
Reinforcement Q-Learning using OpenAI Gym

University of Oulu
Faculty of Information Technology and Electrical Engineering

Degree Programme in Information Processing Science
Bachelor’s Thesis

Juuso Laivamaa
12/03/2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344905423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

Q-Learning is an off-policy algorithm for reinforcement learning, that can be used to find optimal
policies in Markovian domains. This thesis is about how Q-Learning can be applied to a test
environment in the OpenAI Gym toolkit. The utility of testing the algorithm on a problem case is to
find out how well it performs as well proving the practical utility of the algorithm. This thesis starts
off with a general overview of reinforcement learning as well as the Markov decision process, both
of which are crucial in understanding the theoretical groundwork that Q-Learning is based on. After
that we move on to discussing the Q-Learning technique itself and dissect the algorithm in detail.
We also go over OpenAI Gym toolkit and how it can be used to test the algorithm's functionality.
Finally, we introduce the problem case and apply the algorithm to solve it and analyse the results.

The reasoning for this thesis is the rise of reinforcement learning and its increasing relevance in the
future as technological progress allows for more and more complex and sophisticated applications
of machine learning and artificial intelligence.

Keywords
reinforcement learning, q-learning, openai gym, markov decision process, artificial intelligence

Ari Vesanen

3

Contents

Abstract 2
Contents 3
1. Introduction 4

1.1 Research question 4
1.2 Purpose 4

2. Reinforcement Learning 6
2.1 Examples 7
2.2 Policy 8
2.3 Reward signal 8
2.4 Value function 9
2.5 Model 9

3. Markov Decision Process 10
3.1 Markov property 10
3.2 Markov chain 11
3.3 Discount factor 12

4. Q-Learning 14
4.1 Algorithm 14

5. OpenAI Gym 16
5.1 Installing the toolkit 16
5.2 Main elements 17
5.3 Design 17

6. Problem Case 19
6.1 CartPole Problem 19
6.2 Adapting Q-Learning to the CartPole Problem 19
6.3 Results 21

7. Conclusion 22
References 23

4

1. Introduction

Q-Learning is a reinforcement learning technique used in machine learning. It’s described by
Watkins and Dayan (1992, p. 1) as a form of model-free, or alternatively known as temporal
difference learning. It can also be viewed as an asynchronous dynamic programming method.
Barber (2012, Preface) describes that in general terms, machine learning as a field of study aims to
learn useful information about the environment where a given organism operates. How the
information is gathered then gives rise to the development of algorithms, which could be thought of
as recipes on how to deal with uncertainty and complex data.

Russell and Norvig (2010, p. 10) describe reinforcement learning as an area of machine learning
focused on studying and automating goal-driven learning and decision making. Reinforcement
learning is commonly applied to problems concerning trial and error based learning and optimal
control.

1.1 Research question
The primary research question for this thesis is how the Q-Learning algorithm can be applied to
solve the CartPole problem, which is a classic control problem popularized by Barto, Sutton &
Anderson (1983) and included in the OpenAI Gym library of test problems. Secondary aims for this
study include explaining the foundational information that a proper understanding of the
Q-Learning technique requires, such as knowledge about the basics of reinforcement learning,
Markov decision process as well as how the algorithm works in theory and how it can be applied to
a practical use case in a machine learning testing environment.

1.2 Purpose

The purpose of this thesis is to study how the Q-Learning algorithm works in theory as well as how
it can be used to solve a problem case in a machine learning toolkits testing environment. However,
before we can adequately understand how the Q-Learning algorithm functions we will first have to
do the groundwork of going over the basics of the underlying systems and techniques that the
algorithm is founded on.

Q-Learning is a reinforcement learning technique, so it logically follows that we first must go over
what reinforcement learning is, how it works and how it relates to the subject of Q-Learning.
Reinforcement learning is covered in the next chapter, where the aim is to get a general idea of
subject which will help inform and ground the discussion of the later chapters.

Another subject that is crucial in understanding how Q-Learning works is the Markov decision
process, which explains the logic of how the Q-Learning algorithm operates and chooses its policy
outcomes. Markov decision process is covered in detail in the third chapter

After having laid the groundwork by covering the foundations that Q-Learning is based on, we will
move on to dissecting how the Q-Learning algorithm actually works. We will start with a brief
overview of the algorithm, where we will get a general idea of the process before delving into a
more detailed explanation. In the detailed explanation we will go over the technique line-by-line by
following and unpacking a pseudocode rendition of the Q-Learning algorithm. Q-Learning section

5

is covered in the fourth chapter and builds on the knowledge of reinforcement learning and Markov
decision process chapters.

The fifth chapter provides a short overview on the OpenAI Gym toolkit, which is a machine
learning environment that we will utilize when we introduce a problem case to the Q-Learning
algorithm and find out how the algorithm can be applied to solve the problem in practice.

After we have covered the theoretical basis of this thesis which ends after we have an understanding
of how Q-Learning and OpenAI Gym work, we will finally move on to the practical portion of this
study where we introduce a problem case to the algorithm and see how we can apply it to the
problem. OpenAI Gym has a built-in library that has a collection of numerous test problems or
otherwise known as environments that can be used to develop and compare different machine
learning algorithms and figure out how they match up in practical use to solve a problem. For this
thesis we have chosen one the classic control theory problems, the CartPole problem. We will we
have run the algorithm on the problem case and seen how it functions and go over and analyze the
results and how well the algorithm performed. All of this will be covered in the sixth chapter.

The last chapter is the conclusion, where will summarize the information we have learned over the
course of the study as well as discuss the limitations of the study and give recommendations for
future study.

In the course of this thesis we will explain the basics of reinforcement learning, what it is and how it
relates to the Q-Learning algorithm as well as the Markov decision process. We will also go over
how the Q-Learning algorithm functions both theory and how it can be used to solve practical test
problems by using the OpenAI Gym toolkit, which is machine learning environment for testing
reinforcement learning algorithms.

6

2. Reinforcement Learning

According to the standards of International Organisation for Standardization’s guideline for
artificial intelligence and machine learning (ISO/IEC JTC 1, 1997), reinforcement learning is
defined as “learning improved by credit and blame assignment”. Reinforcement learning is an area
of machine learning and is described by Francois-Lavet, Henderson, Islam, Bellemare, & Pineau
(2018, p. 1) as a process of figuring out how learning agents ought to choose a sequence of actions
in a given environment in order to maximize cumulative numerical rewards.

What makes reinforcement learning unique is that the learner is not told explicitly what actions they
must take, but must instead discover independently which actions produce the highest rewards by
trying them over and over again. Sutton and Barto (2017, p. 1) posit that in the most interesting and
complex cases the actions committed by the learning agent may not only affect the immediate
reward produced by said action, but can also have repercussions for future situations and future
rewards. Sutton and Barto (2017, p. 1) go on to mark out from this two primary characteristics that
are the most important features of reinforcement learning, search by trial-and-error and delayed
rewards. These two qualities differentiate reinforcement learning from other machine learning
paradigms. For example, Francois-Livet et al., (2018, p. 15) compare reinforcement learning’s
trial-and-error experience to dynamic programming that assumes perfect information of the
environment by default.

Sutton and Barto (2017, p. 1-2) go on to formalize the problem of reinforcement learning as the
process of finding an optimal way to control Markov decision processes with incomplete
information about the environment. We won’t go into the details of the Markov decision process
here, as it will be discussed in more detail in the next chapter. What’s trying to be accomplished in
reinforcement learning is the capturing of vital information about a problem that the learning agent
is facing while interacting with its environment over time. For this to be possible, the learning agent
must be able to in some way sense the environment and what state it’s currently in as well as being
able to take actions that can modify that state in a non-trivial way. Finally, the agent must also have
a goal or goals relating to the environment that can be completed by taking actions that are possible
for the agent.

There are also two other paradigms of machine learning: supervised and unsupervised learning,
which are both different from reinforcement learning. Supervised learning is described by Russell
and Norvig (2010, p. 695) as one the three main types of learning, where the learning agent
observes given input-output pairs known as training sets and learns a function that maps in between
them. The training sets are given by a knowledgeable supervisor, commonly a human tester, who is
external to the environment and to the agent. Each training set includes a description of a situation
as well as a label that specifies the correct action. The purpose of this kind of learning is to teach a
system to be able to learn the correct actions from the training sets and generalize that information
so that it’s able to act correctly in new situations that aren’t described in the training sets. The other
type, unsupervised learning, excludes both the role of the supervisor and labeled data, dealing
instead with collections of unsorted data from which it tries to find hidden structures and
connections. Francois-Livet et al., (2018, p. 9) relates it to identifying patterns and using them for
tasks such as generative models and data compression.

7

Sutton and Barto (2017, p. 2) note that from a quick glance, it might occur to some that
reinforcement learning itself fits into the unsupervised learning paradigm, however while
uncovering hidden structures is certainly a key part of reinforcement learning, it doesn’t address the
main problem of reward signals that reinforcement learning is concerned with. This is the reasoning
why they consider reinforcement learning the third machine learning paradigm, separate from both
supervised and unsupervised learning.

A central problem that occurs in reinforcement learning that doesn’t arise in other kinds of learning
is the trade-off that the learning agent makes when exploring and exploiting the environment. By
exploitation we mean the act of maximizing the expected return value of an action and by
exploration we mean the obtainment of new information about the environment. Francois-Livet et
al., (2018, p. 9) argues that the problem occurs because the imperative for the agent to maximize
reward given its current knowledge of the environment forces the agent to prefer actions that it has
taken in the past that have proven to be the most effective in returning the greatest value, which in
turn means eschewing the option of exploring more of the unknown environment. This means that
the agent cannot explore new areas in order to make better action selections that return higher
rewards in the future. This is what is commonly known as the exploration/exploitation dilemma,
which simply stated means that neither exploration or exploitation can be pursued exclusively
without the failing the task of maximizing reward. Despite mathematicians having intensively
studied the dilemma for many decades, it still remains unresolved as of this day (Sutton & Barto
2017, p. 2).

Sutton and Barto (2017, p. 2) continue explaining that another key feature that makes reinforcement
learning unique among its peers is its explicit focus on considering the whole problem of a
goal-driven learning agent in an imperfect knowledge environment. This is in contrast to many
other approaches, which deal exclusively with subproblems, without concerning themselves with
the problem of how they interact in the larger picture. That is not to say that these approaches are
inferior or wrong, they indeed have produced many very important and useful findings, however
their limited focus is a disadvantage that isn’t shared by reinforcement learning.

Reinforcement learning starts with a completely formed and interactive goal-seeking agent, which
has explicit goals, can sense the state of its environment and can choose actions that can influence
that environment. (Sutton & Barto 2017, p. 3). It’s also assumed that agent has to start in the
beginning with varying degrees of uncertainty about the state of its surrounding environment.
Nature of the agent can also vary wildly depending on the environment, for example it might mean
an autonomous entity like a robot or even a small component of a larger system, such as a
temperature regulator in a complex machine.

2.1 Examples

Apart from knowing the minutiae of the principles that reinforcement learning is built on, a short
look at concrete examples of reinforcement learning in practical applications is a good way to get a
clear picture of what is and isn’t reinforcement learning.

Silver (2015, Lecture 1, p. 9) in his UCL course on reinforcement learning gives short examples of
reinforcement learning applications. One is managing a power station, in which the learning agent is
a component of the power station’s larger system which controls its operations. Here the agent is an
adaptive controller of the system, where its goal is to optimize the operation of the power station
and by doing so maximizing the return value or the output of the process. In order to do so, the
agent must ​explore ​its environment, by observing the function of different components and

8

processes of the system and ​exploiting ​it by adjusting the environment to the most optimal as
possible settings, which yield the largest output of cumulative rewards.

Another interesting example provided by Silver (2015, Lecture 1, p. 9) is defeating the world
champion at Backgammon, which is great illustration of how the agent must consider both the
immediate rewards of their next move on the board as well as how it might affect the cumulative
rewards acquired in the next possible sequence of moves. The choice that the agent makes is
informed both anticipating possible replies and countermoves of the other player as well as by
immediate and intuitive judgements about the value of particular moves and position on the board.

These two examples share basic features of reinforcement learning that are easy to overlook. They
both involve active decision-making agents interacting between their environment, where an agent
has a goal that it is trying to fulfill in an environment that it doesn’t have complete knowledge of.
The agents are also permitted to make choices that affect the future state of the environment and
which can influence delayed rewards in the next sequence of moves. The long term effect of actions
taken can’t be reliably predicted, which means that the agent must monitor the change in its
environment on a frequent basis and make appropriate changes to its actions in order to keep up.
Both of these examples also feature explicit goals, for the controller it is the optimization of the
power stations functions and for the Backgammon-playing agent it’s defeating the world champion.
They also require experience over time to improve performance. In the process of controlling the
power station or playing Backgammon the agent refines their understanding of their environment
which they use to evaluate their current situation and predict future consequences of their actions.
This means incremental improvement over time as an agent finds new ways to optimize and
streamline its actions.

2.2 Policy

Sutton and Barto (2017, p. 5) highlight that beyond the agent and the environment we have already
discussed before, one can identify four other sub-elements of reinforcement learning systems:
policy​, ​reward signal​, ​value function and optionally a ​model of the environment. First of these we
will discuss is policy, by which we simply mean the agent’s behavior (Silver, 2015, Lecture 1, p.
26). Policy, roughly speaking, is the mapping from the perceived state of the environment to an
action that should be taken when in that state. Sutton and Barto (2017, p. 5) equate it to what in
psychology is known as a set of stimulus and response associations. Depending on the context, the
policy can be something relatively simple, such as a short function, whereas in more complex
situations it could involve more performance intensive computation such as a search process.

Policy can be thought of as the core of a learning agent, since it alone is sufficient to determine a
behavior (Sutton & Barto, 2017, p. 5). Policies can be either deterministic, where the state of the
environment is known, or stochastic, where the environment is random or filled with uncertainty.
Policies can also be categorized by a second criterion, stationary or non-stationary. A non-stationary
policy depends on time-steps and is useful for finite-horizon contexts where the cumulative rewards
that the agent seeks to optimize are limited to a finite number of future actions (Francois-Livet et
al., 2018, p. 22).

2.3 Reward signal

Sutton and Barto (2017, p. 5) describe reward signal as defining the goal of any given reinforcement
learning problem. On each time step the environment sends the agent a numerical value known as
the reward, which the agent notes as it tries to maximize the amount of reward it attains in the long
run.

9

The reward signal defines good and bad outcomes for the agent, and thereby signals which actions
are preferable to others by the amount of their return value. Sutton and Barto (2017, p. 5)
characterize this as being akin to a biological system in humans, where the feelings of pleasure and
pain signal to the human brain that the value of putting your hand on a hot stove is lower than eating
a delicious meal. Altering a policy is founded primarily on what the reward signals inform the agent
about the environment, if an action selected by the policy returns a low value reward then the policy
can be changed to select some other action in the same situation in the future. Sutton and Barto
(2017, p. 5) point out that in general, reward signals can be thought of as stochastic functions about
the state of the environment and the action taken by the agent.

2.4 Value function

Sutton and Barto (2017, p. 5) compare reward signals and value functions by saying that whereas
reward signals can be thought of as an indication of what is good in the immediate situation, the
value function specifies what is optimal in the long run. Generally speaking, the value of any given
state is the total amount of value that the agent can expect in the future, starting from that state. In
contrast to rewards, which describes the current desirability of environmental states irrespective of
future events, the value function takes into account the long term picture of the desirability of states
when considering the value of future states.

This means that the value function factors in circumstances where there is the possibility of low
immediate reward by picking a state, but high reward that can be attained in the long run. Value
functions also recognize situations where the reverse is true. Sutton and Barto (2017, p. 5) continue
using a human analogy like in the previous subchapter by saying that rewards are similar to pleasure
(high reward) and pain (low reward), whereas value functions can be equated to a proper and
farsighted view on how short term pain can result in long term benefit, like in exercise and how
short term pleasure can have negative long term effects, like obesity caused by overeating.

2.5 Model

The final sub-element of reinforcement learning is the model of the environment, which mimics the
environment and that can be used to make educated guesses or inferences about how the
environment will behave in different states. Sutton and Barto (2017, p. 5-6) give an example where
given a state and an action, the model uses them to predict what resulting state and reward they will
produce.

The main utility of models is planning, which means deciding a course of action and predicting the
resulting scenario, changed state of the environment and the return value before it has been
experienced. Sutton and Barto (2017, p. 5-6) inform that methods that are used in solving
reinforcement learning problems which include planning and use of models are called model-based
methods. These are in contrast to model-free methods of reinforcement learning, which revolve
solely around trial-and-error learning, the opposite of planning.

10

3. Markov Decision Process

The problem of optimal sequential decision making has been studied since World War II, when the
topic was pursued in the field of operations research in Britain, with the primary aim of optimizing
radar installations in military use. After the war the research found civilian applications and was
formalized into a class of sequential decision problems called Markov decision processes by
Richard Bellman in 1957 (Russell & Norvig, 2009, p. 10).

Sigaud and Buffet (2010, p. 4-5) start out by defining Markov decision processes as controlled
stochastic processes (as opposed to deterministic processes that form the traditional approaches to
planning) that satisfy the Markov property and assign rewards to state transitions. Konstantopoulos
(2009, p. 1) states that the time of the MDP can be either discrete (integers), continuous (real
numbers) or even a totally ordered set. Markov decision process is also a dynamical system,
meaning that in mathematical terms it’s a phenomenon which evolves over time in a way where
only the present affects the future state of the system.

Often in decision analysis we are focused on decision making in the face of one uncertain future
event. However, in many cases involving decision making we need to take into account the
uncertainty of many future events in succession in which case Markov decision processes are of
great help. MDP’s are used mainly to study and solve optimization problems in dynamic
programming and reinforcement learning. This is because the main problem for MDP’s is figuring
out the optimal policy (a policy that yields the highest expected value) for a decision maker, which
tells it what actions to take when in any given state.

Poole and Mackworth (2017, pp. 399-400) define a Markov decision process as a 5-tuple, which
consists of:

● S, which is a finite set of possible world states,
● A, which is a finite set of possible actions,
● P: S ✕ A ✕ A → [0, 1], which specifies the dynamics of states and actions. This is

commonly written as P(s’|a), where

∀s ∈S ∀a ∈A ∑s'∈S P(s'|s,a) = 1.

More specifically, P(s’|a) denotes the probability of transitioning to a state ​s’ given that an
action​ a ​ is taken in a state ​s ​.

● R: S ✕ A ✕ S → ​R, where R(s, a, s’) returns the expected immediate reward from doing
action ​a ​and transitioning from state ​s ​ to state ​s’ ​.

● which is a discount factor, where presents the value of future rewards.,γ 0, 1]γ ∈ [

It is worth noting that while the theory of Markov decision processes doesn’t explicitly state that
states and actions are finite, most algorithms that use MDP’s assume that they are.

3.1 Markov property

When it is said that a process satisfies the Markov property we mean that the effects of an action
taken in a state are only contingent on that state and not on any other previous state. This is because

11

the current state captures all the relevant information about the past and is sufficient for making
predictions about the future. Silver (2015, Lecture 2, p. 4) delivers a useful definition, which states
that a state S​t​ has the Markov property only if:

ℙ [S ​t+1 ​| S ​t ​] = ℙ [S ​t+1 ​| S ​1 ​, … ,​ ​S ​t ​]. (1)

Apart from sequences occupying some state in the environment, they are also there at a specific
time so S ​t is used to represent the state at time ​t​. As a side note, it is sometimes also said that S ​t is
Markov instead of saying that it has the Markov property.

3.2 Markov chain

Often times an agent has to make predictions about an ongoing process where it doesn’t know how
many actions are required to accomplish a goal. This is what is called an infinite horizon problem,
where process might go on forever or it can alternatively be an indefinite horizon problem, where
there is an end point for the agent, but the agent doesn’t know when it will occur. In order to model
these situations, we need to fill the Markov chain with actions. Poole and Mackworth (2017, p. 399)
state that a Markov decision process can be seen as a Markov chain filled in with rewards and
actions or alternatively as an extended time decision network. The agent decides on an action to
perform at each stage of the process and the reward and the transition state depend on the previous
state and performed action.

Poole and Mackworth (2017, p. 266) give a definition of the Markov chain as a unique type of
belief network that is used to represent sequences of values, like a set of states in a system or a set
of words in a sentence. Each step in a Markov chain is a called a ​stage​. Grinstead and Snell (2006,
p. 405) describe a generic Markov chain as a set of states S { s ​1​, s ​2​, … , s ​r }. The process starts from
one of the states in the Markov chain and moves sequentially from one state to another, which is
called a ​step in this context. If a Markov chain is in a state a​i​, then it moves to a next state a​j with a
probability of p​ij​. Note that the probability is not contingent on previous states that the agent was in
before the current state as the Markov property is assumed. The probabilities denoted by p​ij are
called the transition probabilities. Apart moving from one state to another, the process can also stay
in its current state, which is denoted by the probability p​ii​. The starting distribution of probabilities
is defined usually as an ​S​, which is also the starting state.

Poole and Mackworth (2017, p. 266) state that a Markov chain can be either a stationary model or a
time-homogenous one depending on if all variables share the same domain, and the transition
probabilities are identical for each stage of the Markov chain, i.e.:

 for all i ≥ 0, P(S​i + 1​ ∣ S ​i​) = P(S ​1​ ∣ S ​0​) (2)

For a stationary Markov chain, there are only two conditional probabilities that are provided, which
are P(S ​0​), which defines the initial conditions and P(S ​i + 1 ∣ S ​i​), which qualifies the dynamics. Poole
and Mackworth (2017, p. 266) note that stationary Markov chains provide a very simple model that
is easy to use and that also assumes that the dynamics of the environment won’t change over time
and if they do it is usually because of some other element that could be modeled. Stationary model
networks can also be extended indefinitely, which allows one to make observations or queries about
any point in the past or the future.

Konstantopoulos (2009, p. 2) gives an illustrative example of a Markov chain by describing a
scenario of a mouse in a cage. The mouse occupies a cage with two cells, A and B, which contain
fresh and rotten cheese, respectively. An observing scientist’s job is to record the position of the

12

mouse every minute. When the mouse is in the cell A at a given time ​n ​(minutes) then it follows
that at time ​n ​ + 1 it is still in cell A or has moved to cell B.

Observing the mouse’s behavior statistically, the scientist comes to believe that the mouse moves
from cell A to B with a probability of ⍺ = 0.05. This is regardless of the cell the mouse was in the
past. Conversely, the mouse moves from cell B to A with a probability of β = 0.99.

This information can be summarized with a transition diagram (Konstantopoulos, 2009, p. 3):

Figure 1. Transition Diagram (Konstantopoulos, 2009)

Alternatively, it can also be illustrated with a state transition matrix, where:

Figure 2. Transition Probability Diagram (Konstantopoulos, 2009)

Given this information, how long does it take on average for the mouse to move from cell A to cell
B? Konstantopoulos (2009, p.3) answers that question by stating that since the mouses decision to
stay or move to another cell is a coin flip, the first time the mouse moves from cell A to B will have
a mean of 1/⍺ = 1/0.05 ≈ 20 minutes, which is the mean of the binomial distribution with the
parameter ⍺.

3.3 Discount factor

For a Markov decision process to perform optimally in the long run, it needs to consider how to
weigh the differences between immediate rewards and future rewards. The way that MDP’s go
about doing this is by utilizing what is called a discount factor, which is represented by Silver .γ
(2015, Lecture 2, p. 12) explains that the discount factor is used to determine the value 0, 1]γ ∈ [
of future rewards, by picking a factor between 0 and 1. Gamma that is close to 0 leads to what is a
called a “myopic” evaluation, which considers only short-term rewards and a that is close to 1 γ
leads to a “far-sighted” evaluation, which strives for long-term rewards instead.

Matiisen (2015) points out that picking out the right discount factor is highly situationally
dependant. For example, if we aren’t sure about the value of future rewards and want a balanced
consideration of both immediate and future rewards, we can set the discount factor to something
like On the other hand, if all sequences are the same as in a deterministic environment and .9.γ = 0

13

actions always result in the same rewards, then we can forgo discounted rewards entirely (i.e.
).γ = 1

14

4. Q-Learning

Q-Learning is an off-policy temporal difference learning algorithm for reinforcement learning, the
goal of which is to learn a policy, which tells the agent what actions to take under what
circumstances. Q-Learning is suited for cases where there isn’t any explicit model of the system or
the cost structure, which is why it’s often called a model-free method of reinforcement learning. Jin,
Allen-Zhu, Bubeck, & Jordan (2018, p. 1) point out that model-free methods are typically more
flexible to use and easier to understand and thus are more prevalent in modern RL than model-based
approaches. The advantages of model-free approaches like Q-Learning are multifaceted, they are
online for one, require less space and are typically more expressive since specifying the policies and
value functions are more flexible than specifying the model of the environment. Given sufficient
training, a Q-Learning algorithm converges with a probability of 1 to closely match the action-value
function for any arbitrary target policy. Q-Learning can learn the optimal policy even when actions
are chosen according to a random or exploratory policy.

Watkins and Dayan (1992, p. 1) elaborate by saying that Q-Learning provides agents the capability
of learning optimally in Markovian domains by experiencing the consequences of their actions and
not requiring them to build maps of the domains. Bertsekas (2011, p. 326) adds that the aim of
Q-Learning class of algorithms is to compute the optimal cost function for all states, not just the
cost function of a single policy. It does this by updating the Q-factors associated with the optimal
policy, instead of approximating the cost function of any particular policy. By doing this it neatly
avoids the multiple policy evaluation steps of the policy iteration method.

The process of learning starts by the agent trying an action at a given state and evaluating the
consequences of that action in terms of immediate rewards or penalties, which are received in the
form of numerically assigned rewards and evaluated by estimating the value of the state which the
agent has chosen. The agent continues trying out all actions in all states repeatedly and by doing so
learning which states contain the highest return value overall, as judged by long term discounted
rewards (Watkins & Dayan, 1992, p. 1). Q-Learning is a primitive form of learning, but can operate
as a basis for higher level processes.

4.1 Algorithm

The procedural form of the algorithm is as follows (Vilches, 2019, Tutorial 1: Q-Learning):

Initialize Q(s,a) arbitrarily

Repeat (for each generation):

Initialize state s

While (s is not a terminal state):

Choose a from s using policy derived from Q

Take action a, observe r, s'

Q(s,a) += ⍺ * (r + * maxQ(s') - Q(s,a))γ

s = s'

15

in which:

● s is the previous world state.
● a is the agent’s previous action.
● Q() is the Q-Learning algorithm.
● s’ is the current world state.
● ⍺ is the learning rate, which is generally set to a number between 0 and 1. Setting it to 0

means that the Q-values are never updated and nothing new is learned. Setting alpha to a
high value such as 0.9 means that the learning will occur very quickly.

● is the discount factor, which is also set between 0 and 1. This models the value differenceγ
between immediate and future rewards.

● max is the maximum reward that is attainable in the next world state.

Vilches (2019, Tutorial 1: Q-Learning) points out that the algorithm can also be understood in plain
terms in the following way:

1. Initialize Q(s, a), which is the Q-values table. Q-Table is just a term for a simple lookup
table where the maximum expected rewards for actions in each state are calculated.

2. Observe the current world state, s.
3. Decide on an action, a, for the world state s based on the agent’s selection policy.
4. Take the action and observe the reward, r, as well as the new world state, s’.
5. Update the table’s Q-value for the newly-observed reward and the maximum possible

reward for the next world state.
6. Change the world state to the new state and repeat the process as long as a terminal state

hasn’t been reached.

The mathematical foundation of Q-Learning rests behind what are called Bellman equations, named
after Richard E. Bellman. The structure of the Bellman equation is simply put that the current value
equals the sum of immediate reward and future value when both are maximized. Here we will limit
ourselves only to examining simple Q-Learning where the Q-function maps state-action pairs to
maximized reward signals that are calculated by weighing immediate rewards with future returns.
This is further qualified by other parameters like the learning rate and the discount factor. By
quantifying these factors into a equation, we get something that is structurally not too dissimilar to
the Bellman equation (Bennett, 2016):

Q(s ​t​, a​t​) Q(s ​t​, a​t​) + [r ​t+1​ + maxQ(s ​t+1​, a) - Q(s ​t​, a​t​)]← α · γ · (3)

Going over the equation from left to right, we can see we are starting with the Q-function that we
are updating, based on the state ​s and the action ​a at the time ​t​. The arrow operator right after the
function means that the Q-function will be updated to the left. In this case we add both the old and
the new action values to the existing Q-value. After that is the learning rate, signified by The .α
learning rate multiplies the product of new information - old information. r ​t+1 ​is the reward earned
from transitioning from time ​t to the next turn ​t+1​. is the discount rate, which determines how γ
much the future rewards are worth. maxQ(s ​t+1​, a) is the value of the action that is determined to
return the maximum amount of total future reward that is then subtracted by the existing estimate of
the Q function in its current state. Bennett (2016) provides also a simplified notation of the
equation, which can be put as simply as: (The New Action Value = The Old Value) + The Learning
Rate * (The New Information - The Old Information).

16

5. OpenAI Gym

Gym is a toolkit used for developing and testing reinforcement learning algorithms, created by
OpenAI, a non-profit AI research company. OpenAI’s mission is to discover and build a safe path
to artificial general intelligence (AGI). They house a full-time staff of 60 researchers and engineers,
focused on long-term research and being on the forefront of the advances of AI research (N/A, n.d.,
OpenAI Gym Documentation). OpenAI Gym makes no assumptions about the structure of the
agent, and has compatibility with any numerical computation library, such as Theano or Google’s
Tensorflow. Gym is a library, which contains a collections of test problems, alternatively known as
environments, which can be used test reinforcement learning algorithms. The environments share a
common interface, which allows the user to write general algorithms.

A commonality in all of reinforcement learning is an agent situated in an environment. In each step,
the agent takes an action and as a result receives an observation and a reward from the environment.
Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, & Zaremba (2016, p. 1) point out that
all reinforcement learning algorithms seek to maximize some measure of the agent’s reward while
the agent interacts with its environment. In literature, the environment is characterized in the form
of a partially observable Markov decision process. What makes OpenAI Gym unique is how it
focuses on the episodic setting of reinforcement learning, where the agent’s action chains are
broken down into a sequence of episodes. Each episode begins by randomly sampling the agent’s
initial state and continues until the environment reaches a terminal state. The purpose of structuring
reinforcement learning into episodes like these is to maximize the expected total reward per
episode, and to manage a high level of performance in as few episodes as possible.

5.1 Installing the toolkit

To install the OpenAI Gym you’ll first need to have Python 3.5 or above installed on your
computer. Python 3.5+ Documentation has a beginners guide page that has instructions on how to
download Python and how to use it. Once you have Python, Gym can be installed simply by using
the Python’s package management system ​pip​, like so (N/A, n.d., OpenAI Gym Documentation):

pip install gym

A good way to illustrate the basic structure of OpenAI Gym is first by writing the bare minimum of
code to get something working. OpenAI Gym documentation presents a simple example of this by
running an instance of CartPole-v0 -problem environment for a thousand time-steps and rendering
the environment at each step:

import gym

env = gym.make('CartPole-v0')

env.reset()

for _ in range(1000):

 env.render()

 env.step(env.action_space.sample()) # take a random action

As is visible from the above code, before we do anything using OpenAI Gym, we first need to
import the gym library which contains all of the environments and dependencies that you need to
use the toolkit. After that we create a variable for the environment, env, and set it to the
environment we want to use, which we reset to the initial state. Once the selected environment is set

17

up, we create a for-loop for a thousand timesteps. In each loop we render the current state of the
environment to the window and take a random action in the environment. The result is not anything
useful as far as maximizing total rewards per episode, but it illustrates the base mechanics of
OpenAI Gym in play.

When you run the code you should see a window pop up, which provides a visual render of the
process:

Figure 3. CartPole-v0 (OpenAI Gym Documentation, n.d.)

As a side note, the CartPole-v0 problem environment we have shown here will also be used for the
problem case in the next chapter.

5.2 Main elements

The above code example shows how we can take random actions in each step, but if we want to
know how to take better and more useful actions, we have to know how our actions are affecting the
environment. OpenAI Gym Documentation (n.d.) presents us the environment’s step -function,
which returns four values, which are:

● Observation (object), which is an environment-specific object that represents the agent’s
observation of the environment. This can be something like the board state in Chess or the
explored areas in a maze.

● Reward (float), which is the amount of reward returned by the previous action.
● Done (boolean), which represents the terminal state in an environment and tells the

algorithm whether it’s time to reset the environment again. Most tasks in Gym are separated
into distinct episodes, and done being True means that the episode has reached a terminal
state.

● Info (dict), which is a diagnostic tool used for debugging.

OpenAI Gym points out that the step -function is just an implementation of the classic
“agent-environment” loop from RL. In each timestep, the agent takes an action upon which the
environment returns an observation and a numerical reward.

5.3 Design

Brockman et al., (2016, p. 2) give a summary of the design decisions taken by the developers
behind OpenAI Gym, which were based on their own experiences developing and comparing
different reinforcement learning algorithms and using previous benchmarking collections. The first
one of the decisions taken was prioritising environments over agents, by providing an abstraction
only for the environment and not the agent. This choice was made in order to maximize user
convenience and allowing them to independently implement different styles of agent interface.
Second choice taken was to emphasize sample complexity and not just focusing on final

18

performance of algorithms. The performance of reinforcement learning algorithms can be measured
two different ways, first is by the final performance (average reward per episode after learning is
complete) and second by the the amount of time it takes for the agent to learn (sample complexity).
The third choice made by the developers was encouraging peer review over competition, by
allowing users to compare the performance of their algorithms on the OpenAI Gym website. This
was done in order to encourage the users to share their code and ideas with others and to act as a
meaningful benchmark for comparing different methods. The last choice noted by Brockman et al.,
(2016, p. 2) was strict versioning for environments. This means that if an environment changes, the
results between previous and future versions of the environment would be incomparable. To avoid
this problem, OpenAI team decided to guarantee that each update of the environment would be
accompanied by an increase in the version number. For example, an update to CartPole-v0’s
functionality would mean that the new version would be called something like CartPole-v1.

19

6. Problem Case

Now that we have covered the theory behind the Q-Learning algorithm and the OpenAI Gym
learning testing toolkit, we will move onto the central problem of how the Q-Learning algorithm
can be implemented to solve the CartPole-v0 test problem.

6.1 CartPole Problem

The documentation page for CartPole-v0 (n.d.) describes the problem as consisting of a pole
attached to a cart, which moves along a frictionless track in a two-dimensional environment. The
system can be controlled by applying a force of +1 or -1 to the cart, which controls the pendulum
shift of the pole to left or right. The pole starts in the upright position and the goal is to keep it from
falling over. A numerical reward of +1 is returned for each time-step where the pole remains
upright. The episode ends when the pole is more than 15 degrees from vertical or the cart moves
more than 2.4 units from the center. The environment is considered to be solved if an algorithm gets
an average reward of 195.0 over 100 consecutive trials.

6.2 Adapting Q-Learning to the CartPole Problem

Vilches (2019, Tutorial 4: Q-learning in OpenAI gym) provides an example of how Q-Learning can
be adapted to build a solution to the CartPole-v0 problem. We will now summarize the gist of how
his code works:

if __name__== ‘__main__’:

env = gym.make(‘CartPole-v0’)

…

qlearn = QLearn(actions=range(env.action_space.n),

 alpha=0.5, gamma=0.90, epsilon=0.1)

In the above code we start off the code execution in the main -function by first setting the
environment to the CartPole-v0 -test environment. Next we start the Q-Learning process by making
a variable qlearn of the class QLearn, which we initialize with custom parameter values. The
QLearn class takes parameters for actions, the discount constant alpha, the discount factor gamma
and the exploration constant epsilon.

20

Next up we run the algorithm for 3000 episodes:

for i_episode in xrange(3000):

observation = env.reset()

…

cart_position, pole_angle, cart_velocity, angle_rate_of_change =

observation

…

for t in xrange(maximum_number_of_steps):

Pick an action based on the current state

action = qlearn.chooseAction(state)

Execute the action and get feedback

observation, reward, done, info = env.step(action)

…

if(not done):

qlearn.learn(state, action, reward, nextState)

state = nextState

else:

reward = -200

 qlearn.learn(state, action, reward, nextState)

 last_time_steps = numpy.append(last_time_steps, [int(t + 1)])

break

The code execution starts off each episode by resetting the environment to the initial state and
saving it in the observation variable. The information from the observation of the current
environment is then used to update the current information on the status of the cart and the pole and
the state of the environment as a whole. Next the code enters another for-loop for the maximum
number of steps which in this case is 200. In each loop we pick an action based on the current state,
which is done by calling the chooseAction() -function of the QLearn -class with the current state as
a parameter. The code for the function looks like this:

def chooseAction(self, state, return_q=false):

q = [self.getQ(state, a) for a in self.actions]

 maxQ = max(q)

 if random.random() < self.epsilon:

 minQ = min(q); mag = max(abs(minQ), abs(maxQ))

 # add random values to all the actions, recalculate maxQ

 q = [q[i] + random.random() * mag - .5 * mag for i in

range(len(self.actions))]

 maxQ = max(q)

 count = q.count(maxQ)

 # In case there are several state-action max values

 # we select a random one among them

 if count > 1:

 best = [i for i in range(len(self.actions)) if q[i] == maxQ]

 i = random.choice(best)

 else:

 i = q.index(maxQ)

 action = self.actions[i]

 if return_q: # if they want it, give it!

 return action, q

return action

After the action has been executed the feedback is saved in the observation, reward, done and info
variables. If the done boolean returns false, which means that the episode hasn’t reached a terminal

21

state, the learning process is continued changing the current state to the next state and by calling
the class function learn() with the requisite parameters. The learn() -function looks like this:

def learn(self, state1, action1, reward, state2):

 maxqnew = max([self.getQ(state2, a) for a in self.actions])

self.learnQ(state1, action1, reward, reward + self.gamma*maxqnew)

In the function the new maximum reward is obtained and learnQ() -function is called to figure out
the table’s Q-values for the newly-observed reward and the maximum possible reward for the next
state. If done returns true, the reward is set to -200 and the maximum reward for the last state is
obtained by calling the learn() -function and the last time-steps are recorded before breaking the
loop and either starting a new episode or exiting the program. The code covered here is only a
fraction of the full source code of the implementation that can be found on Vilches’ Github page.

6.3 Results

The results saw substantial improvements over early generations, breaking the threshold for
learning performance required in order to be seen as having successfully solved the problem by
episode the 600th generation, at which point the rate of improvement between generations dips and
recovers but doesn’t see substantial improvement anymore before the algorithm reaches the end.

Figure 4. CartPole-v0 results. (Vilches, 2019)

The resulting performance can be seen as a success, as the algorithm passed the requirement of
getting an average reward of 195.0 over 100 consecutive episodes after the algorithm was run
through 1000 generations.

22

7. Conclusion

This thesis focused on the research question of how the Q-Learning algorithm can be used to solve
a test problem in the OpenAI Gym library. To fulfill this task we first had to investigate on what
premises was the algorithm’s functionality founded on. Q-Learning is a reinforcement learning
technique which meant that in order to understand it we first had to understand reinforcement
learning on a general basis. Additionally, a basic knowledge of the Markov decision process was
also required, which meant that had to be covered as well. After the foundational knowledge was
unpacked, the functionality of the Q-Learning algorithm itself was next as well as how the OpenAI
Gym toolkit could be used to test the performance of the algorithm. Lastly we finally moved on the
problem case itself, which was chosen to be the CartPole-v0 -test problem. The implementation that
was chosen was from Vilches’ (2019) reinforcement learning tutorial concerning Q-Learning and
was covered in a summarized form. The learning performance fulfilled the passing requirement of
getting an average reward of 195.0 over 100 consecutive trials by the 600th generation.

A central limitation of this study was that it covered the implementation of the algorithm on only
one test case and therefore the results can’t be seen as indicative on the performance the algorithm
could be expected to achieve in other test environments.

Recommendations for future study would be exploring more advanced reinforcement learning
algorithms, such as Deep Q-Learning, which implements a neural network that takes a state and
calculates Q-values for each action in that state instead of using a simple Q-table like in traditional
Q-Learning.

23

References

Barber, D., (2012). ​Bayesian Reasoning and Machine Learning. ​Cambridge, UK: Cambridge
University Press

Bennett, J., (2016). The Algorithm Behind the Curtain: Understanding How Machines Learn with
Q-Learning (3 of 5). Retrieved January 1, 2019 from
https://randomant.net/the-algorithm-behind-the-curtain-understanding-how-machines-learn-with-q-l
earning/

Bertsekas, D., P., (2011). ​Dynamic Programming and Optimal Control 3rd Edition, Volume II ​.
Cambridge, MA, USA: Athena Scientific

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.,
(2016). OpenAI Gym. ​arXiv:1811.12560​.

Francois-Livet, V., Henderson, P., Islam, R., Bellemare, M. G., Pineau, J., (2018). An Introduction
to Deep Reinforcement Learning. ​Foundations and Trends in Machine Learning: Vol. 11, No. 3-4​.

Grinstead, C. M., Snell, J. S, (2006). ​Introduction to Probability​. Providence, Rhode Island, US:
American Mathematical Society.

ISO/IEC JTC 1, (1997). ISO/IEC 2382-31:1997(en) Information technology — Vocabulary — Part
31: Artificial intelligence — Machine learning. Retrieved January 1, 2019 from
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-31:ed-1:v1:en

Jin, C., Allen-Zhu, Z., Bubeck, S., Jordan, M. I., (2018). Is Q-learning Provably Efficient?
arXiv:1807.03765​.

Konstantopoulos, T., (2009). Introductory lecture notes on Markov Chains and Random Walks.
Retrieved January 1, 2019 from ​http://www.bioinfo.org.cn/~wangchao/maa/mcrw.pdf

Matiisen, T., (2015). Demystifying Deep Reinforcement Learning. Retrieved January 1, 2019 from
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

Melo, F. S., (n.d.). Convergence of Q-learning: a simple proof. Retrieved January 1, 2019 from
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

OpenAI Gym Documentation, (n.d.). Retrieved January 1, 2019 from ​https://gym.openai.com/docs/

CartPole-v0 Documentation, (n.d.). Retrieved January 1, 2019 from
https://gym.openai.com/envs/CartPole-v0/

Python 3.7.2 Documentation, (n.d.). Retrieved January 1, 2019 from ​https://docs.python.org/3/

Poole, D. L., Mackworth, A. K, (2017). ​Artificial Intelligence: Foundations of Computational
Agents, 2nd Edition​. Cambridge, UK: Cambridge University Press

https://randomant.net/the-algorithm-behind-the-curtain-understanding-how-machines-learn-with-q-learning/
https://randomant.net/the-algorithm-behind-the-curtain-understanding-how-machines-learn-with-q-learning/
https://arxiv.org/abs/1811.12560
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:-31:ed-1:v1:en
https://arxiv.org/abs/1807.03765
http://www.bioinfo.org.cn/~wangchao/maa/mcrw.pdf
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
https://gym.openai.com/docs/
https://gym.openai.com/envs/CartPole-v0/
https://docs.python.org/3/

24

Russell, S. J., Norvig, P., (2009). ​Artificial Intelligence: A Modern Approach (3rd Edition)​. Upper
Saddle River, NJ, USA: Prentice Hall

Sigaud, O., Buffet, O., (2010) ​Markov Decision Processes in Artificial Intelligence: MDPs, beyond
MDPs and applications​. St Georges Road, London, UK: ISTE Ltd and John Wiley & Sons, Inc.

Silver, D., (2015). Advanced Topics 2015 (COMPM050/COMPGI13) Reinforcement Learning.
Retrieved January 1, 2019 from ​http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

Sutton, R. S., Barto, A. G., (2017). ​Reinforcement Learning: An Introduction​. Cambridge, MA,
USA: The MIT Press

Sutton, R. S., Barto, A. G., Anderson, C. W., (1983). ​Neuronlike adaptive elements that can solve
difficult learning control problems ​. Piscataway, NJ, USA: IEEE Transactions on Systems, Man, and
Cybernetics

Vilches, V. M., (2019). Basic Reinforcement Learning (RL). Retrieved January 1, 2019 from
https://github.com/vmayoral/basic_reinforcement_learning

Watkins, J. C. H, Dayan, P., (1992). Technical Note: Q-Learning. Retrieved January 1, 2019 from
http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
https://github.com/vmayoral/basic_reinforcement_learning
http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf

