

More research that join software RE and NLU could lead to higher quality auto-
matic software production. However, the insights from the RE-NLU studies could also
be used in other areas of science as well, since NLU requires more than just NLP. For
example, in addition to NLP, the results of this thesis unite ambiguity studies, linguis-
tics and RE. Perhaps some day it becomes possible for a machine to understand what
sort of code humans want it to produce automatically.

6.1. Perspectives

There were some interesting limitations during creating the Converter and choosing
the measures. The parser would probably have performed better with more specific
training data. The types of ambiguity to reduce had to be limited to only one because
ambiguity is an extensive concept.

The Stanford Parser was not trained on the type of data SRS typically contains,
which is very specific technical language, even if it is often NL. The vocabulary con-
sists of words that have very specific meanings within the context and without training
the parser on a labelled specific dataset, the results may not be as specific as they could
be. To have such datasets, perhaps creating an AI using deep learning to label technical
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NL data would help, since that could make it possible to use the company’s own data
to train the parser without having to release any company data outside.

Words and sentences can be interpreted in many different ways depending on the
context. In technical documents, the context is relatively simple compared to, for ex-
ample, in novels. Even in technical documents, context is hard to grasp tightly enough
to force only one possible interpretation on one sentence. Programming languages are
much less ambiguous in this regard, since their context is very limited. Bringing sen-
tences even closer to programming languages than EARS patterns are could further
reduce their ambiguity through limiting the context. However, that would require find-
ing or coming up with a good enough restricted language, which is a worthy task by
itself.

If people are to be made use more restricted languages in requirements engineering,
studies on how to make people use the restricted languages most efficiently should be
made. For example, it should be verified whether it would be more efficient to have
people use something like the EARS Converter to transform their NL sentences or
properly teach the people to use a restricted language, like EARS, by themselves.

Ambiguity is a fascinating concept and there are many more ways to study it aided
by technology. With the aid of different parsers sentences can be analysed further
and faster than before. Large databases of various meanings in various contexts can
be created, even if it requires the help of actual humans in labelling the data at the
beginning. Catching all the possible meanings might be impossible because of the
evolving nature of NL, but adding context to text might limit them enough to approach
human level understanding of sentences.



86

7. REFERENCES

[1] Shah U.S. & Jinwala D.C. (2015) Resolving ambiguities in natural language soft-
ware requirements: a comprehensive survey. ACM SIGSOFT Software Engineer-
ing Notes 40, pp. 1–7.

[2] Kuhn T. (2014) A survey and classification of controlled natural languages. Com-
putational Linguistics 40, pp. 121–170.

[3] Strass H. & Wyner A. (2017) On automated defeasible reasoning with controlled
natural language and argumentation.

[4] Kiyavitskaya N., Zeni N., Mich L. & Berry D.M. (2008) Requirements for tools
for ambiguity identification and measurement in natural language requirements
specifications. Requirements engineering 13, pp. 207–239.

[5] Arora C. (2016) Automated analysis of natural-language requirements using nat-
ural language processing. Ph.D. thesis, University of Luxembourg, Luxembourg.

[6] Yue T., Briand L.C. & Labiche Y. (2011) A systematic review of transforma-
tion approaches between user requirements and analysis models. Requirements
Engineering 16, pp. 75–99.

[7] Xu X., Liu C. & Song D. (2017) Sqlnet: Generating structured queries from
natural language without reinforcement learning. CoRR abs/1711.04436. URL:
http://arxiv.org/abs/1711.04436.

[8] Zhong V., Xiong C. & Socher R. (2017) Seq2sql: Generating structured queries
from natural language using reinforcement learning. CoRR abs/1709.00103.
URL: http://arxiv.org/abs/1709.00103.

[9] Gyawali B., Shimorina A., Gardent C., Cruz-Lara S. & Mahfoudh M. (2017)
Mapping natural language to description logic. In: E. Blomqvist, D. Maynard,
A. Gangemi, R. Hoekstra, P. Hitzler & O. Hartig (eds.) The Semantic Web,
Springer International Publishing, Cham, pp. 273–288.

[10] Mavin A., Wilkinson P., Harwood A. & Novak M. (2009) Easy approach to
requirements syntax (ears). In: Requirements Engineering Conference, 2009.
RE’09. 17th IEEE International, IEEE, pp. 317–322.

[11] Schuster S. & Manning C.D. (2016) Enhanced english universal dependencies:
An improved representation for natural language understanding tasks. LREC.

[12] Osborne M. & MacNish C. (1996) Processing natural language software require-
ment specifications. In: Requirements Engineering, 1996., Proceedings of the
Second International Conference on, IEEE, pp. 229–236.

[13] Cambria E. & White B. (2014) Jumping nlp curves: A review of natural language
processing research. IEEE Computational intelligence magazine 9, pp. 48–57.

[14] Greenberg J.H. (1963) Some universals of grammar with particular reference to
the order of meaningful elements. Universals of language 2, pp. 73–113.



87

[15] Ramat P. (2009) How universal are linguistic categories? In: Universals of Lan-
guage Today, Springer, pp. 1–11.

[16] Dryer M.S. (1992) The greenbergian word order correlations. Language , pp. 81–
138.

[17] Council B. (2018), English grammar. https://learnenglish.

britishcouncil.org/en/english-grammar. Accessed: 2018-06-04.

[18] Dryer M.S. (2009), The branching direction theory of word order correlations
revisited.

[19] Terzakis J. (2013) Ears: The easy approach to requirements syntax. In: Tutorial
at the Eighth International Multi-Conference on Computing in the Global Infor-
mation Technology.

[20] Fuchs N.E. & Schwitter R. (1996) Attempto controlled english (ace). arXiv
preprint cmp-lg/9603003 .

[21] Marcus M.P., Marcinkiewicz M.A. & Santorini B. (1993) Building a large an-
notated corpus of english: The penn treebank. Computational linguistics 19, pp.
313–330.

[22] Tian Y. & Lo D. (2015) A comparative study on the effectiveness of part-of-
speech tagging techniques on bug reports. In: Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference on, IEEE,
pp. 570–574.

[23] Manning C., Surdeanu M., Bauer J., Finkel J., Bethard S. & McClosky D. (2014)
The stanford corenlp natural language processing toolkit. In: Proceedings of 52nd
annual meeting of the association for computational linguistics: system demon-
strations, pp. 55–60.

[24] Schmid H. (2013) Probabilistic part-of-speech tagging using decision trees. In:
New methods in language processing, p. 154.

[25] Ratinov L. & Roth D. (2009) Design challenges and misconceptions in named
entity recognition. In: Proceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning, Association for Computational Linguistics,
pp. 147–155.

[26] Zettlemoyer L.S. & Collins M. (2012) Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420 .

[27] Kuhn R. & De Mori R. (1995) The application of semantic classification trees to
natural language understanding. IEEE transactions on pattern analysis and ma-
chine intelligence 17, pp. 449–460.

[28] Socher R., Lin C.C., Manning C. & Ng A.Y. (2011) Parsing natural scenes and
natural language with recursive neural networks. In: Proceedings of the 28th
international conference on machine learning (ICML-11), pp. 129–136.



88

[29] Bird S., Klein E. & Loper E. (2009) Natural language processing with Python. "
O’Reilly Media, Inc.".

[30] Perkins J. (2014) Python 3 text processing with NLTK 3 cookbook. Packt Pub-
lishing Ltd.

[31] Rose S., Engel D., Cramer N. & Cowley W. (2010) Automatic keyword extraction
from individual documents. Text Mining: Applications and Theory , pp. 1–20.

[32] Cowie J. & Lehnert W. (1996) Information extraction. Communications of the
ACM 39, pp. 80–91.

[33] Powers D.M. (2011) Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation .

[34] Yampolskiy R.V. (2013) Turing test as a defining feature of ai-completeness. In:
Artificial intelligence, evolutionary computing and metaheuristics, Springer, pp.
3–17.

[35] Alm C.O. (2011) Subjective natural language problems: Motivations, applica-
tions, characterizations, and implications. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies: short papers-Volume 2, Association for Computational Linguis-
tics, pp. 107–112.

[36] Yi J., Nasukawa T., Bunescu R. & Niblack W. (2003) Sentiment analyzer: Ex-
tracting sentiments about a given topic using natural language processing tech-
niques. In: Data Mining, 2003. ICDM 2003. Third IEEE International Confer-
ence on, IEEE, pp. 427–434.

[37] Dong L. & Lapata M. (2016) Language to logical form with neural attention.
arXiv preprint arXiv:1601.01280 .

[38] MacKay D.G. & Bever T.G. (1967) In search of ambiguity. Perception & Psy-
chophysics 2, pp. 193–200.

[39] Massey A.K., Rutledge R.L., Antón A.I., Hemmings J.D. & Swire P.P. (2015) A
strategy for addressing ambiguity in regulatory requirements. Tech. rep., Georgia
Institute of Technology.

[40] Wasow T., Perfors A. & Beaver D. (2005) The puzzle of ambiguity. Morphology
and the web of grammar: Essays in memory of Steven G. Lapointe , pp. 265–282.

[41] Mesheryakov D.K. & Selegey V.P. (2018), Language ambiguity detection of text.
US Patent 9,984,071.

[42] Ballesteros L. & Croft W.B. (1998) Resolving ambiguity for cross-language re-
trieval. In: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, ACM, pp. 64–71.

[43] Ratnaparkhi A. (1998) Maximum entropy models for natural language ambiguity
resolution .



89

[44] Mich L. & Garigliano R. (2000) Ambiguity measures in requirement engineering.
In: International Conference on Software Theory and Practice. ICS.

[45] Pallotti G. (2015) A simple view of linguistic complexity. Second Language Re-
search 31, pp. 117–134.

[46] Ehret K. & Szmrecsanyi B. (2016) An information-theoretic approach to assess
linguistic complexity. Complexity and isolation. Berlin: de Gruyter .

[47] Langiu A. (2013) On parsing optimality for dictionary-based text compres-
sion—the zip case. Journal of Discrete Algorithms 20, pp. 65–70.

[48] Jay G., Hale J.E., Smith R.K., Hale D.P., Kraft N.A. & Ward C. (2009) Cyclo-
matic complexity and lines of code: Empirical evidence of a stable linear rela-
tionship. JSEA 2, pp. 137–143.

[49] Housen A. & Kuiken F. (2009) Complexity, accuracy, and fluency in second lan-
guage acquisition. Applied linguistics 30, pp. 461–473.

[50] Din C.Y. & Rine D. (2008) Requirements content goodness and complexity mea-
surement based on NP chunks. VDM Publishing.

[51] Anderson R.C. & Pearson P.D. (1984) A schema-theoretic view of basic pro-
cesses in reading comprehension. Handbook of reading research 1, pp. 255–291.

[52] Simon H.A. (1974) How big is a chunk?: By combining data from several exper-
iments, a basic human memory unit can be identified and measured. Science 183,
pp. 482–488.

[53] Snow C. (2002) Reading for understanding: Toward an R&D program in reading
comprehension. Rand Corporation, 19–28 p.

[54] Hock M. & Mellard D. (2005) Reading comprehension strategies for adult liter-
acy outcomes. Journal of Adolescent & Adult Literacy 49, pp. 192–200.

[55] Laufer B. & Ravenhorst-Kalovski G.C. (2010) Lexical threshold revisited: Lexi-
cal text coverage, learners’ vocabulary size and reading comprehension. Reading
in a foreign language 22, pp. 15–30.

[56] Hirsh D., Nation P. et al. (1992) What vocabulary size is needed to read unsim-
plified texts for pleasure? Reading in a foreign language 8, pp. 689–689.

[57] Kincaid J.P., Fishburne Jr R.P., Rogers R.L. & Chissom B.S. (1975) Derivation
of new readability formulas (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel .

[58] Paetsch F., Eberlein A. & Maurer F. (2003) Requirements engineering and agile
software development. In: Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International
Workshops on, IEEE, pp. 308–313.



90

[59] Ebert C. & Jones C. (2009) Embedded software: Facts, figures, and future. Com-
puter 42.

[60] Ziv H., Richardson D. & Klösch R. (1997) The uncertainty principle in software
engineering. In: submitted to Proceedings of the 19th International Conference
on Software Engineering (ICSE’97).

[61] Davis A., Overmyer S., Jordan K., Caruso J., Dandashi F., Dinh A., Kincaid G.,
Ledeboer G., Reynolds P., Sitaram P. et al. (1993) Identifying and measuring
quality in a software requirements specification. In: Software Metrics Sympo-
sium, 1993. Proceedings., First International, IEEE, pp. 141–152.

[62] Tjong S.F. (2008) Avoiding ambiguity in requirements specifications. no. Febru-
ary .

[63] Denger C., Berry D.M. & Kamsties E. (2003) Higher quality requirements spec-
ifications through natural language patterns. In: Software: Science, Technology
and Engineering, 2003. SwSTE’03. Proceedings. IEEE International Conference
on, IEEE, pp. 80–90.

[64] Soni M. & Thakur J.S. (2018) A systematic review of automated grammar check-
ing in english language. arXiv preprint arXiv:1804.00540 .

[65] IEEE (1998), IEEE guide for developing system requirements specifications.

[66] IEEE (1998), Ieee recommended practice for software requirements specifica-
tions. URL: http://ieeexplore.ieee.org/xpls/abs\_all.jsp?
arnumber=720574.

[67] Mavin A. & Wilkinson P. (2010) Big ears (the return of" easy approach to re-
quirements engineering"). In: Requirements Engineering Conference (RE), 2010
18th IEEE International, IEEE, pp. 277–282.

[68] Lúcio L., Rahman S., Abid S.B. & Mavin A. Ears-ctrl: Generating controllers for
dummies .

[69] Lúcio L., Rahman S., Cheng C.H. & Mavin A. (2017) Just formal enough? au-
tomated analysis of ears requirements. In: NASA Formal Methods Symposium,
Springer, pp. 427–434.

[70] Tichy W.F., Landhäußer M. & Körner S.J. (2015) nlrpBENCH: a benchmark for
natural language requirements processing. Gesellschaft für Informatik eV.

[71] Vadas D. & Curran J.R. (2011) Parsing noun phrases in the penn treebank. Com-
putational Linguistics 37, pp. 753–809.

[72] (2008), Fide handbook – e.i.01a. laws of chess. URL: http://www.fide.
com/component/handbook.

[73] Braden R. (1989) RFC 1122 Requirements for Internet Hosts - Communication
Layers. Internet Engineering Task Force. URL: http://tools.ietf.org/
html/rfc1122.



91

[74] Abrial J.R. (1996) Steam-boiler control specification problem, Springer Berlin
Heidelberg, Berlin, Heidelberg. pp. 500–509. URL: https://doi.org/10.
1007/BFb0027252.

[75] Austen J. (1998) Pride and Prejudice, vol. 1342. URL: ftp://uiarchive.
cso.uiuc.edu/pub/etext/gutenberg/etext98/pandp10.zip.

[76] Corpus of Contemporary American English. https://corpus.byu.edu/
coca/. Accessed: 2018-11-26.

[77] British National Corpus. https://corpus.byu.edu/bnc/. Accessed:
2018-11-26.

[78] Piantadosi S.T. (2014) Zipf’s word frequency law in natural language: A critical
review and future directions. Psychonomic bulletin & review 21, pp. 1112–1130.

[79] Lü L., Zhang Z.K. & Zhou T. (2010) Zipf’s law leads to heaps’ law: Analyzing
their relation in finite-size systems. PloS one 5, p. e14139.

[80] Oxford Learner’s Dictionaries: The Oxford Text Checker. https:

//www.oxfordlearnersdictionaries.com/oxford_3000_

profiler.html. Accessed: 2018-12-03.

[81] Rathore Y., Ahirwar M.K. & Pandey R. (2013) A brief study of data compression
algorithms. International Journal of Computer Science and Information Security
11, p. 86.

[82] Ghosh S., Elenius D., Li W., Lincoln P., Shankar N. & Steiner W. (2014) Au-
tomatically extracting requirements specifications from natural language. CoRR,
abs/1403.3142 .

[83] Smith R.L., Avrunin G.S., Clarke L.A. & Osterweil L.J. (2002) Propel: an ap-
proach supporting property elucidation. In: Proceedings of the 24th International
Conference on Software Engineering, ACM, pp. 11–21.

[84] Autili M., Grunske L., Lumpe M., Pelliccione P. & Tang A. (2015) Aligning
qualitative, real-time, and probabilistic property specification patterns using a
structured english grammar. IEEE Transactions on Software Engineering 41, pp.
620–638.

[85] Bouquet F., Jaffuel E., Legeard B., Peureux F. & Utting M. (2005) Requirements
traceability in automated test generation: application to smart card software vali-
dation. In: ACM SIGSOFT Software Engineering Notes, vol. 30, ACM, vol. 30,
pp. 1–7.

[86] Shadbolt N., Berners-Lee T. & Hall W. (2006) The semantic web revisited. IEEE
intelligent systems 21, pp. 96–101.

[87] Bakar N.H., Kasirun Z.M. & Salleh N. (2015) Feature extraction approaches from
natural language requirements for reuse in software product lines: A systematic
literature review. Journal of Systems and Software 106, pp. 132–149.



92

[88] Diamantopoulos T., Roth M., Symeonidis A. & Klein E. (2017) Software re-
quirements as an application domain for natural language processing. Language
Resources and Evaluation 51, pp. 495–524.

[89] Ilieva M. & Ormandjieva O. (2005) Automatic transition of natural language soft-
ware requirements specification into formal presentation. In: International Con-
ference on Application of Natural Language to Information Systems, Springer,
pp. 392–397.



�✁✁✂✄☎✆✝ �✞ ✟✂✄✠✂✄✡✂ ☛✄☛☞✌✍✆✍
✎✏ ✑✒✓

✔✕✖✗✘✙ ✚✘ ✙✗✘✛✗✘✜✗ ✢✣✤✥✦✤✥✧✤ ★✤✥✩✦✪✫

✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵

✶✷✸✹ ✷✺✸✶ ✶✹✸✹ ✷✺✸✻ ✶✷✸✶ ✷✼✸✼ ✷✺✸✼ ✷✷

✷✽ ✷✼ ✶✾ ✷✹✸✹ ✷✽✸✹ ✷✶✸✹ ✷✼ ✽

✷✻ ✷✼ ✶✷ ✷✷ ✶✾ ✼ ✿ ✻

✷✶✸✿ ✽✸✽ ✷✷✸✿ ✻✸✷ ✽✸✽ ✻✸✿ ✷✷✸✾ ✺✸✺

❀❁❂✘✜❃✗✙ ✚✘ ✙✗✘✛✗✘✜✗

✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵

✷✻✸✶ ✷✼✸✼ ✷✽✸✻ ✷✶✸✻ ✷✿✸✿ ✷✶✸✷ ✷✾✸✹ ✽✸✼

✷✺✸✹ ✷✶ ✷✻ ✷✶ ✷✺✸✹ ✷❄ ✷✷ ✻

✷✷ ✷✶ ✷✻ ✻ ✷✻ ✻ ✿ ✺

✷❄ ✷✺✸✷ ✽✸✶ ✹✸✽ ✻✸✿ ✺✸✿ ✽✸✼ ✹✸✶

❅❆❇✙ ✚✘ ✙✗✘✛✗✘✜✗

✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵

✹✸✹ ✼ ✹✸✻ ✾✸✻ ✹✸✷ ✾✸✹ ✼✸✹ ✶✸✻

✹ ✼ ✹ ✼ ✹ ✾ ✼ ✶

✼ ✾ ✹ ✾ ✹ ✶ ✶ ✶

✾✸✾ ✶✸✾ ✶✸✿ ✷✸✽ ✶✸✿ ✶✸✶ ✾✸✷ ✷✸✻

❈❆❇✙ ✚✘ ✙✗✘✛✗✘✜✗

✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵

✷✸✽ ✷✸✺ ✷✸✽ ✷✸✹ ✷✸✺ ✷✸✼ ✷✸✺ ✷✸✾

✶ ✷ ✶ ✷ ✷ ✷ ✷ ✷

✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷

✷✸✶ ✷✸✷ ❄✸✽ ❄✸✿ ❄✸✻ ❄✸✿ ❄✸✽ ❄✸✺

❉❊❋❊●❍❋ ✼

❉❊❋❊●❍❋ ✷ ❉❊❋❊●❍❋ ✶ ❉❊❋❊●❍❋ ✾ ❉❊❋❊●❍❋ ✼

❉❊❋❊●❍❋ ✷ ❉❊❋❊●❍❋ ✶ ❉❊❋❊●❍❋ ✾

❉❊❋❊●❍❋ ✷ ❉❊❋❊●❍❋ ✶

■❏❑▲

❉❊❋❊●❍❋ ✾ ❉❊❋❊●❍❋ ✼

❉❊❋❊●❍❋ ✾ ❉❊❋❊●❍❋ ✼

▼◆❑▲❖❑P❖ ❖❏◗❘❑◆❘❙▲

■❙❖❏

■❏❖❘❑▲

■❏❑▲

❉❊❋❊●❍❋ ✷ ❉❊❋❊●❍❋ ✶

■❙❖❏

■❏❖❘❑▲

■❏❑▲

■❏❖❘❑▲

▼◆❑▲❖❑P❖ ❖❏◗❘❑◆❘❙▲

■❙❖❏

▼◆❑▲❖❑P❖ ❖❏◗❘❑◆❘❙▲

■❏❑▲

■❏❖❘❑▲

■❙❖❏

▼◆❑▲❖❑P❖ ❖❏◗❘❑◆❘❙▲



�✁✁✂✄☎✆✝ �✞ ✟✂✄✠✂✄✡✂ ☛✄☛☞✌✍✆✍
✎✏ ✓✒✓

❅❆❇✄❈❆❇ ✚✘ ✙✗✘✛✗✘✜✗

✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵

✾✸✶ ✶✸✺ ✾✸✼ ✶✸✿ ✾✸✼ ✶✸✹ ✶✸✽ ✶✸✶

✾ ✶ ✾ ✶✸✹ ✾ ✶ ✶✸✿ ✶

✶ ✶ ✾ ✶ ✶ ✶ ✶ ✶

✷✸✺ ✷✸✾ ✷✸✺ ✷✸✼ ✷✸✽ ✷✸✾ ✷✸✺ ✷✸✶

�✕❁✁✙ ✚✘ ✂☎✆✕❁✁ ✝✕❁✁ ✞✚✙✛✙

✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵ ✬✭✮✬✭✯✰✱ ✰✯✲✳✮✭✴✮✵

✼✽✻❄ ✾✿✿✽ ✽✼✹✼ ✺✼✹✼ ✷✿✹✺ ✷✶✶✿ ✷✶✷✼✷✾ ✿✺✻✶✻

✽✼ ✽✶ ✻✼ ✻✷ ✽✼ ✽✼ ✽❄ ✽❄

✻✻ ✻✿ ✿✹ ✿✾ ✽❄ ✽❄ ✻✿ ✻✺

✹ ✹ ✷✾ ✷✶ ✷✶ ✷✶ ✶ ✶

❉❊❋❊●❍❋ ✾ ❉❊❋❊●❍❋ ✼

■❏❑▲

■❏❖❘❑▲

■❙❖❏

❉❊❋❊●❍❋ ✷ ❉❊❋❊●❍❋ ✶

❉❊❋❊●❍❋ ✷ ❉❊❋❊●❍❋ ✶ ❉❊❋❊●❍❋ ✾ ❉❊❋❊●❍❋ ✼

✟✠❏✡☛❏❖ ☞❙P❖✌

✍❙✎ ✏✑✑✑ ✒✓✔

✍❙✎ ✕✑✑✑ ✒✓✔

✖✡❑❖❏✗❘✡ ✒✓✔

▼◆❑▲❖❑P❖ ❖❏◗❘❑◆❘❙▲











�✁✁✂✄☎✆✝ ✞✟ ✠✡☛☞ ✌✡✍✍✡✄ ✎✡✏☎☛
✑✒ ✓✔✓

✕✖✗✑✖✘✙✗✚✚✗✛ ✛✜✢✜ ✣✘✑ ✤✥ ✦✘✖✛✚ ✧✜✖★✗✖ ✦✘✖✛✚✩ ✪✫✬✭✮✬

✚✢✘✑ ✦✘✖✛✚✩ ✚✢✘✑

✯✰✮ ✱✲✳ ✯✰✮ ✲✴✵ ✯✰✮ ✤✳✓ ✯✰✮ ✳✶✤✴ ✓
✜ ✓✱✲ ✜ ✶✷✓ ✑✖✘✸✖✜✧ ✲✴ ✢✘ ✳✓✶✱ ✤
✘✹ ✓✳✱ ✢✘ ✤✷✳ ✘✹ ✲✤ ✘✹ ✶✲✥✴ ✶
✢✘ ✓✶✶ ✺✗ ✤✱✷ ✻✚ ✱✶ ✜✼✛ ✶✱✴✵ ✳
✻✚ ✓✓✱ ✧✽✚✢ ✤✤✵ ✧✗✚✚✜✸✗ ✱✤ ✾✗✖ ✤✤✤✷ ✱
✑✿✜❀✗✖ ✵✥ ✘✹ ✓✲✲ ✜ ✳✳ ✻ ✤✥✲✶ ✲
✧✘❁✗ ✷✱ ✜✼ ✓✳✳ ✑✾❀✚✻✙✜✿ ✳✓ ✜ ✓✵✱✴ ✴
✸✜✧✗ ✷✶ ✧✜❀ ✓✳✓ ✢✘ ✶✵ ✻✼ ✓✷✲✲ ✷
❂❃ ✴✴ ✻✼ ✓✶✲ ✽✼✻✢✚ ✶✷ ✦✜✚ ✓✷✳✱ ✵
✘✖ ✴✳ ✻✚ ✓✶✱ ✢✾✻✚ ✶✷ ✚✾✗ ✓✴✥✵ ✓✥
❄✰✫❅❅ ✴✶ ✜✼✛ ✓✤✵ ✧✘✛✗ ✶✱ ✢✾✜✢ ✓✱✴✷ ✓✓
✻✼ ✴✥ ✻✑ ✓✤✳ ✾✜✚ ✶✶ ✼✘✢ ✓✱✶✴ ✓✤
✺✗ ✲✵ ✢✾✜✢ ✓✤✓ ✺❀ ✶✶ ✻✢ ✓✱✤✴ ✓✶
✾✻✚ ✲✳ ✹✘✖ ✓✓✷ ✢✾✜✢ ✶✓ ❀✘✽ ✓✶✱✵ ✓✳
✺❀ ✲✤ ✾✘✚✢ ✓✓✶ ✦✾✻✙✾ ✶✥ ✾✗ ✓✶✶✷ ✓✱
✜✼✛ ✱✷ ✚✾✘✽✿✛ ✓✓✥ ✽✼✻✢ ✤✵ ✾✻✚ ✓✤✲✷ ✓✲
✾✜✚ ✱✳ ✜✛✛✖✗✚✚ ✓✥✴ ✦✜✢✗✖ ✤✴ ✺✗ ✓✤✶✱ ✓✴
✜✖✺✻✢✗✖ ✱✶ ✼✘✢ ✵✵ ✺✗✗✼ ✤✱ ✜✚ ✓✓✴✵ ✓✷
✘✼ ✱✤ ✢✙✑ ✵✶ ✚✗✼✢ ✤✳ ✾✜✛ ✓✓✴✲ ✓✵
✢✾✜✢ ✱✤ ✻✢ ✷✵ ✹✜✻✿✽✖✗ ✤✤ ✹✘✖ ✓✥✱✴ ✤✥

❆✘✼❁✗✖✢✗✛ ✛✜✢✜ ✣✘✑ ✤✥ ✦✘✖✛✚ ✧✜✖★✗✖ ✦✘✖✛✚✩ ✪✫✬✭✮✬

✚✢✘✑ ✦✘✖✛✚✩ ✚✢✘✑

✯✰✮ ✓✶✒✴✳ ✯✰✮ ✓✓✒✶✶ ✯✰✮ ✓✲✒✥✲ ✯✰✮ ✓✓✒✲✲ ✓
❄✰✫❅❅ ✲✒✓✱ ❄✰✫❅❅ ✲✒✓✵ ❄✰✫❅❅ ✴✒✥✓ ❄✰✫❅❅ ✵✒✥✵ ✤
✺✗ ✶✒✤✤ ✺✗ ✤✒✵✵ ✑✖✘✸✖✜✧ ✶✒✴✱ ✺✗ ✶✒✶✵ ✶
✢✘ ✤✒✱✵ ✢✘ ✤✒✷✲ ✧✗✚✚✜✸✗ ✶✒✶✳ ✢✘ ✤✒✵✲ ✳
✜ ✤✒✱✳ ✜ ✤✒✴✷ ✺✗ ✶✒✓✷ ✘✹ ✤✒✱✥ ✱
✘✹ ✤✒✳✵ ✘✹ ✓✒✴✲ ✢✘ ✶✒✓✥ ✜✼✛ ✓✒✴✶ ✲
✑✿✜❀✗✖ ✓✒✷✲ ✜✼ ✓✒✲✷ ✘✹ ✶✒✓✥ ✻ ✓✒✲✱ ✴
✯✰✮❇ ✓✒✷✓ ✻✑ ✓✒✳✵ ✧✘✛✗ ✤✒✲✓ ✾✗✖ ✓✒✲✓ ✷
❂❃ ✓✒✴✶ ✾✘✚✢ ✓✒✤✲ ✑✾❀✚✻✙✜✿ ✤✒✱✶ ✜ ✓✒✤✷ ✵
✸✜✧✗ ✓✒✲✱ ✢✙✑ ✓✒✤✓ ✽✼✻✢✚ ✤✒✤✷ ✚✾✗ ✓✒✤✷ ✓✥
✧✘❁✗ ✓✒✱✳ ✹✘✖ ✓✒✓✲ ✜ ✓✒✴✓ ✻✼ ✓✒✤✤ ✓✓
✾✻✚ ✓✒✤✶ ✻✼ ✓✒✓✤ ✦✜✢✗✖ ✓✒✱✱ ✼✘✢ ✓✒✓✱ ✓✤
✻✼ ✓✒✤✥ ✜✛✛✖✗✚✚ ✓✒✓✥ ✚✗✼✢ ✓✒✶✵ ✻✢ ✓✒✓✓ ✓✶
✘✖ ✓✒✓✷ ✜✼✛ ✓✒✥✴ ✚✢✘✑ ✓✒✤✤ ❀✘✽ ✥✒✵✳ ✓✳
✜✖✺✻✢✗✖ ✓✒✓✶ ✿✜❀✗✖ ✓✒✥✓ ✿✗❁✗✿ ✓✒✤✤ ✾✗ ✥✒✷✵ ✓✱
✺❀ ✓✒✓✥ ❂❃ ✥✒✵✥ ✹✜✻✿✽✖✗ ✓✒✓✳ ✾✻✚ ✥✒✷✴ ✓✲
✜✼✛ ✓✒✥✤ ❈✰✮❇ ✥✒✷✲ ✺❀ ✓✒✓✳ ✘✚ ✥✒✴✵ ✓✴
✘✼ ✥✒✷✲ ✯✰✮❇ ✥✒✷✲ ✻✼ ✓✒✥✲ ✦✻✢✾ ✥✒✴✱ ✓✷
✻✢ ✥✒✷✳ ✻✢ ✥✒✷✥ ✻✚ ✓✒✥✲ ✾✜✛ ✥✒✲✷ ✓✵
✼✘✢ ✥✒✴✵ ✼✘✢ ✥✒✷✥ ✯✰✮❇ ✓✒✥✲ ✾✜❁✗ ✥✒✲✲ ✤✥

❉ ❉ ❉ ❉

❊✫✯✫❄✮✯ ❋ ❊✫✯✫❄✮✯ ● ❊✫✯✫❄✮✯ ❍ ❊✫✯✫❄✮✯ ■

❊✫✯✫❄✮✯ ❋ ❊✫✯✫❄✮✯ ● ❊✫✯✫❄✮✯ ❍ ❊✫✯✫❄✮✯ ■


