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ABSTRACT

A THREE DIMENSIONAL ADAPTIVE MESH REFINEMENT
HYDRODYNAMICAL SIMULATION OF ETA CARINAE’S COLLIDING

STELLAR WINDS AROUND PERIASTRON

by Trung Peter Ho

One of the most luminous and mysterious binary star systems, classified as a

Luminous Blue Variable (LBV), is known to astronomers as Eta Carinae (η Car).

Located 7,500 light years away, this system holds a combined mass upwards of

∼ 120 M� and a total luminosity of over 5× 106 L�, making η Car a unique

astrophysical laboratory. The incredible mass loss of this system is due to powerful

radiation-driven stellar winds propelled by η Car’s enormous luminosity. In this

thesis, the time-dependent, three-dimensional (3D) grid-based adaptive mesh

refinement (AMR) hydrodynamics code RAMSES is used to simulate the η Car binary

and its colliding stellar winds around periastron (closest approach). The results of

this simulation are presented as slices of density, temperature, and wind velocity

centered in the three major coordinate planes (xy, xz, and yz). The results show

that grid-based AMR codes will ultimately improve upon past simulations

performed with SPH methods. Furthermore, by comparing the simulation results to

observational data, the various orbital, stellar, and wind parameters of η Car can be

refined. The RAMSES simulation plots of density, temperature, and wind velocity are

of a significantly higher resolution than those of past SPH simulations and, to this

benefit, the higher resolution results show in detail the various instabilities (e.g.,

Kelvin-Helmholtz, thin shell) that arise at the colliding winds region and are

important for understanding X-ray observational studies. This simulation presents

the idea that grid-based AMR simulations can remain open for future refinement of

η Car’s parameters, including an analysis at apastron, or furthest approach.
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CHAPTER 1

INTRODUCTION

1.1 Eta Carinae

Eta Carinae (η Car) is a unique and luminous binary star system that has

been closely studied observationally and theoretically for the past ∼175 years

(Humphreys & Davidson 1984; Davidson & Humphreys 1997; Humphreys &

Davidson 1999; Smith & Frew 2011; Damineli et al. 2019). Located approximately

7,500 light years away in our Galaxy (Smith 2012), η Car’s estimated total mass is

>120 times the mass of the Sun (M�); ∼90 M� for the primary star and ∼40 M�

for the secondary (Hamaguchi et al. 2018). The binary orbit is highly elliptical with

an eccentricity of 0.9 and an orbital period of 2024 days (5.54 years; Corcoran et al.

2017). The estimated luminosity of η Car is 5× 106 times that of the Sun (L�;

Davidson & Humphreys 1997). Due to their extreme luminosities, the stars in η Car

possess stellar wind mass outflows that reach speeds of 420 km/s (primary star) and

3000 km/s (secondary star; Madura et al. 2013). Radiation pressure is the driving

force behind these outflows, leading to tremendous stellar mass loss at rates of

∼ 8.5× 10−4 M� yr−1 (primary) and ∼ 1.4× 10−5 M� yr−1 (secondary; Madura

et al. 2013). For context, the overall rate of mass loss from our Sun is only

∼ 10−14 M� yr−1. The powerful stellar winds in η Car collide between the stars,

forming a wind-wind-collision (WWC) shock zone that is responsible for complex

time-varying spectroscopic and photometric variability observed across a wide range

of wavelengths from the radio to gamma rays. There is great interest in

understanding the physical processes that lead to this observed multi-wavelength

variability (Damineli et al. 2019), since such an understanding provides us with

relevant information about the late-stage evolution of nearby extremely massive
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stars and supernova progenitors. Three-dimensional (3D) numerical simulations of

η Car’s binary system and colliding stellar winds provide one important way of

studying the system. Comparison of results from numerical models to direct

observations reveals important details about the binary’s orbital motion,

photoionization properties, and recent (5 to 15 year) mass loss history. Such an

analysis also provides a baseline for following future changes in η Car as the stars

approach the ends of their lives.

Study of η Car began in the 1600s, but interest in η Car did not really take off

until η Car’s “Great Eruption” in the 1840s when the system suddenly became the

second brightest non-solar-system object in the sky (Humphreys & Davidson 1999;

Damineli et al. 2019). The mass loss at this time is measured to be at least 10 M�,

perhaps as much as 40 M�, over a period of ∼10 years. This eruption is responsible

for forming the spectacular bipolar “Homunculus” nebula that now surrounds the

stars (Smith 2012). The Homunculus presents a challenge for observing the central

η Car binary, as the nebula obscures any direct observation and contributes a

blanket of additional spectral emission and absorption lines. The Homunculus

nebula remains a target of detailed observational studies by instruments like the

Hubble Space Telescope (HST) since many of the nebula’s properties and its

formation history are still not well understood (Smith 2012). Some early studies,

such as (Van Genderen 1984), outline interpretations of the nebula’s structure and

photometric variability. Recent studies like (Smith 2012) and (Steffen et al. 2014)

outline the structure of the Homunculus. Our current understanding of the

structure of the Homunculus is that it is bi-lobed, with an equatorial disk at the

center, and measures approximately one light year in length from pole to pole.

Meanwhile, dust and molecules form in the walls of the nebula as the material

within expands and cools as it moves farther away from the central stars.
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While the surrounding Homunculus nebula provides some clues on the nature

of the inner binary system, such as the chemical composition and evolutionary

status, there are still questions that have not been answered about the individual

massive stars, and massive stars in general. The origin and mechanisms behind its

many large eruptions, the exact masses of the individual stars, and the spectral type

of the secondary star are a few of the many remaining questions associated with

η Car. η Car also provides a unique nearby astrophysical laboratory for studying

extremely massive stars similar to those that existed in the early universe, which are

thought to have been very massive (Smith 2012). Ultimately, the big remaining

questions in astronomy that studying η Car can help answer are “What determines

the ultimate fate of massive stars, e.g. how do massive stars end their lives?,” “How

does mass-loss, via stellar winds and giant mass eruptions, affect massive star

evolution?,” “How did the first stars form, lose mass, evolve, and affect later

generations of stars?,” and “How are the heavy elements, dust, and molecules that

form in massive stars and their deaths ejected and redistributed throughout

galaxies, and how does this affect galaxy evolution?”.

1.2 Modeling Stellar Winds

Classification of the primary component of η Car as a Luminous Blue Variable

(LBV) sets the foundation for the development of showing the relationship between

a star’s brightness and mass as established in (Humphreys & Davidson 1984). As

Luminous Blue Variables are considered to be a class of stars that are hot, massive,

and luminous by having extreme photometric and spectroscoptic variability (Vink

2012). They are luminous hot stars that some times erupt or end in an outburts

with an large mass loss. This is where η Car earns the title of LBV with evidence

from the first Great Eruption of 1840.
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With such variability among massive stars there is an instability limit where

sudden outbursts are driven by luminosity. This comes as the additional

classification called the Humphreys-Davidson limit (HDL; Glatzel & Kiriakidis

1993). Stars that exist beyond the HD limit are likely to be unstable resulting in

significant mass loss. Examples of these cases that are in the Milky Way are P

Cygni and η Car that are high luminosity stars (Humphreys 2019). While the HD

limit is an empirically determined limit, it helps determine how massive stars

around this limit lose significant mass. Understanding η Car’s mass loss helps draw

a clear picture on how stars near the HD limit losss mass. Establishing the HD

Limit begins with the mapping of main sequence stars on a Hertzsprung-Russell

Diagram (HR-Diagram). Among this mapping are stars rich with hydrogen fuel

that stabilizes the life cycle of a star. Luminosity helps drive mass loss but are in

hydrostatic equilibrium, creating more stable stars along the main sequence. The

HR Diagram is representative of stellar evolution as the correlation between mass,

temperature, and luminosity outline the life cycle of a star. In contrast the extreme

luminosity and mass of η Car places it in a unique region of the upper HR Diagram,

then pushing beyond the HD Limit. Exceeding proposed mass limits in (Humphreys

& Davidson 1984) sets η Car to be a carefully studied stellar object. Luminosity

becomes the driving force for stellar winds.

For hot and massive stars, radiation pressure as a result of the star’s extreme

luminosity sets a defining limit within the HD Limit known as the Eddington Limit.

Exceeding this Eddington Limit then gives meaning to stellar wind conditions and

the physics of radiation driven stellar winds (Cranmer 1996). Some characteristics

of stellar winds, such as mass loss rate and wind speed, are determined from

theoretical modeling and analytical methods. These conditions for stellar wind mass

loss follow a velocity limit based on thermodynamic principles (Owocki 2005).
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Density from mass loss rate and velocity follows from an analytical method of

colliding winds. Temperature follows from an understanding of cooling processes

(optically-thin radiative cooling vs. adiabatic cooling) in the winds and post-shock

colliding wind material (Stevens et al. 1992).

By determining these characteristics with modeling stellar wind conditions,

and by applying the parameters of η Car’s orbit the aim is to understand intrinsic

properties of interaction in this system. For example, what are the velocity

magnitudes in wind speeds further away from the bow shock front? At what point

does temperature in ejecting wind switch from adiabatic to radiative? A question

related to temperature that is still unknown in the study of η Car is the spectral

emissions from hot shocked gas following a wind collision. Most importantly,

current observations are now examining this emission on the X-ray spectrum as

described by (Corcoran et al. 2017) and (Damineli et al. 2019).

Other than modeling winds are determining the general composition of η Car.

Massive stars such as η Car are considered to be of Wolf-Rayet (WR) type or early

type O and type B, where hydrogen that is the main source of fuel becomes

depleted. Instead, nuclear reaction involving Carbon (C), Nitrogen (N), and Oxygen

(O) are used as fuel in a Carbon-Nitrogen-Oxygen (CNO Cycle) environment

(Davidson & Humphreys 1997). These are other leads that potentially have the

opportunity to modeling.

1.3 Colliding Wind Simulations

Properly simulating the binary colliding winds of η Car requires a full 3D

time-dependent computational approach. Hydrodynamical simulations using the

grid-based code with adaptive mesh refinement (AMR), while computationally

expensive, are now possible. This numerical method is used widely among the
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astronomy community in running simulations of galaxy formation, and including the

simulation of colliding winds as seen in (Calderón et al. 2020). Characteristics from

past work and observations within η Car are applied in this numerical code, see

(Madura 2010) and (Madura et al. 2013) for past work, and (Corcoran et al. 2017;

Damineli et al. 2019; Hamaguchi et al. 2018) for examples of observations that set

the simulation parameters.

By extrapolating the results from an AMR simulation, a 3D model is

constructed to further investigate the properties of η Car’s colliding wind binary.

While constructing this model, the output is then plotted through visual modules

with the use of Python programming. The generated plots represent density,

temperature, and wind velocity with parameters at η Car periastron approach. This

is made possible by applying initial conditions based on past observational data,

and early modeling approaches using Smooth Particle Hydrodynamics code (SPH).

Applications of 3D modeling provides further insight some of the most interesting

properties within the colliding wind shock zone to the Homunculus nebula. In

particular, of these properties are energy emitted in the colliding wind shock zone

where emission can reach X-ray wavelengths (Hamaguchi et al. 2018). Mass-loss,

being a result of radiation pressure effects the type of radiation emitted during

periastron passage as the wind speeds switches from adiabatic to radiative cooling,

also plays a role in modeling stellar winds.

Modeling mass-loss rates with density, temperature, and wind velocity not

only allows for comparisons with observational data, but is not limited to

comparisons with past modeling methods. As mentioned, past simulations

performed η Car colliding winds made use of SPH code on small domains and lower

resolution (Madura et al. 2013). While current AMR grid-based simulations make

use of RAMSES code are compiled at higher resolutions and larger domains. Well
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defined plots are made possible through the use of Python programming and YT

visualization modules. Concluding this thesis, is a presentation on 3D planar slice

plots (where x = 0, y = 0, and z = 0) show a more intricate detail the colliding

winds of η Car. At larger domains and high resolution presented are improvements

in defined points of fluid instability, an opening shock angle, wind temperature

differences, and a broader estimation for terminal velocity.
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CHAPTER 2

HISTORICAL ERUPTIONS

Study of the unique features of η Car spans over four hundred years, starting

in the 1600s (Humphreys & Davidson 2012), during which time came the first

observations made by early astronomers, who were able to observe and determine

visual apparent magnitudes. Around 1842, an eruption known as “The Great

Eruption” occurred when the peak apparent magnitude reached about -1. (Smith

2012) suggests that the surrounding “Homonculus” nebula formed from this

spectacular event. Following the Great Eruption, the system dimmed before

brightening again in 1900, when a “Lesser Eruption” occurred, producing the

“Little Homunculus” nebula that sits within the larger Homunculus (Smith 2012).

Around this time, new observational tools were being developed which would allow

future detailed spectral and photometric studies. In this chapter, we discuss the key

properties of η Car and some highlights from observational studies of the system

throughout history. Lastly, we establish the classification of η Car as a LBV star via

its observed variability across multiple wavelengths.

2.1 The Great Eruption

The first modern recorded observations of η Car occur near the year 1600

(Davidson & Humphreys 1997). From then until the 1830s, η Car was observed as a

second or fourth apparent magnitude star. As demonstrated in Figure 2.1, η Car

was not a very interesting object until 1843, so very little is known about the object

prior to then. Further discussions on observational studies in the 1600s, 1700s, and

early 1800s are left to the reader (see e.g. Humphreys & Martin 2012), while other

historical facts can be found in (Humphreys & Davidson 2012). The apparent visual
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Figure 2.1: The historical light curve of η Car with apparent visual mag-
nitude between the years 1600 and 2010. Key features of this light curve
are peak brightness occurs at 1840 during “The Great Eruption” declining
until 1900 where a sharp rise occurs during a “Lesser Eruption”. Addi-
tional verified observations begin to take place after 1930 as brightness
begins to move upwards towards magnitude 4. Data provided by the
American Associate of Variable Star Observer (AAVSO) database on η
Car, www.aavso.org.
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magnitude of η Car is thought to have been between 2 and 4 up until the 1830s,

before the Great Eruption occurred (Humphreys & Davidson 1999).

The years between 1830 and 1850 are a significant time period for η Car. This

spectacular event where mass loss was perhaps up to 40 M� is known as the “Great

Eruption.” During this time, around the year 1843, η Car reaches its peak apparent

visual brightness, ∼ −1 (Davidson & Humphreys 1997). Figure 2.1 shows the

historical light curve before, during, and following this event. After 1856, η Car

faded and temporarily stabilized to seventh or eighth magnitude around the year

1870. (Humphreys & Davidson 1999) believe that this apparent magnitude decrease

is due to absorption of light by surrounding, newly formed and ejected dust from

the Great Eruption.

Between 1887 and 1895, a second brightening event and eruption occurred,

although much smaller than the Great Eruption. During this time η Car brightened

to about sixth magnitude, ejected about 0.1 M� of material, and formed the “Little

Homunculus” nebula (Smith 2012). After this, the system dimmed and stabilized to

nearly eighth magnitude around the year 1900. η Car’s brightness was then

relatively stable up until the 1950’s, when it started to gradually brighten. Over the

last ∼ 70 years, η Car’s brightness has increased by nearly four magnitudes, and

current observations place the system at an apparent magnitude of about 4, the

brightest the system has been since just before and during the Great Eruption.

The luminosity of η Car during the Great Eruption is estimated to be on the

order of 107.3 L�. The causes of the Great Eruption and lesser eruption of the 1890s

are still unknown, although recently detected “light echoes” are helping to provide

some new insights. By understanding the reflection of spectral absorption lines from

nearby dust, (Rest et al. 2012) was able to confirm estimates of mass ejection

speeds, mass loss, and temperature arising from the Great Eruption.
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2.2 The Homunculus Nebula

A unique and grand feature that was a direct result of the Great Eruption is

the surrounding Homunculus nebula, primarily made of dust formed from material

ejected during the Great Eruption (Humphreys & Davidson 2012). Visually the

Homunculus is described by its bipolar lobes and an equatorial skirt. Figure 2.2

shows a detailed image of the Homunculus taken by the Hubble Space Telescope

(HST) in July 2019. Determining the size and mass density begin with early

estimates measuring the total mass of the Homunculus were to be about 2-3 M�

(Davidson & Humphreys 1997). While on more recent estimates indicate a total

mass of ∼20 M� (Smith 2012) based on a gas-to-dust ratio of 100. Following this

with near-infrared observations, a mass estimation of the same gas-to-dust ratio

shows total mass of more than 45 M�, (Morris et al. 2017). In the same study is the

composition that makes up the Homunculus nebula. Primarily the composition of

the Homunculus is composed of nitrogen (N) while deficient in carbon (C) and

oxygen (O). This suggests that the main fuel in this system has made the transition

from the CNO cycle to burning helium (He) as fuel making the Homunculus nebula

is a prime candidate for infrared (IR) observations.

The central binary in the Homunculus plays a role in influencing the shape

and overall structure (Steffen et al. 2014). Modeling and infrared spectroscopy

allows for observations of Homunculus expansion and a precise 3D structure to be

mapped. This sets some boundaries as the kinetic energy of the Homunuculus is

estimated. The results in (Steffen et al. 2014) show that with the influence of the

central binary, the general structure of the Homunculus having: (1) circumpolar

trenches in each lobe positioned point symmetrically from the center and (2)

off-planar protusions in the equatorial region from each lobe at longitutinal (∼ 55◦)

and latitudinal (10◦ − 20◦) distances from the projected apastron direction of the
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binary orbit. In addition, the angular distance between the protrustions (∼ 110◦) is

simular to the angular extent of each polar trench (∼ 130◦) and near equal to the

opening angle of the wind-wind collision cavity (∼ 110◦).

Another important feature is the total kinetic energy of the expansion in the

Homunculus nebula, (Smith et al. 2018). Observations show that ejected mass

reaches up to -10,000 km s−1 on the near side of the nebula and up to +20,000

km s−1 on the far side. This gives an estimate for total mass loss during the great

eruption, but also gives an estimate for total initial mass of the central binary with

the upper limits of ∼ 150M�. In an independent analysis of Near-IR of the

Homunculus, (Smith 2012) shows that an implied ejected mass of > 10M� as a

result from the great eruption has kinetic energy in the range of 1049.6 − 1050 erg.

Understanding the features of the Homunculus and the great eruption of 1840

help astronomers find clues to the evolutionary states of massive stars. Massive

eruptions also give clues on how massive stars reach supernova attaining their

ultimate fate. A particularly long-standing mystery in the life cycle stars can be

interpreted by studying the Homunculus and the central binary itself. Current

models of the Homunculus rely on certain assumptions such as the accretion from

the secondary star (Steffen et al. 2014). Modeling the Homunculus requires

hydrodynamical simulations to investigate the overall stucture.

2.3 Photometry and Spectrophotometry

Modern spectroscopic and photometric methods paved a way for serious

inquiry into η Car the later half of the 20th century. Interest in η Car becomes

apparent as methods of observation begin to advance starting in the 1960s

(Davidson & Humphreys 1997; Humphreys & Martin 2012). However, despite

numerous intricate studies with modern tools, η Car remains not well understood.
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Figure 2.2: A detailed photograph taken by Hubble Space Telescope using
Hubble’s Wide Field 3. The image is then mapped to the ultraviolet-light
glow of magnesium that is within the gas. Shown here is the homunculus
nebula surrounding a luminous center. A unique characteristic is the bipo-
lar lobes with and equatorial skirt at the center. Credits: NASA, ESA, N.
Smith (University of Arizona) and J. Morse (BoldlyGo Institute)
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Multi-wavelength observational studies helped determine η Car’s spectral

distribution over radio, infrared (IR), optical, ultraviolet (UV), X-ray, and

gamma-ray wavelengths. In early studies, η Car was originally thought to be a

single massive star radiating in the UV. Later it was understood that η Car’s central

binary emits optical and UV radiation, but this radiation is absorbed and re-emitted

in the IR by the Homunculus nebula. X-ray observations in the late 1990s confirmed

the presence of a central binary system, with the X-ray emission arising from the

shock-heated gas at the interface where the two stellar winds collide. X-rays are not

as attenuated by the Homunculus nebula, providing important diagnostics on the

properties of the colliding winds and central binary, such as the shock temperature,

wind terminal speeds, orbital eccentricity, and periodicity.

In combination with the total system luminosity obtained from studies of the

Homunculus nebula, spectroscopic observations of η Car indicate a total system

mass &120 M�. Modeling of HST spectroscopic observations also places tight limits

on the mass loss rate and wind speed of the primary star, as well as limits on the

mass and luminosity of the secondary star. Spectroscopic studies also provide

essential information on the temperature structure of the stellar winds and colliding

winds region. The amounts and distribution of H, He, C, N, O, and other heavy

elements help in determining the likely evolutionary stage of the star.

Understanding the distribution and abundances of elements can lead to a better

understanding of how future stars are formed. Whether or not η Car has exhausted

its main H fuel source is not known. There is some justification for classifying

η Car’s secondary star as a post-main-sequence Wolf-Rayet (WR) star given its

unusually high mass loss rate, wind speed, and temperature. This would further

suggest that η Car may be nearing the end of its life and supernova explosion.

However, this is not well understood.
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2.4 Eta Carinae as a Luminous Blue Variable

Classifying stars as LBVs has been a research topic of interest for astronomers

starting as early as the 1970s. The basic property of a star classified as an LBV is

considerable variations in its spectra and photometry, (Vink 2012). LBVs are also

known for exhibiting bursts of extreme mass loss, such as η Car’s Great Eruption.

Variability is measured on a time span of years. Other considerations for classifying

η Car as an LBV include stellar luminosity and temperature. As luminosity scales

roughly with mass as M3.5, η Car’s primary star mass of ∼ 90 M� implies a

luminosity of nearly seven million L�. In reality, the star is not quite this luminous

since the power-law dependence on mass flattens out as the star approaches the

Eddington Limit. Still, current estimates place the primary star’s luminosty at

& 4× 106 L�. In terms of temperature, the “surface” of the primary star likely has

a temperaure near 35,000 K. However, because the primary is so luminous and has

such a dense, optically thick stellar wind, we are unable to directly observe the

surface of the star. Instead, we are only able to peer down to an optical depth of

∼ 2/3 at any particular wavelength, resulting in a spatially-extended “wind

photosphere” that has a radius of ∼ 880 R� and temperature of ∼ 9000 K.

Photoionization and spectral modeling of ejecta near the stars places limits on the

secondary star’s luminosity and temperature of ∼ 106 M� and 40,000 K.

Large variations in the luminosity of η Car can affect its stability.

Observational limits on stability are available via Hurtzsprung-Russell diagrams,

discussed in detail later in this thesis. η Car famously exceeded a luminosity to

mass limit known as the Eddington Limit, wherein the star becomes so luminous it

effectively becomes gravitaionally unbound. However, in addition to such large

variations in luminosity, the stars in η Car are bright enough to exhibit continuous

mass loss via radiation-driven stellar winds. Any proper numerical simulation of the
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η Car binary must account for such mass loss. This necessitates a proper discussion

of the physics of mass loss from massive stars (Owocki & Shaviv 2012), leading to

an eventual discussion of such mass loss in massive binary systems and the colliding

wind binary (CWB) phenomenon.
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CHAPTER 3

MASS LOSS FROM MASSIVE STARS

The ultimate fate of η Car depends on its mass loss. The Great Eruption,

producing at least 0.1 M� in mass loss per year, is an extraordinarily high rate of

mass loss. In fact, this is the largest non-terminal stellar mass loss rate currently

known (non-terminal meaning that the star survived the mass loss and did not go

supernova or form a compact object). In this chapter we summarize some key

aspects of mass loss from massive stars that is due to radiation pressure.

Futhermore, we establish η Car as a LBV. By classifying η Car as a massive star

and LBV, we can show that the properties observed can be modeled by extension of

the HR Diagram. By extension, we will show that η Car approaches the

Humphreys-Davidson limit. The Humphreys-Davidson limit describes the stability

of massive stars given their luminosity. Beyond these limits, a star’s radiation

pressure can overcome gravity, making the star inherently unstable.

3.1 Hurtzsprung-Russell Diagram

The Hurtzprung-Russell Diagram (HRD) model is applied in the

determination of star classification. Based upon evolutionary stages of a star’s life

cycle, the HRD provides a foundation for understanding the stability of stars

(Glatzel & Kiriakidis 1993). Fundamentally, the HR diagram provides insights on

some global characteristics of a star (Carroll & Ostlie 2014). The key parameters

required to construct an HR Diagram are stellar luminosity and temperature, where

luminosity implies stellar mass. Observationally-determined HR diagrams use

absolute magnitude as a proxy for luminosity and color as a proxy for effective

temperature. Plotting absolute magnitude versus color for a large number of
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Figure 3.1: A Python generated plot of the Hurtzsprung-Russell Diagram
based on observational data provided by the Yale Trigonometic Parallax
Dataset (van Altena et al. 1995). The horizontal axis represents the B-
C color index and the vertical axis absolute magnitude. The diagonal
grouping of stars through the middle of the plot represents stars on the
main sequence. More massive, hotter and bluer stars trend towards the
upper left hand corner, while smaller, cooler and redder stars trend towards
the lower right. The upper right hand side represents the evolved red
giants, while to the lower leftmost portion of the plot are the smaller and
less luminous white dwarfs, the remnants of dead Sun-like stars.
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observed stars then produces an HR diagram, as demonstrated in Figure 3.1. The

large grouping of stars running through the middle of the diagram is known as the

“main sequence” and indicates where stars spend the majority of their lives as they

burn through their nuclear fuel and remain in hydrostatic equilibrium. More

massive and bluer stars are located to the upper left on the main sequence, while

lower mass, redder stars are located to the lower right on the main sequence.

Indicators such as the placement of white dwarfs on the lower left hand corner and

super red giants on the upper right show that evolved outlier stars do not fall within

the main sequence. The HR diagram thus provides a snapshot of stellar evolution

across a wide range of stellar masses.

3.2 Humphreys-Davidson Limit

Further classifying LBVs would require an extension to the HR-Diagram at

the upper limits for massive stars. LBVs exceeding the mass and luminosity limits

are distributed based on an effective temperature scale towards the left in the HRD,

compared to supergiants that exist in the upper right region of the HRD. LBVs are

observed to be at lower temperatures in comparison to supergiants existing at much

higher temperatures. The empirical limit for the stability of massive stars indicated

in 3.2 by a solid line is the point at which the luminosity implies stellar mass loss.

This empirical limit is based on the Eddington Limit that describes the outward

radiation force overcoming gravitational inward forces (Glatzel & Kiriakidis 1993).

Exceeding the Eddington Limit produces outward pressure that can drive extreme

stellar mass loss.

3.3 Stellar Opacity of Massive Stars

Photons moving through a dense medium are likely to be absorbed and

scattered, thus resulting in an overall lower intensity. The depletion of photons via
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Figure 3.2: Extending the HR diagram in the upper limits is the
Humphreys-Davidson limit. Beyond this limit stars become unstable as
luminosity creates mass loss from radiation pressure.
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scattering and absorption in stellar atmospheres is characterized by the opacity κ.

Opacity can be better understood by imagining a cylindrical beam of light moving

through a gas. In this beam the total absorption from photon scattering and

absorption by electron transitions contributes to the total opacity (Carroll & Ostlie

2014). For stellar atmospheres, opacity is comprised of several absorption factors

that arise as a result of multiple microscopic processes that depend on the physical

properties and composition of the absorbing medium. It is the cross section for the

absorption of photons having wavelength λ per unit mass of stellar material. More

generally, the opacity of a gas is a function of its composition, density, and

temperature.

For a light beam propagating through a gas the intensity I is proportional to

opacity κ, density of gas ρ, and the distance, s, that the beam traverses

I ∝ κρs. (3.1)

This gives the units of opacity as m2kg−1. Dependent on the wavelength of the

light, λ, the change in intensity dIλ over a distance ds can be expressed as

dIλ = −κλIλ ρ ds. (3.2)

Opacity is the coefficient of intensity dependent on wavelength. The intensity

decreases the further a light beam propagates through the gas.

Individual sources of opacity can contribute to the total continuum of opacity.

With total opacity being comprised of its constituents, which can include

bound-bound transitions, bound-free absorption, free-free absorption, and electron

scattering. In a descriptive reference by (Carroll & Ostlie 2014), pages 276-281, and

by the order of each description as referenced in the text, the constituent parts of

opacity may include:
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• Bound-Bound Transitions (κλ,bb) or the transition of electrons from one

bound energy state to another. Occurs when an incident photon is absorbed

by an electron bound to an atom. The absorption of a photon transitions an

electron to a higher energy state while the re-emission of a photon

transitions an electron down to a lower energy state. Both transitions are

taking place at once in stellar atmospheres and occur only at the specific

wavelength of the transition in question.

• Bound-Free Absorption (κλ,bf) or photoionization, is the effect of

incident photons ejecting electrons from their bound state in an atom. This

effect ionizes atoms, given a photon has enough incident energy. In contrast,

ionized atoms can also capture electrons in a reverse ionization process, thus

resulting in the emitting of a photon of a specific wavelength.

• Free-Free Absorption (κλ,ff) occurs when a free electron near an ion

absorbs a photon. Because a free electron cannot absorb a photon due to

momentum and energy conservation, and by the same principles an electron

will increase in its speed or total momentum in conservation of energy with

an incident photon. The reverse process can occur when a free electron

approaches an ion causing a “braking radiation” where there is the emission

of a photon when an electron slows down. This mechanism occurs for a

continuous range of wavelengths, thus free-free absorption is a contributor

to the continuum opacity.

• Electron Scattering(κλ,es) occurs when there is interaction between an

incident photon and a free electron. A free electron cannot absorb a photon,

but rather will deviate from its path trajectory through a transfer of

momentum and energy. The two types of scattering of this type are
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Thomson and Compton scattering where Thomson scattering is an incident

photon to an electron will re-emit a photon at the same wavelength.

Photons incident with a certain wavelength by contrast to Thomson

scattering will be re-emitted at a different wavelength for Compton

scattering.

Electron scattering is the most abundant and dominant form of opacity in the

atmospheres and winds of hot, massive stars whose effective temperatures can range

from 15,000 K to upwards of 50,000 K. At such temperatures, hydrogen is easily

fully ionized. This and partial ionization of other heavy elements creates an

abundance of free electrons, leading to an increasing electron density. Photons are

more likely to interact through Thomson and Compton scattering as the cross

section for an electron is much smaller than a hydrogen nucleus. The cross sectional

area for an electron via Thomson scattering is

σT =
1

6πε20

(
e2

mec2

)
= 6.65× 10−29 m2 , (3.3)

meaning that the cross section is much smaller, up to a billion times smaller, than a

hydrogen nucleus.

Considering that the total opacity reduces the overall luminosity of a massive

star, the effective luminosity then depends on the various contributions of opacity,

which requires understanding the compositional, density, and temperature structure

of the star’s atmosphere. The wavelength dependent total opacity is

κλ = κλ,bb + κλ,bf + κλ,ff + κλ,es . (3.4)

For the high temperatures of massive stars, the dominant source of opacity will be

electron scattering, so this expression can be approximated as

κλ ≈ σλ,es. (3.5)
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However, electron scattering is a “gray” or wavelength independent form of

scattering that affects all photons equally. One can thus further simplify the

notation as κλ ≈ κe when discussing massive stars.

3.4 Exceeding the Eddington Limit

For a typical star, its stability depends on a state of hydrostatic equilibrium,

which occurs when the outward radiation pressure matches the inward pull of

gravity. The limit where the radiation pressure exceeds gravity is known as the

Eddington Limit. Radiation pressure is driven by a star’s total luminosity.

Specifically, for hot, massive stars, radiation pressure is applied (Owocki & Shaviv

2012), as opposed to the pressure driven winds that occur in less massive stars. The

Eddington Limit considers the ratio of stellar luminosity to mass. The great

eruption of η Car shows the dramatic effects that can occur when the luminosity

reaches its peak near/exceeding the Eddington Limit. The mass loss during the

Great Eruption is the result of outward radiation pressure exceeding gravitational

forces at this extreme.

When outward and inward forces are equivalent at hydrostatic equilibrium,

the gradient of pressure P equals the gravitational force F = ρg, leading to

∇P − ρg = 0 . (3.6)

Further discussions on radiative line acceleration and the detailed determination of

stellar mass loss rates will be discussed in the following section (3.5). For simplicity,

here we consider only the simple case of scattering by free electrons, which is a gray

or wavelength-independent process. To determine the radiation pressure, we begin

by considering the radiative energy flux from a spherically symmetric star

Frad =
L

A
, (3.7)
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where L is the total stellar luminosity and A the total surface area of a symmetric

sphere. Since gray scattering cannot alter the star’s total luminosity L, the radiative

energy flux at any radius r is

Frad =
L

4πr2
, (3.8)

corresponding to a radiative momentum flux of Frad/c. However, there are factors

that affect the total luminosity, one being the opacity κe. A unit of opacity per

speed of light c is κe/c. Multiplying the radiative energy flux Frad by κe/c gives us

the radiative acceleration (force per unit mass) due to the opacity κe:

grad =
(κe/c)L

4πr2
. (3.9)

Division of grad by the gravitational acceleration ggrav = GM/r2, where M is the

mass of the star, leads to a ratio of accelerations grad to ggrav. The Eddington

parameter Γe is defined as this ratio of the radiative acceleration to the

gravitational acceleration

Γe ≡
κeL

4πcGM
, (3.10)

where G is the gravitational constant. This Eddington parameter has a

characteristic value for each star. As the luminosity increases, radiative forces

become more important. If Γe > 1, radiative acceleration exceeds gravitational

acceleration, leading to stellar mass loss. Giant outbursts during η Car’s great

eruption period are a prime example of exceeding the Eddington limit.

For electron scattering in an ionized medium, the opacity is simply a constant,

κe = σe/µe, where σe is the classical Thompson cross-section (σT ) and the mean

atomic mass per free electron is

µe =
2mH

1 +X
, (3.11)
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with mH the mass of the hydrogen atom and X the mass fraction of hydrogen

(typically X = 0.72 for solar abundances). Applying the value of the Thomson

electron cross section given by equation 3.3, a simplified relation for computing the

value of κe for a given mass fraction of hydrogen X is (Owocki & Shaviv 2012)

κe =
σe
µe

= 0.2(1 +X) cm2/g , (3.12)

which gives κe ≈ 0.34 cm2/g, assuming X = 0.72.

For an Eddington parameter to exceed the value of one would imply a rather

large value of luminosity compared to mass! For an LBV and η Car, sudden bursts

in luminosity can cause the star to exceed the Eddington limit. This surpasses the

limits of stability.

3.5 Radiation Driven Stellar Winds and Mass Loss Rate

For massive stars, radiation pressure becomes the dominant driving force for

stellar winds, including the loss of stellar mass. This is in contrast to our Sun,

which has a convective upper atmosphere and a solar wind driven by simple gas

pressure. Radiation driven stellar winds have a long history of study. Early

foundations described by (Lucy & Solomon 1970) outline an analytical approach to

determining mass loss and mass loss rates of massive stars. Afterward, the theory

evolved into the modern theory of line-driven stellar winds, otherwise referred to as

CAK Theory, as described in (Castor et al. 1975). Current understanding of

line-driven winds is extended to multi-line scattering and instabilities, as described

by (Owocki 2005). Without exhausting on the development of stellar wind theory,

the general formalism sets the problem for modeling the outflow of mass from a

massive star and its overall mass loss rate.
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3.5.1 Radiative Accelerating Outflow

The condition for stellar wind mass loss require that the radiation pressure

exceed the gravitational force of the star. Assuming first a star’s atmosphere acts

like a fluid, it can be described as having some density ρ with outflow at a velocity

v. One can then begin determining the relationships governing mass outflow of a

star using the general fluid equations.

The outflow flux ρv, of a massive star has a mass density much greater than

the velocity. This leads to the speed of the mass flow being less than the gas sound

speed a. This occurrence at hydrostatic equilibrium is described by the mass

outflow equivalent to the gravitational force

∇P = ρggrav , (3.13)

where ∇P is the pressure gradient and ggrav is the gravitational acceleration. While

the pressure can include several contributions, a generic simple approach would be

to apply the ideal gas law

P =
ρkT

µ
(3.14)

where k is Boltzmann’s constant, T is temperature, and µ is the mean molecular

weight. The sound speed a can now be defined as

a =

√
kT

µ
, (3.15)

that is the speed at which information propagates through the atmospheric medium.

The pressure then depends on the sound speed as

P = ρa2 . (3.16)

For a non-equilibrium state in fluid flow, the application of Newton’s second law for
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a net acceleration gives

dv

dt
=
∂v

∂t
+ v · ∇v = −ggrav −

GM∗
r2

r̂ + gx = −∇P
ρ
− GM∗

r2
r̂ + gx (3.17)

with v as the flow velocity and gx a yet to be defined acceleration factor (e.g., a

radiative acceleration). The middle term is the gravitational acceleration dependent

on the gravitational constant G and star’s mass M∗, as related to a radial factor

r̂/r2.

The general equations of fluid flow also give the relationship between mass

density and flow velocity via

∂ρ

∂t
+∇ · ρv = 0 , (3.18)

followed by the fluid equation for energy

∂e

∂t
+∇ · ev = −P∇ · v −∇ · Fc +Qx . (3.19)

Terms in the fluid equation for energy are similar to those in 3.17, where the term

Qx is an undefined volumetric transfer of heat energy. The Fc term represents the

conductive heat flux density, dependent on temperature as

Fc = KoT
5/2∇T (3.20)

where Ko is the electron conduction coefficient Ko = 5.6× 10−7erg/s/cm/K7/2

(Owocki 2005). These equations are in a general sense, fluid equations describing the

outflow of mass for a star. Other limiting factors such as opacity are not considered

in limiting the flow for these equations. However, the benefit here of these general

equations imply solutions for a time-dependent multidimensional stellar wind.

Naturally, one may apply this formalism to a steady state spherically

symmetric star to determine the equation of motion. That is, for a star of mass M∗,

radius R∗, and bolometric luminosity L∗, the equation for mass conservation is
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1

r2

∂

∂r
(ρvrr

2) = 0 . (3.21)

This implies that the term ρvrr
2 is constant, therefore implying the mass loss rate is

Ṁ = constant = 4πρvrr
2 . (3.22)

Then, expressing the radial component of the momentum equation gives

v
∂v

∂r
= −1

ρ

∂P

∂r
− GM∗

r2
+ gr . (3.23)

From the ideal gas law, P = ρa2. Noting that from the mass loss equation 3.22,

density ρ can be reduced, the equation of motion becomes

(
1− a2

v

)
v
dv

dr
=

2a2

r
− da2

dr
− GM∗

r2
+ gr . (3.24)

Since massive stars do not possess a hot corona, wind temperatures stay close

to the stellar photospheric temperature T∗. The sound speed a thus stays well below

the escape velocity vesc =
√

2GM∗/R∗ at the surface, meaning that the gas pressure

term is negligible compared to the radiative driving term. A net acceleration that

indicates a supersonic outflow thus requires the right hand side of 3.24 to have a net

positive right hand side value (Owocki 2005).

A massive star’s outflow must overcome gravity. In a Sun-like star, the sound

speed terms from 3.24 reach a value higher than the gravitational acceleration term,

while the radiative acceleration term, gr, is effectively non-existent. The condition

for mass outflow for a massive star is that the term gr becomes larger than the

gravitational acceleration term. This gr term consists of two components,

gr = ge + gL , (3.25)
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where ge is due to the scattering of continuum photons by free electrons and gL is

due to spectral lines. The scattering of continuum photons by free electrons does

not depend on frequency of photons, but rather on luminosity and opacity via

ge(r) =
κeL∗
4πr2c

. (3.26)

Operating in tandem with the radiation pressure due to scattering of photons by

free electrons is the radiative acceleration due to absorption by multiple various

spectral lines in bound atoms.

3.5.2 Radiative Line-Driven Outflow

The second major contribution to the line acceleration in equation 3.25 is the

acceleration in spectral lines, gL. Furthermore, (Owocki 2005) has shown that in

contrast to acceleration due to continuum photons scattering off of free electrons, ge,

there are other important and complex contributions to the radiative acceleration

that is the shuffling of electrons at discrete energy levels. Early motivations in

understanding spectral line acceleration are detailed in (Lucy & Solomon 1970),

while more recent discussions can be found in (Cranmer 1996) and (Madura 2010)

point to a refinement in theory of stellar winds with spectral line contributions the

resonant nature of bound electrons. In its complexity, spectral line contributions

involve the sum of total absorption and scattering by atoms. Opacity becomes a

factor in limiting the intensity and line acceleration, creating an even greater

condition for radiative forces for stellar winds.

The general formalism for understanding spectral line contributions begins

with the simplifying assumption of a point-source star. Then, by integrating over all

frequencies and angles normalized by the speed of light c, the line force per unit

mass at a radius r is given by
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grad =
1

c

∮ ∫ ∞
ν=0

κνIν(r, n̂)n̂dΩdν . (3.27)

The opacity term κν is the total isotropic mass absorption coefficient that

includes both scattering and absorption at a frequency ν. The monochromatic

frequency-dependent radiative intensity Iν is integrated along the direction n̂ over

all solid angles Ω. The radiative force due to a single line is

gline =
κL
c

∮ ∫ ∞
ν=0

φ̃(ν − ν ′)Iν(r, n̂) n̂ dΩ dν , (3.28)

where κL is the mass absorption coefficient for the line. The term φ̃(ν) is a

normalizing line profile function and ν ′ is the line frequency in the comoving frame

of the gas. The relationship between ν ′ and the emitted frequency ν0 for a

non-relativistic flow velocity v(r) at a position r is

ν ′ = ν0

(
1 +

n̂ · v(r)

c

)
(3.29)

For convenience, we use a change of variables

x ≡
(
ν − ν0

∆νD

)
(3.30)

where the frequency x is defined in units of the Doppler width ∆νD = ν0vth/c, and

vth is the ion thermal speed in a gas. Defining the ion thermal speed is similar to

defining the isothermal sound speed a, namely,

vth =

√
2kBT

AimH

, (3.31)

noting that Ai is the mean atomic weight of the driving ions. The single line

acceleration force can now be expressed as

gline =
κL∆νD

c

∮ ∫ ∞
ν=−∞

φ

(
x− n̂ · v(r)

vth

)
Iν(r, n̂)n̂dΩdν (3.32)
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The line profile functions φ̃ and φ, are noted to be normalized so that∫ ∞
ν=0

φ̃(ν)dν =

∫ ∞
ν=−∞

φ(x)dx = 1 , (3.33)

where the variable x is extended from −c/vth to −∞ without significant error

because of a line’s opacity in the overall spectrum being finite (Cranmer 1996;

Madura 2010).

The intensity term Iν(r, n̂) also is generally comprised of two contributions

that make up the total intensity. First there is the direct contribution Iν,direct

resulting from radiation originating from the core of a star where direct absorption

occurs. Then there is the diffuse contribution Iν,diffuse due to radiation scattered or

created in the wind. However, the diffuse contribution is generally not considered

since it is negligible compared to the direct component in most of the wind

(Cranmer 1996). The total intensity can be related to the direct contribution via

Iν,total = Iν,direct + Iν,diffuse ≈ Iν,direct . (3.34)

Defining the relationship for direct intensity at a distance r, returns a

relationship of core intensity I∗, assumed to be at a constant value, so that

Iν,direct(r) = I∗e
−τν(r) , (3.35)

where τν(r) is the optical depth along r. The optical depth τν as defined depends on

frequency and is independent of geometry. It is defined along the path r of the

moving atmospheric stellar medium as the integral

τν(r) =

∫ r

R∗

κLρ(r′)φ

(
x− n̂ · v(r′)

vth

)
dr′ (3.36)

Computing this integral then requires an approximation known as the “Sobolev

Approximation” that is defined over a characteristic length scale LSob, while κL and
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ρ are constant (Sobolev 1960). This allows for a change of variables simplifying the

integral. In a physical sense, the flow velocity must be great enough for the Doppler

shift to be in resonance with the line frequency near or at the same local point of

flow velocity (Cranmer 1996). With the line frequency at a position r dependent on

the Dropper length ∆νD, the local thermal speed of scattering then becomes the

lower bound for flow velocity

LSob ≈
vth

dv/dr
<<

v

dv/dr
, (3.37)

implying that the Sobolev length has a lower limit of zero or that flow velocity is

much greater than thermal speed. The optical depth integral then becomes

τν(r) = κLρ(r′)

∫ r

0

φ

(
x− n̂ · v(r′)

vth

)
dr′ , (3.38)

where κL and ρ are treated as constants, and the limits of integration begin at the

stellar surface to some position r above. A change of variables can now be imposed

by setting

x′ = x− n̂ · v(r′)

vth
(3.39)

and

dx′ = − 1

vth
(n̂ · ∇)(n̂ · v(r′))dr′ . (3.40)

In terms of the gradient of velocity from differentiation, the terms remain almost

constant as the varying of flow velocity is slow or close to vth in scale. Expressing

the optical depth integral now leads to

τν(r) =
κLρ(r′)vth

(n̂ · ∇)(n̂ · v(r′))

∫ ∞
x−n̂·v(r′)/vth

φ (x′) dr′ (3.41)

where the “Sobolev optical depth” is defined as the terms outside the integral

τS ≡ κLρ

[
vth

(n̂ · ∇)(n̂ · v(r′))

]
, (3.42)
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while the line profile function is redefined for convenience so that

Φ(x, r) ≡
∫ ∞
x−n̂·v(r′)/vth

φ (x′) dr′ . (3.43)

The line force equation (equation 3.32) can now be expressed as

gline =
κL∆νD

c

∮ ∫ ∞
x=−∞

I∗e
−τSΦ(x,r) n̂ dΩ dΦ(x, r) . (3.44)

Thus, integrating this gives the general form for the force due to a single line

gline =
κL∆νD

c

(∮
I∗ n̂ dΩ

[
1− e−τS

τS

])
. (3.45)

The term in brackets is the total radiation flux at frequency ν and distance r.

3.5.3 An Ensemble of Lines

In reality, the radiative force is comprised of a series of lines that drive the

stellar wind. Consider the sum of all single line forces from equation 3.45 as

glines =
∑
lines

κL∆νD
c

(∮
I∗n̂dΩ

[
1− e−τS

τS

])
, (3.46)

where gline represents an ensemble for a statistical distribution since the number of

lines is very large. Recalling that the Doppler shift for a line frequency is

∆νD = v0vth/c, and that the radiative flux Fν = Lν/4πr
2, the ensemble is computed

to be

glines =
∑
lines

κLv0vthLν
4πr2c2

[
1− e−τS

τS

]
, (3.47)

and the optical depth τS has the value

τS =
κLvthρ(r)

∂v/∂r
. (3.48)

Because massive stars are hot and luminous, the lines under consideration are near

the peak of the continuum spectrum such that v0Lν → L∗ (Madura 2010). The

ensemble of line forces then becomes

glines =
∑
lines

κLvthL∗
4πr2c2

[
1− e−τS

τS

]
(3.49)
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Computing the cumulative sum of line forces requires a simplifying

assumption that the spectral distribution keeps each line independent (Owocki

2005). A way to compute the cumulative line-force from a parameterized ensemble

of lines by simply assuming that the spectral distribution keeps the individual lines

nearly independent was developed by (Castor et al. 1975) and is referred to

generally as CAK Theory. In CAK theory, the line force is treated as a force

multiplier that follows a power law

gline = kt−α , (3.50)

where k represents the scaling factor of the line force and α determines the fraction

of optically thick lines. t is the optical depth

t =
κρvth
∂v/∂r

(3.51)

This would eventually be generalized by (Owocki 2005) in the form of line strength

q as

q
dN

dq
=

1

Γ(α)

(
q

Q̄

)α−1

, (3.52)

where Γ(α) is the Gamma function. The summation in equation 3.49 can then be

evaluated as an integral over the number distribution dN/dq. Applying typical

parameters for a massive stars, in our case spectral types O and B, gives a constant

cumulative line strength Q̄ that provides a convenient overall normalization

(Madura 2010). Typically, Q̄ ∼ 2000. The line force ensemble for a point-star

line-force can then be expressed as

glines =
1

1− α
Q̄κeL∗
4πr2c

(
∂v/∂r

ρcQ̄κe

)α
. (3.53)

3.5.4 The One-Dimensional Point-star CAK Wind Model

Modeling stellar winds from massive stars requires applying both radiative

acceleration and line acceleration. Radiation pressure becomes the main driving
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force over gas pressure in stable stars. The sound speed, a, is assumed to be zero in

this case, so that the radial momentum equation in one dimension from equation

3.23 is expressed as

v
dv

dr
= (Γ− 1)

GM∗
r2

+
Q̄κeL∗
4πr2c

1

1− α

[
4πr2vdv/dr

Q̄κeṀc

]α
, (3.54)

where the mass loss rate is Ṁ = 4πr2ρv is used to determine ρ and Γ is the

Eddington parameter. Further simplification starts by defining a single term ω′ in

terms of the Eddington parameter and gravitational force

ω′ = − 1

1− Γ

(
r2

GM∗

)(
v
dv

dr

)
, (3.55)

which will be used to represent the left hand side (LHS) of 3.54. For the right hand

side (RHS), after some algebra, equation 3.54 becomes

ω′ = −1 +
L∗

c1+α(1− α)Ṁα

[
4πGM∗(1− Γ)

Q̄κe

]α−1

ω′α , (3.56)

or equivalently,

ω′ = −1 + Cω′α , (3.57)

where

C ≡ 1

1− α

(
Q̄Γ

1− Γ

)1−α(
L∗

Ṁc2

)α
. (3.58)

Because the mass loss rate is inversely proportional to C, solving for this term in

3.57 is the final task in determining the functional form of the wind velocity. The

RHS in equation 3.57 is referred to as the line force while the LHS refers to the

amount of inertia in relation to gravity. There are two solutions possible assuming

that the mass loss rate is small, and no solution exists when mass loss is high

(Madura 2010). At the critical value, the expression is

αCcω
′α−1 = 1 (3.59)
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where the critical conditions occur at

ω′c =
α

1− α
= constant (3.60)

and

Cc =
1

αα(1− α)1−α . (3.61)

As a result, simplifying equation 3.59 with equation 3.60 and 3.61 yields the

maximum CAK mass loss rate as

Ṁ =
L∗
c2

α

1− α

[
Q̄Γ

1− Γ

](1−α)/α

, (3.62)

which holds at all radial distances. Determining the wind velocity requires a spacial

integration of equation 3.60, noting that the term ω′ = r2v(dv/dr)/(1− Γ)GM∗.

This yields the CAK velocity law from the stellar surface at radius R∗

vwind = vesc

√
α

1− α

(
1− R∗

r

)β
, (3.63)

where vesc is the escape velocity defined as

vesc =

√
2GM∗(1− Γ)

R∗
(3.64)

and β determines how fast the terminal speed v∞ is reached (typically β = 1/2 or

1). The terminal speed of the wind is

v∞ = vesc

√
α

1− α
, (3.65)

which is close to the escape speed. In fact, for α = 1/2, the terminal and escape

speeds are equal. Applying this formalism to η Car allows us to set the parameters

necessary for modeling the system’s stellar winds.
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CHAPTER 4

COLLIDING WINDS OF MASSIVE BINARIES

Stellar winds are a result of a driving radiation pressure, and for a massive

binary system like η Car, the winds produced by each star will collide between the

stars, forming a wind-wind collision (WWC) zone. In order to provide context for

the later discussion of η Car’s WWC, here we briefly discuss the physics and

dynamics involved in colliding wind binary systems. Recent studies of η Car show

that forbidden line emission near the WWC observed by the Hubble Space

Telescope (HST, Gull et al. 2011) can be compared to the results of 3D

hydrodynamical modeling (Madura 2010), helping provide tighter constraints on the

system’s stellar, wind, and orbital parameters. These results show strong evidence

in fortifying models that explain the structure of η Car. Earlier modeling on binary

interactions begins with an analytical approach to the wind-wind interaction

problem (Canto et al. 1996). Other studies set some fundamental groundwork for

modeling the interaction of the collision zone in two and three dimensions.

4.1 The Thin-shell Two-Wind Interaction Problem

The physics of colliding winds are an important aspect of modeling the η Car

binary, and by solving this problem analytically we gain insights useful for

interpreting numerical simulations. We start with the assumptions of spherical

symmetry and a near static orbital motion relative to the winds (i.e. the orbital

velocity is assumed to be much smaller than either wind velocity, a valid assumption

for wide binaries). The two stars are separated by a distance D. The plane

equidistant from both stars where the winds collide is referred to as the contact

discontinuity. The interaction of the two winds produces two oppositely faced shocks
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that are separated by the contact discontinuity. Here, opposite facing winds meet

after reaching terminal velocity (it is assumed for simplicity that each star’s wind

has reached its terminal velocity before collision), and d1 and d2 are the distances of

each star from their respective shocks on each side of the contact discontinuity. In

the case of two identical colliding stellar winds (illustrated in Figure 4.1), the

contact discontinuity is simply a plane equidistant between the stars.

For unequal wind velocities and wind separation, the intersection of the line of

centers and the contact discontinuity is found using one-dimensional momentum

balance

ρ1v
2
1 = ρ2v

2
2 , (4.1)

where, by replacing the wind density with the appropriate expression in terms of the

mass loss rates (Ṁi) and distances d1 and d2, we can write

(
Ṁ1v1

Ṁ2v2

)1/2

=
d1

d2

. (4.2)

This works nicely when the stellar separation satisfies D >> R∗, where R∗ is

the radius of a given star (Stevens et al. 1992). However, in the case of close

binaries or highly elliptical systems like η Car, the interaction region may, at times,

be within the acceleration region of one of the stellar winds, in which case the above

formula does not hold. Also, if the momentum flux of one star is significantly

greater than that of the other it is possible that no balance exists and that the

stronger wind will overwhelm the companion star’s wind and strike the surface of

the companion star directly (Stevens et al. 1992).

Nonetheless, the above approach is still valid for the majority of η Car’s

binary orbit when the stellar separation is large (∼ 29 AU) and orbital velocities are

low. An analysis carried out by (Canto et al. 1996) shows that for two hypersonic,
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D

d2d1

Figure 4.1: An illustration of a simple binary wind-wind collision between
two stars with identical winds. Here the binary wind collision occurs at
the center equidistant between the stars, which are separated by a distance
D. The distances of the winds from each star to the contact discontinuity
are d1 and d2. Symmetry is to be assumed for this simple case.
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constant velocity, isotropic stellar winds in the “thin-shock approximation” (when

radiative cooling is so efficient that gas pressure never plays a role in the overall

shock dynamics), there exists a system of four algebraic equations describing the

contact discontinuity surface that can be solved analytically. The analysis of (Canto

et al. 1996) also includes analytic forms for the asymptotic opening angle of the

shock surface and the tangential velocity and mass surface density of the flow along

the thin-shell wall.

4.1.1 An Algebraic Expression of the Two-Wind Interaction

The formalism of (Canto et al. 1996) begins with the assumption of two

non-accelerated hypersonic colliding winds forming a thin shell at the collision zone.

The collision zone center is where the contact discontinuity will exist as it plays a

role in how the curvature is adjusted on different parameters of the radiative shocks.

Other assumptions to be made are cylindrical symmetry and zero azimuthal velocity.

The locus of the thin shell is parameterized by R(θ), where R is the radial distance

describing the curve at an angle θ, the polar angle. In further describing the thin

shell, and because gas is well mixed in this zone, there exists a single flow velocity

v̄ = vrr̂ + vzẑ , (4.3)

where r̂ and ẑ are unit vectors along the cylindrical and symmetry axes (looking at

the system from above), respectively. Suppose that θ is the angle of the control line

on the surface layer of this shell. Moreover, suppose that Ṁ(θ), Π̇r(θ), Π̇z(θ), and

J̇(θ) are the mass, r and z momentum, and angular momentum around the origin

through the control line, respectively. The relationships between these terms are

Π̇r(θ)r̂ + Π̇z(θ)ẑ = Ṁ(θ)[vr(θ)r̂ + vz(θ)ẑ] , (4.4)

J̇(θ) = Ṁ(θ)vθ(θ)R(θ) , (4.5)
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where vθ = vr cos θ− vz sin θ. The assumption of a steady state means that the rates

of mass and linear/angular momentum through the control line must equal those

injected by the two winds between the direction of the symmetry axis and the angle

θ. Through the control line the equivalent injected winds have the same relationship

Ṁw(θ), Π̇wr(θ), Π̇wz(θ), and J̇w(θ), where one of the winds is denoted w and the

other w1 (subscript 1). Then,

Π̇r(θ)r̂ + Π̇z(θ)ẑ = [Π̇wr(θ) + Π̇wr1(θ)]̂r + [Π̇wz(θ) + Π̇wz1(θ)]ẑ (4.6)

J̇(θ) = J̇w(θ) + J̇w1(θ) (4.7)

Ṁ(θ) = Ṁw(θ) + Ṁw1(θ) (4.8)

Then by equating these to the earlier equations above,

Ṁ(θ)[vr(θ)r̂ + vz(θ)ẑ] = [Π̇wr(θ) + Π̇wr1(θ)]̂r + [Π̇wz(θ) + Π̇wz1(θ)]ẑ (4.9)

Ṁ(θ)vθ(θ)R(θ) = J̇w(θ) + J̇w1(θ) (4.10)

Dividing by Ṁvθ and using the fact that vθ = vr cos θ − vz sin θ, it follows that

R =
J̇w(θ) + J̇w1(θ)

vθ(θ)R(θ)
=

J̇w(θ) + J̇w1(θ)

[Π̇wr(θ) + Π̇wr1(θ)] cos θ − [Π̇wz(θ) + Π̇wz1(θ)] sin θ
, (4.11)

the locus of the contact discontinuity layer. The mass-loss rate now can be

determined through the surface mass density σ and flow velocity v as

Ṁ(θ) = 2π[R(θ) sin θ]σv (4.12)

4.1.2 The Two-Wind Interaction of Unequal Wind Velocities

Now, consider two spherical unequal winds separated by a distance D. A

detailed illustration representative of this scenario is shown in Figure 4.2.
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ẑ

r̂

D

R

θ θ1

vw1

vw

R0

Figure 4.2: Schematic diagram representing two point star sources of
spherical winds separated by distance D. With two unequal wind ve-
locities, vw of the first (left) source and vw1 of the second (right) source,
the contact discontinuity shell is curved towards the star with the weaker
wind, intersecting the symmetry axis ẑ at a distance R0 from the origin.
The surface layer is described by shell distance R over an angle θ from the
first source, and angle θ1 from the second source.
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Writing out the equations for mass loss rate, velocity, and angular momentum

for the first source,

Ṁw1(θ1) =
Ṁ0

w1

2
(1− cos θ1) (4.13)

Π̇wz1(θ1) = −
Ṁ0

w1
vw1

4
sin2 θ1 (4.14)

Π̇wr1(θ1) =
Ṁ0

w1
vw1

4
(θ1 − sin θ1 cos θ1) (4.15)

J̇w1(θ1) =
Ṁ0

w1
vw1

4
(θ1 − sin θ1 cos θ1)D , (4.16)

where θ1 is the angle from second source to the thin shell and Ṁ0
w1

is the mass loss

rate of the second wind source located at z = D. The equations for the second

source located at the origin are similar,

Ṁw(θ) =
Ṁ0

w

2
(1− cos θ) (4.17)

Π̇wz =
Ṁ0

wvw
4

sin2 θ (4.18)

Π̇wr(θ) =
Ṁ0

wvw
4

(θ − sin θ cos θ) (4.19)

J̇w(θ) = 0 . (4.20)

Then, with the equations above and equation 4.11, and using the geometric

relationship

R = D sin θ1 csc(θ + θ1) (4.21)

one obtains

θ1 cot θ1 = 1 + η(θ cot θ − 1) , (4.22)

where η, is the momentum ratio defined as η ≡ (Ṁ0
wvw)/(Ṁ0

w1
vw1). Solving for

radius R then only involves giving values for θ, which in turn determines θ1 for R.

Given an angle θ, equation 4.22 can be approximated via an expansion assuming
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small values of θ1 and β, giving

θ1 cot θ1 ≈ 1− θ2
1

3
− θ4

1

45
, (4.23)

and through substitution with 4.22, an approximation for θ1 is

θ1 ≈

{
15

2

[
−1 +

√
1 +

4

5
β(1− θ cot θ)

]}1/2

. (4.24)

At the point of stagnation, the value R0 can be determined from

R0 =

√
ηD

1 +
√
η
. (4.25)

The asymptotic opening angle of the bow shock, θ∞, corresponding to R→∞, is

found using the condition θ∞ + θ∞1 = π in equation 4.22, which gives

θ∞ − tan θ∞ =
π

1− β
. (4.26)

Comparing the equations for mass loss rate, velocity, and angular momentum,

the tangential velocity of the flow along the shell is

vt
vw

=

√
[α(θ − sin θ cos θ) + (θ1 − sin θ1 cos θ1)]2 + [α sin2 θ − sin2 θ1]2

2[α(1− cos θ) + β(1− cos θ1)]
, (4.27)

where β = vw/vw1 is the ratio of the wind velocities from both sources (note that

this is NOT the same β as that used for the CAK wind velocity law). The mass

surface density can be also obtained to be

σ =
σ0 sin(θ + θ1) csc θ csc θ1[α(1− cos θ) + β(1− cos θ1)]2√

[α(θ − sin θ cos θ) + (θ1 − sin θ1 cos θ1)]2 + [α sin2 θ − sin2 θ1]2
, (4.28)

where σ0 = Ṁ0
w/2πβDvw.
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Figure 4.3: An approximate solution of radial distance from first source
with respect to angle. As momentum balance shifts away from β = 1,
the curvature of radius approaches a constant value for increasing angular
values. For β = 1, the radius approaches large values for increasing angle
given that there is a momentum balance at the collision zone.
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Figure 4.4: Further illustrating figure 4.3 are changes in momentum bal-
ance β = 1, 1/2, 1/4, 1/8, 1/16, and 1/32. Shown in each figure are radial
distance at a given an angle θ. As momentum begins to unbalance β < 1,
the values of distance begin to approach a constant value. This indicates in
increasing curvature of the thin-shell collision zone as momentum balance
shifts.
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4.2 Wind Temperature and Radiative Cooling

Some important physical effects that occur in the shocks of the WWC zone

are those of radiative and adiabatic cooling. The presence or absence of radiative

cooling can have a significant effect on the overall geometry of the WWC zone.

Radiative cooling also plays an important role in determining the thickness, final

temperature, and density of the post-shock region, which can have important

implications for various physical processes and the interpretation of observations

(Madura 2010).

When radiative cooling plays a role in colliding winds, an additional length

scale is introduced into the system, lcool = tcoolv. A cooling parameter χ, as defined

by (Stevens et al. 1992), is the ratio of the cooling time for the shocked gas to the

escape time from the intershock region, χ = tcool/tesc. For an emission rate, Λ, the

cooling time is approximately

tcool =
kTs

4nwΛ(Ts)
, (4.29)

where nw is the number density of the wind at the shock and Ts is the temperature

of the shock-heated wind. The escape time from the shocked region near the line of

centers is

tesc =
d

cs
, (4.30)

where d is the distance from the star to the contact discontinuity (radius of

curvature) and cs is the post-shock sound speed along the line of centers. The shock

temperatures that occur in colliding wind binaries lie near a local minimum in

Λ(T ), see (Stevens et al. 1992) for details. This allows Λ(T ) to be approximated

locally with a constant value. In this case,

χ =
tcool
tesc
≈ v4

8d12

Ṁ−7

, (4.31)
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where v8 is the wind velocity in units of 108 cm s−1, d12 is the distance to the

contact in units of 1012 cm, and Ṁ−7 is the mass loss rate in units of 10−7M� yr−1.

As a note, this is only an approximation since the temperature dependence is

neglected. However, χ does serve as a characteristic measure of the importance of

radiative cooling, and each of the two stellar winds in the system will have its own

characteristic value of χ. The physical meaning for χ occurs when χ & 1 or χ� 1.

When χ & 1, the shocked wind cools adiabatically, while for χ� 1, it is roughly

isothermal (i.e. highly radiative). Additionally, χ ∝ d12, which implies χ ∝ P
2/3
orb ,

meaning that, all else being equal, the longer the orbital period of the binary, the

more adiabatic the shocked region will be. Alternatively, in highly elliptical systems

like η Car, χ can vary with orbital phase, with the cooling switching from one

regime to the other as the stellar separation changes (i.e. adiabatic to radiative and

back, or vice versa; Madura et al. 2013).

4.3 Past Two and Three Dimensional Modeling

With nearly three decades in the history of modeling CWBs, it starts first

with two dimensional hydrodynamical modeling and through the progression of time

came three dimensional modeling. There are however, varying elements to modeling

other than a simple, in-plane colliding wind binary problem. Elements such as the

consideration of rotation or effects at different orbital periods are added complexity

to further detail CWBs but are not applied to this effect. In the early stages two

dimensional hydrodynamical modeling performed by (Owocki et al. 1994) starts by

applying a piecewise parabolic method (PPM) of line driven stellar winds. The

results in this study show the fluid-like flow of radiation drive stellar winds

constrained to a plane geometry. The authors of this study then applied the method

of PPM in a code for modeling hydrodynamic fluid flows called VH-1, a
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multidimensional ideal compressible hydrodynamics code written in FORTRAN. On

more recent simulations, are three dimensional (3D) hydrodynamical modeling

performed by (Okazaki et al. 2008) through applying Smooth Particle

Hydrodynamics (SPH) on η Car wind collisions modeling an X-ray lightcurve.

Subsequent to this study are ongoing SPH simulations in the η Car system with

(Madura 2010) to further understand the intrinsic properties of the system. These

simulations model η Car’s binary wind-wind collision along with properties on

radiative transfer that allow for synthesizing observations across a broad range of of

wavelengths. When mass loss is apparent, further properties could be understood

through a recent study performed by (Madura et al. 2013). From applying

small-domain SPH simulations on η Car colliding winds this study shows that the

post-shock winds can vary through switching from adiabatic to radiative cooling at

periastron passage. Radiative transfer also becomes important for presenting a

dynamical model of η Car’s broad [Fe III] emission from observations by the Hubble

Space Telescope (Madura et al. 2012). Now with SPH simulations on η Car’s binary

colliding winds, and also for the first time, a three dimensional orientation is

constrained to a definite binary orbit.

At present, modeling stellar winds take on 3D high resolution hydrodynamical

simulations making use of adaptive-mesh refinement grid-based code RAMSES, see

(Teyssier 2002) and (Calderón et al. 2020). In this study, RAMSES is applied to

study theoretical models that are generated from wind collisions resulting in cold,

dense clumps that are not well understood. These results also indicate the

importance of radiative and adiabatic transfers in wind collisions while instabilities

are responsible for forming material clumps. Ultimately, modeling the wind collision

of η Car’s binary wind collision this same numerical process can be applied.



51

CHAPTER 5

NUMERICAL SIMULATION SETUP

5.1 Equations

We simulate η Car’s time-dependent binary wind-wind collisions using the

adaptive-mesh refinement (AMR) hydrodynamics code RAMSES (Teyssier 2002). Our

numerical setup closely follows that performed by (Calderón et al. 2020), but with

parameters and adjustments unique to η Car’s system. To start, RAMSES is based on

solving the Euler fluid equations in conservative form,

∂ρ

∂t
+∇ · (ρu) = 0 , (5.1)

∂

∂t
(ρu) +∇ · (ρu⊗ u) = ρf(x)−∇P , (5.2)

∂

∂t
(ρe) +∇ ·

[
ρu

(
e+

P

ρ

)]
= − ρ2

(µmH)2
Λ(T ) , (5.3)

where ρ, u, and P are the mass density, velocity, and pressure of the fluid,

respectively, while f is the gravitational force per mass unit and e is the total

specific energy density given by

e =
1

2
u · u +

P

(γ − 1)ρ
, (5.4)

where γ is the adiabatic index that is set to 5/3 for adiabatic gases. In addition, µ

is the mean molecular weight, mH is the proton mass, T is the temperature of the

gas, and Λ(T ) is the energy losses due to optically thin radiative cooling.

5.2 Numerical Setup

Performing the 3D simulation of η Car begins by making use of AMR on a

Cartesian coordinate grid, where the resolution is enhanced in regions of the domain

where specified physical criteria area met. The origin of the Cartesian coordinate
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system (0, 0, 0) lies at the center of the cubic computational domain and on each

side of the cubic domain there is an outflow boundary condition. The cubic domain

side length is set to 108.15 AU, where 1 AU is the mean distance from the center of

the Earth to the center of the Sun. This corresponds to a side length of 7a, where

a = 15.45 AU is the length of the η Car system’s orbital semimajor axis. The length

scale was chosen to ensure that the development of instabilities in the wind-wind

interaction regions would be adequately captured by the AMR grid while still

allowing the simulations to be completed within the maximum allowed time frame

(5 days) on available NASA supercomputing resources. We also used an exact

Riemann solver with a first-order flux limiter (MinMod) in order to avoid quenching

of instabilities by numerical diffusion (Calderón et al. 2020). Flow variables followed

throughout the simulation include density, temperature, and wind velocities in each

coordinate direction. AMR is set based on density gradients so that resolution

increases in the shock zones and any other discontinuities. For the coarse resolution

before refinement, the resolution of the simulation is set to 1283 cells. We allow for

up to an additional four levels of grid refinement, leading to an effective resolution

of 20483 cells (see e.g., Figures 5.2 and 5.3). An element of resolution can reach

lengths as low as 54.075 AU/1024 ≈ 0.053 AU.

Our simulation uses stellar, wind, and orbital parameters specific to the η Car

system. These parameters are based on previous works and 3D hydrodynamical

simulations of η Car (e.g., Madura et al. 2012, 2013). Table 5.1 lists the parameters

used for the simulation in this thesis. The initial condition for our simulation places

the stars at their appropriate orbital positions at an orbital phase of φ = 0.8 (phase

φ = 1.0 corresponds to periastron and φ = 0.5 apastron). Due to computational

resource and time constraints, we ran the simulation only for orbital phases of

interest around periastron passage when the η Car system is most dynamic and
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Parameter ηA ηB
M? (M�) 90 30
R? (R�) 60 30

Twind (103 K) 4.5 4.5

Ṁ (10−4 M� yr−1) 8.5 0.14
v∞ (km s−1) 420 3000

β 1 1
η 0.12
q 22.28

Porb(days) 2024
e 0.90

a (AU) 15.45

Table 5.1: ηA and ηB refer to the primary and secondary star, respectively.
M� and R� are the solar mass and radius, respectively. Twind is the initial
wind temperature. Ṁ , v∞, and β are the stellar-wind mass-loss rate, ter-
minal speed, and velocity-law index, respectively. η ≡ (Ṁv∞)ηB/(Ṁv∞)ηA
is the wind momentum ratio, q is the ηA/ηB stellar luminosity ratio as-
suming L?,ηA = 5 × 106 L�, Porb is the orbital period, e is the orbital
eccentricity, and a is the length of the orbital semimajor axis. Reference:
(Madura et al. 2013)
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orbital speeds are comparable to the primary star’s wind terminal speed, i.e.,

0.8 ≤ φ ≤ 1.2 (Madura et al. 2013). The two stars orbit counter-clockwise when the

system is viewed from above along the +z axis.

The simulation in this thesis was performed using resources provided by the

NASA High-End Computing (HEC) Program through the NASA Advanced

Supercomputing (NAS) Division at Ames Research Center. Specifically, the

simulation was performed on the Pleiades supercomputer using 1152 Intel Xeon

12-core E5-2680v3 2.5-Ghz (Haswell) CPUs (48 nodes with 24 CPUs and 128 GB of

memory per node) in parallel and a run time of 120 continuous hours (5 days).

5.2.1 Stellar Wind Generation

The generation of the individual stellar winds follows the general procedure

outlined in (Lemaster et al. 2007) and (Calderón et al. 2020). We impose the wind

solutions starting from the Euler fluid equations onto a spherical mask of

appropriate radius aw around each star. Within these “masked regions” the

hydrodynamic variables are reset to the appropriate 1D wind solutions after every

time step in the simulation. We set the individual stellar winds using the standard

‘beta-velocity law’ v(r) = v∞(1−R?/r)
β, where v∞ is the wind terminal velocity, R?

the stellar radius, and β the velocity-law index. The wind density for each star is

set following Equation 3.22, assuming Ṁ = constant. In order to fully capture the

spherical nature of the winds on our Cartesian grid, we force the masked regions to

be refined up to the maximum level of AMR. The hydrodynamic variables,

including density, velocity, and pressure, within the masks are kept fixed in time.

The initial temperatures of the winds and the floor temperature of the simulation

are set by the adiabatic sound speed, cs. We set the sound speed in our simulation

to cs ≈ 10 km s−1, corresponding to T ≈ 4.5× 103 K. We note that the effect of the
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initial wind temperature on the flow dynamics is negligible (Madura et al. 2013).

Additionally, the floor temperature used is a reasonable approximation for that

which would be set in reality via photoionization heating by the UV radiation fields

of the stars (Madura et al. 2013). Solar metallicity (Z = Z�) is assumed for both

winds, consistent with previous 3D simulations of η Car (Madura et al. 2012, 2013).

Figures 5.1 and 5.2 show the density in the orbital plane, with and without

the AMR grid, at a time shortly after the initialization of our simulation (orbital

period φ ≈ 0.80). Figure 5.3 is a 2.5× zoom of the central region of Figure 5.2,

presented to highlight the AMR used to resolve the spherical stars and winds, and

the wind-wind collision shock.
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Figure 5.1: Density (color, log scale, cgs units) in the orbital xy plane at a
time shortly after the start of our 3D simulation of η Car (φ ≈ 0.80). The
discontinuity in density and wind-wind collision shock are visible between
the stars in the center of the figure. The cubic domain side length is set
to 108.15 AU (7a), with a base grid resolution of 1283 cells and up to four
additional levels of grid refinement (effective resolution of 20483 cells). See
text for details.
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Figure 5.2: Same as Figure 5.1, but with the AMR mesh grid lines overlaid.
With strong density gradients over and near the wind collision zone, the
grid resolution is automatically increased by up to four additional levels in
order to properly resolve the shock and any physical instabilities. Further
away from the wind collision zone and the stars is the base-level coarse grid
where AMR is not needed due to the lack of any strong density gradients.
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Figure 5.3: Same as Figure 5.2, but zoomed in by a factor of 2.5× in order
to highlight the AMR used to resolve the spherical stars and winds, and
the wind-wind collision shock between the stars.
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CHAPTER 6

RESULTS

6.1 Results in the Orbital xy Plane

The figures presented in this chapter show the results of our 3D time-

dependent, grid-based AMR simulation of η Car around periastron. We begin by

discussing slices from the simulation showing the orbital xy plane (i.e., slices

through the center of the simulation at z = 0) at different specific orbital phases, φ,

before, during, and after periastron in the system’s 5.54-year orbit. Slices through

the simulation in the other coordinate planes perpendicular to the xy plane (the xz

and yz planes) at the same times are shown and discussed in the next section. The

chosen orbital phases we discuss are φ = 0.900, 0.950, 0.980, 0.985, 0.990, 1.00,

1.010, 1.020, 1.030, and 1.040, with each phase presented in sequential order

(Figures 6.1 through 6.5). These phases were specifically chosen so that the results

of this simulation could be directly compared to results from past 3D simulations

performed using entirely different methods (e.g., Madura et al. 2013). The spatial

range of each plot spans the entire computational domain of ±3.5a (±54.075 AU)

about the origin in both the x and y directions. For the remainder of this thesis, we

will refer to the more massive and more luminous primary star as ηA, and to the less

massive and less luminous companion star as ηB. Wind densities (ρ), distances (d),

temperatures (T ), wind velocities (v), and other parameters of interest associated

with a particular star will use the same corresponding ηA or ηB subscript (e.g., the

primary’s mass-loss rate would be ṀηA).

For each phase, we present plots of density (log10 scale), temperature (log10

scale), and magnitude of the wind velocity (linear scale). As a general note for the

reader, we note the appearance of apparent “square-like” artifacts located around
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ηB in the plots of the temperature. Further investigation revealed that these are due

to the changes in resolution between the different levels of grid refinement around

ηB, and the chosen base grid resolution of the simulation. We find that this issue is

easily solved by simply increasing the base grid resolution of the simulation from

1283 cells to 5123 cells. However, due to time and computational resource

constraints, a completely new simulation using this higher base grid resolution was

not possible before completing this thesis. Nevertheless, we note that these small

artifacts are limited to the downstream non-shock side of ηB’s wind, which is not

the primary focus of this work. Artifacts are generally not present on the shock side

of ηB’s wind or in/near the wind-wind collision interface due to the fact that the

AMR scheme keeps the resolution in these regions at the maximum level of

refinement throughout the simulation. Thus, any effects on the results of this work

or their interpretation due to these artifacts in the temperature plots are expected

to be negligible. This is supported by the lack of any artifacts in plots of the density

or magnitude of the wind velocity. Future simulations will use a higher base

resolution to ensure the elimination of any such grid artifacts.

Key features can be seen at the early phases of φ = 0.900 and 0.950 in

Figure 6.1. A distinct line cuts through the center of the plots representing the

WWC zone where the winds meet. The primary ηA and its dense wind can be

recognized on the left (−x) side, while the secondary ηB and its lower-density wind

is located on the right (+x) side. The WWC zone opens to the right with the apex

pointing towards ηA, as expected. ηB is positioned to the other side of the apex. The

WWC shock zone can be seen as the result of the momentum balance at the contact

discontinuity (CD). As seen in (Canto et al. 1996) and previous simulations making

use of smoothed particle hydrodynamics (SPH; Madura et al. 2013), the initial shift

in momentum balance and the overall conical shape of the WWC region (due to the
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slower orbital speeds compared to the ηA wind terminal speed) are consistent in this

AMR simulation. Past SPH simulations show a measured half-opening angle of

≈ 55◦, while the half-opening angle of the AMR simulation is ≈ 60◦.

A clear bow shock forms as a result of the ηB wind forming a lower-density

cavity in ηA’s denser mass outflow. Differences in wind densities between the two

stellar winds in our AMR simulation are consistent with past SPH simulation results

in (Madura et al. 2013). Temperatures in the shocks at the WWC zone also range

approximately four orders of magnitude, with density-enhanced portions of the

post-shock ηA wind having T . 104 K, while the hot post-shock ηB wind near the

apex of the WWC zone reaches T ≈ 108 K. These temperatures are consistent with

those obtained from X-ray observations of η Car. Along the arms of the shock cone

the temperature of the colliding winds is lower, since the WWC is not as directly

head-on and thus is less efficient at thermalizing the flow (Madura et al. 2013).

At phases φ = 0.900 and 0.950, the wind velocities of each star follow the

expected β-velocity law, reaching terminal velocity at the WWC zone with

vηA ≈ 0.5× 108 cm s−1 and vηB ≈ 3× 108 cm s−1. The trailing arm of the ηB shock

shows slower velocities vηB ≈ 2× 108 cm s−1 and lower temperatures. The slowing

wind velocity is consistent with discussions in Owocki (2005) and Vink (2012) as

velocity begins to decrease due to overall energy loss.

Orbital velocity eventually contributes to the increasing spiraling shape of the

WWC zone and ηB’s nested wind cavity as orbital phase increases. The degree of

downstream curvature of the WWC region is determined by the ratio of the orbital

speed to the pre-shock wind speed (Madura et al. 2013). As the stars approach

periastron, the orbital speed of ηA relative to ηB increases to a value near its wind

terminal speed. This leads to a gradual, but eventual strong distorting of the WWC

zone (Figure 6.2). The increasing orbital speeds also cause the post-shock ηB wind
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in the leading arm of the WWC zone to be heated to higher temperatures than the

gas in the trailing arm, as seen in our simulation. Radiative effects also clearly play

a role in determining the temperatures in the shocks, following the χ = tcool/tescape

parameter (see Stevens et al. 1992). For ηA’s slower and higher-density post-shock

wind, χ� 1, compared to ηB’s much faster and lower-density post-shock wind

where χ > 1. The post-shock ηB wind therefore cools adiabatically and remains hot,

whereas ηA’s post-shock wind is highly radiative and cools extremely quickly.

At φ = 0.980 and φ = 0.985 (Figure 6.2), there is a progression in the changing

position as both stars move towards each other down to a stellar separation

d ≈ 5 AU. The apex of the WWC zone also continues to move closer to each star

while the trailing colliding winds begin to decrease in opening angle at about 45◦

and 40◦, respectively, at each phase. As the stars move closer, instabilities in the

WWC zone arise. These were somewhat visible in Figure 6.1, but they become more

visible as the system moves towards periastron. Since the winds collide at different

velocities, at the CD there is a velocity sheer that can cause Kelvin-Helmholtz (KH)

instabilities. The extremely-rapidly-cooling, dense, thin and radiative post-shock ηA

wind is also subject to non-linear thin-shell instabilities (NTSI). Both instabilities

have also been described in past SPH simulations, as seen in (Madura et al. 2013),

but they are much clearer and significantly more highly resolved in these new AMR

simulations. The time scale for exponential growth of KH instabilities is

proportional to
√
ρ1ρ2/(ρ1 + ρ2), where ρ1 and ρ2 are the different values of the

density on either side of the CD (Stevens et al. 1992; Madura et al. 2013). For the

NTSI, the stability of the dense shell depends on the shell’s thickness, with thicker,

denser shells typically less prone to the NTSI (Madura et al. 2013).

The separation between the stars at φ = 0.980 (5 AU) is small enough that

ηB’s wind collides with ηA’s wind before the ηB wind has reached its terminal speed.
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The lower pre-shock ηB wind speed moves the WWC apex closer to ηB. The lower

pre-shock wind speed and shorter distance between the star and the CD causes the

ηB shock to heat to lower temperatures (compared to earlier phases). The shorter

distance to the shock also increases the ηB wind density. As a result, the cooling

parameter χ for the ηB wind near the WWC apex drops to a value of ∼ 2. The

most important factor responsible for this decrease in the value of χ is the decrease

in the pre-shock ηB wind speed, since χ ∝ v4
wind. The post-shock temperature of the

ηB wind at the WWC apex is thus reduced. This is clearly visible in the simulation

for the hottest gas between the stars, which was ∼ 108 K at φ = 0.900, but is only

on the order of ∼ 107 K at φ = 0.980 and 0.985. The lower pre-shock ηB wind speed

also changes the wind momentum ratio and decreases the opening angle of the

WWC shock cone. The trailing wind of ηB also collides with the ηA wind at a more

oblique angle in the trailing arm of the WWC region. The asymmetry in

temperature between the leading and trailing arms of the WWC shock on the ηB

side becomes more apparent, with the leading arm having much hotter gas than the

trailing arm.

The increasing orbital speeds as the system progresses towards periastron

distorts the WWC region and eventually produces a spiral WWC zone as the binary

pair moves in a counter clockwise motion at each step. At phases φ = 0.990 and

φ = 1.000 (Figure 6.3), the stars are extremely close. The stellar separation at

periastron is only 1.54 AU. In addition to the sudden shift in the stellar positions

there is a rapid shift in the location of the WWC apex, which is now located on the

back side of ηA directly opposite in direction to where it would be located at

apastron. The pre-shock ηB wind speed is reduced even further, drastically changing

the WWC opening angle and moving the apex closer to the stars. By phases

φ = 0.990 and 1.000, the cooling parameter χ has dropped below 1 and the



64

post-shock ηB wind switches from adiabatic to radiative cooling. This is clearly seen

in the WWC zone at φ = 1.000, where there is no longer any hot gas located near

the apex of the WWC zone. The post-shock ηB wind now has temperatures < 104 K

around the WWC apex or is entirely gone. This is sometimes referred to as a

“collapse” of the WWC apex region (Madura et al. 2013). Only the backside of ηB

that points away from ηA is able to drive a steady wind, leading to a cooler WWC

leading arm, and a trailing arm that is slowly cooling adiabatically and vanishing

since the ηB wind can no longer collide downstream with ηA’s wind due to the

strong distortion of the WWC region caused by the rapid orbital motion.

Meanwhile, the spiraling effect begins to appear at periastron as the

lower-density, faster wind of ηB cuts through the higher-density, slower ηA wind. A

lower-density cavity forms within the ηA wind trailing to the −x side that will

continue to expand as the stars complete periastron passage. Further out in the +x

direction velocity sheering has a greater effect as the KH instability increases, while

on the −x side these effects are not as great. At the apex of the WWC zone, the

density is at its greatest, reaching > 10−12 g cm−3.

Following periastron, at phases φ = 1.010 and 1.020 (Figure 6.4), the after

effects of rapid orbital motion become increasingly more pronounced. The wind of

ηB carves a low-density spiral cavity in ηA’s wind. This cavity moves in the −x and

−y directions following periastron. The higher-velocity ηB wind in the cavity also

continuously rams into the denser, slower ηA wind that moves in the −x and −y

directions. Due to the large difference in density between the two winds, and

because the ηB wind is colliding and accelerating the slower, receding ηA wind,

thin-shell and Rayleigh-Taylor (RT) instabilities are created that greatly distort the

spiral WWC region as it moves in the −x direction. Large radial protrusions or

“fingers” of low-density ηB wind penetrate into the ηA wind as a result of these
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instabilities, as originally noticed by (Madura et al. 2015). Hot, shock-heated ηB gas

fills the fingers.

The opening of the apex increases in angle as the momentum balance shifts

with the change in orbit. The half-opening angle has now widened. At φ = 1.010

and 1.020, on the +x side, the ηA wind starts to flow to fill the low-density cavity

left behind by ηB that it formed prior to periastron. This is easily seen in the plots

of velocity on the +y side of the system. The magnitude of ηA’s wind velocity

increases with radius in the +x and +y directions to a value well above it’s normal

wind terminal speed, up to ∼ 2× 105 cm s−1, as the denser wind expands to fill the

void left behind by ηB’s lower-density wind. Near the WWC apex, the temperature

of the dense wind of ηA continues to remain low. As ηB starts to reestablish its wind

as the orbital separation increases after periastron, the conical WWC shape begins

to return, as does hotter shocked gas. The post-shock ηB wind returns to T ∼ 108 K

near the WWC apex at phases around 1.020.

Figure 6.5 shows our final orbital phase snapshots from the simulation at

φ = 1.030 and 1.040. The orbital velocity has decreased to the point where ηB’s

wind and the WWC zone have started to fully reappear. The opening angle widens

as the momentum balance changes with both stars moving further apart. The

WWC apex now has shifted away from ηA as the apex widens. The lower-density

cavity carved by ηB’s faster wind opens up along the +x side with a circular radius

of R ≈ 40 AU. The magnitudes of the RT instabilities in the receding ηA wind

around the edge of the new circular ηB wind cavity have increased noticeably. Hot

shocked gas exists within the finger-like cavities created by the instabilities, and at

the apex of the WWC zone. The temperature of the hottest gas located at the apex

between the stars is now again at T & 108 K. As the system moves slowly back

towards apastron, orbital speeds gradually decrease and the WWC zone and ηB
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wind cavity regain their axisymmetric conical shape. Features present in the winds

at φ = 1.040 also gradually expand outward as the system moves back towards

apastron, with the whole process repeating every 5.54-years.

6.2 Results in the xz and yz Planes

Figures 6.6 through 6.10 show slices in the xz plane, while Figures 6.11

through 6.15 show slices in the yz plane, from our 3D simulation. The z coordinate

measures distance above (+) and below (−) the orbital plane, while the x coordinate

is along the orbital semimajor axis, and y is along the orbital semiminor axis. The

layout of the figures, quantities plotted (log10 density, log10 temperature, velocity

magnitude), and orbital phases shown are identical to Figure 6.1 through 6.5 above.

The focus here is on some of the most apparent features along other planar slices so

that the reader can better appreciate the 3D structure of the colliding winds.

The xz-plane slices show ηA’s wind starting on the −x side and ηB’s wind on

the +x side of the system, more deeply embedded behind a dense layer of gas.

Moving towards periastron, there is an apex with a wide opening angle showing the

momentum balance along this line of sight. Gas throughout the WWC zone is

heated to T ≈ 107 K and above, but cools as the system approaches periastron.

Similarly, velocity magnitudes have reached their terminal values as the faster, low

density wind of ηB begins to shear the denser, slower wind of ηA and KH

instabilities take effect. Moving through periastron, radiative cooling takes over in

the post-shock ηB wind and the temperature around the WWC apex drops. A

low-density cavity of ηB wind appears in the −x region of the plots and expands as

the system moves away from periastron. As both stars approach post-periastron,

the lower-density cavity of ηB’s wind begins to radiate from the center outwards in

the plane of view. On the −x side, the shocked gas begins to cool. An outline of the
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CD shows the high temperature of the heated gas at incredible distances near

±40 AU from the center. At later phases after periastron, the hot WWC region is

reestablished and fingers in the dense ηA wind in the −x region of the plot, caused

by RT instabilities, are visible.

In contrast to the xz-plane, the yz plane slices show the movement of the

leading and trailing arms of the WWC zone around periastron (i.e., the leading and

trailing arms pass through this plane as the system moves through periastron). The

curvature of the WWC zone in the plane of view up to periastron at phase φ = 1.000

increases in angle with shearing effects at the upper +z and lower −z trailing arms.

After periastron, ηA briefly appears on the +y side eclipsing ηB. Here the lower

density region forms on the right side of +y with the higher density regions of ηA

following through. Sharp protrusions form at the WWC from the wake ηB leaves

behind, each filled with heated gas. Changes in temperature near the WWC apex

are very apparent as the system moves through periastron, with a notable absence

of any hot material at the WWC apex at periaston. Reestablishment of the ηB wind

and hot WWC zone after periastron are also easily seen, as are the fingers in ηA’s

wind caused by RT instabilities. Changes in velocity magnitude appear as expected

as the arms of the WWC region pass through the yz plane around periastron.
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CHAPTER 7

DISCUSSION

7.1 Comparing SPH and Grid-based AMR Simulations

When it comes to SPH versus grid-based AMR codes for computational fluid

dynamics, each method has its advantages and disadvantages in modeling

astrophysical problems. Both SPH and AMR methods have experienced

developments from as early as the 1970s to throughout the 2000s, see (Madura

2010) for a short historical context. The common advantage of both methods is the

ability to model large-scale three dimensional fluid dynamics, now applied to

problems in astrophysics, and more specifically, towards η Car’s complex colliding

binary winds. In modeling η Car, SPH was primarily used to constrain the binary

system’s orbital orientation (Madura et al. 2012). The primary advantage now in

making use of a grid-based AMR code over SPH is the ability to better numerically

resolve the shocks and instabilites in the WWC region using modern advanced

computational processing facilities. This is particularly true since the SPH method

is notorious for under-resolving hydrodynamical instabilities (Madura et al. 2013).

To summarize, modeling η Car with SPH has its advantages, specifically, in

simulating the large-scale global outflows, which are still not practical with even

AMR methods. Where SPH is not capable of resolving features in higher resolution,

grid-based AMR can make up for the lack of refinement. The SPH method treats

fluids as a mechanical and thermodynamical particle system. Modeling η Car’s

outflows via advection is possible with SPH. Interfacing problems are not an issue

since a set of particles can be described by one material. The changing in resolution

is dependent on position and time. This also means that computational speed is

more efficient as higher density regions automatically receive more particles, helping
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Figure 7.1: A side-by-side comparison of results from a 3D SPH (top
row, from Madura et al. 2013) and AMR (bottom row, this thesis) sim-
ulation of η Car within similar domain ranges (SPH is ±15 AU while
AMR is scaled to ±20 AU). Panels show slices in the orbital plane at a
phase corresponding to periastron. Color shows, from left to right, density
(log scale), temperature (log scale), and magnitude of the velocity (linear
scale). This figure demonstrates the significant improvement in resolution
obtained with the AMR method over the SPH method.
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to save computational time since less dense regions receive fewer particles. Vorticity

is not an issue as there is no grid system in place to account for the inbound and

outbound flow calculations with grid boundaries. Particles that are bound within a

domain are not lost through SPH, whereas in grid-based AMR, some fluids are lost

in simulation. Visualization is important in studying the properties of η Car, where

SPH allows for a straightforward detailed analysis (Madura 2010).

There are some disadvantages to using the SPH method though. In low

density regions, calculations of dynamics are not quite as accurate as those in high

density regions. Poisson noise becomes an issue for a complex simulation like η Car,

and the level of accuracy is lowered for small perturbations. One other disadvantage

of SPH concerns the idea of resolution. Decreasing grid cell size in a grid-based code

in order to increase resolution is proportional to computational time, since there is a

need for the increase in number of grid cells in each dimension. However, doubling

the spatial resolution of a 3D SPH simulation requires 23 more particles. Thus,

increasing the resolution of a 3D SPH simulation can quickly increase the

computational costs, with still no guarantee that low-density regions and shocks will

be properly resolved.

Now with the availability of high-performance computing clusters, the use of

grid-based AMR codes can make up for the shortcomings of SPH. Figure 7.1 shows

a side-by-side comparison among the plots of density, temperature, and velocity

from the AMR simulation in this thesis with a previous SPH simulation performed

by (Madura et al. 2013). The results of the AMR simulation are clearly at a much

higher resolution compared to the SPH simulations. In the AMR scheme, the dense

regions are held at higher levels of resolution, while lower-density regions are kept at

a lower resolution, allowing for computational efficiency in a “tree-based” code, as

discussed by (Teyssier 2002). When moving up a step in level of refinement, areas
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susceptible to perturbations are then targeted for computation with a decrease in

grid size. Although computational time increases with the increase in the number of

grid cells, AMR follows a strict rule on a smaller region to calculate, whereas SPH

can provide a solution without a grid. In the simulation in this thesis, the levels of

refinement go up to a level of 14, and it is possible for an even higher increase in the

level of refinement given adequate computational resources. To the benefit of AMR,

figure 7.1 shows at higher resolution the various physical instabilities that occur as a

result of ηB’s faster, lower-density wind creating a velocity shear along the

higher-density and slower wind of ηA. These instabilities were discussed in detail in

the previous chapter. The SPH simulation does a poorer job of resolving the

detailed structure of the WWC region and the instabilities within it. This is not

ideal if one hopes to eventually use the results of 3D simulations to reproduce and

explain various observations.

Nonetheless, there are similarities between the SPH and AMR simulation

results. Figure 7.1 shows that both methods produce the spiral distortion of the

WWC cavity due to increased orbital speeds around periastron. The asymmetry in

the temperature of the shocked gas in the leading and trailing arms of the WWC

region is also generally reproduced. However, with higher resolution, temperatures

on the AMR simulation follow a much thinner spatial region along the line of the

CD. The post-shock primary wind is also much thinner, denser, and exhibits more

physical instabilities in the AMR simulation. Some remaining heated gas exists

along the trailing arm of the WWC zone in the AMR simulation, but no such

heated gas exists in the trailing arm in the SPH simulation, likely due to an

inability to properly resolve the shock in the trailing arm. The WWC opening angle

at this phase is also much more acute in the SPH simulation. Finally, the switch

between adiabatic and radiative cooling in the post-shock ηB wind seems to be
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consistent in both simulations. Overall, the AMR method proves itself to be

superior when it comes to simulating small-scale features, shocks, and instabilities,

so long as sufficient computational resources are available.

7.2 Application to Observations and X-ray Variability

This 3D hydrodynamic modeling sees its application in eventually

qualitatively and quantitatively detailing the structure, orientation, and changes in

mass loss in η Car. Efforts in constraining the properties of η Car have always been

the goal of 3D modeling, and to further understand details where observations are

limited in ability to capture the entire picture. Hydrodynamic modeling

furthermore helps lay the foundation in determining the intrinsic properties at the

core of the Homunculus nebula. An example are the observations of forbidden

emission line structures by HST that were used to constrain the 3D orientation of

η Car’s binary orbit (Madura et al. 2012) and primary star mass-loss rate (Madura

et al. 2013). Changes in mass loss rate were modelled using SPH simulations and

used to interpret various observations of η Car throughout its 5.54 year binary orbit

(Madura et al. 2013). Simulation results can also be used to predict changes in

observations leading into future periastron passages. Observations of various

absorption lines can also be compared with simulations to better understand the

instabilities arising in the post-shock winds within the WWC, as done by

(Richardson et al. 2016). The absorption features are carefully compared to detailed

SPH simulations for the interpretation of He lines.

Modeling changes in the stellar wind speeds as the orbital velocity increases

can give different perspectives and help with understanding the observed emission

and absorption lines within the WWC zone (see Damineli et al. 2008). While

portions of the WWC regions and Homunculus are illuminated by or shadowed from
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different types of stellar radiation during the orbit, a ‘lighthouse effect’ occurs as a

result of the observer’s line of sight (Madura 2010). Ultimately, such lighthouse

effects are the key identifier in the determination of η Car as a binary system. The

periodicity gives further clues in all wavebands, including the important X-ray

band, as discussed by (Corcoran et al. 2017). The X-ray variability is recognized to

arise from the WWC zone between the stars and modulated by the orbital motion.

X-rays have thus been one of the most important observational diagnostics of the

η Car system, helping to constrain the orbital, orientation, and stellar wind

parameters (Madura et al. 2013; Corcoran et al. 2017).

The results of 3D hydrodynamical modeling like that performed in this thesis

can be applied to help understand various X-ray observations in further detail.

Arguably, periodic X-ray variability gives one of the most direct views of η Car’s

intrinsic properties (Corcoran et al. 2017). This AMR simulation makes modeling

such periodicity in detail possible. The model periodicity then gives a comparison

for X-ray periodicity with past periaston events. Additionally, there is the extended

η Car X-ray minimum, which is defined by a prior gradual rise in X-ray brightness,

followed by a sudden rapid decrease to a minimum that lasts several months

(Corcoran et al. 2017). Variations that arise in the X-ray emission and absorption

due to changes in the stellar wind properties of either star come with weakly

correlated explanations. By refining and improving on the 3D modeling of the

various physical instabilities in the WWC zone, a much clearer understanding of the

observed variations in the X-ray emission can be obtained.

7.3 Future work

The AMR simulation in this thesis has primarily been focused on

understanding the behavior of η Car’s binary wind-wind collision across periastron.
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Due to time and computational resource constraints, a complete 3D hydrodynamical

model of η Car’s entire 5.54-year binary orbit is not fully captured in this thesis.

The modeling of the entire orbit is left for future work, as running a complete orbit

using the RAMSES AMR code takes a significant amount of time, even when using

NASA Ames supercomputing facilities. In any case, even without a complete orbit

simulation, many observational diagnostics can be qualitatively and quantitatively

modeled, including the most interesting parts of the X-ray light curve, X-ray

spectra, optical and UV spectra, optical light curves, interferometric infrared

imaging, and more. The basic structure of the η Car system around apastron is

relatively well understood thanks to earlier simulations and analytic analyses like

that in (Canto et al. 1996). Apastron is much easier, and less interesting, to model

since orbital velocities are much slower and the WWC region is more symmetric.

Modeling apastron at this time would simply represent a waste of computational

resources due to the time required to simulate such a broad and relatively

uninteresting part of the highly eccentric orbit.

Stellar wind velocity and the role of radiative cooling have been primary

themes in this thesis, in addition to running a simulation at periastron. The effects

of orbital separation on wind velocity and the efficiency of cooling, and how both

change with orbital phase, play a key role in the various instabilities that arise in

the WWC zone and the presence of extremely hot (∼ 108 K) post-shock gas.

Undetermined are how, exactly, wind velocities change in the real η Car system

with orbital motion, and how such changes affect numerous observables, including

X-rays. Nevertheless, the results in this thesis further support the idea that

radiative cooling of the post-shock ηB wind is primarily responsible for the

disappearance of hot X-ray emitting gas, the “collapse” of the WWC region during

periastron passage, the extended X-ray light curve minimum, and the unpredictable
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nature of the X-ray light curve recovery out of minimum (Madura et al. 2013;

Corcoran et al. 2017). The β-velocity law nature of the stellar winds helps facilitate

the transition from adiabatic to radiative cooling in the post-shock ηB wind during

periastron by helping to slow ηB’s wind to well below its terminal speed before

collision, since the cooling parameter χ ∝ v4
wind.
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CHAPTER 8

CONCLUSION

The mysterious binary system known as η Car, located ∼ 7500 light years

away, contains two massive stars with a combined mass of & 120 M�. It is

surrounded by the bipolar Homunculus nebula, a shroud of dust and gas formed in

the aftermath of “The Great Eruption” during the 1840’s, when η Car reached peak

brightness. Meanwhile, η Car sits at the core of the Homunculus nebula,

illuminating it at an incredible luminosity of 5× 106 L�. The primary star of η Car

is estimated to be ∼ 90 M� and the secondary ∼ 40 M�. However, historical

eruptions may indicate even larger values of the masses due to the occurrence of

mass loss over time. Continuous stellar winds driven by radiation pressure and

occasional mass outbursts are responsible for decreases in total system mass. This

places η Car in the class of LBVs. In between both stars a collision of the stellar

winds occurs, which makes η Car an interesting laboratory to study the physics

behind massive star mass loss and evolution. Periodic variable emission emanating

from the WWC zone ranges from radio wavelengths up to gamma rays, allowing

astronomers to make observations and build models of the system. In particular,

state-of-the-art 3D modeling of η Car makes use of grid-based AMR hydrodynamical

simulations, which will help improve constraints on the physical properties of η Car.

Prior to applying computational methods to model η Car and its colliding

winds, this thesis summarized preliminary work on the physics of radiation-driven

stellar winds that are responsible for continuous mass loss at rates of up to one Sun

every thousand years. The inherent nature of η Car places the system in the upper

range of the HR diagram, and above the HD limit for stability of stars. The HD
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limit is defined by the Eddington limit, where the radiation pressure can exceed

local gravity. Achieving sufficient force to overcome gravity requires an extreme

luminosity. η Car’s luminosity is one of the most significant of all known stars.

Radiation driving of stellar winds depends on the concept of stellar opacity.

Photons carry momentum and can scatter off of free electrons in the atmosphere of

a star. At the atomic level are Compton and Thompson scattering effects that can

potentially lead to a mass outflow and hence a stellar wind. However, more efficient

for stellar wind mass loss is line-driven acceleration. Starting with the momentum

and force balance between gravity, mass loss rates are then defined while

incorporating factors related to stellar opacity. Discrete atomic lines determine the

acceleration for the outflow of the wind via the use of fluid equations. A continuum

of lines describing the global acceleration can be expressed by making use of the

Sobelov approximation. The global expression for the line ensemble then leads to

the one-dimensional point-star CAK model (Castor et al. 1975), referenced in

describing the basis for the physics of radiation-driven stellar winds.

The wind-wind interaction of two point star sources of stellar winds can next

be described through a fairly straightforward algebraic expression in the case when

orbital motion is negligible. Following this are the conditions that lead to the

momentum balance between the interacting winds. Density and wind velocity are

important in the changing momentum balance at the contact discontinuity between

the wind-wind shocks. Missing from this analysis are the temperatures of the winds.

A cooling parameter, χ, is introduced as the ratio of the cooling time to the escape

time. If χ > 1, the gas behaves adiabatically, whereas if χ << 1, the gas cools

radiatively. Furthermore, χ ∝ v4
wind and the distance to the contact discontinuity.

Beyond analytical methods are detailed numerical methods that have the

ability to model the detailed physics, allowing for the interpretation of observations.
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Two dimensional modeling begin in the 1990’s as hydrodynamical codes and

computers began to develop. Later on, as numerical methods and computing power

improved, three dimensional hydrodynamical modeling became possible via e.g.

SPH simulations. Current simulations now take advantage of grid-base AMR

methods and high-end computational resources. In this thesis, a 3D hydrodynamical

AMR code, RAMSES, originally developed for modeling galaxy formation, was used to

model η Car’s binary colliding winds around its periastron passage.

The results of this AMR simulation represent some of the highest resolution

3D simulations of η Car to date. We presented plots of density, temperature, and

velocity from the AMR simulations. Slices were taken in the xy, yz, and xz planes

at multiple orbital phases around periastron. As expected from analytical solutions,

the results of this simulation show consistent results. The AMR results are also

consistent with those of past 3D SPH simulations, although the AMR simulations

presented in this theses do a much better job of resolving the colliding wind shocks

and various physical instabilities that arise in the shocks. As for changes in wind

momentum with the change in orbital phase, this AMR simulation shows the

differences in cooling and wind velocity comparatively with the SPH results.

Ultimately, the results show that grid-based AMR simulations represent a

significant improvement in the 3D modeling of η Car. Applications to observational

diagnostics at X-ray, UV, and optical wavelengths will allow tighter constraints to

eventually be placed on the stellar, wind, and orbital properties of η Car, and a

better understanding of bizarre behavior like the non-repeatable recovery from the

extended X-ray light curve minimum. Meanwhile, future work with AMR

simulations opens the potential for 3D modeling at an increased level of refinement

and resolution. With that, the history of η Car has been part of a long standing

problem in the evolutionary cycle of stars. There are still many other mysteries
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involved in creating a more clear image of the this system. We will hopefully resolve

the mystery of η Car’s mass loss history, which has always been a goal in uncovering

the nature of η Car.
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